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A direct method to solve quasistatic micromagnetic problems

A. R. Insinga, E. Blaabjerg Poulsen, K. K. Nielsen and R. Bjørk

Abstract

Micromagnetic simulations are employed for predicting the behavior of magnetic materi-
als from their microscopic properties. In this paper we focus on hysteresis loops, which are
computed by assuming quasistatic conditions: i.e. the magnetization distribution remains at
equilibrium while the applied magnetic field is slowly varied.

The dynamic behavior of micromagnetic systems is governed by the Landau-Lifshitz equa-
tion. In order to apply the dynamic equation to a quasistatic problem, it is necessary to
artificially decouple the relaxation dynamics from the time-scale of the variation of the applied
field. This decoupling is normally done in an iterative fashion: the field is considered fixed until
the equilibrium point is reached, and subsequently updated. However, this approach is indirect
and also has the potential issue that a system might switch to a different equilibrium config-
uration before the previous equilibrium becomes unstable, which is a behavior not possible in
the quasistatic regime.

Instead, here we derive the differential equation, which directly describes the evolution of
the equilibrium states of the Landau-Lifshitz equation as a function of the external field, or any
other externally varied parameter. This approach is a more rigorous description of quasistatic
processes and inherently enforces the system to follow a given equilibrium configuration until
this disappears or becomes unstable. We demonstrate this approach with simple examples and
show it to be as or more stable than the previously used approaches.

1 Introduction

1.1 Background and motivation

The subject of micromagnetism is the behavior of magnetic systems at the microscopic scale.
At this length scale it is not necessary to employ a quantum-mechanical formalism. Instead,
the system is described by the formalism of continuum mechanics: the physical mechanisms
arising from quantum effects are included as phenomenological interaction terms.

The starting point in micromagnetism is the definition of the micromagnetic free energy,
which takes into account the classical macroscopic magnetic interaction, as well as the exchange
interaction, and the anisotropy due to the crystalline structure of the magnetic materials.
A magnetization distribution is an equilibrium configuration if it is a local minimum of the
free energy. The goal of micromagnetism is either to compute the equilibrium magnetization
distributions, or to simulate the time-evolution of dynamical processes. These two problems
are governed by Brown’s equation and the Landau-Lifshitz equation, respectively. Except for
simple cases, the equations can only be treated through numerical simulations.

Micromagnetic simulations are employed in several scientific fields, such as the study of per-
manent magnets[1, 5], magnetic storage and processing devices[11], and spintronic systems[6].
Depending on the area of application, the purpose of these simulations is different. In the
present work we focus on permanent magnet systems, and in particular on the computation of
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hysteresis loops. This problem is relevant to the prediction of the coercive field, which is the
maximum magnitude of an opposing magnetic field that a permanent magnet can withstand
before its magnetization reverses[2, 3, 1]. The theory of micromagnetics predicts a much higher
maximum value of coercivity than the values actually observed by experimental methods[1].
This discrepancy is known as Brown’s paradox.

Two different time-scales are relevant to the physical processes described by hysteresis
curves: the time-scale of variation of the external applied field and the time-scale of relaxation
of the magnetization distribution towards the equilibrium configuration. For permanent magnet
applications the relaxation time-scale is so much shorter that the system can be realistically
considered to follow the equilibrium configuration as the external field is varied [1]. For this
reason, although it would in principle be possible to employ fully-dynamical simulations based
on the Landau-Lifshitz equation, it is often convenient to consider a different iterative approach
where the two time-scales are decoupled. In each step of the iteration the field is assumed to
be fixed and the equilibrium state for fixed conditions is computed; subsequently the external
field is updated to the new value corresponding to the following step of the iteration [9]. We
will refer to this method as “step-by-step” approach. At each step, the equilibrium state can be
found by employing Landau-Lifshitz without the precession term [8], or by energy-minimization
methods such as the method of conjugate gradients [7].

In this paper we present a novel simulation technique that can be used for the computation
of hysteresis loops, and in general to quasi-static micromagnetic processes. As mentioned above,
the system is assumed to be at equilibrium at all-times. However, when the external parameters
are changed, a given equilibrium configuration may suddenly become unstable, an event known
as bifurcation. When a bifurcation occurs, the system undergoes a rapid transition to a new
equilibrium state.

We analyze the change of stability of equilibrium configurations by employing standard
methods from the stability theory of classical dynamical systems. We consider the differential
equation governing the evolution of the equilibrium configuration with respect to a variation
of some external parameter, typically the external magnetic field applied to a permanent mag-
net sample. The key strength of our approach is that the governing equation automatically
guarantees that the state of the system continuously follows a given equilibrium configuration
for as long as possible, i.e. until a bifurcation occurs. We illustrate this novel direct approach
with two simple examples computed with the micromagnetic and magnetostatic simulation
framework MagTense[15].

1.2 Notation

• Vectors, vector fields, tensors and tensor fields

Bold font, as in x, denotes vectors. Normalized vectors are indicated with the hat, as in
x̂. The independent variable x of a vector field m : R3 → R3 is indicated between round
brackets, as in m(x). Rank-2 tensors are indicated with double underlining, as in A. The
independent variable of a tensor field is indicated between round brackets, as in A(x).

• Functionals and operators

We consider scalar-valued functionals having a vector field, such as m(x), as input. We
will use calligraphic font, as in G, to denote functionals, and square brackets for the input
argument, as in G[m]. In this context, G is a scalar-valued function defined over the
Hilbert space V of square integrable vector fields over R3. The vector field m is thus as
an element of V, and will be referred to simply as “point”.

We will also consider operators having vector fields both as input and output arguments.
The input argument of an operator is also indicated with square brackets, as in q[m].
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• Gradient, Jacobian and Hessian

The gradient of a functional G[m] is denoted by ∇G. The Jacobian matrix of an operator
f is denoted by Jf The Hessian matrix of a functional G is denoted by HG. Each of

these differential operators are with respect to the independent variables, which are all
the components of the input vector field. The point of V at which a differential operator
is evaluated is indicated by subscript. For example, if the gradient of G[m] is evaluated
at the point m∗, we write (∇G)m∗ to indicate this.

1.3 Micromagnetic free energy

The magnetic state of the micromagnetic system considered is described by the magnetization
distribution M(x), where x denotes a generic point in space. It is assumed that the norm of
M is predetermined. This is denoted by Ms. The magnetization can thus be written as

M(x) = Msm(x) (1)

where m = mxêx+myêy+mzêz denotes the normalized magnetization, also called the reduced
magnetization, which satisfies ‖m‖ = 1.

At equilibrium, the magnetization distribution minimizes the micromagnetic free energy.
The energy is expressed by a functional G composed of four terms [10, 11]:

G[m] = Gexch[m] + Ganis[m] + Gext[m] + Gdemag[m] (2)

The four terms represent four different contributions to the total energy. All the terms are
expressed as volume integrals over the magnet domain Ω of corresponding energy density
functions:

• Exchange term:

Gexch[m] =

∫
Ω

dV Cexch

(
‖∇mx‖2 + ‖∇my‖2 + ‖∇mz‖2

)
(3)

where Cexch denotes the exchange constant.

• Anisotropy term:

Ganis[m] =

∫
Ω

dV fanis(m) (4)

where fanis is the anisotropy energy density which only depends on the local value of
the magnetization distribution. Uni-axial anisotropy is often modeled by fanis(m) =
−K(m · êK)2, where K is the anisotropy constant and êK is the unit vector pointing
along the easy axis of the crystal lattice. In this case, the anisotropy energy is quadratic
with respect to m.

• External field term:

Gext[m] = −µ0Ms

∫
Ω

dV (m ·Ha) (5)

where Ha denotes the external (or applied) field.

• Demagnetization term:

Gdemag[m] = −
(
µ0Ms

2

)∫
Ω

dV (m ·Hd) (6)

where Hd denotes the demagnetization field, i.e. the field generated by the magnetization
distribution M itself.
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Note that the demagnetization field Hd depends linearly on m:

Hd = N [m] (7)

where N is a linear operator:

N [ama + bmb] = aN [ma] + bN [mb] (8)

Here ma and mb are two arbitrary magnetization distributions, while a and b are two arbitrary
real numbers. In fact, the demagnetization field at the point x can be expressed as the following
integral:

Hd(x) =

∫
Ω

dV ′N(x,x′)m(x′) (9)

Moreover, the tensor field N is symmetric[11]:

N(x,x′) = NT (x,x′) (10)

From the various expressions introduced above, it is clear that, as long as the anisotropy is
uni-axial, the total energy is quadratic in m. Therefore, the total energy G is expressed by the
following double integral over the region Ω:

G[m] =

∫
Ω

dV

∫
Ω

dV ′mT (x)A(x,x′)m(x′) +

∫
Ω

dV mT (x)b(x). (11)

From this point we will omit the integration domain Ω, since all the volume integrals are always
performed over this domain. Because of the symmetry properties satisfied by all the four terms,
the tensor field A is also symmetric[11]:

A(x,x′) = AT (x,x′) (12)

The tensor fieldA is composed by three different terms corresponding to the exchange, anisotropy
and demagnetization terms, respectively:

A(x,x′) = A
exch

(x,x′) +A
anis

(x,x′) +A
demag

(x,x′) (13)

The explicit expressions for the three terms can be written in terms of the three-dimensional
Dirac delta function δ3(x):

A
exch

(x,x′) = Cexch 1

∫
Ω

dV ′′
(
∇xδ

3(x− x′′)
)
·
(
∇x′δ

3(x′ − x′′)
)

(14)

A
anis

(x,x′) = −K(êK)(êK)T δ3(x− x′) (15)

A
demag

(x,x′) = −
(
µ0Ms

2

)
N(x,x′) (16)

where 1 denotes the 3 × 3 identity matrix. The vector field b is entirely determined by the
external field:

b(x) = bext(x) = −µ0MsHa (17)
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2 Methods

2.1 The effective field

In order to use numerical methods, we need to transform the continuous formulation, expressed
by Eq. 11, into a discretized formulation. There are many ways to approximate the original
problem with a discrete problem. The treatment discussed in the present paper can be equally
applied regardless of the particular choice of discretization approach.

Here we assume that the magnetization distribution is expanded over a discrete mesh over
the three-dimensional space. In our implementation we use a Cartesian grid composed by N
identical rectangular prisms, which we will refer to as tiles. The magnetization is assumed
uniform over each of these tiles. With this assumption, the demagnetization field generated by
each of these tiles can be calculated analytically [16]. Because of the superposition principle,
the total field is the sum of the contributions from all the tiles composing the grid.

The discretization of the magnet domain Ω into rectangular prisms is illustrated in Fig. 1.
Fig. 1(b) shows one prism and the magnetic flux density generated by this tile when uniformly
magnetized in the y direction. Fig. 1(a) shows the subdivision of the region Ω into N identical
copies of the same prism. It should be noted that, although here for the sake of simplicity we
have chosen a collection of identical rectangular prisms, the methods discussed in this paper can
be equally applied for any discrete mesh composed by non-identical tiles of arbitrary shape[19].
The only requirement is to be able to compute the demagnetization field associated with any
discretized magnetization distribution defined over the mesh.

(b)(a) x
y

z

x
y

z

Figure 1: (a) Illustration of the discretized grid subdividing the magnet domain Ω. The demagne-
tization field and the other terms of the effective field are computed by summing the contributions
from all the tiles. (b) The magnetic flux density generated by one tile can be calculated analyti-
cally. As an example, Fig. 1 shows the field generated by the tile when it is magnetized along the
y direction.

We will denote by the symbol, m, the 3N elements array of the expansion of m(x) over the
N -tiles grid. The discretized vector field m is an element of the vector space R3N . Then using
collective indexes, the jth component of the 3N vector is denoted by mj . This corresponds
to one of the 3 components of the magnetization vector associated with a given point of the
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grid. Similarly, we denote by Akj one entry of the expansion of the tensor field A over the
N -tiles grid, and by bk one entry of the vector field b. The discretized expression of the energy
functional G is thus given by:

G[m] =
∑
k

∑
j

mkAkjmj +
∑
k

mkbk (18)

All the summations are performed over the 3N components of the discretized arrays. It is con-
ventional to employ a variational approach, and to express the first variation of the functional
G in terms of the so-called effective field [10, 11]. In the continuous formulation, the effective
field is expressed as:

Heff =

(
2Cexch

µ0Ms

)(
∂2
xm + ∂2

ym + ∂2
zm
)
−
(

1

µ0Ms

)
∂fanis

∂m
+ Ha + Hd (19)

Except for a scale factor (µ0Ms)
−1 which for simplicity we will neglect here, the discretized

effective field Heff is the negative of the gradient of G with respect to m [12]:

Heff[m] = − (∇G)m (20)

Since G[m] is quadratic, its gradient Heff is linear with respect to m:(
∂G
∂mk

)
m

= 2
∑
j

Akjmj + bk (21)

2.2 Normalization condition and Landau-Lifshitz equation

The vector field m must be normalized at any point. We thus introduce the point-wise nor-
malization operator q:

q[m] =
m(x)

‖m(x)‖ , ∀x (22)

Our problem is thus to minimize the following composite functional:

H
[
m
]

= G
[
q[m]

]
(23)

Clearly, the functional H is not quadratic with respect to m. The gradient of H can be
calculated from the gradient of G and the Jacobian of q. The Jacobian of q is the operator
consisting of taking the vector product with m twice, and dividing by −‖m‖3. Denoting by(
J q
)
m

v the Jacobian matrix evaluated at m ∈ V and multiplied by an arbitrary vector field

v we have: (
J q
)
m

v = −
(

1

‖m‖3

)
m(x)×m(x)× v(x), ∀x (24)

The gradient of the composition H
[
m
]

= G
[
q[m]

]
is the Jacobian of q multiplied by the

gradient of G[q] evaluated at q[m]:(
∂H
∂mj

)
m

=
∑
k

(
∂qk
∂mj

)
m

(
∂G
∂qk

)
q[m]

(25)

As a vector equation the previous relation is written as:

(∇mH)m =
(
J q
)
m

(∇G)q[m] =

(
1

‖m‖3

)
m×m×Heff[m̂] (26)
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If we evaluate the gradient of H at a point of V satisfying the constraint, i.e. m = m̂, we can
simplify the previous expression:

(∇H)m̂ = m̂× m̂×Heff[m̂] (27)

This is one way to see that the dissipative term of the Landau-Lifshitz equation [11] is
equivalent to a gradient descent for the composition H, or equivalently a gradient descent for
G that satisfies the point-wise constraint[10]. We will assume that magnetization distribution
m is governed by the Landau-Lifshitz equation. Since the subject of this work is determining
the equilibrium configurations, we only include the dissipative term, i.e. we do not consider
the precessional term. The governing equation is thus expressed as:

d

dt
m = f [m] = −αm× (m×Heff[m]) (28)

where α ∈ R>0 is the damping coefficient. The reason for the minus sign in the time-evolution
Eq. 28, is that the equation should lead the state of the system towards energy minima. The
initial state is normalized at each point x:

m(t = 0) = m̂(t = 0) (29)

In this case the norm is preserved by Eq. 28. For now, we also assume that f does not depend
explicitly on the time t. An equilibrium state m∗ is invariant with respect to Eq. 28:

d

dt
m∗ = f [m∗] = 0 (30)

From the definition of f we see that Eq. 30 requires the effective field to be parallel to the
magnetization m at each point in the grid. An equilibrium point is called stable if the system is
guaranteed to return to the same equilibrium configuration when the magnetization distribution
is subject to a sufficiently small perturbation. In the context of non-linear equations such an
equilibrium point is sometimes called metastable, since it is not guaranteed to be unique, nor
to be the global minimum of the micromagnetic energy [4].

2.3 Hysteresis loops: conventional calculation approaches

Here we focus on the phenomenon of magnetic hysteresis. This phenomenon can be observed
when multiple equilibrium configurations exist for the same conditions. We consider the case
of an external uniform field Ha applied along a given direction êa. We evaluate the total
magnetic moment of the system along this direction. The normalized total magnetic moment
in the direction êa is denoted by m̂a and defined as:

m̂a =

(
1

V

)∫
Ω

dV êa ·m(x) (31)

where V is the total volume of the magnet domain Ω. The magnitude Ha of the applied field
is varied over time, and spans the interval [−Hmax,+Hmax].

We assume that the rate of variation of the external field is much lower than the rate of
convergence to equilibrium, and thus the process is quasistatic. In these conditions the system
will remain on the same equilibrium point as the external field is varied. However, there might
be several distinct stable equilibrium points compatible with the same set of external conditions.
Moreover, as the external field is varied, a given equilibrium point might become unstable or
disappear. As discussed in the next section, this event is called a bifurcation [13]. When a
bifurcation occurs the system will undergo a transition to the energetically closest equilibrium
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configuration. In other words the energy landscapes evolves in such a way that the system falls
into the basin of attraction of a different equilibrium point.

There are two conventional approaches to calculate hysteresis loops i.e. different from the
method proposed here. We will refer to the two approaches as the dynamic approach and the
step-by-step approach, respectively.

• In the dynamic approach, the field variation and the convergence to equilibrium happen
simultaneously. The state of the system evolves according to Eq. 28, with an explicitly
time-dependent effective field. In order to reproduce the quasistatic behavior, the damp-
ing coefficient α must be very large with respect to the rate of variation of the external
field. As long as α is sufficiently large, the system should remain at equilibrium while the
external field changes.

• In the step-by-step approach the evolution is still governed by Eq. 28, but the external
conditions are fixed. When the equilibrium point is reached, the external field is instanta-
neously varied by a small amount, and the system is then allowed to converge to the new
equilibrium state. As long as the field variation between consecutive steps is sufficiently
small, this computation scheme should correctly reproduce the quasistatic regime.

It is thus clear in both cases, the validity of the approach depends on a proper choice of
the simulation parameters: the value of α for the dynamic approach, and the step-size for the
step-by-step approach.

2.4 Bifurcations and eigenvalues

A bifurcation occurs when an equilibrium point disappears or becomes unstable. This is typi-
cally seen in e.g. calculation of hysteresis loops when the magnetization discontinuously jumps
from one magnetization to another, although bifurcations can also be continuous transitions,
as will be shown subsequently.

When the external field is varied, the function f appearing in Eq. 28 changes accordingly.
In order to highlight the mechanism of bifurcations, we assume that the external field is pa-
rameterized by a real scalar number σ. We thus write the equation of motion in a form that
highlights the explicit dependence of f on σ:

d

dt
m = f [m;σ] (32)

For a time-continuous dynamical system, the signature of a bifurcation is the vanishing of the
real part of one of the eigenvalues of the Jacobian matrix of f . For the micromagnetics problem
f is proportional to the gradient of the composite functional H from Eqs. 27 and 28:

f = −α (∇H) ⇒ Jf = −α
(
HH

)
(33)

where HH denotes the Hessian of H[m] = G[q[m]] with respect to m. We can calculate
the Hessian analytically by applying Faà di Bruno’s formula for the second derivatives of
multivariate composite functions (see the Appendix):(

∂2H
∂mi∂mj

)
m

=
∑
k

(
∂G
∂qk

)
q[m]

(
∂2qk

∂mi∂mj

)
m

+
∑
k

∑
`

(
∂2G
∂qk∂q`

)
q[m]

(
∂qk
∂mi

)
m

(
∂q`
∂mj

)
m

(34)
As we see from the right-hand side of the previous equation, the Hessian of H is composed of
two terms. The first term depends on the effective field, i.e. on the first derivatives of G, and
on the second derivatives of q. The second term depends on the Hessian of G, which is the
double of the matrix A appearing in Eq. 18, and on the first derivatives of q.
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Since the first order derivatives of H are zero at an equilibrium point, the next-order ap-
proximation (i.e. quadratic) is the simplest description of the local behavior of H around the
equilibrium point. Since G is a quadratic functional, the Hessian matrix of G is fixed, i.e. it
does not depend on m. In other words the matrix HG is an exact description of the behavior of
G everywhere. On the contrary, the Hessian of H, which depends on m, is only an approximate
description of the behavior of H in the vicinity of an equilibrium point.

As mentioned above, bifurcations are identified by the studying the eigenvalues of HH.
Because of Schwarz’s theorem, any Hessian matrix is symmetric, and therefore all the eigen-
values are purely real numbers. Before the bifurcation occurs the equilibrium point is assumed
to be stable, and the eigenvalues are thus negative. Therefore, we can detect a bifurcation by
considering the largest eigenvalue, denoted by λmax. It is not necessary to compute all the
eigenvalues: there are efficient algorithms for calculating directly the largest eigenvalue. When
a bifurcation occurs at σ = σF, the largest eigenvalue λmax converges to 0− as σ approaches
σF.

2.5 Direct method

We developed an alternative direct method for simulating quasistatic processes. The approach
considers the differential equation obeyed by the equilibrium state m∗, with respect to the
independent variable σ.

An equilibrium state m∗ satisfies the equation d
dt
m∗ = 0, which is written as:

f [m∗(σ);σ] = 0 (35)

As highlighted by the previous expression, the equilibrium state m∗ depends on σ. The pa-
rameter σ is varied over time quasi-statically, i.e. at a much slower rate with respect to the
rate of convergence of m towards m∗(σ). We can thus write the implicit ordinary differential
equation, with independent variable σ, which governs the evolution of m∗(σ). By taking the
derivative with respect to σ on both sides of Eq. 35, we obtain the following equation:

d

dσ
f [m∗(σ);σ] = 0 (36)

The equation can be written as:

f∗
[
m∗,

d

dσ
m∗;σ

]
= 0 (37)

Where f∗ is given by:

f∗ =
(
Jf
) d

dσ
m∗ +

∂

∂σ
f = 0 (38)

In this form the differential equation is implicit. We can transform it into an explicit
equation by solving f∗ with respect to d

dσ
m∗ :

d

dσ
m∗ = −

(
Jf
)−1 ∂

∂σ
f (39)

The geometrical interpretation of the equation d
dσ

f = 0 is thus that the gradient of H does
not change as σ is varying: since we are following the equilibrium point, the gradient must
remain zero. In particular, the first term on the right-hand side of Eq. 38 corresponds to the
variation of the gradient due to the shift dm∗, while the second term corresponds to the explicit
variation of the gradient due to change of σ. The equation prescribes that the two variations
must compensate each other.
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2.6 Change of basis

It is important to realize that the matrix Jf is actually singular: because of the normalization

operator q, a variation dm∗ that would increase the norm of m∗ in a point of the grid has no
effect. In other words, a shift dm∗ produces the same variation of the gradient ∇H regardless
of the component of dm∗ that is parallel to m∗ at a given point x. There are thus N eigenvalues
that are equal to zero: one for each tile of the grid. This implies that d

dσ
m∗ is not uniquely

defined by Eq. 37.
We can work around this issue by performing a suitable change of basis. For each of the N

tiles xi we consider three normalized orthogonal vectors: ê1(xi), ê2(xi), and ê3(xi). One of
the three vectors is equal to the magnetization vector in that tile: ê1(xi) ≡m(xi) . The second
vector can be calculated by taking the cross product between ê1 and an arbitrary normalized
vector. The third vector is defined as ê3 = ê1 × ê2.

We thus have 3 orthogonal unit vectors for each of the N tiles. From these 3N vectors we
can build a new basis for the space R3N of all the vector fields over the grid. After expressing
Eq. 37 over the new basis, we do not consider the components corresponding to the vectors
ê1(xi), since these correspond to the N eigenvalues that are equal to zero. We thus have a
reduced 2N × 2N system of equations which is not anymore singular:(

˜Jf
) d

dσ
m̃∗ +

∂

∂σ
f̃ = 0 (40)

where the symbol ˜ indicates the expansion over the reduced 2N -elements basis. We compute
the solution of the linear system over this basis, and we then set to zero the components of
the solution corresponding to the vectors ê1(xi). Finally, we perform the inverse change of
basis to obtain the expansion of d

dσ
m∗ over the original basis. This procedure automatically

ensures that the derivative d
dσ

m∗ is normal to the magnetization m at each point, and the
norm is thus preserved. It is worth mentioning that since the change of basis is point-wise the
corresponding matrix is sparse.

2.7 Implementation

The numerical simulations have been performed with the micromagnetic and magnetostatic
simulation framework MagTense[15].

As mentioned in Sec. 2.1, we discretize the original continuous problem by expanding the
vector fields over a Cartesian grid composed of N tiles. For simplicity all the tiles are identical
rectangular blocks, for which the analytical expression of the demagnetization tensor is known
[16, 17]. To obtain the expansion over the grid of the total demagnetization field Hd we have
to sum over the contributions from all the tiles. The discretized form of Eq. 9 is thus given by
the following expression:

(Hd)k =
∑
j

Nkjmj (41)

The 3N × 3N matrix N is entirely determined by the geometry and directly proportional to
Ms. For this reason, it is only necessary to compute N once, at the beginning of the simula-
tion. As we see from Eq. 19, the effective field contribution due to the exchange interaction
involves differential operators with respect to the position[10, 11]. We employ central finite-
difference schemes for the discretization of these differential operators. The implementation of
the anisotropy term shown in Eq. 15 is straightforward for the case of uni-axial anisotropy. The
matrix A appearing in Eq. 21 is thus constructed from these three terms: demagnetization,
exchange interaction, and anisotropy. As can be seen from Eq. 17, the vector field b is entirely
determined by the applied field Ha.
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The differential equations described by Eq. 28 or Eq. 37 are then integrated using the
built-in Matlab function ode45. The algorithm employed by this solver is based on an explicit
Runge-Kutta (4,5) formula [14]. For the step-by-step approach, we also need a criterion to
establish whether a given configuration m has reached the equilibrium or not. Denoting by ṁi

the ith component of the expansion of d
dt
m, we consider the normalized rate of variation δ:

δ =

(
1

N

∑
i

∣∣∣∣ṁi

α

∣∣∣∣2
)1/2

(42)

Since ṁi is divided by α, the value of δ does not depend on the damping coefficient. When δ is
below a given threshold, the equilibrium configuration has been reached and the iteration can
proceed to the following step.

For the direct approach the simulation can only be carried on until a bifurcation is reached.
When the largest eigenvalue λmax reaches zero the computation must be interrupted and con-
tinued with Eq. 28 in order to simulate the transition to the new equilibrium configuration. At
this point one can continue with the direct approach described by Eq. 37 until a new bifurcation
is reached. Instead of actually computing λmax, we employ the built-in Matlab function chol

to perform a Cholesky factorization of the 2N × 2N matrix block ˜Jf introduced in Sec. 2.6.

When a bifurcation has been reached, the matrix block is singular, and not anymore negative
definite. The Matlab function chol returns an additional output which indicates whether this
situation, corresponding to λmax → 0−, has occurred. This alternative method for detecting
bifurcations is computationally more efficient than the explicit calculation of λmax.

It should be noted that the direct method proposed here is probably more suitable for
relatively small-scale problems, where the number of tiles in the grid is not too large. In fact,
the direct approach is more computationally intensive than the conventional approach for large
values of N : each time the value of m∗ is updated, it is necessary to recompute the 2N × 2N
matrix block ˜Jf , and to solve the corresponding system of linear equations with respect to
d
dσ

m̃∗. The comparison of the computational cost between the two methods is discussed in
Sec. 3.3.

3 Results and discussion

3.1 Example 1

To illustrate the conventional dynamic and step-by-step approaches, as well as the proposed
direct method, we have calculated the hysteresis loop for a thin rectangular magnetic block.
The dimensions of the rectangular magnet along the Cartesian directions are Lx = 5.5∗10−6 m,
Ly = 1.5 ∗ 10−6 m, and Lz = 0.5 ∗ 10−6 m. The saturation magnetization is Ms = 106 A/m.
The exchange constant is Aexch = 6 ∗ 10−10 J/m. Moreover, it is assumed that there is no
crystal anisotropy. The external field is applied along the x direction, i.e. êa = êx. The
magnitude of the applied field, is indicated by Ha, and spans the interval [−Hmax,+Hmax],
with µ0Hmax = 0.1 T.

The discrete grid is composed by 25 tiles in the x direction, 13 tiles in the y direction,
and 1 tile in the z direction. This grid would probably be too coarse for the purpose of
accurately simulating the physical system under consideration. However, in this work we
are only interested in highlighting the mechanism of bifurcations and the direct approach
introduced in Sec. 2.5. For this purpose, it it not necessary to use a very fine grid since the
same features are exhibited by small-scale systems.

The hysteresis loop of m̂a as function of Ha is shown in Fig. 2. Initially, the applied field
magnitude is Ha = +Hmax, and the magnetization distribution is relaxed to the corresponding
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equilibrium configuration starting from the fully-saturated state: m(x) = êx, ∀x. The thick
blue line shown corresponds to the demagnetization branch of the hysteresis loop. The thin
light-blue curve correspond to the opposite process, where both the field and the magnetic
moment have the opposite sign. The bifurcations on the demagnetization curves are indicated
by the blue circles. The transitions between distinct equilibrium states are indicated by the
dotted lines. As we can see from the bifurcations labeled as 1, 2, and 5, the transitions do not
always involve a drastic change of the total magnetic moment.
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Figure 2: Magnetic hysteresis loop. The magnitude of the external field along the direction êa
corresponds to the horizontal axis, and the normalized total magnetic moment along that direction
corresponds to the vertical axis. The bifurcations of the demagnetization curve are indicated by
the blue circles. The black curve, calculated with the dynamic approach, does not immediately
converge to the new equilibrium after the 3rd and 4th bifurcations. The results computed with the
step-by-step approach are shown as red diamonds.

For this example, the independent variable σ of the direct equation 37 is simply equal to
the applied field magnitude Ha. As long as the steps-size of the step-by-step approach is small
enough, the direct approach reproduces exactly the same results as the direct method, thus
confirming the validity of the new method. The results obtained with the step-by-step method
correspond to the red diamonds shown in Fig. 2 and are precisely overlapped with the thick
blue-curve computed by the direct method proposed here.

The black curve has been calculated using the dynamic approach. As can be noticed, after
a bifurcation the dynamic method does not immediately converge to the new equilibrium point.
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This discrepancy indicates that a higher value of α would have been necessary in order to obtain
a more precise result. For the example considered here the step-by-step method completely
reproduces the correct result. However, the step-by-step method is not guaranteed to follow a
given equilibrium configuration until it vanishes: with this method the system might undergo
a transition to a different equilibrium even in absence of a bifurcation.

It is important to stress that the process represented by the demagnetization curve shown
in Fig. 2 is irreversible, since it involves several transitions to new equilibrium configurations.
Therefore, if the system undergoes the reverse process after reaching the final state, it will
not return on the same curve, but on the reverse curve which in Fig. 2 is plotted in light-
blue. Similarly, by reversing the process from the intermediate equilibrium state we would
obtain minor hysteresis loops, which are an evidence that the process is memory-dependent,
i.e. irreversible.

The magnetization distributions shown in Fig. 3 correspond to different points on the de-
magnetization branch of the hysteresis loop. Fig. 3(a) and Fig. 3(d) correspond to the initial
and final states, respectively, i.e. to Ha = +Hmax and Ha = −Hmax. Fig. 3(b) correspond
to the state before the bifurcation labeled as 3 in Fig. 2, and Fig. 3(c) correspond to the
state after the transition. During this sudden transition, occurring at Ha = −0.226Hmax, the
magnetization distribution undergoes a drastic change.

The top panel of Fig. 4 shows the evolution of the eigenvalues as the applied field Ha is
reversed from +Hmax to −Hmax for the same example considered in Fig. 3 and Fig. 2. The
largest eigenvalue is plotted as a thick blue curve. The bifurcations are indicated by the black
vertical lines. We notice that λmax converges to 0− as Ha approaches a bifurcation from the
right. In order to quantify the variation of m between two consecutive steps, we introduce the
quantity ∆, defined as:

∆ =

(
1

3N

∑
i

∣∣∣m(k+1)
i −m(k)

i

∣∣∣2)1/2

(43)

where m
(k)
i is the ith component of the magnetization distribution at the kth step of the

iteration. The bottom panel of Fig. 4 shows the behavior of ∆ as the applied field is reversed.
Again, the bifurcations are indicated by the black vertical lines. As we can notice, when a
bifurcation occurs the magnetization distribution undergoes a sudden change. However, as we
can see from the 1st, 2nd, and 5th bifurcations of Fig. 2, these sudden transitions do not always
correspond to a significant variation of the total magnetic moment.

3.2 Example 2

We now consider a completely reversible process which does not exhibit any bifurcation. All
the parameters are the same as in the previous example, except that the maximum magnitude
of the applied field is µ0Ha = 0.5 T, and that the field is varied according to the following
equation:

Ha = Ha cos(σ)êx +Ha sin(σ)êy = Haêa(σ) (44)

The magnitude of the applied field is thus constant, and the direction êa rotates around the z
axis by the angle σ ∈ [0, 180◦]. The results are plotted as function of σ in Fig. 5. Due to the
large field magnitude Ha, the process leading from the initial to the final equilibrium states
is completely reversible, i.e. it does not involve bifurcations. In fact, as we can notice from
the bottom panel of Fig. 5, the eigenvalue λmax is always strictly smaller than zero. Since
the process is completely reversible, and the initial and final states are mirror symmetric, the
curves λk(σ) are symmetric with respect to the middle point σ = 90◦, and periodic with period
180◦. On the contrary, the curves λk(Ha) shown in the top panel of Fig. 4 are not symmetric
with respect to the middle point Ha = 0. The top panel of Fig. 5 shows the component of the
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(c)

(d)

y
x

z

Figure 3: Examples of equilibrium magnetization distributions over a thin rectangular magnet, with
an external field applied along the x direction. The color indicates the direction of the magnetization
vector in that point of the magnet. The magnitude of the field along the x direction, i.e. Ha,
decreases from (a) to (d), from the maximum µ0Ha = +0.1 T to the minimum µ0Ha = −0.1 T.

total magnetic moment along the directions êx, êy, and êa. Because of the large applied field
magnitude, the parallel component m̂a is very close to 1 for all values of σ. However, since the
lengths of the sample along the x and y directions are different, the curves mx(σ) and my(σ)
are qualitatively different: the sample is more easily magnetized along the x direction than the
y direction.

Here we only considered examples where the only quantity that explicitly depends on the
parameter σ is the applied field Ha. However, it is important to stress that the direct method
can equally be applied to compute the variation of the equilibrium state m∗ with respect to
any scalar variable parameterizing the governing equations. For example, we could use the
direct approach to compute the evolution of m∗ as function of the exchange constant A, or the
saturation magnetization Ms.
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Figure 4: Top panel: eigenvalues as function of the applied field Ha. The field is decreased from
+Hmax to −Hmax. The largest eigenvalue, corresponding to the blue curve, goes to 0

−
as Ha

approaches a bifurcation from the right. Bottom panel: variation of the magnetization distribution
m quantified by the parameter ∆ defined in Eq. 43. During a bifurcation m undergoes a rapid
change.

3.3 Computational cost

It is instructive to compare the computational cost of the direct approach with that of the step-
by-step approach. For this purpose we performed a set of simulations on a micromagnetism
problem similar to the second example discussed in Sec. 3.2, except that the magnitude of the
applied field is µ0Ha = 1 T. The reason for this difference is that increasing the field magnitude
results in faster convergence, and this makes it feasible to perform a large number of simulations
as required to investigate the dependence of the computational cost on the relevant parameters.
The computations have been carried out on a HP Zbook with processor Intel(R) Core(TM)
i7-7820HQ CPU @2.9GHz 2.90 GHz and 32 GB of RAM.

In these simulations we consider the dependence on the number of steps K at which the
solution is evaluated. For the step-by-step approach, this number has a significant impact on
the total computational time. On the contrary, for the direct method K does not considerably
affect the computational efficiency since the number of steps at which the solution is evaluated is
not necessarily equal to the the number of steps used by the solver to integrate the differential
equation. This is determined by the intrinsic stability characteristics of the equation under
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Figure 5: Top panel: total magnetic moment along different directions as function of the angle
parameter σ, which controls the direction of the applied field according to Eq. 44. Because of the
large field magnitude, the magnetic moment m̂a along the direction of the applied field is always
very close to 1. However, since the magnet has different lengths along the x and y direction, the
mx(σ) curve and my(σ) curve are different. Bottom panel: evolution of the eigenvalues as σ is
varied. Since there are no bifurcations, all the eigenvalues are strictly negative.

consideration. In our implementation, employing the Matlab function ode45, the number of
steps internally used for the integration is determined automatically by the function ode45.

The results are shown in Fig. 6a. In both the top and bottom panels, the horizontal axis
corresponds to K. In the top panel the vertical axis corresponds to the total computation time
T expressed in seconds. We consider two different discretization grids. The square markers
correspond to a grid composed by 25 tiles in the x direction, 13 tiles in the y direction, and
1 tile in the z direction, for a total of N = 325 tiles. The diamond markers correspond to a
grid composed by 27 tiles in the x direction, 15 tiles in the y direction, and 1 tile in the z
direction, for a total of N = 405 tiles. The results computed with the step-by-step approach
are shown in red, and the results computed with the direct approach are shown in blue. As
a visual aid, we fitted the computational time as function of N with a polynomial function.
For the step-by-step approach we used a 1st degree (linear) fit, and for the direct approach we
used a 0th degree (constant) fit. In fact, while for the step-by-step approach the computation
time T is approximately proportional to the number of steps K, for the direct approach T is
nearly independent of K, for the reason explained above. Therefore, when a large number of
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Figure 6: (a) top panel: computation time T as function of the number of steps K at which the
solution is evaluated. The square and diamond markers correspond to different number of tiles
in the discretization grid, i.e. N = 325 and N = 405, respectively. (a) bottom panel: number
of evaluations of the derivative as function of K. As can be seen, the number of tiles N has
little effect on the number of evaluations Q. For the step-by-step approach both T and Q depend
linearly on K, whereas for the direct approach T and Q do not depend on K. (b): computation
time for each evaluation of the derivative plotted as function of the number of tiles N . For the
direct approach T/Q is larger and it increases faster with increasing N , when compared to the
step-by-step approach.

evaluation steps K is required, the direct method is computationally more efficient, and vice
versa. As can be seen, the number of tiles N has a substantial effect on the computational
time.

In the bottom panel of Fig. 6a the vertical axis corresponds to the number of evaluationsQ of
the derivative with respect to the integration variable (i.e. time t for the step-by-step approach,
and σ for the direct approach). These results correspond to the same set of simulations of the
results shown in the top panel. The value of Q is determined by the internal number of steps
used by the solver for integrating the differential equation. For the step-by-step approach Q is
almost exactly proportional to K, whereas for the direct approach Q does not depend on K.
In both cases, the number of evaluations Q is not affected by the number of tiles N . In fact,
for each of the two approaches the two data-sets corresponding to N = 325 and N = 405 are
almost perfectly overlapped to each other.

This observation suggests that the two approaches must be characterized by a very different
dependence on N of the computation time required for each evaluation of the derivative. In
order to investigate this dependence we performed a second set of computations. We evaluated
the derivative with respect to the integration variable for a randomly generated magnetization
distribution mrnd. We repeated the process for different discretization grids corresponding to
a different number of tiles N . The computation time for each evaluation, denoted by T/Q, is
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plotted as function of N in Fig. 6b. For each data-point T/Q has been averaged over 1000
different random distributions mrnd. The data-points corresponding to the values of N used
for the results presented in Fig. 6a are enclosed by circles.

Both the vertical and horizontal axes are in logarithmic scale. We fitted the two data-sets,
corresponding to the two approaches, with a polynomial function:

T

Q
=

(
N

n0

)β
(45)

For the step-by-step approach we obtained β = 1.3455, n0 = 67707 s−1/β , for the direct
approach we obtained β = 2.1042, n0 = 1059 s−1/β . As expected, the dependence on N
has a more severe impact on T/Q for the direct approach than it does for the step-by-step
approach. This difference is due to the fact that for each evaluation of the derivative in the
direct approach it is necessary to recompute the Hessian of H, (which explicitly depends on
m), to perform a change of basis, to solve a system of linear equations, and finally to perform
the inverse change of basis. However, as discussed above, the direct approach often requires
much less derivative-evaluations than the step-by-step approach especially when K is large,
i.e. Q is generally smaller and independent of K. Therefore, from the point of view of mere
computational efficiency, the direct approach is more suitable when the number of tiles N is
low with respect to the required number of steps K at which the solution is evaluated.

It should be stressed that, although the general trend is well captured by these sets of
simulations, the specific results are also affected by the physical problem under consideration.
Depending on the energy landscape, on how does it change as function of the external parameter
σ, and the trajectory of m∗(σ), one method might perform better than the other one, or vice
versa. Moreover, the direct method is expected to be more robust with respect to premature
transitions to different equilibrium states since the underlying differential equation directly
describes the evolution of an equilibrium state as function of an externally varying parameter.

It should also be noted that the polynomial scaling laws given above are not necessarily
indicative of the general computational performance of the MagTense framework. Efficient
computational methods to approximate the demagnetization field are currently under develop-
ment, and will be discussed in an upcoming paper.

3.4 Conclusion

We introduced a direct method for calculating the evolution of the equilibrium magnetization
distribution m∗ with respect to the variation of a scalar parameter σ which parameterizes the
governing equations. We verified the validity of this novel technique against results computed
with the conventional approach, here referred to as step-by-step approach.

The main advantage of this method is that the evolution is automatically guaranteed to
remain to a given equilibrium state until a bifurcation occurs. Because of this feature, the direct
approach is only applicable to quasi-static processes. Therefore, the direct method provides
a powerful instrument for studying the evolution of equilibrium configurations during quasi-
static processes, and the occurrence of bifurcations. These investigations are especially relevant
for simulating field-reversal mechanisms, and predicting the coercivity of permanent magnets,
which is an active area of modern research[1].
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Appendix

The nth derivative of the composite function G[q[m]] is given by Faà di Bruno’s formula [18]:

DnG[q[m]] =
∑
{kj}∈K

n!

k1! . . . kn!
(DkG)q[m]

(
D1q[m]

1!

)k1
. . .

(
Dnq[m]

n!

)kn
(46)

where k =
∑
j kj , with j = 1, . . . , n and K is the set of all combinations of kj such that∑

j jkj = n. For n = 2 there are only two such combinations, i.e. {k1 = 0, k2 = 1} and
{k1 = 2, k2 = 0}, corresponding to k = 1 and k = 2, respectively. The second derivative of
G[q[m]] is thus composed of two terms:

D2G[q[m]] = (D1G)q[m](D
2q[m]) + (D2G)q[m](D

1q[m])2 (47)

Here D1G and D2G are the gradient and the Hessian of G, respectively. Analogously, D1q[m]
and D2q[m] are the Jacobian and the Hessian of q, respectively. Elsewhere in the manuscript
these differential operators are denoted as described in Sec. 1.2.

When expressing Eq. 47 explicitly in terms of the components of q and m we obtain Eq. 34.
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[12] A. Hobza, C. J. Garćıa-Cervera, and P. Müllner, Twin-enhanced magnetic torque, J. Magn.
Magn. Mater 458, 183-192, (2018).

[13] C. Serpico, S. Perna, G. Bertotti, M. d’Aquino, A. Quercia, and D. Mayergoyz, Noise-
induced bifurcations in magnetization dynamics of uniaxial nanomagnets, J. Appl. Phys.
117, (17), 17A709 1-4, (2015).

[14] L. F. Shampine, and M. W. Reichelt, The MATLAB ODE Suite, SIAM J. Sci. Comput.
18, 1-22, (1997).

[15] K.K. Nielsen, and R. Bjørk, MagTense, https://doi.org/10.11581/DTU:00000071

(2019).

[16] A. Smith, K.K. Nielsen, D.V. Christensen, C.R.H. Bahl, R. Bjørk, and J. Hattel, The
demagnetizing field of a nonuniform rectangular prism, J. Appl. Phys. 107 (10), 103910
1-8, (2010).

[17] K.K. Nielsen, C.R.H. Bahl, A. Smith, and R. Bjørk, Spatially resolved modelling of inho-
mogeneous materials with a first order magnetic phase transition, J. Phys. D: Appl. Phys.
50 (41), 414002 1-9, (2017).
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