Correction
Density functional theory study of superoxide ions as impurities in alkali halides

Sougaard Tygesen, Alexander ; Mathiesen, Nicolai Rask; Chang, Jinhyun; García-Lastra, Juan María

Published in:
Physical Chemistry Chemical Physics

Link to article, DOI:
10.1039/d0cp90113j

Publication date:
2020

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Correction: Density functional theory study of superoxide ions as impurities in alkali halides

Alexander S. Tygesen, Nicolai R. Mathiesen, Jin Hyun Chang and Juan María García-Lastra*

In the right-hand column of the eighth page of the manuscript, all occurrences of the squared vibronic constant, F, should not be squared. Thus, the text should read: “The magnitude of the Q_1 distortion can be written in the first approximation as $Q_1^{\text{min}} = F/K$, where F and K are the vibronic coupling constant and the force constant for the Q_1 mode, respectively.27 In general, both F and K decrease as the lattice parameter is increased. It can be seen from Table 4 that the magnitude of the Q_1 distortion decreases as we move from sodium halides to potassium halides and from alkali bromides to alkali chlorides, which indicates that F decreases faster than K with the increase in lattice parameter.”

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.