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Algorithms for Simultaneous Hermite–Padé Approximations

Johan Rosenkilde

Technical University of Denmark, Denmark

Arne Storjohann

University of Waterloo, Canada

Abstract
We describe how to compute simultaneous Hermite–Padé approximations, over a polynomial ring
K[x] for a field K using O∼(nω−1td) operations in K, where d is the sought precision, where n is the
number of simultaneous approximations using t < n polynomials, and where O(nω) is the cost of
multiplying n × n matrices over K. We develop two algorithms using different approaches. Both
algorithms return a reduced sub-basis that generates the complete set of solutions to the input
approximation problem that satisfy the given degree constraints. Previously, the cost O∼(nω−1td)
has only been reached with randomized algorithms finding a single solution for the case t < n. Our
results are made possible by recent breakthroughs in fast computations of minimal approximant
bases and Hermite–Padé approximations for the case t ≥ n.

Keywords: Padé approximation; approximant bases; structured linear systems

1. Introduction

Let K be a field admitting exact computation. Padé approximation concerns approximating
a power series S ∈ K[[x]] with a rational function φ

λ
up to some prescribed precision d, while

keeping the degrees of φ and λ small, i.e., such that λS ≡ φ mod xd. There are two natural
vector-generalisations to this:

Simultaneous Padé approximation is where we have several power series S 1, . . . , S n ∈ K[[x]]
and seek rational functions φ1

λ
, . . . , φn

λ
, all sharing the same denominator λ, and such that λS i ≡

φi mod xd for each i. In vector form:

λ
[

S 1 S 2 · · · S n

]
≡

[
φ1 φ2 · · · φn

]
mod xd .

Hermite–Padé approximation is where we have several power series S 1, . . . , S t ∈ K[[x]] and
seek several polynomials λ1, . . . , λt and a single φ such that λ1S 1 + . . . + λtS t ≡ φ mod xd. In
vector form:

[
λ1 λ2 · · · λt

] 
S 1
S 2
...

S t

 ≡ φ mod xd .
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Both generalisations trace back to Hermite (1874) for the proof that e is transcendental, and
were subsequently studied in greater detail by his student Padé (1892). There is a duality between
the solution sets of the two problems, first observed by Mahler (1968). See also (Baker and
Graves-Morris, 1996) for a detailed treatment of Padé approximations and these generalisations
over the real or complex numbers.

From the study of these and other type of approximants emerged unifying generalisations,
e.g. Barel and Bultheel (1992); Beckermann (1992); Beckermann and Labahn (1994). One form
of these is what we will call simultaneous Hermite–Padé approximations of size t × n:

Given a matrix S ∈ K[x]t×n find two low-degree vectors λ ∈ K[x]1×t and φ ∈ K[x]1×n,
such that λS = φ mod xd. In matrix form:

[
λ1 λ2 · · · λt

] 
S 11 S 12 · · · S 1n

S 21 S 22 · · · S 2n
...

...
...

S t1 S t2 · · · S tn

 ≡
[
φ1 φ2 · · · φn

]
mod xd . (1.1)

Note that the boundary cases t = 1 (with n arbitrary) and n = 1 (with t arbitrary) are the
simultaneous Padé and Hermite–Padé approximation problems, respectively. We also remark that
there is a spectrum of problems depending on the relation between t and n. For t < n the matrix S
is a “fat” row vector, suggesting a problem closer to simultaneous Padé, while for t > n the matrix
S is a “fat” column vector, closer to Hermite–Padé.

Our focus is for the case t < n. While the new algorithms we propose in this paper are
applicable if t ≥ n, they are designed to give improved complexity estimates compared to previous
approaches for the case t < n. Assuming t < n, we give new deterministic algorithms with cost
O∼(nω−1td), where O(nω) is the cost of multiplying two square matrices over K of dimension at
most n and O∼(·) ignores log-factors, see Section 2.1. Up to log-factors, this matches the previously
best cost which uses a randomized algorithm, see below. Furthermore, our algorithms produce a
parametrisation of all solutions, and it is unclear to us if this would be possible with the approach
of the randomized algorithm.

Padé approximation has many applications in both numerical domains, e.g. control theory,
and in symbolic algebraic domains, e.g. coding theory and cryptography. In particular, solving a
classical Padé approximation is the core task in decoding Reed–Solomon codes (Berlekamp, 1968;
Fitzpatrick, 1995), and the vector and matrix generalisations appear in list- and power decoding
of Reed–Solomon codes, e.g. Roth and Ruckenstein (2000); Zeh et al. (2011); Schmidt et al.
(2010); Rosenkilde (2018). Note that in Schmidt et al. (2010), the simultaneous Hermite–Padé
approximation used for decoding has 1 = t � n, while in Rosenkilde (2018) it has 1 < t < n.
A snag is that in both of these references, the degree restrictions that solutions to the Padé
approximations need to satisfy are not absolute (as in Problem 1.1) but relative, i.e., of the
form max j(deg λ j + µ j) > maxi(degψi + δi) for some µ j, δi ∈ Z, and we seek a solution which
minimises the left-hand side of the inequality. Rosenkilde (2018) discusses how to leverage the
parametrisation of all solutions to an absolute degree constraint problem, as produced by e.g. the
algorithms of this paper, to find a single solution to the relative degree constraint problem.

Algorithms for the simultaneous Hermite–Padé approximation problem can be roughly split
into two categories: the structured linear systems approach, and the approximant basis approach.
Both approaches have roots in the extended euclidean algorithm. In the following discussion, we
specialise the costs to the case t < n.
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Imposing deg λi < Ti < d and degψ j < N j < d for some Ti,N j ∈ Z and expanding
Equation (1.1) to a linear system of homogeneous equations in the coefficients of λ1, . . . , λt yields
a system which is t×n block-Toeplitz with blocks of size (d−N j)×Ti. This structure was captured
by the notion of displacement rank and solved in time O

(
nt2d2) by Kailath et al. (1979), which

was later improved to “super-fast” O∼
(
n2td

)
, see Bitmead and Anderson (1980); Morf (1980) for

approaches assuming generic input and Kaltofen (1994) for a Las Vegas randomized algorithm
that works for all inputs. See also Pan (2001) for the extensive history and many contributions in
solving structured systems before 2000. Matrix-multiplication was integrated in the super-fast
solvers for a cost of O∼

(
nω−1td

)
by Bostan et al. (2008)1, which was improved by logarithmic

factors in Bostan et al. (2017); both are Las Vegas randomized. The latter is roughly a factor
log(td) faster than the algorithms of this paper2. These algorithms typically return only a single
solution; in particular, it is unclear to us if the algorithms of (Bostan et al., 2008, 2017) could be
used to produce a parametrisation of all solutions at the same cost.

The approach of approximant basis traces back to especially Barel and Bultheel (1992) and
Beckermann and Labahn (1994), and we discuss it in detail in Section 2.5.2. The congruence
Equation (1.1) is reordered into a homogeneous system as [λ | φ]F ≡ 0 mod xd, where

F =

[
S
−In×n

]
∈ K[x](t+n)×n .

The set of vectors v such that vF ≡ 0 mod xd is a K[x] module, a basis of which is known as
a “minimal approximant basis of F to order d”. Usually this equation is first solved modulo x
using K-linear algebra and then lifted to higher powers of x using iterative cancellation or in a
Newton iteration fashion. Barel and Bultheel (1992) solves this in complexity O(n3d2). The first
algorithm in Beckermann and Labahn (1994) gives the improved cost O(n2td2) for our case, and
their second algorithm incorporates fast polynomial multiplication to obtain an algorithm with
complexity O∼(n3d). This cost was improved by Giorgi et al. (2003) to O∼(nωd). Up to logarithmic
factors, this seems hard to improve in the case where the matrix F is roughly square. Handling
wide matrices is easily done fast by sub-division, see Lemma 2.4, so attention therefore turned to
the case where F is a tall rectangular matrix, where the cost was further improved in a series of
papers (Zhou and Labahn, 2012; Jeannerod et al., 2016, In press); this applies to the simultaneous
Hermite–Padé problem when t > n for a cost of O∼(max(t, n)ω−1nd).

However, for the case t < n, the matrix F is still roughly square and the previous best cost with
the minimal approximant approach was still O∼(nωd). The contribution of this paper is to compute
simultaneous Hermite–Padé approximations by a more subtle use of minimal approximant bases,
such that we can leverage the fast algorithms for the tall rectangular case, thereby improving the
cost to O∼(nω−1td).

Lastly, we will also mention the approach of row reduced matrices, which is closely related
to approximant basis; we give more details in Section 2.5.1. The observation is that any vector
(λ | ψ) ∈ K[x]t+n in the row space of the matrix

A =

[
It×t S

xdIn×n

]
∈ K[x](n+t)×(n+t)

1Note that in the earlier version of this paper (Rosenkilde né Nielsen and Storjohann, 2016), we erroneously claimed
that the cost of applying Bostan et al. (2008) to the case t = 1 would cost O∼(nωd).

2Before Problem 1.1 can be fed to a structured systems algorithm, one needs to compute from S appropriate “generators”
of the displacement-representation of the system. We do not assert that this can be done sufficiently fast, and it is outside
the scope of this related work section, but this is likely true.
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will be a solution to the congruence Equation (1.1). Hence we are simply seeking small-degree
vectors in the row space of this matrix, which can be found by computing a row reduced basis
of A. This approach is classical for the Z-analogous problem of simultaneous Diophantine
approximation, see e.g. (von zur Gathen and Gerhard, 2013, Chapter 17). For K[x], the earliest
published reference we know of is (Olesh and Storjohann, 2007). If we use (Mulders and
Storjohann, 2003) to perform the row reduction, and t < n, it was shown in (Nielsen, 2013) that
this achieves the cost O(n2td2), matching Beckermann and Labahn (1994) in a more general
setting. Neiger (2016) gives the currently known fastest approach for performing row reduction
which gives a cost O∼(nωd) when t < n. For the most general problem we consider, this is faster
than the algorithms of this paper for certain ranges of parameters, see Section 2.5.1.

In the previous discussion, we assumed for simplicity that the moduli were all equal to xd. We
actually consider a generalisation where the moduli are replaced by arbitrary polynomials gi. This
generalises M-Padé problems as in e.g. (Barel and Bultheel, 1992), which posits that all gi split
over K. The minimal approximant approaches discussed support this generalisation at no extra
asymptotic cost, see Section 2.5.2. The situation is a little more unclear for the structured linear
system approach, but they could possibly be handled using the companion matrix displacement
operator introduced in (Bostan et al., 2017).

The problem we study is formalised as Problem 1.1:

Problem 1.1 ((t × n) simultaneous Hermite–Padé).
Given a tuple (S, g, N) where

• S = [S1 | . . . | Sn] ∈ K[x]t×n a matrix of polynomials with columns Si,

• g = (g1, . . . , gn) ∈ K[x]n is a sequence of moduli polynomials with deg Si < deg gi for
i = 1, . . . , n,

• and N = (T1, . . . ,Tt,N1, . . . ,Nn) ∈ Zt+n
≥0 are degree bounds satisfying 1 ≤ T j ≤ deg lcm(g1, . . . , gn)+

1 for j = 1, . . . , t and Ni ≤ deg gi for i = 1, . . . , n,

find, if it exists, a non-zero vector (λ1, . . . , λt, φ1, . . . , φn) such that

1. (λ1, . . . , λt)Si ≡ φi mod gi for i = 1, . . . , n,
2. and deg λ j < T j for j = 1, . . . , t and deg φi < Ni for i = 1, . . . , n.

We will call any vector (λ1, . . . , λt, φ1, . . . , φn) as above a solution to the simultaneous Hermite–
Padé approximation problem (S, g, N). Note that if the entries of N are set too small, then it might
be the case that no solution exists.

Example 1.2. Consider over F2[x] that g1 = g2 = g3 = x5 − 1, and

S =

[
x4 + x2 + 1 x4 + x x4 + x2 x4 + x2 + x + 1
x4 + x + 1 x4 + x3 + 1 x4 + x2 + x + 1 x4 + x3 + x2 + 1

]
,

N = (T1,T2,N1,N2,N3,N4) = (5, 3, 2, 3, 4, 4) .

Then λ1 =
(
x4 + x3 + x, x2 + 1

)
is a solution, since deg λ11 < 5, deg λ12 < 3 and

λ1S ≡
(
1, x2 + x, x3 + x2 + x + 1, x + 1

)
mod x5 − 1 .
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λ2 =
(
x3 + x, x

)
is another solution, since

λ2S ≡
(
1, x, x + 1, x3 + 1

)
mod x5 − 1 .

These two solutions are linearly independent over F2[x] and can be shown to span all solutions. N

Example 1.3. The following example demonstrates that the upper bound Ti ≤ deg lcm(g1, . . . , gn)+
1 can be attained. Let t = 1, let K be a field with at least n elements, and let gi = x− ai for pairwise
different a1, . . . , an ∈ K. Let T1 = n + 1 and N1 = . . . = Nn = 0, and S = 11×n. In other words, we
seek a single λ ∈ K[x] such that λ ≡ 0 mod (x − ai) for i = 1, . . . , n, which only has the solution
λ =

∏n
i=1 gi and multiples thereof.

On the other hand, the bound on Ti is always sufficient: notice that for any instance (S, g, N),
taking λ = (lcm(g1, . . . , gn), 0, . . . , 0) yields λSi ≡ 0 mod gi for i = 1, . . . , n, satisfying any degree
bounds N1, . . . ,Nn. N

A more ambitious goal than solving Problem 1.1 is to produce a basis which generates all
solutions. Formally:

Problem 1.4 ((t × n) simultaneous Hermite–Padé basis).
Given an instance of Problem 1.1, find a matrix A ∈ K[x]∗×(t+n) such that:

• Each row of A is a solution to the instance.

• All solutions are in the K[x]-row space of A.

• A is (−N)-row reduced3.

The last condition ensures that A is minimal, in a sense, according to the degree bounds N,
and that we can easily parametrise which linear combinations of the rows of A are solutions. We
recall the relevant definitions and lemmas in Section 2.

We will call such a matrix A a solution basis. We will see in Section 2.5 that a solution
basis A to a t × n problem can have at most t + n rows. In the complexities we report here, we
cannot afford to compute A explicitly. Even in the case all gi = xd, the number of field elements
required to explicitly write down all of the entries of A could be Ω((t + n)2d). This means that any
algorithm which produces or processes such a full basis A will not be able to attain our target cost
bounds, e.g. the approaches of using row reduction or minimal approximant bases, as recalled in
Section 2.5.

Instead, we observe that A is completely given by the problem instance as well as the first t
columns of A, containing the λ j polynomials.4 Our algorithms will therefore represent A row-wise
using the following compact representation.

Definition 1.5. For a given instance of Problem 1.4, a solution specification is a tuple (λ, δ) ∈
K[x]k×t × Zk

<0 with k ≤ t + n and such that the completion of λ is a solution basis A, and where δ
are the (−N)-degrees of the rows of A. The completion of λ ∈ K[x]k×t with rows λ j is the matrix

λ1 rem(λ1S1, g1) . . . rem(λ1Sn, gn)
...

. . .
...

λk rem(λkS1, g1) . . . rem(λkSn, gn)

 ∈ K[x]k×(t+n) .

3The notions (−N)-degree, deg(−N) and (−N)-row reduced are recalled in Section 2.
4The restriction Ni ≤ deg gi in Problem 1.1 ensures that for a given λ = (λ1, . . . , λt), the only possibilities for the φi in

a solution are rem(λSi, gi). In particular, if we allowed Ni > deg gi then (0, . . . , 0, gi, 0, . . . , 0) would be a solution which
can not be uniquely reconstructed from its first t elements.
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Note that if (λ, δ) is a solution specification, then δ will consist of only negative numbers,
since any solution v by definition has deg(−N) v < 0.

Example 1.6. A solution specification for the problem in Example 1.2 is (λ, δ) where

λ =

[
x4 + x3 + x x2 + 1

x3 + x x

]
δ = (−1,−1) .

For brevity, here and later, we will sometimes indicate only degrees of matrices: for F ∈ K[x]m×n

and D ∈ Zm×n, we write F E D if the degrees of the entries of F are element-wise less than or
equal to that of D, with a blank in D representing any negative number (i.e., F has a corresponding
entry 0). The completion of the above solution specification then satisfies

A E

[
4 2 0 2 3 1
3 1 0 1 1 3

]
.

One can verify that A is (−N)-row reduced. N

Several earlier approaches which compute all solutions to a simultaneous Hermite–Padé
approximation produce something similar to a (−N)-row reduced basis for all (λ | φ) ∈ K[x]1×(t+n)

which solve the congruences of Problem 1.1, including those which exceed the degree bound,
e.g. (Barel and Bultheel, 1992; Beckermann and Labahn, 1992) and the one recalled in Sec-
tion 2.5.1. As mentioned above, computing a full basis of solutions may exceed our target
cost.

The take-away of this paper is the following general complexity for solving Problem 1.4:

Theorem 1.7. There is an algorithm which can solve Problem 1.4 in complexity O∼(max(t, n)ω−1 min(t, n)d),
where d = max j T j + maxi deg gi. When t < n, the algorithm outputs a solution specification
(λ, δ) ∈ K[x]k×t × Zk

<0, where k ≤ t + n. When t ≥ n, the algorithm outputs a complete solution
basis A ∈ K[x]k×(t+n).

The case t ≥ n is handled by either of the existing approaches recalled in Section 2.5, while
the case t < n is either of the two algorithms presented in this paper. See the theorems in the
respective sections for a more precise description of the cost including log-factors. An immediate
corollary is that we can compute the expanded form of one or a few solutions in the same cost:

Corollary 1.8. There is an algorithm which solves Problem 1.1 in complexity O∼(max(t, n)ω−1 min(t, n)d),
where d = max j T j + maxi deg gi.

Both our algorithms depend crucially on recent developments on computing minimal ap-
proximant basis of matrices with fewer columns than rows (Zhou and Labahn, 2012; Jeannerod
et al., 2016, In press). Our first algorithm in Section 3 builds on the well-known duality between
simultaneous Padé and Hermite–Padé which we generalise into a duality theory for minimal
approximant basis. If the original problem is t × n with t < n, then the dual will be n × t, and
so applying the minimal approximant basis solution recalled in Section 2.5.2 will give a good
complexity. Pulling back a solution basis for the dual into a solution for the original requires to
efficiently compute t rows of the adjoint of a matrix in Popov form, and this is done by combining
partial linearisation (Gupta et al., 2012) and high-order lifting (Storjohann, 2003).

Our second algorithm in Section 4 works essentially by breaking the t × n Hermite–Padé
problem into roughly n/t ones of size roughly t × t: each of these can be solved in complexity
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O∼(tωd) using the approaches recalled in Section 2.5. Two such solution bases can be combined by
computing the intersection of their row spaces. This is again handled by a minimal approximant
basis computation: a key point here is that we should intersect on only the first t columns of the
solution basis, namely the λ-part. A solution basis of the full simultaneous Hermite–Padé problem
is then obtained by structuring intersections along a binary tree.

We have decided to include both algorithms as we find that they both illuminate different
facets of the simultaneous Hermite–Padé problem, but we cannot point to one being decidedly
better than the other. The algorithms have comparable asymptotic complexity, and they both
rely on an efficient computation of shifted minimal approximant bases. The first algorithm
additionally requires high-order lifting for computing part of the inverse of a polynomial matrix.
A more detailed asymptotic analysis including constants of leading-terms, or a carefully optimised
implementation of the full algorithmic stack could point to which algorithm to prefer.

This paper is an extension of (Rosenkilde né Nielsen and Storjohann, 2016), where we
considered only the simultaneous Padé problem, that is, an input of size 1 × n. Here we extend to
the general case t × n. In our previous paper the algorithm based on duality only applied to the
case when all gi where equal to xd. Here we extend to the general case of arbitrary gi.

Both our algorithms have been implemented in Sage v. 8.3 (Stein et al.) (though asymptotically
slower alternatives to the computational tools are used). The source code can be downloaded from
http://jsrn.dk/code-for-articles.

2. Preliminaries

We begin by introducing our cost model, and then continue by gathering together some
definitions and results regarding row reduced bases, minimal approximant bases, and their shifted
variants.

2.1. Cost model

We count basic arithmetic operations in K on an algebraic RAM. We use the following
short-hands:

• O(nω) is the cost of multiplying two square matrices of dimension bounded by n over K.

• M(d) is the cost of multiplying two polynomials in K[x] of degree bounded by d.

• PM(n, d) is the cost of multiplying two square matrices of dimension bounded by n and
degree bounded by d.

The currently best known matrix multiplication algorithm has ω < 2.373 (Coppersmith and
Winograd, 1990; Le Gall, 2014). In this paper we will assume ω > 2, otherwise additional
log-factors might apply. For example, a nonsingular matrix from Kn×n can be inverted in time
O(nω) field operations from K if ω > 2.

Cantor and Kaltofen (1991) show M(d) ∈ O(d log(d) loglog(d)), while slightly better results
are known for finite fields (Harvey et al., 2017). See also Harvey and van der Hoeven (2019) who
show M(d) ∈ O(d log(d)) operations in K under an unproven number theoretic assumption. We
assume M(d) is super-linear: M(d)/d ≥ M(d′)/d′ for all d ≥ d′ ≥ 1. We will also assume that
there exists an ε > 0 such that M(d) ∈ O(dω−1−ε); the purpose of this assumption is to ensure
that if fast matrix multiplication techniques are used then fast polynomial multiplication should
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also be used. For example, in one of our cost analyses we will use this assumption to make the
simplification M(d) log(d)2 ∈ O(dω−1).

We will assume PM(n, d) is super-linear in d: PM(n, d) + PM(n, d′) ≤ PM(n, d + d′) for all
n, d, d′ ≥ 1. We will also assume PM(n, d) ∈ Ω(nωd). The currently best known bound over an
arbitrary field is given by Cantor and Kaltofen (1991):

PM(n, d) ∈ O
(
nωd log(d) + n2d log(d) loglog(d))

)
.

Note that for any positive constants c1 and c2 we have PM(c1, d) ∈ O(M(d)) and PM(n, c2) ∈
O(nω). Using an obvious block decomposition and polynomial segmentation we have PM(c1n, c2d) ∈
O(PM(n, d)).

In our main theorems, we report complexities using the cost function PM and including
logarithmic factors, but in discussions we often employ O∼(·) which omits logarithmic factors for
simplicity.

2.2. Degrees and shifted degrees
For a matrix A we denote by Ai, j the entry in row i and column j. For a matrix A over K[x] we

denote by Row(A) the K[x]-linear row space of A.
The degree of a vector v ∈ K[x]1×m or matrix A ∈ K[x]n×m is denoted by deg v or deg A, and

is the maximal degree of entries of v or A (and deg 0 := −∞). The row degree of A, denoted by
rowdeg A, is the tuple (d1, . . . , dn) with di = deg row(A, i). We similarly introduce column degree
denoted coldeg A. When we compare tuples of integers, e.g. rowdeg A1 < rowdeg A2, we mean
that the comparison holds element-wise.

The (row-wise) leading matrix of A, denoted by LM(A) ∈ Kn×m, has LM(A)i, j equal to the
coefficient of xdi of Ai, j.

Next we recall the shifted variants of the notion of degree, row degree, and leading matrix
(Barel and Bultheel, 1992; Zhou and Labahn, 2012; Jeannerod et al., 2016). For a shift s =

(s1, . . . , sm) ∈ Zm, define the m × m diagonal matrix xs by

xs :=


xs1

. . .

xsm

 .
Then the s-degree of v, the s-row degrees of A, and the s-leading matrix of A, are defined by
degs v := deg vxs, rowdegsA := rowdeg Axs, and LMs(A) := LM(Axs). For a shift t ∈ Zn we
similarly have the t-column degree coldegt A := coldeg xt A = rowdegt A

>. Note that with negative
entries in s, we pass over the ring of Laurent polynomials only for convenience; our algorithms
will only compute with polynomials. As pointed out by Jeannerod et al. (2016), up to negation the
definition of s-degree is equivalent to that used by Beckermann et al. (2006) and to the notion of
defect in Beckermann and Labahn (1994).

For a vector v ∈ K[x]1×k, we denote by diag(v) the diagonal matrix with the entries of v.

2.3. Row and column reduced
Although row reducedness can be defined for matrices of arbitrary shape and rank, it suffices

here to consider the case of matrices of full row rank. A matrix R ∈ K[x]n×m of full row rank n
is s-row reduced if any of the equivalent conditions in the following theorem is satisfied. If all
entries in the shift s ∈ Zm are identical we simply say R is row reduced.
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Theorem 2.1 (see (Kailath, 1980, Section 6.3.2) and (Zhou, 2012, Section 2.7)). Let R ∈ K[x]n×m

have full row rank n and let s ∈ Zm be a shift. Then the following are equivalent:

1. LMs(R) has full row rank n.
2. Among all matrices that are left equivalent to R, the list of s-degrees of the rows of R, when

sorted in non-decreasing order, will be lexicographically minimal.
3. For any v ∈ K[x]1×n, we have

degs(vR) = max
i=1,...,n

(degs row(R, i) + deg vi) .

Property 3 in Theorem 2.1 is known as the “predictable degree”-property (Kailath, 1980,
Theorem 6.3-13). Every A ∈ K[x]n×m of full row rank is left equivalent to a matrix R ∈ K[x]n×m

that is s-row reduced. The notion of row reducedness has a column-wise counterpart: a matrix
R ∈ K[x]m×n is column reduced if R> is row reduced, and s-column reduced if R> is s-row reduced.
We will mostly be working with row reduced matrices, and the LM-notation applies to this, but in
some instances we will use column reduced to simplify notation.

The following is a well-known fact on row-reduced matrices, see e.g. (Zhou, 2012, Lemmas
2.19 and 2.20) for a proof:5

Lemma 2.2. Let F1 ∈ K[x]m×n over K[x] be s-row reduced, and F2 ∈ K[x]k×m be r-row reduced
where r = rowdegsF1. Then F2F1 is s-row reduced with rowdegs(F2F1) = rowdegr(F2).

A canonical s-row reduced basis is provided by the (row-wise) s-Popov form. Although an
s-Popov form can be defined for a matrix of arbitrary shape and rank, it suffices here to consider
the case of a non-singular matrix. The following definition is equivalent to the one of Beckermann
et al. (1999):

Definition 2.3. A non-singular matrix R ∈ K[x]n×n is in s-Popov form if LMs(R) is unit lower
triangular and the degrees of off-diagonal entries of R are strictly less than the degree of the
diagonal entry in the same column.

A matrix R is in column s-Popov form if R> is in s-Popov form.

2.4. Approximant and minimal approximant basis

We recall the standard notion of (left) minimal approximant basis, sometimes known as order
basis or σ-basis (Beckermann and Labahn, 1994). For a matrix A ∈ K[x]n×m and order d ∈ Z≥0,
an order d (left) approximant is a vector p ∈ K[x]1×n such that pA ≡ 0 mod xd.

A (left) approximant basis of order d is a matrix F ∈ K[x]n×n which is a basis of all order d
approximants. Such a basis always exists and has full rank n. For a shift s ∈ Zn, F is an s-minimal
approximant basis if it is s-row reduced.

We will also consider right approximants, i.e., a vector p ∈ K[x]m×1 such that Ap ≡ 0 mod xd,
as well as the related notions of right approximant basis and right minimal approximant basis.
When we omit the direction, we mean left approximant.

Let MinBasis(d, A, s) be a function that returns (F, δ), where F is an s-minimal left approx-
imant basis of A of order d, and δ = rowdegsF. Note that F is not canonical, and we allow

5(Zhou, 2012, Lemma 2.20) has a typo: the last part of should read “if and only if AB is u-column reduced”.
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MinBasis to return any such s-minimal approximant basis. It follows from Theorem 2.1 that δ
will be the same for all of these up to ordering of the entries.

The next lemma recalls a well known structural recursion for minimal approximant bases,
which traces back to (Beckermann and Labahn, 1997, Theorem 5.1). We stress again that although
the output of MinBasis is not unique, the lemma holds for any s-minimal approximant basis that
MinBasis might return.

Lemma 2.4. Let A =
[
A1 A2

]
over K[x]. If (F1, δ1) = MinBasis(d, A1, s) and (F2, δ2) =

MinBasis(d, F1A2, δ1), then F2F1 is an s-minimal approximant basis of A of order d with δ2 =

rowdegsF2F1.

Sometimes only the negative part of an s-minimal approximant basis is required, i.e., the
submatrix of the approximant basis consisting of rows with negative s-degree. Let the function
NegMinBasis(d, A, s) have the same output as MinBasis, but with F restricted to the negative
part.

We will use the following easy statement on the determinant of minimal approximant bases:

Lemma 2.5. Let F ∈ K[x]n×n be an approximant basis of order d for some A ∈ K[x]n×m. Then
det F | xdm.

Proof. Note that there exists a unimodular matrix U ∈ K[x]n×n such that the last n − m rows of
UA are zero. Then the matrix Ū obtained from U by multiplying the first m rows by xd will
satisfy ŪA ≡ 0 mod xd. So the row space of Ū is contained in the row space of F, which implies
det F | det Ū, and the latter is xmd up to a constant.

Many problems of K[x] matrices or approximations reduce to the computation of (shifted)
minimal approximant bases, see e.g. Beckermann and Labahn (1994) and Giorgi et al. (2003), often
resulting in the best known asymptotic complexities for these problems. Part 1 of the following
theorem is a special case of (Jeannerod et al., In press, Theorem 1.1). Part 2 is (Jeannerod et al.,
2017, Proposition 7.1).

Theorem 2.6. There exists an algorithm PopovMinBasis(d, A, s) implementing MinBasis and
such that the minimal approximant basis is in s-Popov form. Assume A ∈ K[x]n×m satisfies m ≤ n
and deg A ≤ d. In terms of operations from K, then PopovMinBasis(d, A, s) has cost bounded by

1. O(PM(n,md/n) log(md/n)2 + nω−1md log(n))).
2. O(n(md)ω−1 + (md)ω log(d)) if md ∈ O(n).

We will also use PopovMinBasisRight to the transpose of PopovMinBasis, which computes a
right minimal approximant basis in shifted column-Popov form.

Note that (Jeannerod et al., In press) contains improvements of the above on the level of
logarithmic factors for various special cases; however, none of these can straightforwardly be
applied to our case.

2.5. Existing algorithms for simultaneous Hermite–Padé approximations

Let (S, g, N) be an instance of Problem 1.4 of size t × n. We recall two known approaches
for computing a solution specification using row reduction and minimal approximant basis
computation. We will discuss the latter in greater detail since we will build upon it for our
algorithm in Section 3.
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2.5.1. Via reduced basis
Using the predictable degree property it is easy to show that if R ∈ K[x](n+t)×(n+t) is a (−N)-row

reduced basis of

A =

[
It×t S

diag(g)

]
∈ K[x](n+t)×(n+t), (2.1)

then the sub-matrix of R comprised of the rows with negative (−N)-degree forms a solution basis.
Therefore, if λ is the matrix consisting of the first t columns of this sub-matrix and δ the (−N)-row
degree of the sub-matrix, then (λ, δ) forms a solution specification. This shows why a solution
specification has at most t + n entries.

When t = n = 1, the extended euclidean algorithm on input S 1,1 and g1 can solve the
approximation problem by essentially computing a row reduced basis of the 2 × 2 matrix A: each
iteration corresponds to a reduced basis for a range of possible shifts (Sugiyama et al., 1976;
Justesen, 1976; Gustavson and Yun, 1979). The complexity of this is O(M(deg g1) log(deg g1)).

For t < n and if k = deg g then one can use (Neiger, 2016) to compute the (−N)-shifted Popov
form of A at the cost O∼(nωk). Note that this cost holds even when k � T j ≤ deg lcm(g1, . . . , gn)+1.
For this case, the algorithms of our paper have complexity up to O∼(nωtk).

Another approach is to use the iterative row-reduction algorithm of Mulders and Storjohann
(2003): if T j ∈ O

(
maxi(deg gi)

)
for each j = 1, . . . , t (e.g. if each gi = xdi ), then the analysis

of (Nielsen, 2013) shows that this approach will cost O(n2tk2); this matches the first algorithm
of Beckermann and Labahn (1994) but for a more general set of simultaneous Hermite Padé
approximations.

2.5.2. Via minimal approximant basis
Consider the special case when g = (xd, xd, . . . , xd), that is, all gi = xd for a common d. An

approximant v = (λ | φ1, . . . , φn) ∈ K[x]t+n of order d of

B =

[
−S
In×n

]
∈ K[x](n+t)×n

clearly satisfies λSi ≡ φi mod xd for i = 1, . . . , n; conversely, any such vector v satisfying
these congruences must be an approximant of B of order d. So the negative part of a (−N)-
minimal approximant basis of B of order d is a solution basis to the simultaneous Hermite–Padé
approximation.

In the case of arbitrary g we can reduce to computing a minimal approximant basis of the
augmented input

B =

 −S
In×n

diag(g)

 ∈ K[x](2n+t)×n . (2.2)

To understand the approach, note that a left kernel basis for B in (2.2) is given by

K =
[

A ∗
]

=

[
It×t S

diag(g) −In×n

]
,

where the principal submatrix A ∈ K[x](n+t)×(n+t) of K is the lattice in (2.1). The rows with negative
(−N)-degree in a reduced basis for A give a solution basis to the problem instance. For a well
chosen shift h and order d, the negative part of an h-minimal approximant basis of order d of B
will contain the negative part of a (−N)-row reduced basis of A. Algorithm 1 formalises this, and
its correctness and choice of shift h and order d is due to the following result.
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Theorem 2.7. Corresponding to an instance (S, g, N) of Problem 1.4 of size t × n, define a shift
h and order d:

• h := −(N | T − 1, . . . ,T − 1) ∈ Z2n+t, where T = max j{T j}

• d := T + maxi deg gi − 1

If (G, δ) = NegMinBasis(d, B, h) where

B =

 −S
In×n

diag(g)

 ∈ K[x](2n+t)×n ,

then the submatrix of G comprised of the first n + t columns is a solution basis to the problem
instance.

Proof. The left kernel of B consists of exactly those vectors v = (λ | φ1, . . . , φn, q1, . . . , qn) such
that

λSi = φi + qigi .

If such a vector v has degh v < 0, then v′ = (λ | φ1, . . . , φn) is a solution to the simultaneous
Hermite–Padé approximation problem.

Conversely, any solution v′ = (λ | φ1, . . . , φn) with deg(−N) v′ < 0 can be extended to
v = (v′ | q1, . . . , qn) such that the above equality holds: since deg φi < deg gi we must have qi

equal to the quotient of λSi divided by gi, 1 ≤ i ≤ n. By the definition of shifted degree, we have

degh v = max(deg(−N) v′, deg−(T−1,...,T−1)[q1, . . . , qn]).

We claim that deg−(T−1,...,T−1)[q1, . . . , qn] ≤ deg(−N) v′, so that degh v = deg(−N) v′ < 0. To see this,
note that

deg qi = deg λSi − deg gi

≤

≥ deg λ︷                    ︸︸                    ︷
(max

j
T j + deg(−N) v′ +

≥ deg Si︷     ︸︸     ︷
deg gi − 1− deg gi

= T + deg(−N) v′ − 1.

Thus solutions to the simultaneous Hermite–Padé approximation problems correspond exactly to
vectors in the left kernel space of B with negative h-degree. We claim that the set of such kernel
vectors is exactly the set of approximants of B of order d of negative h-degree: That such vectors
in the left kernel are approximants is obvious. Consider now a minimal approximant of B of order
d, v = (λ | φ1, . . . , φn, q1, . . . , qn) with degh v < 0. By the shape of B, then λSi ≡ φi + qigi mod xd

for i = 1, . . . , n. But all terms in the congruence must have degree strictly less than d, and thus the
congruence lifts to an equality. Therefore v is in the left kernel of B.

Thus G spans all the left kernel vectors of negative h-degree, and the submatrix G′ comprised
of the first n + t columns of G therefore spans all solutions to the simultaneous Hermite–Padé
approximation. G′ is therefore a solution basis if it is (−N)-row reduced. But this follows from
Part 2 of Theorem 2.1 because rowdeghG = rowdeg(−N)G

′ and G is h-row reduced.

From Theorem 2.6 we get:
12



Algorithm 1 DirectSHPade
Input: (S, g, N), an instance of Problem 1.4 of size t × n.
Output: (λ, δ) ∈ K[x]k×t × Zk

<0, a solution specification to (S, g, N).
1 h← −(N | T − 1, . . . ,T − 1) ∈ Z2n+t, where T = maxi Ti

2 d ← T + maxi deg gi − 1

3 B =

 −S
In×n

diag(g)


4 (

[
λ ∗

]
, δ)← NegMinBasis(d, B, h)

5 return (λ, δ)

Corollary 2.8. Let d = max Ti + max deg gi. In terms of operations from K, DirectSHPade has
cost bounded by

1. O
(
PM(n + t, nd

n+t ) log( nd
n+t )

2 + (n + t)ω−1nd log(n + t)
)
.

2. O((n + t)(nd)ω−1 + (nd)ω log(d)) if nd ∈ O(n + t).

Note that in the case t ≥ n the above is the desirable O∼
(
ntω−1d

)
. However when t < n — the

case that we focus on in this paper — this approach simply gives O∼
(
nωd

)
.

3. Algorithm 1: Reduction to the Dual

In this section we present the first of our new algorithms for solving the simultaneous Hermite–
Padé problem. The algorithm essentially proceeds as DirectSHPade and computes a minimal
approximant basis of the following matrix:

B̂ =


xdIt×t −S

In×n

diag(g) xdIn×n

 ∈ K[x](2n+t)×(2n+t) .

To optimally leverage the efficient minimal approximant basis computation of Theorem 2.6, we
first compute a right minimal approximant basis of xd B̂−1 ∈ K[x](2n+t)×(2n+t) and then compute
a solution basis from that. This approach is reminiscent of the well-known duality between the
simultaneous Padé problem and the Hermite–Padé problem: this duality, first observed by Mahler
(1968) in a special case, and later more generally (Beckermann and Labahn, 1992, 1997), was
previously exploited in (Beckermann and Labahn, 2009) to develop algorithms for the fraction-free
computation of simultaneous Padé approximations.

3.1. Duals of minimal approximant bases

We begin by developing a general theory of minimal approximant basis “duality”, and how to
perform the computations efficiently.

For a nonsingular A ∈ K[x]n×n recall that the adjoint of A, denoted by adj(A), is equal to
(det A)A−1, and that entry adj(A) j,i is equal to (−1)i+ j times the determinant of the (n− 1)× (n− 1)
submatrix that is obtained from A by deleting row i and column j. In particular, the entries of
adj(A) are in K[x].
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Lemma 3.1. Let A ∈ K[x]n×n be s-row reduced. Then adj(A) is (−s)-column reduced with

coldeg(−s)adj(A) = (d − η1, . . . , d − ηn) ,

where η = rowdegsA and d = deg det A =
∑

i(ηi − si).

Proof. Since A is s-row reduced, then Axs is row reduced. Note that (Axs)adj(Axs) = (det Axs)Im×m.
Let η :=

∑
i ηi = deg det Axs. It follows that column i of adj(Axs) must have degree at least η − ηi

since ηi is the degree of row i of (Axs). However, entries in column i of adj(Axs) are minors of
the matrix obtained from Axs by removing row i, hence have degree at most η − ηi. Therefore,
the row-wise leading coefficient matrix of Axs multiplied with the column-wise leading coef-
ficient matrix of adj(Axs) is the identity matrix up to K-scaling, and hence adj(Axs) is column
reduced. Since adj(Axs) = (det xs)x−sadj(A) we conclude that adj(A) is (−s)-column reduced with
coldeg(−s)adj(A) = (η − η1 − s, . . . , η − ηn − s).

For any s-row reduced matrix, Lemma 3.1 defines, via the adjoint, a unique (−s)-column reduced
dual. Our goal is to establish a similar duality for minimal approximant basis. We begin with the
following result.

Lemma 3.2. Let A, B ∈ K[x]n×n such that AB = xdIn×n. Then A is a left approximant basis for B
of order d, and B is a right approximant basis for A of order d.

Proof. Let G be any approximant basis for A of order d. Then AG = xdR for some R ∈ K[x]n×n.
Let k ≤ nd be such that det B is an associate of xk. Clearly, the columns of B are right approximants
of A of order d, so det G divides det B. But G = A−1Rxd = BR so det G = (det B)(det R). It follows
that det R has degree zero, so det G is an associate of xk and B is a right approximant basis. By
symmetry, A is a left approximant basis for B of order d.

Lemma 3.3. If A ∈ K[x]n×n is a left approximant basis of order d for some input matrix in K[x]n×∗,
then xdA−1 is a polynomial matrix. Similarly, if B ∈ K[x]n×n is a right approximant basis for some
input matrix in K[x]∗×n, then xdB−1 is a polynomial matrix.

Proof. The rows of xdIn×n are all approximants of order d, so they are contained in the row space
of A. Therefore there is a B ∈ K[x]n×n such that BA = xdIn×n, and hence xdA−1 = B. The second
claim is symmetric.

The duality of Lemma 3.2 thus holds in general. That is, if A is as in Lemma 3.3, then B = xdA−1

has entries in K[x] with

AB = xdIn×n B = xdA−1 A = xdB−1. (3.1)

Symmetrically, if B is as in Lemma 3.3, then A = xdB has entries in K[x] and (3.1) also holds.
Every left (right) minimal approximant basis thus has a natural right (left) dual basis. Note that
d ≤ deg det A, and is often much smaller, so Lemma 3.3 shows that a much smaller multiple of
A−1 brings it into K[x] than the adjoint adj(A) = det A · A−1.

Proposition 3.4. Let A, B ∈ K[x]n×n such that AB = xdIn×n. If G is a right s-minimal approximant
basis for A of order d, then xdG−1 is a left (−s)-minimal approximant basis for B of order d. Also,
if coldegsG = (η1, . . . , ηn), then rowdeg(−s)(xdG−1) = (d − η1, . . . , d − ηn) .

Proof. The proof of Lemma 3.3 established that
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• AG = xdR for an R ∈ K[x]n×n with deg det R = 0, and

• that if det B is an associate of xk, then det G is an associate of xk also.

By Lemma 3.3, xdG−1 is a polynomial matrix. Write now

xdIn×n = AB = AGG−1B = RxdG−1B .

Hence, (xdG−1)B = xdR−1 where R−1 ∈ K[x]n×n since deg det R = 0, and so each row of xdG−1 is
a left approximant for B of order d. By Lemma 3.3 A is a left approximant basis for B of order d.
But since det(xdG−1) is an associate of det A, then xdG−1 must be a left approximant basis for B
of order d.

Next we show that xdG−1 is (−s)-row reduced. Since G is s-column reduced, by Lemma 3.1
adj(G) is (−s)-row reduced with

rowdeg(−s)adj(G) = (k − η1, . . . , k − ηn) ,

where (η1, . . . , ηn) = coldegsG. Since adj(G) = xk−d(xdG−1), then xdG−1 must also be (−s)-row
reduced with

rowdeg(−s)(xdG−1) = (d − η1, . . . , d − ηn) .

Suppose a nonsingular B ∈ K[x]n×n enjoys the property that xdB−1 has entries in K[x]. Proposi-
tion 3.4 gives the following recipe to compute a left minimal approximant basis F of order d for
B.

1. Compute A = xdB−1.
2. Compute a right minimal approximant basis G of order d for A.
3. Compute F = xdG−1.

Applying the above recipe can, for some inputs, reduce to a minimal approximant basis problem
of smaller dimension. For example, if S ∈ K[x]1×n and

B =

[
xd −S

In×n

]
∈ K[x](n+1)×(n+1) ,

then

A = xdB−1 =

[
1 S

xdIn×n

]
∈ K[x](n+1)×(n+1) .

Clearly, a right minimal approximant basis for just the first row of A will be a right minimal
approximant basis for the entire matrix A.

In the following two sections, we detail how the above recipe can be leveraged efficiently for
simultaneous Hermite–Padé problems.

3.2. Computing only part of the dual

Here we show how to compute the first m rows of the inverse of F := PopovMinBasis(d, A, s)
in about the same time as the cost bound given by Theorem 2.6 to compute F.
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Theorem 3.5. Let F ∈ K[x]n×n be a minimal approximant basis of order d, in shifted Popov form,
for an input matrix A ∈ K[x]n×m with m ≤ n. In terms of operations from K, the first m rows of
xdF−1 can be computed in time

1. O(log(n/m)(PM(n,md/n) + nm M(d))).
2. O(log(d)(md)ω) if md < n.

The proof of this theorem relies on many properties enjoyed by F, which we summarize in
the following lemma.

Lemma 3.6. Let F ∈ K[x]n×n be as in Theorem 3.5. Then

1.
∑

coldegF ≤ md.
2. xdF−1 has entries in K[x].
3. deg xdF−1 ≤ d.

Proof. Part 1 follows from Lemma 2.5 after noting that F is column reduced since it is in shifted
(row-wise) Popov form and hence

∑
coldegF = deg det F.

Part 2 is Lemma 3.3.
For Part 3, consider F and xdF−1 as polynomials with matrix coefficients. Since F is column

reduced its leading coefficient is full rank, and hence d = deg(xdF−1F) = deg(xdF−1)+deg F.

Computing the first m rows of F−1 is equivalent to solving the following nonsingular linear
system: [

Im×m 0m×(n−m)

]
F−1.

High-order lifting (Storjohann, 2003, Algorithm 6) gives a reduction of linear system solving to
matrix multiplication. The cost of high-order lifting is sensitive to deg F. To avoid a cost blowup
because of potentially skewed column degrees, we first use partial linearisation to transform our
linear system solving problem to one involving a matrix with degree bounded by the average
column degree of F. The next result follows from (Gupta et al., 2012, Corollary 2).

Lemma 3.7. Let F ∈ K[x]n×n be as in Theorem 3.5. It is possible to construct from F, with no
operations from K, a matrix G ∈ K[x]n̄×n̄ with

G−1 =

[
F−1 ∗

∗ ∗

]
,

and such that G enjoys the following properties:

• deg G ≤ dmd/ne.

• n ≤ n̄ < 2n.

• det G = det F.

Then the first n columns of[
xdIm×m 0m×(n̄−m)

]
G−1 ∈ K[x]m×n̄ (3.2)

will be the first m rows of xdF−1, and since xdF−1 ∈ K[x] and deg xdF−1 ≤ d (Lemma 3.6 parts
2 and 3) these first n columns will be over K[x] with degree bounded by d. The next lemma
establishes the first part of Theorem 3.5.
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Lemma 3.8. Let F ∈ K[x]n×n be as in Theorem 3.5. If md ≥ n then the first m rows of F−1 can be
computed in

O(log(n/m)(PM(n,md/n) + nm M(d)))

field operations in K.

Proof. We will compute the system solution (3.2) using high-order lifting. This requires a
modulus X that is relatively prime to det G, and with deg X ≥ deg G. Since det G is a power of x
(Lemma 2.5), and the linear polynomial x − 1 exists over any field, we can set X := (x − 1)dmd/ne.
As an initialization, high-order lifting requires the inverse of G modulo X. This is computed in
time O(PM(n̄, deg X)) by first computing the inverse of the scalar matrix G mod (x − 1) ∈ Kn̄×n̄

and then using quadratic Newton iteration to get G−1 mod X. Since n̄ < 2n and deg X ≤ 1 + md/n
we have PM(n̄, deg X) ∈ O(PM(n,md/n).

High-order lifting will compute the X-adic series expansion of (3.2) to a desired precision
p ∈ Z≥0. Since deg xdF−1 ≤ d (Lemma 3.6.3), we require to lift up to Xp for a p with deg Xp > d:
the minimal such p is p := 1 + bd/ deg Xc. By (Storjohann, 2003, Proposition 15) the lifting has
cost

O
(
(log p̄) dmp̄/n̄ePM(n̄, deg X)

)
(3.3)

operations in K, where p̄ < 2p is the smallest power of 2 greater than or equal to p. To understand
the cost estimate (3.3), we remark that high-order lifting requires O(log p̄) lifting steps, each step
requiring the multiplication of dmp̄/ne pairs of square matrices of dimension n̄, each with degree
bounded by deg X.

We can simplify the asymptotic upper bound (3.3) as follows.

• We have p = 1 + bd/ deg Xc ≤ 1 + d/dmd/ne ≤ 1 + n/m. Using m ≤ n gives p ≤ 2n/m.
Using p̄ < 2p gives p̄ < 4n/m. Thus we may substitute log p̄→ log(n/m).

• Using p̄ < 4n/m and n ≤ n̄ we have dmp̄/n̄e ≤ 4. Thus we may substitute dmp̄/n̄e → 1.

• As before, use PM(n̄, deg X) ∈ O(PM(n, nd/m)).

The above simplifications yield a cost of

O(log(n/m) PM(n,md/n)) (3.4)

operations in K to compute the X-adic expansion of the solution of (3.2) up to precision p̄. The last
step is to convert the X-adic expansion of the first m rows of xdF−1 ∈ K[x]n×n to x-adic form. This
is accomplished in time O(log(n/m) nm M(d)) operations in K using fast radix conversion (von zur
Gathen and Gerhard, 2013, Theorem 9.15).

The next lemma establishes the second part of Theorem 3.5.

Lemma 3.9. Let F ∈ K[x]n×n be as in Lemma 3.6. If md < n, the first m rows of F−1 can be
computed in O(log(d)(md)ω) field operations in K.

Proof. If md < n then F has at least n − md columns of degree 0 by Lemma 3.6.1; since F is in
Popov form, such columns have a 1 on the matrix’s diagonal and are 0 on the remaining entries.
The following describes how to essentially ignore n − md of these columns.

Let P be a permutation matrix such that

F̂ := PFP> =

[
F1

F2 I(n−md)×(n−md)

]
.
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Let v be the first m rows of xdIn×n. Our goal is to compute vF−1. Since

F̂−1 =

[
Imd×md

−F2 I(n−md)×(n−md)

] [
F−1

1
I(n−md)×(n−md)

]
,

and F−1 = P>F̂−1P, we can factor the computation of vF−1 as follows:

vF−1 =

(
vP>

[
Imd×md

−F2 I(n−md)×(n−md)

]) [
F−1

1
I(n−md)×(n−md)

]
P .

Let v1 ∈ K[x]m×md and v2 ∈ K[x]m×(n−md) be such that[
v1 v2

]
= vP>

[
Imd×md

−F2 I(n−md)×(n−md)

]
.

Note that due to the structure of v and P>, v1 and v2 can be constructed without any operations from
K. We have thus reduced the computation of vF−1 to the following: vF−1 =

[
v1F−1

1 v2

]
P. As

in the proof of Lemma 3.8, we will now use high-order lifting combined with partial linearisation
to compute v1F−1

1 .
The partial linearisation of F1 ∈ K[x]md×md will have dimension < 2md and degree 1. The

lifting modulus used to solve the system is now x − 1, and we need to lift up to precision
1 + d. Similar to before, the cost of the lifting is O(log(d) PM(md, 1)), which is O(log(d)(md)ω).
The radix conversion to convert the (x − 1)-adic representation of v1 to x-adic representation
has cost O((log d)m2d M(d)). Using the assumption M(d) ∈ O(dω−1) we see that m2d M(d) ∈
O((md)ω).

3.3. The dual of a simultaneous Hermite–Padé problem
Theorem 3.10. Let (S, g, N) be an instance of Problem 1.1 of size t × n. Let A and B be as
follows:

A =

[
It×t S

−diag(g) In×n

]
∈ K[x](t+n)×(t+2n) B =


−S
In×n

diag(g)

 ∈ K[x](t+2n)×n .

If G is a right s-minimal approximant basis for A of order d with shift s ∈ Z2n+t
≥0 , then xdG−1 is a

polynomial matrix and is a left (−s)-minimal approximant basis for B of order d. Moreover, if
η = coldegsG, then rowdeg(−s)(xdG−1) =

(
d − η1, . . . , d − η2n+t).

Proof. Consider the following super-matrices of A respectively B:

Â =


It×t S

xdIn×n

−diag(g) In×n

 B̂ =


xdIt×t −S

In×n

diag(g) xdIn×n

 .
Clearly G is also a right s-minimal approximant basis for Â of order d. Likewise, B̂ and B have
the same left minimal approximant basis for given order and shift. But direct computation shows
that ÂB̂ = xdI(2n+t)×(2n+t), and so the first part of Proposition 3.4 says that Â is a left approximant
basis for B̂ of order d, and B̂ is a right approximant basis of Â of order d. The rest of the theorem
now follows from Proposition 3.4.
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The idea is now to use Theorem 3.10: compute a left minimal approximant basis for B by
computing a right minimal approximant basis G for A, and then use Theorem 3.5 to efficiently
compute the first t columns of the xdG−1. But we first need to efficiently compute a right minimal
approximant basis for A.

We accomplish this using Lemma 2.2: partition A into A1, A2 as follows:

A =

[
A2

A1

]
=

[
It×t S

−diag(g) In×n

]
∈ K[x](t+n)×(t+2n) .

We first compute a right minimal approximant basis G1 for A1. Lemma 3.11 describes how this
can be done efficiently and that G1 has a very simple shape. This allows us to efficiently compute
a right minimal approximant basis for A2G1.

Lemma 3.11. Let g ∈ K[x]n be a vector of polynomials and let s ∈ Z2n+t be a shift. Let P ∈ K2n×2n

be the permutation matrix such that

[
−diag(g) In×n

]
P =


−g1 1

−g2 1
. . .

−gn 1

 . (3.5)

For i = 1, . . . , n let Hi ∈ K[x]2×2 be a right si-minimal approximant basis of
[
−gi 1

]
∈ K[x]1×2,

where si = (st+i, st+n+i), and let hi := coldegsi
Hi. Then a right minimal approximant basis of the

matrix [0n×n | diag(g) | In×n] is given by G1 where

G1 =

[
It×t

P

] 
It×t

H1
. . .

Hn

 , (3.6)

with
coldegsG1 =

(
(s1, . . . , st) | h1 | . . . | hn

)
.

Proof. Note first that permuting columns by P only has the effect on right s-minimal approximant
basis of permuting their rows by P−1. The lemma follows from repeated application of the easy
observation, that if M1 resp. M2 is a right minimal approximant basis of C1 resp. C2, then

M =

[
M1

M2

]
is a right minimal approximant basis of

C =

[
C1

C2

]
.

All the above is collected into Algorithm 2.
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Algorithm 2 DualitySimPade
Input: (S, g, N), an instance of Problem 1.4 of size t × n.
Output: (λ, δ) ∈ K[x]k×t × Zk

<0, a solution specification to (S, g, N).
1 T ← maxi Ti

2 d ← T + maxi deg gi − 1
3

(
Hi, hi)← PopovMinBasisRight

(
d,

[
−gi 1

]
, (Ni,T − 1)

)
for i = 1, . . . , n

4 (G1, h)← as in (3.6) with P as in (3.5)
5 A2 ← [It×t S 0t×n] ∈ K[x]t×(2n+t)

6 (G2, η)← PopovMinBasisRight(d, A2G1, h)
7 λ̂← first t columns of xdG−1

2
8 δ̂← (d − η1, . . . , d − ηn+1)
9 I ← {i | δ̂i < 0}, and k ← |I|

10 (λ, δ)←
(
λ̂i∈I , (δ̂i)i∈I

)
∈ K[x]k×t × Zk

11 return (λ, δ)

Theorem 3.12. Algorithm 2 is correct. Let d = maxi Ti + max j deg g j − 1. If t < n, then in terms
of operations from K, the cost of the algorithm is

1. O(PM(n, td/n)(log(td/n)2 + log(n/t)) + nω−1td log(n) + nt M(d) log(n/t) + nM(d) log(d)2).
2. O(n(td)ω−1 + (td)ω log(d)) if td ∈ O(n).

Proof. Let s = (N | T −1, . . . ,T −1) and d be as in the algorithm. By combining Theorem 2.7 and
Theorem 3.10, if (F, f ) = PopovMinBasisRight(d, A, s), the submatrix of xdF−1 comprised of those
rows with negative (−s)-degree forms a solution specification to the simultaneous Hermite–Padé
approximation. By combining Lemma 2.4 and Lemma 3.11, then G1G2 is a right s-minimal
approximant basis of A with coldegs(G1G2) = η. A solution specification is then given as the
negative part of the first t columns of xd(G1G2)−1. Note that the first t columns of G1 is [It×t | 0]>,
so the first t columns of xd(G1G2)−1 are just the first t columns of xdG−1

2 , as assigned to λ̂ in
Line 7. By Theorem 3.10 then δ̂ is the (−s)-row degree of xd(G1G2)−1. The returned tuple (λ, δ)
is therefore a solution specification.

We estimate the complexity for the computationally expensive lines. Since t < n we may use
n + t ∈ O(n). Line 3 costs n times O(M(d) log(d)2) by Theorem 2.6. Line 6 involves the product
A1G1 and the call to PopovMinBasisRight. The former costs O(nt M(d)) due to the shape of G1
according to (3.6), and the latter costs O(PM(n, td/n) log(td/n)2 + nω−1td log(n)) by Theorem 2.6.
Lastly, Line 7 costs O(log(n/t)(PM(n, td/n) + nt M(d))) by Theorem 3.5 since G2 is the output of
PopovMinBasisRight.

Similarly, the second complexity estimate for the case td ∈ O(n) follows from the second parts
of Theorem 2.6 and Theorem 3.5.

Example 3.13. We apply Algorithm 2 to the problem of Example 1.2 with shifts N = (5, 3 |
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2, 3, 4, 4). We have

A E



0 4 4 4 4
0 4 4 4 4

5 0
5 0

5 0
5 0


B E



4 4 4 4
4 4 4 4
0

0
0

0
5

5
5

5



.

By Theorem 2.7 we are interested in an (−s)-minimal approximant basis for B of order d =

5 + T − 1 = 9, where s = (N | T − 1, . . . ,T − 1) and T = max Ti = 5. By Theorem 3.10
such a basis is given as xdF−1, if F is a right s-minimal approximant basis for A of order 9.
We compute such an F as the product G1G2, where (G1, h) = PopovMinBasisRight(d, A2, s), and
(G2, η) = PopovMinBasisRight(d, A1G1, h). Such G1 and G2 are given by

G1 E



0
0

5 4
5 4

5 4
5 4

0 4
0 4

0 4
0 4


,G2 E



5 4 3 4 4 3 4 4 3 4
4 6 5 0 5 5 4 4 3 4
0 1 2 0 1 0 0 1
0 0 1 0 0 0

0
0 1 0
0 0 0 0 1 0

0 0 0 1 0
0

0 0 0 1


.

The (−s)-row-degrees of xdF−1 are (d − η1, . . . , d − η2n+t) where

η = coldegsG1G2 = coldeghG2 = (10, 9, 9, 9, 9, 10, 9, 9, 8, 9) .

Thus, the first 2 columns of the submatrix of xdF−1 of rows 1 and 6 correspond to a solution
specification: [

(xdF−1)1

(xdF−1)6

]
E

[
4 2 0 2 3 1 3 3 3 3
3 1 0 1 1 3 2 2 2 2

]
.

xdF−1 and xdG−1
2 agree on the first two columns, and so we use Theorem 3.5 to compute these

efficiently. N

4. Algorithm 2: Divide and Conquer

We now present our second algorithm for solving a t × n simultaneous Hermite–Padé approxi-
mation. To describe the principle, consider a t × 2 problem: first we compute solution bases to
the 2 single t × 1 Hermite–Padé approximations, one for each column of the input S ∈ K[x]t×2.
This yields solution specifications (λ1, δ1) ∈ K[x]k1×t × Zk1

≥0 and (λ2, δ2) ∈ K[x]k2×t × Zk2
≥0. We

then need to intersect these solutions, in the following sense: any (λ | φ) ∈ K[x]1×(t+2) which is
a solution to both single Hermite–Padé approximations must satisfy that λ is in the row space
of both λ1 and λ2. Further, since the completions of either λi is a (−N)-row reduced matrix, the
Predictable Degree property allows us to compute the (−N)-degree of (λ | φ) by inspecting only
the degrees of the linear combinations used to form λ from λ1 resp. λ2.
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4.1. t-intersections of row spaces
Before defining our notion of t-intersection, let us first discuss the simpler case of row space

intersections. Given two matrices F1, F2 ∈ K[x]∗×m, it is natural to consider computing a basis for
the intersection of their row spaces. We could do that by computing a left kernel of the following
matrix:

R =

 Im×m Im×m

−F1
−F2

 .
Note that any vector (v | b1 | b2) in the left kernel of R must satisfy v = b1F1 and v = b2F2, hence
v is in the row space of both F1 and F2; conversely, for any vector v in both the row space of F1
and F2, there are b1, b2 such that (v | b1 | b2) is in the left kernel of R.

Suppose now that we seek only small vectors in the intersection, say deg v < d with d also
bounding the degree of F1 and F2, and suppose that both F1 and F2 are row reduced. Instead
of computing the kernel of R, it is cheaper to compute a left minimal approximant basis M of
R of order 2d. The kernel of R is of course contained in the row space of M, but conversely, if
mR ≡ 0 mod x2d with deg m < d, then deg(mR) < 2d so the congruence lifts to an equality, and
m must be a kernel vector. Hence, the first m columns of NegMinBasis

(
d,R, (−d, . . . ,−d)

)
is row

reduced and generates all the small vectors in Row(F1) ∩ Row(F2).
Consider now that F1 is the first part of a larger matrix A1 = [F1 | H1] and similarly

A2 = [F2 | H2]. It is still natural to consider Row(F1) ∩ Row(F2), but now, for a vector
v = b1F1 = b2F2, it could be important to compute also b1H1 and b2H2. Alternatively, we might
need to just compute a reduced basis of the intersection of F1 and F2, but still track degrees of
the parts corresponding to H1 and H2. This motivates the following generalisation of row space
intersections:

Definition 4.1. Let A1 = [λ1 | H1] ∈ K[x]k1×(t+n1) and A2 = [λ2 | H2] ∈ K[x]k2×(t+n2). The
t-intersection of A1 and A2 is the K[x]-module:

It(A1, A2) =
{
(λ | a1 | a2)

∣∣∣ (λ | ai) ∈ Row(Ai) for i = 1, 2
}
.

Consider shifts h1 = (v | s1) ∈ Zt+n1 and h2 = (v | s2) ∈ Zt+n2 sharing the first t components.
If Ai is hi-row reduced for i = 1, 2, an h-shifted t-intersection basis of A1 and A2 is a matrix
P ∈ K[x]k×(t+n1+n2) which is an h-row reduced basis of It(A1, A2), where h = (v | s1 | s2).

Theorem 4.2. Consider shifts h1 = (v | s1) ∈ Zt+n1 and h2 = (v | s2) ∈ Zt+n1 sharing the first
t components, and let A1 = [λ1 | H1] ∈ K[x]k1×(t+n1) and A2 = [λ2 | H2] ∈ K[x]k2×(t+n2) be h1-
resp. h2-row reduced.

Let r =
(
v | rowdegh1

(H1) | rowdegh2
(H2)

)
∈ Zt+k1+k2 and let M be an r-row reduced kernel

basis of R, where

R =

 It×t It×t

−λ1
−λ2

 .
Then MC is an h-shifted t-intersection basis for A1 and A2, where

C =

 It×t

H1
H2


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and rowdegh(MC) = rowdegr(M), where h = (v | s1 | s2). In particular, the first t columns of M
are the first t columns of an h-shifted t-intersection basis.

Proof. First note that due to the shape of R, if M′ is the sub-matrix consisting of the first t columns
of M, then Row(M′) is the set of vectors that lie in both Row(λ1) and Row(λ2). Thus the rows
of MC really span the t-intersection of A1 and A2. To show that MC is h-row reduced with
rowdegh(MC) = rowdegr(M), consider the following amalgamation of R and C:

F =

 It×t It×t It×t

−λ1 −H1
−λ2 −H2

 .
Since [λ1 | H1] and [λ2 | H2] are h1 resp. h2 row reduced, then F has full row rank and is
h′ = (v | v | s1 | v | s2) row reduced. Note that M is r-row reduced and r = rowdegh′ (F). Thus by
Lemma 2.2, MF is h′-row reduced with rowdegh′(MF) = rowdegr(M). But since M is a kernel
basis of R, the matrix MF is, up to negation of some columns, the same as MC with two blocks
of t zero-columns inserted. Thus MC is h-row reduced with rowdegh(MC) = rowdegr(M).

Since R of Theorem 4.2 has rank at least t, this shows that a t-intersection of two matrices
with row-dimension k1 resp. k2 has dimension up to k1 + k2.

In general, the kernel of R could have entries as large as (k1 + k2 + t) deg R, so computing
the full kernel could be expensive. In our application of solving simultaneous Hermite–Padé
approximations, however, we will only be needing the negative part of a shifted t-intersection basis,
which means we only need to compute the low-degree rows of M: but these will be contained in a
shifted minimal approximant basis of R, as we will see. To do this we will also use the following
lemma:

Lemma 4.3. Consider shifts h1 = (v | s1) ∈ Zt+n1 and h2 = (v | s2) ∈ Zt+n1 sharing the first
t components, and let A1 ∈ K[x]k1×(t+n1) and A2 ∈ K[x]k2×(t+n2) be h1- resp. h2- row reduced.
Let Bi be the hi-shifted negative part of Ai for i = 1, 2. Then the negative part of the h-shifted
t-intersection of B1 and B2 equals the negative part of the h-shifted t-intersection of A1 and A2.

Proof. Assume oppositely that It(A1, A2) \It(B1, B2) contains a vector v with degh(v) < 0. Write
v = (λ | a1 | a2). Either (λ | a1) < Row(B1) or (λ | a2) < Row(B2); assume without loss of
generality the former. There must be a q such that (λv | a1) = qA1 and further that q is non-zero
on an index i corresponding to a row of A1 which is not in B1. But this row has non-negative
h1-shifted degree, and so by the Predictable Degree property, so will (λ | a1), contradicting that v
has negative h-shifted degree.

4.2. Building up simultaneous Hermite–Padé solutions
Consider a size (t × 2n) simultaneous Hermite–Padé instance (S, g, N) with S = (S1 | S2),

g = (g1 | g2) and N = (T | N1 | N2). By (2.1) of Section 2.5.1, if P ∈ K[x](t+2n)×(t+2n) is a
(−N)-row reduced basis of A, where

A =

[
It×t S

diag(g)

]
=

 It×t S1 S2

diag(g1)
diag(g2)

 ,
then the sub-matrix of P comprised of the rows with negative (−N)-degree is a solution basis.
But the second form of A above demonstrates that P is exactly a t-intersection basis of the
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two matrices Ai =

[
It×t Si

diag(gi)

]
for i = 1, 2, with shifts −N1 respectively −N2: for if

(λ, ai) ∈ Row(Ai), i = 1, 2, there are qi ∈ K[x]1×ni such that (λ | qi)Ai = (λ | ai) and hence
(λ | q1 | q2)A = (λ | a1 | a2), and vice versa. The intersections are then structured recursively in a
Divide & Conquer tree.

Our recursive algorithm will return only the negative part of a reduced basis of each Ai, and
not the entire basis, but this suffices to compute the negative part of the t-intersection, as according
to Lemma 4.3.

Example 4.4. Consider again Example 1.2 and the execution of Algorithm 3 on this input.
We divide the problem into two 2 × 2 simultaneous Hermite–Padé problems S1 ∈ K[x]2×2,
N1 = (5, 3 | 2, 3), and S2 ∈ K[x]2×2 and N2 = (5, 3 | 4, 4). Note that the first t = 2 positions on
N1 and N2 agree, since this is the degree bound on the sought λ for the combined problem. The
sub-problems have the following solution specifications and their completions:

λ1 E

[
2 1
3 1

]
δ1 = [−1,−2] A1 E

[
2 1 1
3 1 0 1

]

λ2 E


3 1
4

2
2 0

 δ2 = [−2,−1,−1,−2] A2 E


3 1 2
4

2 3 3
2 0 2 1

 .
We construct R as in Line 12. Let r = (−5, −3, −1, −2, −2, −1, −1, −2). Below is R as well as
an r-minimal approximant basis for R of order T = 5 in Popov form:

R E



0 0
0 0

2 1
3 1

3 1
4

2
2 0


G E



5
5

4 1 2 2 0 0
4

4 2 0 1 1 0
4 1 1 1 1 1
4 2 0 1 0 0 0
3 2 1 0 0 2


,

where rowdegs(G) = (0, 2, 1, 2, −1, 0, −1, 0). Only rows 5 and 7 have negative r-degree, and
only these will show up in NegMinBasis. The first two elements of each of those rows along with
the shifted degrees (−1,−1) comprise the solution specification:[

λ′1
λ′2

]
=

[
x4 + x3 + x x2 + 1

x4 x2 + x + 1

]
.

Note that λ′1 = λ1 and λ′2 = λ1 + λ2, where λ1, λ2 is as in Example 1.2. N

Theorem 4.5. Algorithm 3 is correct. Let d = maxi Ti + maxi deg gi. In terms of field operations
from K, and assuming t < n, it has complexity

1. O
(
PM(n, td/n) log(td/n)2 + (n/t)PM(t, d) log(d)2 + nω−1td log(n)

)
.

2. O
(
(n/t)PM(t, d) log(d)2 + n(td)ω−1 log(n)

)
when td ∈ O(n).
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Algorithm 3 RecursiveSHPade
Input: (S, g, N), an instance of Problem 1.4 of size t × n.
Output: (λ, δ) ∈ K[x]k×t × Zk

<0, a solution specification to (S, g, N).
1 if n ≤ t then
2 return DirectSHPade(S, g, N)
3 else
4 (T1, . . . ,Tt,N1, . . . ,Nn)← N
5 S1,S2 ← S split into bn/2c and dn/2e columns
6 g1, g2 ← g split into bn/2c and dn/2e elements
7 N1 ← (T1, . . . ,Tt,N1, . . . ,Ndn/2e)
8 N2 ← (T1, . . . ,Tt,Ndn/2e+1, . . . ,Nn)
9 (λ1, δ1)← RecursiveSHPade

(
S1, g1, N1)

10 (λ2, δ2)← RecursiveSHPade
(
S2, g2, N2)

11 r← (−T1, . . . ,−Tt | δ1 | δ2)

12 R←


It×t It×t

−λ1

−λ2


13 (

[
λ ∗

]
, δ)← NegMinBasis(max j T j,R, r) where λ ∈ K[x]∗×t

14 return (λ, δ)
15 end if

Proof. Correctness is established by induction on n. The base case is correct by the correctness
of DirectSHPade.

For the recursive case, let P′i be the completion of λi for i = 1, 2, and note that rowdeg−Ni
(P′i ) =

δi. Note that P′i is the negative part of some (−Ni)-row reduced matrix Pi which is row-equivalent
to

Ai =

[
It×t Si

diag(gi)

]
,

as according to Section 2.5. By the induction hypothesis and from the discussion at the beginning
of the section, if P is an (−N)-shifted t-intersection basis of P1 and P2, then P is a solution
to the problem instance. By Lemma 4.3, we can get the (−N)-shifted negative part of P as a
t-intersection of just the (−Ni)-shifted negative part of P1 resp. P2, i.e. P′1 and P′2. For a solution
specification, we need just the first t columns of such an intersection basis, and by Theorem 4.2,
we get this as the first t columns of an r-shifted left kernel of R.

Left is therefore only to prove that Line 13 actually computes the negative part of an r-row
reduced kernel basis of R, that is, we should prove that each row in NegMinBasis(T,R, r) is in fact
a kernel vector (since kernel vectors are clearly minimal approximants). So let w = (λ | w1 | w2)
be a minimal approximant of R of order T with degr w < 0. Then wR = (λ−w1λ1, λ−w2λ2). Since
degr w < 0, then deg λ < T and for i = 1, 2, then coldeg wi < −δi. But also rowdeg(−T,...,−T ) λi ≤ δi

since λi are the solutions to the i’th sub-problem. We conclude deg(wiλi) < T and thus deg(wR) <
T . But since wR ≡ 0 mod xT we must have wR = 0.

For complexity, we let C(n) be the cost Algorithm 3 for given n. For the base case n ≤ t we
use Corollary 2.8. For the recursive step n > t we use Theorem 2.6 and recall that each of (λi, δi)
have at most t + dn/2e entries since they are solution specifications to problems of size roughly
t × dn/2e. This also means that the degree of R in Line 13 is at most T := max{T1, . . . ,Tt}. The
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call to NegMinBasis in Line 13 uses an order bounded by T , but for simplicity we will use the
upper bound d := T + max deg gi. We get the following recursion on C(n):

C(n) =


2C(n/2) + O

(
n(td)ω−1 + (td)ω log(d)

)
if n ≥ td

2C(n/2) + O
(
PM(n, td/n) log(td/n)2 + nω−1td log(n)

)
if t < n < td

O
(
PM(t, d) log(d)2 + tωd log(t)

)
if n ≤ t

.

The total cost at the O(n/t) leaf nodes of the recursion tree corresponding to the base case
n ≤ t is

O
(
(n/t)PM(t, d) log(d)2 + ntω−1d log(t)

)
. (4.1)

If n < td, the case n ≥ td of the recurrence never occurs. By the Master Theorem, using our
assumption ω > 2 and PM(n, td/n) ∈ Ω(nω−1td), the total work done at the internal nodes of the
recursion tree corresponding to the case t < n < td will be dominated by the work done at the root
node:

O(PM(n, td/n) log(td/n)2 + nω−1td log(n)) . (4.2)

Summing (4.1) and (4.2) and noting that ntω−1d log(t) ∈ O(nω−1td log(n)) since t < n shows
that when n < td then:

C(n) ∈ O
(
PM(n, td/n) log(td/n)2 + (n/t)PM(t, d) log(d)2 + nω−1td log(n)

)
. (4.3)

If n ≥ td, then let k ∈ Θ(log(n/(td))) be the largest integer such that n/2k ≥ td. Exactly the
first k levels in the recursion tree correspond to the case n ≥ td of the recurrence. Summing the
total work done at all O(2k) nodes in the first k levels of the recursion tree and using 2k ∈ Θ(n/(td))
gives

O(log(n/(td))n(td)ω−1 + n(td)ω−1 log(d)) .

Using the Master Theorem as before, the work done at internal nodes corresponding to the case
t < n < td of the recurrence (i.e., internal nodes at all levels > k) will be dominated by the sum of
the work done at the 2k+1 ∈ O(n/(td)) nodes at the single level k + 1:

O(n(td)ω−1 log(td)) .

Summing the last two cost bounds, and using n ≥ d, shows that the total work done at the internal
nodes of the recursion tree the case n ≥ td is bounded by O(n(td)ω−1 log(n)); summing this last
bound with (4.1) and noting that ntω−1d log(t) ∈ O(n(td)ω−1 log(td)) shows that

C(n) ∈ O
(
(n/t)PM(t, d) log(d)2 + n(td)ω−1 log(n)

)
(4.4)

when td ≤ n.
Finally, if td ≤ n then (4.4) is “big-O” of (4.3) and thus (4.3) holds also when td ≤ n.

It is interesting to note that in Algorithm 3 we compute the first t columns of the negative part
of a t-intersection basis of the completions of λ1 and λ2, each of which could have row-dimensions
up to roughly t + n/2; thus we would expect that the t-intersection has row-dimension up to 2t + n.
But this will not happen since we proved that the output of the algorithm is a solution specification
to the input t × n simultaneous Hermite–Padé problem, and such a specification can have at most
t + n entries.

Acknowledgements. The authors would like to thank George Labahn for valuable discussions,
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