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Abstract
The sound field in a room is often modeled as a superposition of elementary waves, such as plane or spherical
waves. These wave expansions provide a powerful means to interpolate or extrapolate the sound field within (and
outside) the measurement domain. However, projecting the sound field of a large domain in a room on a planar
or spherical wave base yields a high number of very elemental components. We examine the use of dictionary
learning to find a set of alternative basis functions that are suitable to represent the sound field enclosed in a
room. The resulting dictionary is able to capture the dominant features of the sound field, and represent it using
only a sparse set of functions, the dictionary atoms. In this study, high resolution measurements of the sound
pressure in a room are simulated and used as a training set to learn a dictionary. We analyze the spatial properties
of the learned dictionary, and compare it to simple elementary basis functions such as plane and spherical waves.
Keywords: Sound Field Reconstruction, Room Acoustics, Dictionary Learning

1 INTRODUCTION
Sound field reconstruction techniques often rely on the use of basis functions to represent sound fields. Nor-
mally, elementary wave functions (plane and spherical waves) are employed [1–4]. Representing a sound field
using wave functions make it possible to interpolate the sound field in the measurements area, and even to
extrapolate it outside. Wave functions contain physical meaning regarding the propagation of sound since they
are simple solutions to the wave equation. proof that specific solutions to the homogeneous wave equation can
be approximated by a sum of plane waves [5] with certain guaranties on the quality. However, representing
complex sound fields across large three-dimensional domains, such as rooms, using elementary waves might be
sub-optimal. The number of wave functions required to approximate a sound field increases with the square of
the frequency and characteristic length of the room, e.g. more than 3000 plane waves would be required to
approximate a sound field in a 3×3×3 m volume up to 1 kHz [6]. The ideal modal behaviour of the sound
field in rectangular enclosures at low frequencies makes it possible to assume sparsity, i.e. just a few waves (8
in the case of an oblique mode [7]) are non-zero. Several studies [8–12] make use of the sparsity assumption to
alleviate sampling requirement. However, complex sound fields in real rooms are not sparse. Distributed sound
sources, scattering and diffraction phenomena, and non-rectangular geometries are not well approximated using
a small number of wave functions.

This work aims at presenting a dictionary learning (DL) approach to the problem, where basis functions are
learned from densely sampled sound fields. This data driven method showed promising dimensionality reduc-
tion for similar reconstruction tasks [13, 14]. The so called atoms balance between incorporating inherent infor-
mation from the data into the basis functions while preserving flexibility to sparsely represent complex sound
fields. These basis functions are learned from a data set of local microphone arrays at a single frequency. They
are subsequently used to reconstruct a sampled synthesized sound field at various frequencies and sampling
grids. A plane wave expansion is used as reference model to evaluate the reconstruction quality.
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Figure 1. The cuboid room geometry in question, with a learning plane at random height (red) and an eval-
uation plane for method comparison (gray) at a fixed height. Dots in the evaluation plane illustrate a regular
microphone grid as it is used for reconstruction input.

2 THEORY
Sparse coding methods enforce sparsity in the elements of the loading vector γ . For a projection matrix A and
a signal x, that writes

min
γ
‖γ‖0, s.t. x = Aγ . (1)

This problem is known to be NP-hard, but can be approximated by greedy algorithms such as matching pur-
suit and thresholding [15]. Alternatively relaxation algorithms such as basis pursuit / LASSO approximate the
solution by smoothing the `0 norm and solve an `1 norm optimization problem [16]:

min
γ

1
2
‖x−Aγ‖2

2 +λ‖γ‖1 , (2)

where λ is a regularization parameter.
Dictionary learning infers the loading γ and the atoms di of a dictionary D. Here, DL is performed as described
in [17], alternating between a sparse coding and a learning stage. The first employs relaxation of the `0 to the
`1 norm for approximation. After initializing a dictionary D, a sparse coding step is performed on the data,
optimizing with respect to γ , with A = D in Eq. 2. Next, all atoms di are optimized one by one, such that
the distance to the data set with nonzero γi coefficients is minimized. With the updated dictionary, iterations
continue from the sparse coding step until defined convergence criteria or maximum iterations are reached.
Subsequently, Orthogonal Matching Pursuit (OMP) is then used during reconstruction of missing data [15].

2.1 Plane wave expansion
The reference case is a plane wave basis, commonly used where maximum flexibility is needed to derive the
sound field. For a given frequency, K wavenumber vectors are sampled from a sphere with radius k = 2π f/c0 =√

k2
x + k2

y + k2
z . Each of these represents a global plane wave, whose complex amplitudes are found during

inference. Thus any sound field could be represented if an infinite number of plane waves were available. Each
mode in a reverberant, cuboid room can be represented by eight plane waves [7]. It follows that the lower
bound of projection sparsity without information loss is given as eight times the modal overlap [4]. With the
projection matrix denoted as H and the residual error epwe, it is

x = Hγ + epwe . (3)
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Figure 2. Top: subset of ten arrays from the learning data set. Bottom: All 20 atoms di=1...20 of learned
complex dictionary D, low to high magnitude from white to black and angle indicated by color overlay.

3 SIMULATION STUDY
3.1 Dictionary learning
Experiments are carried out on synthesized data, using the Greens function for a cuboid, empty and hard-walled
enclosure as a reference. The dimensions of the room are [lx, ly, lz] = [4.41,3.31,2.97] m, with the virtual source
placed in the corner to excite all modes. At a resolution of r, this results in a grid of Nmics = ( lx

r +1)× (
ly
r +1)

microphones in any horizontal cross section. Samples are extracted such that for a array size of P×P, one
side length covers at least one wavelength λ . In total, Nsamples = (lx/r−P+ 2)× (ly/r−P+ 2) sample arrays
constitute the base for DL. The randomly chosen frequency of 403 Hz is about one third octave below the
rooms Schroeder frequency of fS ≈ 2000

√
Trev/V ≈ 500 Hz. This yields Nsamples = 3479 arrays of 19× 19

microphones at 5 cm resolution to cover the whole plane. Ten samples are illustrated in the top row of Fig. 2.
From those the dictionary D is inferred on the zero-mean aligned arrays. All 20 atoms are shown in the lower
rows of Figure 2. The learned atoms seem to include the spatial features present in the training data. They
contain similar spatial variations with zero crossings and maxima as expected for an aperture of size λ 2. D
is overcomplete, containing atoms that show no spatial correlation and appear to be noise. The corresponding
elements in γ are close to zero. This means that the learned dictionary is a good candidate to represent the
training data sparsely. It also indicates that a target size of Natoms = 20 is sufficient.

3.2 Sound field reconstruction
Reconstruction of the sound field in the evaluation plane is carried out using orthogonal matching pursuit (OMP)
for both learned dictionary and plane wave basis, resulting in the corresponding sound pressures pdl and ppwe.
For the global plane wave expansion, a sparse representation of k0 = 30 out of Npw = 4000 Fibonacci-spaced
plane wavenumber vectors is used. The frequency dependent Nmics ×Npw transfer matrix H for the whole
domain is constructed. OMP determines the loading vector γ of length Npw and the aforementioned sparsity.
D represents a local support of size P×P, so that the reconstruction is conditioned in the same fashion as
for the learning step. The sparse coding step for reconstruction of the j’th sample then involves the data
x j,P2 , dictionary DNatoms×P2 , yielding γ is of length Natoms. The whole domain is consequently reconstructed by
overlapping results of Nsamples sparse coding steps.
Figure 3 shows the reconstruction from both methods in the evaluation plane, at the same frequency as the
learned dictionary. The true field in a) serves as a reference for the reconstruction from measurement grid in
d). The resulting pdl and plane wave reconstruction ppwe are presented in b) and e) respectively. c) and f)
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Figure 3. Reconstruction from 192 microphone measurements on a regular grid in the evaluation plane at 403
Hz. All in magnitude dB rel 1 Pa: a) true reference sound field, b) reconstruction using the learned dictionary,
c) residual error between true reference and reconstruction with learned dictionary, d) regular grid sampling the
true reference at 192 microphone positions for reconstruction; e) reconstruction using plane wave expansion, f)
residual error between true reference and plane wave reconstruction

illustrate corresponding error magnitudes.
pdl is close to the true field, both in spatial pattern and magnitude. Visible artifacts relate to the regular spacing
of the grid in d) and the atom shape λ ×λ . This impression is confirmed when inspecting the residual error.
Fig 3 c) contains visible local artifacts at measurement grid points and components of the reference field. These
local variations aside, the error over space is low. ppwe in Fig 3 e) shows hardly any visual differences to the
true reference. The error surface in Fig 3 f) is smooth and seemingly unrelated to the true field, which in fact
can be expressed a superposition of a few plane waves, given this simple geometry. Therefore it constitutes
a strong reference for comparison. Its reconstruction errors originate mainly from discrete sampling of the
wavenumbers and the microphone spacing.
As projection with D only relies on local information within a λ 2 array, it is particularly interesting to monitor
global properties. The mean square relative error is shown for different numbers of microphones in Fig. 4 a).
The number of microphones above which the Nyquist sampling theorem is fulfilled, i.e. a spacing of < λ/2, is
marked as n. While having comparable errors for undersampled data, the dictionary projection pdl converges to
a higher accuracy than ppwe for large Nmics.
Figure 4 b) and c) show the statistics of the original and reconstructed sound fields. Being slightly below
the Schroeder frequency, the comparison to statistical room acoustics theory can at least give an indication of
plausibility. The data follows the theoretical diffuse field pure tone model fairly well. More precisely, this
is expressed by a exponentially distributed mean square pressure [morse1968a] in b) - note the logarithmic
ordinate covering several orders of magnitudes. Likewise the sound pressure level distributions in c) follow the
reference and the model well.
D here has dimensions 20×361 and 3479 coding steps are required for projection, whereas for the plane wave
expansion, only a single coding step is required inverting a considerably larger matrix of dim(H) = (5963×
4000). Anecdotally, reconstruction with the dictionary took 30-100% longer than the projection on a plane
wave basis for the study case. With respect to the larger objective, the question needs to be posed if the
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Figure 4. a): Mean square relative error depending on the number of microphones in the evaluation plane Nmics.
b) and c): Statistics of true and reconstructed sound fields at 403 Hz, mean squared pressure and sound pressure
level, along with the theoretical curve from a pure tone diffuse field model.

learned dictionary is generalizable across different rooms. Transferring the method to measured data, examining
across-frequency flexibility and studying training data representativity will be part of future work.

4 CONCLUSION
A dictionary learning approach to model and reconstruct sound fields from an incomplete data set was intro-
duced. A set of 20 basis functions, i.e. atoms were learned and sufficient to reconstruct sound fields in a cuboid
room. The set formed an overcomplete dictionary, enabling a sparse representation of the training data.
Using the dictionary for sound field reconstruction, accuracies comparable to a plane wave expansion were
reached. While the spatial error average was low, inherent limits in projecting a global sound field on a local
dictionary became apparent in non-smooth reconstruction artifacts. The study indicates that statistical properties
of the sound field are preserved.
It is the same local finiteness of the atoms that can prove beneficial for larger, more complex domains with
a less homogeneous field. The online processing of atom-sized arrays distributes the computational load and
possibly less demanding. That being said, projection on a plane wave basis is faster and suitable for the
particular case of a cuboid room.
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