Lactate reduction in CHO cell cultures through metabolic analysis

Monge, Ivan Martinez; Hefzi, Hooman; Sanchez, Pere Comas; Marín de Mas, Igor Batolomé; Decker, Marianne; Lecina, Martí; Cairó, Jordi Joan; Lewis, Nathan; Nielsen, Lars Keld

Publication date: 2020

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Lactate reduction in CHO cell cultures through metabolic analysis

Iván Martínez-Monge*, Hooman Hefzi1,2, Pere Comas2, Igor Marin de Mas1, Marianne Decker1, Martí Lecina2,4, Jordi Joan Cairó2, Nathan Lewis3 and Lars Keld Nielsen1


1. The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
2. Chemical, Biological and Environmental Engineering Department, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
3. Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
4. Bioengineering Department, IGS-Universitat Ramon Llull, 08017 Barcelona, Spain

1. Lactate generation in CHO cell cultures

CHO cells display Warburg metabolism characterized by high lactate production, which ultimately inhibits cell growth in culture. The current study explored through metabolic flux analysis both process and cell engineering approaches to avoid lactate accumulation, with implications in the industry of bioproducts.

2. Background and Experimental Data

The metabolic profile of CHO cells was investigated in batch bioreactor cultures performed under three conditions.

3. Experimental Overview and Results

1. Conventional metabolism
2. Bioprocess Engineering
3. Cell engineering

• Lactate is produced in Phase 1 to fulfill the NADH regeneration requirements in the cytoplasm.
• In both Phase 2 (concomitant consumption) and CHO-ZeLa (no lactate generation), glucose uptake was significantly reduced and a balance between glycolysis/lactate consumption and TCA cycle fluxes was reached.
• δ13C and oxygen consumption showed a slight increase in TCA cycle flux in CHO-ZeLa to counter the drop in ATP generation from glycolysis.