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CHAPTER 19

Concentrated Solar Energy-Driven
Multi-Generation Systems Based on
the Organic Rankine Cycle Technology

Nishith B Desai* and Fredrik Haglind

1. Introduction

Design of energy efficient, environmentally friendly and economically viable systems is important for
sustainable development. Among the various technology options based on renewable energy sources,
concentrated solar power (CSP) systems are considered to be technologies in the development stages.
Many small to large-scale power plants (a few kW, to a few MW ) based on the CSP technology exist
in different sun-rich regions worldwide. Due to the high capital cost and high levelized cost of energy
(LCOE), CSP plants have not captured a large market share like those of solar photovoltaic (PV) and
wind power plants. Concentrated solar power plants with cost-effective thermal energy storage can
work as a base load plant with a high capacity factor. In contrast, solar PV and wind power plants with
large-scale battery storage are not cost-effective. Patil et al. (2017) reported that the levelized cost of
electricity (LCOE) for solar photovoltaic systems with battery storage is about 36.8% higher than that
of the parabolic trough collector-powered organic Rankine cycle system with thermal energy storage.
Concentrated solar power plants can also avail of the advantage of producing heat and other products,
and thus work as a cogeneration, trigeneration or multi-generation unit. In contrast, solar PV and wind
power plants cannot be used for heat production; therefore, the sub-systems for cooling and/or heating
and/or desalination should be electricity-driven. Shalaby (2017) recommended avoiding the use solar
photovoltaic systems with batteries to drive RO desalination systems because of the high capital and
running costs. Commonly-used small to medium-scale, dispatchable (on demand) distributed generation
systems are diesel generator-based or biomass-based systems. Biomass- and diesel-based multi-
generation units can have electrical or thermal energy-driven sub-systems, depending on the resulting
cost of utilities. For isolated regions and islands, the cost of electricity generation is high, as the diesel is
imported from the nearby port. The use of biomass is a major concern in places with water scarcity, due
to the large water footprints of biomass energy sources (Gerbens-Leenes et al., 2009).

Multi-generation systems achieve a higher efficiency and a higher energy utilization factor than
plants producing only electricity (Karellas and Braimakis, 2016). Concentrated solar energy-driven
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Figure 1. Representation of possible energy conversion routes of concentrated solar thermal energy-powered multi-
generation systems.

multi-generation systems are also suitable for decentralized installations. Integrated systems powered by
concentrated solar energy and biomass energy make up a promising option (Mathkor et al., 2015). Wu
et al. (2019) proposed the integration of a concentrated solar thermal energy and power cycle system
with a conventional combined cooling, heating and power system. A representation of possible energy
conversion routes of concentrated solar thermal energy-powered multi-generation systems is shown in
Figure 1. In the case of a typical parabolic trough collector field, the optical losses (including shading
and blocking, cleanliness, shielding by bellows) are about 37% and the thermal losses (including thermal
losses from piping) are about 18% (Heller, 2017). For small to medium-scale applications (a few kW, to
a few MW ), organic Rankine cycle power systems have been demonstrated to be efficient solutions for
multi-generation plants (Astolfi et al., 2017; El-Emam and Dincer, 2018). Organic Rankine cycle (ORC)
power systems can be effectively used for energy sources, like concentrated solar power, biomass, waste
heat, geothermal, and ocean thermal. The main advantages of organic Rankine cycle power systems
employing dry and isentropic working fluids are the high isentropic efficiency of the turbine at design
and part-load conditions, quick start-up, long life-time of the components, low mechanical stresses in
turbine blades, automatic and unmanned operation, low operation and maintenance costs, and flexibility
and ability to follow variable load profiles (Algieri and Morrone, 2012). All the mentioned characteristics
make ORC units particularly suitable for supplying the electricity demand for a vapor compression
refrigeration system and/or for a reverse osmosis system or the thermal energy (using high temperature
working fluid vapor available at the exhaust of turbine) demand for a vapor absorption refrigeration
system and/or for a water distillation system. When designed for multi-product purposes (thermal energy-
driven), the system is designed with a condensation pressure higher than that of systems designed for
power generation only. Hoffmann and Dall (2018) reported that the levelized cost of electricity for a solar
power tower integrated Rankine cycle increases by 8.8% when used for co-generation. This is because
the condensing stream leaving the turbine should be at a higher temperature in order to act as an energy
source for the cogeneration application. The revenue generated from the other product (heat, fresh water,
or cooling) may compensate for this low efficiency.
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In this chapter, different concentrated solar energy-driven multi-generation systems based on the
organic Rankine cycle technology for small to medium-scale applications are reviewed. Power generation
systems are discussed in section 2. Systems generating power, fresh water and heating are presented in
section 3. Section 4 describes power, cooling and heating systems. Design considerations and issues
in CSP-driven multi-generation systems using ORC technology are presented in section 5. Finally,
concluding remarks are given in section 6.

2. Power Generation

Parabolic trough collector (PTC)-based CSP plants, using a conventional synthetic thermal oil as a heat-
transfer fluid (HTF), are the most mature CSP technology. Solar power tower (SPT) technology and
linear Fresnel reflector (LFR) technology with flat mirrors and simple structure are proposed as promising
alternatives to the PTC-based CSP plants. The solar power tower technology is cost-effective for large-
scale applications (> 50 MW,). The linear Fresnel reflector technology has a lower optical efficiency
(Nixon and Davies, 2012; Xie et al., 2012) and requires a much higher area of installation compared to
that of a PTC-based CSP plant of the same capacity (Desai and Bandyopadhyay, 2015). The paraboloid
dish system is the least applied concentrated solar power technology for power generation, relative to the
other technologies.

The conventional steam Rankine cycle is widely used in commercial concentrated solar power plants.
Depending on the capacity of the CSP plant and steam conditions at the inlet of the turbine, the thermal
efficiency of the steam Rankine cycle is in the range of 20% to 40%. Modular CSP plants with a few kW_
to a few MW_ capacity offer solutions in industrial as well as off-grid applications. For such plants, ORC
power systems have been demonstrated to be an efficient solution for electricity production (Quoilin
et al., 2013). Existing concentrated solar energy-powered organic Rankine cycle-based commercial/
medium-scale plants (> 500 kW ) for different applications are listed in Table 1 (NREL, 2019; Petrollese
etal., 2018; Turboden, 2019; Wendt et al., 2015). In addition, there are a few micro and small-scale CSP-
ORC plants, mainly built for research and development purposes, which are not commercially viable and
are, therefore, not included in the list.

A simplified schematic of a typical concentrated solar thermal energy-driven organic Rankine cycle
power system is given in Figure 2. The system can be equipped with a thermal energy storage for storing
the excess energy. When the stored energy is available, the ORC power system runs at full load. However,
when the storage is at a minimum level and solar radiation is not sufficient, the heat transfer fluid mass flow
rate is adjusted such that the solar field outlet temperature is controlled. The power system mass flow rate
and turbine power output are also affected by the variations in the heat transfer fluid flow rate. Part-load
efficiencies of the equipment are lower than the design condition efficiencies, and therefore, appropriate
models need to be used for predicting the performance of the system. A summary of previous works on
medium-scale (a few hundred kW, to a few MW ) concentrated solar thermal energy-powered organic
Rankine cycle power systems is given in Table 2. It can be observed that the parabolic trough collector
and linear Fresnel reflector are typically used for medium-scale plants. Recently, a novel nanostructured
polymer foil-based concentrated solar power system, which avails the advantages of low capital cost,
low operation and maintenance cost, and two-axis tracking, has been analyzed (Desai et al., 2019a; Desai
et al., 2019b). This system uses a nanostructured focusing plastic film that is adhered to a glass plate.

It is important to select a proper working fluid for an organic Rankine cycle power system for cost-
efficient utilization of any available heat source. For low and medium-grade heat sources, the dry and the
isentropic fluids are the preferred organic working fluids, as the condition at the outlet of the turbine is
always either saturated or super-heated vapor, avoiding expansion in the two-phase region (Hung, 2001;
Lui et al., 2004). The promising organic working fluids for CSP-based plants are n-pentane, isopentane,
hexamethyldisiloxane (MM), toluene and cyclohexane; see Table 2. In commercial, medium-scale
actual plants (> 500 kW ) n-pentane, MM or isobutene are used as working fluids in the ORC system;
see Table 1. Apart from the techno-economic performance, environmental, safety, health, and legislative
aspects need to be considered in the final selection of the working fluid for the ORC power system.
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Table 1. List of concentrated solar energy-powered organic Rankine cycle-based commercial/medium-scale actual plants
(> 500 kW) for different applications (NREL, 2019; Petrollese et al., 2018; Turboden, 2019; Wendt et al., 2015).

Name (Location) Start Solar | Solar field | Storage Application (net capacity)
year field area (m?)
Saguaro Power Plant 2006 PTC 10,340 - Electricity generation (1 MW)) (currently
(Arizona, USA) non-operational).
Rende-CSP Plant 2014 LFR 9,780 - Electricity generation (1 MW)). The facility
(Calabria, Italy) is combined with an already operating
biomass-based plant (14 MW,).
Airlight Energy Ait-Baha 2014 PTC 6,159 Packed-bed | Electricity generation from CSP and waste
Pilot Plant (Ait Baha, rock (5 h) heat from cement industry (hybrid plant)
Morocco) (2ZMW).
Stillwater GeoSolar 2015 PTC 24,778 - Electricity generation. About 17 MW, from
Hybrid Plant (Fallon, CSP combined with geothermal energy
USA) producing 33 MW,. Additionally, 26.4 MW,
of a solar photovoltaic plant.
Aalborg CSP-Brenderslev | 2016 PTC 26,929 - Combined heat and electricity production
CSP with ORC project from CSP (16.6 MW ) and biomass
(Brenderslev, Denmark) combustion (hybrid plant) (3.8 MW).
Ottana Solar Facility 2017 LFR 8,600 Two-tank Power generation (0.6 MW ), additionally
(Sardinia, Italy) direct 0.4 MW, of solar PV.
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Figure 2. Simplified schematic of a typical concentrated solar thermal energy-driven organic Rankine cycle power system.
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In ORC power systems, the expander is the most important component as it has the most effect on the
techno-economic performance of the system. Expanders for the ORC power system can be grouped into
two types: (i) turbo expanders (axial and radial turbines), and (ii) volumetric expanders (scroll expanders,
screw expanders, reciprocation piston expanders, and rotary vane expanders). Turbines with an organic
working fluid can reach a very high isentropic efficiency with only one or two stages. In systems with
high flow rates and low pressure ratios, axial turbines (100 kW, to a few MW,) are the most widely used.
In contrast, radial-inflow turbines are suitable for the systems with low flow rates and high pressure
ratios. However, with decreasing power output and, hence, turbine size, the rotational speed increases
proportionally. Therefore, for the low power range (mainly using radial-inflow turbines, < 100 kW),
it is necessary to design an adequate bearing system and to employ a high-speed generator and power
electronics. Radial outflow turbine design allows a high volume flow ratio with the constant peripheral
speed along the blade span (Zanellato et al., 2018). Radial-outflow turbines can be used for small to
medium-scale applications with an advantage of reduced rotational speed, allowing direct coupling to a
generator (Maksiuta et al., 2017). In systems with a capacity less than 50 kW, the turbines cannot be used
due to high rotational speed and high cost (Imran et al., 2016). Reciprocating piston expanders (Wronski
et al., 2019) and screw expanders (Bao and Zhao, 2013) can be used for small capacity plants. Scroll
expanders and rotary vane expanders can be used in small or micro-scale ORC power systems (Bao and
Zhao, 2013).

Apart from the expander, the heat exchangers (evaporator, recuperator, and condenser) represent
a significant share of the total ORC system cost. Temperature driving force (pinch point temperature
difference) and pressure drops are key performance parameters regarding heat transfers, and each heat
exchanger in the power system should be sized based on these parameters. The most commonly used heat
exchangers for ORC power systems are shell and tube heat exchangers (for large-scale power systems)
and plate heat exchangers (for small-scale power systems, due to compactness) (Quoilin et al., 2013).
Organic Rankine cycle feed pumps should meet the requirements of efficiency, controllability and low
net pressure suction head. In addition, the ORC power system should be leak—proof, because the organic
fluids are expensive (compared to water) and can be toxic, flammable, and have high values of global
warming potential and/or ozone depletion potential. In a conventional steam Rankine cycle system, the
pump electricity consumption is very low compared to the power output (low back work ratio). On
the other hand, in an ORC power system, the irreversibility in the pump can reduce the overall cycle
efficiency significantly (Quoilin et al., 2013).

As for the thermal energy storage technologies, the most widely-used systems for CSP-driven
organic Rankine cycle systems are the conventional indirect two-tank molten salt storage technology
(for large capacity) and the direct thermal oil storage technology (for small capacity). Sensible thermal
energy storage using a single tank packed-bed that consists of solids (such as rocks) as the heat storage
medium and a heat transfer fluid in direct contact with the solids has also been analyzed in the literature
(Cocco and Serra, 2015; Russo et al., 2018). The latent heat thermal energy storage is still at the proof of
concept stage because of the low thermal conductivity, resulting in slow charge and discharge processes.

2.1 Thermodynamic analysis

2.1.1 Solar collector field

The solar collector field useful heat gain, ch can be calculated as follows:
: 2
Ocr =Mocr* Jetean DN -IAM - A, c; =U, (T 0 = T,) Ap.cr U (Do = T0)" - Ap 1 (D

where 7, ., is the optical efficiency of the solar collector field, U, and U, , are the heat loss coefficients
based on the aperture area of the solar collector field, 4, , is the aperture area of the solar collector field,
T L is the mean temperature of the solar collector field, 7, is the ambient temperature, and DNI is the
direct normal irradiance. The incidence angle modifier (IAM) represents the reduction of the optical

efficiency due to the incidence angle in parabolic trough collector fields and due to the incidence and
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the transversal angles in linear Fresnel reflector fields. The IAM for the system with two-axis tracking
(paraboloid dish) is one. The cleanliness factor (f,, ) is the ratio of the optical efficiency in average dirty
conditions to the optical efficiency with the same optical element in clean condition.

2.1.2 Organic Rankine cycle power system

The organic Rankine cycle feed pump increases the pressure of the working fluid (from state 11 to 12 in
Figure 2). The power consumption of the pump, #,, is computed as follows:

i, = Morc (hip=hy) )
771'S,P
where m,,,, . is the mass flow rate of the organic working fluid, 77, , is the isentropic efficiency of the feed

pump, and 4, denotes specific enthalpy at i-th state point. The index s refers to a state achieved after an
isentropic compression/expansion.

The organic working fluid in the liquid state at the maximum operating pressure (state 13) enters the
heat exchanger. In the heat exchanger, heat is transferred from the high temperature heat transfer fluid,
heated through the solar collector field, to the organic working fluid. Typically, this heat exchanger consists
of three parts, a preheater, evaporator, and superheater. The heat transfer rate in the heat exchanger, Q'e,
is given as follows:

Qe = mORC ) (hs - h13) (3)
The power output of the turbine, WT, and the gross electric output, W()Lgm, are calculated as follows:
WT = mORC ’ (hs - h%) MNisr and W@l,gruss = WT M “4)

where 7, . is the isentropic efficiency of the turbine and 1, is the generator efficiency.

In the case of dry organic working fluids, the state point after the expansion in the turbine is
superheated. The organic liquid at state 12 enters a recuperator (this component is optional) where the
low-pressure organic fluid vapor from the turbine (state 9) supplies heat. Finally, the turbine exhaust is
condensed in a condenser after part of its heat has been transferred in the recuperator. The heat transfer
rate in the condenser, Qc, is calculated as follows:

Qc :mOR(‘.(hlo_hll) ®)

3. Power, Fresh Water Generation and Heating

Reasonable water and electricity supply policies are of vital importance for the development of locations
where there is inadequate water. Solar photovoltaic systems or diesel generator systems using reverse
osmosis (RO) for fresh water generation are commonly used for a few kW_ to a few MW_ capacity plants,
for simultaneous generation of electricity and fresh water. For dispatchable (on demand) electricity and
fresh water generation in isolated regions and on islands, diesel generator-based systems are used. With
respect to CSP-based electricity and fresh water generation systems, steam Rankine cycle power systems
(Palenzuela et al., 2015), organic Rankine cycle power systems (Astolfi et al., 2017), or supercritical
carbon dioxide Brayton cycle power systems (Sharan et al., 2019) can be used for power generation,
and reverse osmosis systems (El-Emam and Dincer, 2018) or thermal energy-driven desalination
systems (Astolfi et al., 2017) can be used for fresh water generation. Simplified schematics of a typical
concentrated solar thermal energy-driven organic Rankine cycle-based electricity system with reverse
osmosis-based desalination system and thermal energy-driven desalination systems are shown in
Figures 3 and 4, respectively. A summary of previous works on concentrated solar power-based
cogeneration systems using the ORC technology and desalination system (reverse osmosis or thermally
driven) is given in Table 3.
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Toluene (Delgado-Torres et al., 2007), R134a (Karellas et al., 2011), isopentane (Bruno et al., 2008),
MM (Li et al., 2013), and n-octane (EI-Emam and Dincer, 2018) were proposed as promising organic
working fluids for CSP-driven ORC systems with RO desalination. For concentrated solar thermal
energy-driven ORC-systems with a thermal energy-driven desalination system, n-pentane (Astolfi et al.,
2017), toluene (Sharaf, 2012), and cyclopentane (Mathkor et al., 2015; Desai et al., 2019b) were proposed
as promising organic working fluids.

The parabolic trough collector is the most widely-used CSP technology for ORC-based cogeneration
systems (El-Emam and Dincer, 2018). Recently, a nanostructured polymer foil-based concentrated solar
collector technology was analyzed as a promising alternative compared to a PTC-based system for ORC
power systems integrated with a multi-effect distillation (MED) desalination system (Desai et al., 2019b).
The assumptions related to the solar irradiation, capital cost of the sub-systems and electricity consumption
significantly influence the techno-economic performance of the cogeneration system. The concentrated
solar thermal energy integrated MED-system is less expensive than a RO-based desalination system
(Ghobeity et al., 2011; Sharan et al., 2019). Depending on seawater salinity, membrane configuration
and efficiencies of components, the specific electricity consumption for reverse osmosis systems is about
3.5 kWh /m’ to 5 kWh /m® (IRENA, 2012; Sharan et al., 2019). For multi-effect seawater distillation
systems, the specific electricity consumption is about 1 k€Wh /m’ to 1.5 kWh /m’ (Alfa Laval, 2018).

4. Power, Cooling and Heating

Conventional vapor compression refrigeration systems (VCRS) powered by electrical energy are
widely used for cooling applications. Such systems can be powered by electrical energy produced by
a concentrated solar thermal energy-based organic Rankine cycle power system. A low-grade thermal
energy-driven vapor absorption refrigeration system (VARS) can also be integrated as a bottoming cycle
to an organic Rankine cycle power system. A simplified schematic of a typical concentrated solar thermal
energy-driven organic Rankine cycle-based vapor compression or absorption refrigeration system is
given in Figure 5. A summary of previous works on CSP-driven ORC-based cooling and/or heating
systems is given in Table 4.

Heat transfer fluid
(HTF) circuit
Iy r ORC circuit
Electricity
=)
D
=
5 4
8 1 Vapor'
2 o Thermal |1 compression
; & energy 'S refrigeration
E e storage S system
9 © system |3 -
< 1 Cooling
=] .
=
(5]
Q
=]
o
O

Vapor absorption | Cooling
refrigeration
system

HTF pump i/
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Figure 5. Simplified schematic of a typical concentrated solar thermal energy-driven organic Rankine cycle-based electricity
and vapor compression or absorption refrigeration system.
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Figure 6. Simplified schematic of a typical organic Rankine cycle-based electricity and cascaded vapor compression and
absorption refrigeration system (Adopted from Patel et al., 2017).

A bottoming VARS using lithium bromide-water (LiBr-H,0) as a refrigerant is limited to space
cooling at a commercial level (Tassou et al., 2010). Vapor absorption refrigeration systems with ammonia—
water (NH,-H,0O) are less advisable for food applications due to toxicity, flammability, low boiling point
temperature difference of refrigerant and absorbent, low coefficient of performance and incompatibility
with materials (Deng et al., 2011). Integrated systems based on adsorption cooling and liquid desiccant
cooling technologies are still at the research and development phase (Jradi and Riffat, 2014).

Concentrated solar thermal energy-powered organic Rankine cycle systems integrated VARS, which
works on thermal energy, are typically limited to space cooling. On the other hand, ORC-integrated
VCRS, which works on electrical energy, can be used for refrigeration applications. Patel et al. (2017)
proposed a concentrated solar thermal energy and biomass energy-powered ORC unit with a cascaded
refrigeration system, as shown in Figure 6. In such a system, the electricity and heat duty requirements
of the VCRS and VARS are fulfilled by the ORC-unit, combining the advantages of both systems. The
cascaded system achieves low temperature (up to —20 °C) cooling and requires much lower electricity
compared to the vapor compression refrigeration system (Patel et al., 2017).

5. Design Considerations
The key aspects of designing CSP-integrated ORC-unit-based multi-generation systems optimally are
briefly covered in this section.

5.1 Solar irradiation data

The duration and intensity of the solar irradiation affect the performance, capacity factor, and economic
viability of the system significantly. The sizing and configuration of the system also depend on the solar
irradiation. Local factors like fog and pollution level, dust/sand storms, wind speeds and their variations
also need to be considered when selecting the place of installation.
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5.2 Solar collector field and thermal energy storage

Concentrated solar collector type and size and thermal energy storage type and size need to be carefully
selected, as both these systems have major shares in the capital cost of the complete system. Optical
efficiency and overall heat loss coefficients are crucial parameters for concentrated solar collector fields
and improvements in these parameters often increase the solar field cost. The use of thermal energy storage
facilitates delivery of the utilities according to the need by absorbing the variations due to fluctuations in
the solar irradiation. For off-grid locations, where there are no available central grids, integration of other
energy sources, fossil fuel based or biomass based, may be needed to meet the utility demands.

5.3 Organic Rankine cycle power system and other sub-systems

The selection of cycle configuration, component types and designs, and working fluid is important for
efficiently converting solar thermal energy into multiple products. All these parameters are dependent
on the application type and maximum capacity requirement. The other products (cooling, heating, fresh
water) should be selected based on the needs of the region. The primary need (electricity, cooling,
heating or fresh water) of the place is of vital importance for successful implementation. The cooling and
desalination systems can be thermal energy driven or electrical energy driven, and the selection depends
on the techno-economic analysis. Integration of thermal energy driven systems with an organic Rankine
cycle power system enables a high energy utilization factor and high overall system efficiency. However,
in such a system, the net power output is lower compared to only power generating systems with a
condensing turbine. Therefore, the selection of an ORC power system and other sub-systems should be
done carefully.

5.4 Load characteristics

The system design needs to be based on a detailed analysis of the part-load characteristics of the
components of the multi-generation systems. Due to the mismatch between supply and demand, the
major challenge is to provide a dilute and variable nature of solar energy input to the various demands.
Moreover, it needs to be addressed that the actual system performance may differ from that of the design
predictions due to the system inertia causing delays during the start-up and shut-down phases.

5.5 System configuration and control

For optimal system configuration, all of the aforementioned parameters need to be considered carefully.
The process controls of the CSP-driven multi-generation systems based on the ORC technology should
be designed as a subset of the overall plant control strategy. A proper system configuration and control
provide desired products to the consumers cost-effectively and reliably.

5.6 Cost

Concentrated solar collector powered medium-scale dispatchable multi-generation energy systems with
thermal energy storage are typically more costly than fossil fuel based and biomass based systems.
However, factors like availability of fossil fuels and biomass as well as high carbon footprints for the
former and high water footprints for the latter are the major drawbacks of these technologies.

6. Concluding Remarks

In this chapter, concentrated solar thermal energy-driven multi-generation systems based on the organic
Rankine cycle technology were reviewed. Power generation, cogeneration, trigeneration, and multi-
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generation systems were discussed, and their possible configurations were presented. Issues related to the
system design were addressed.

For solar organic Rankine cycle systems, parabolic trough collector and linear Fresnel reflector
technologies are typically used. For cost parity, the cost of the linear Fresnel reflector technology
(€/m?) should be about 50% to 60% lower than that of the parabolic trough collector technology. A
recently analyzed nanostructured polymer foil-based concentrated solar field is a promising alternative
for small to medium-scale organic Rankine cycle systems.

For fresh water generation applications, thermal energy driven multi-effect distillation is a better
option than the electrical energy driven reverse osmosis system. The type of components (expander, heat
exchangers and pump) and working fluid of the organic Rankine cycle power system should be decided
based on the solar collector field data, type of application, and capacity of the system.

For cooling applications, depending on the temperature needed, either the electrical energy driven
conventional vapor compression refrigeration systems or the thermal energy driven vapor absorption
refrigeration systems can be used. The recently investigated cascaded refrigeration system is a promising
alternative; however, it is currently at the research stage and no commercial plant exists as of yet.

The selection of type and size of the concentrated solar field, thermal energy storage, organic Rankine
cycle power system, and other sub-systems is of vital importance for attaining a cost-effective solution.
Solar irradiation data and load characteristics affect the overall system configuration and controller
design.
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Nomenclature
L aperture area of the solar collector field (m?)
DNI direct normal irradiance (W/m?)
h specific enthalpy (J/kg)
1AM incidence angle modified
m mass flow rate (kg/s)
w power (W)
(0] heat rate (W)
T temperature (°C)
U, first-order heat loss coefficient based on aperture area (W/(m*K))
U, second-order heat loss coefficient based on aperture area (W/(m*K?))
Greek symbols
n efficiency
Subscripts
ambient
condenser
CL collector
e evaporator

g generator
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is isentropic

m mean

0 optical

P pump

T turbine

Abbreviations

CSP concentrated solar power
HMDS hexamethyldisiloxane
HTF heat transfer fluid

LFR linear Fresnel reflector
ORC organic Rankine cycle
PTC parabolic trough collector
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