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Abstract

We investigate whether field homogeneity of a magnetic assembly can
be optimized by varying the remanence of its constituting magnetic seg-
ments. We specifically study this hypothesis for a Halbach cylinder using
a numerical model, MagTense. We consider a Halbach cylinder consisting
of six layers of three concentric rings, each ring made from 16 segments.
We show that ideally, the homogeneity can reach close to 1 ppm for a
finite magnet.

We then proceed to consider a real world set of magnet segments, i.e.
non-ideal magnets with a variation in their remanence. This reduces the
field homogeneity to about 1000 ppm when considering a Gaussian per-
turbation of the remanence with a standard deviation of 1 %. However,
we also show that the reduction in homogeneity may be countered by or-
ganizing the magnet pieces found through optimization, which is possible
if each magnet segment is well characterized experimentally. We note that
the presented method is applicable to any case where homogeneity of the
field is important. The results we present are considered for the specific
case of nuclear magnetic resonance for concretenes.

1 Introduction

Permanent magnet systems are relevant for numerous applications some
of which require a large degree of field homogeneity. Examples include
Nuclear Magnetic Resonance (NMR) [1] and Vibrating Sample Magne-
tometry [2]. Different design concepts of magnetic systems generating a
highly homogeneous field have been investigated. Among these, the most
notable are the C-shaped magnetic circuit [3] and the Halbach cylinder
which is a hollow cylindrical shell segmented into several uniformly mag-
netized blocks. The Halbach cylinder [4] provides a very good compromise
between size (weight and therefore cost), field strength and homogeneity.



Turek et al. provides a detailed analysis of segmented Halbach cylinders
in terms of the field homogeneity in the bore as a function of sample size
and number of segments [5]. This work clearly shows that a segmented
finite Halbach cylinder is inherently limited in terms of the homogeneity
it can produce. It is therefore necessary to modify the Halbach cylinder
design for improving the field homogeneity if a Halbach cylinder is to be
used as the base for applications demanding extremely high field homo-
geneity, such as NMR applications. An approach for solving this problem
was presented in Ref. [6]. Here, the authors used a genetic algorithm for
optimally placing permanent magnet pieces in a Halbach-like grid in order
to improve the field homogeneity.

It is furthermore well-known that since a large magnet has to be build
of individual pieces, or segments, there is a great potential for being sensi-
tive to variations in the properties of the individual segments originating
from manufacturing tolerances. Therefore, even though an optimal de-
sign balancing cost, sample size, field strength and homogeneity may be
found by modifying a Halbach cylinder, variations in the actual individual
magnet pieces may degrade the overall homogeneity.

In this paper we present an approach or algorithm for designing an
optimal Halbach-like magnet that produces a field with given magnitude
while maximizing the homogeneity. We incorporate the expected variation
from manufacturing tolerances in the approach in a way that requires some
detailed knowledge of the properties of the individual magnets physically
acquired.

We perform this task by analyzing the field homogeneity of a finite and
segmented Halbach-type [4] cylindrical magnet. The magnet configuration
is build up by a number of rings stacked in the axial direction, where the
rings consist of a number of concentric radial rings. Each of the rings
comprises a Halbach magnet, as shown in Fig. 1. To explore different
field strengths and geometries, we let the inner radius of the configuration
and the sample region be fixed while the outer radius and the length of
the magnet are varied, as only the relative geometrical parameters are
important in magnetostatics. In this way, we find the field homogeneity
at various field magnitudes as well as the amount of magnet material
required, which directly relates to the cost and weight of the system.

For each configuration we vary the magnitude of the remanent magne-
tization of each segment through the use of an optimizer with the objective
of improving the field homogeneity across the sample region. Then, in or-
der to simulate actual manufactured permanent magnet blocks which have
a tolerance on their magnetization, we assume each optimized configura-
tion to be perturbed by a normal distribution applied to the remanent
magnetization of each segment. This perturbation distorts the field and
degrades the homogeneity.

We then exploit symmetry and the fact that, even though all the seg-
ments on the same radial ring have identical shape, when considering
the magnetization direction each segment is present four times in each
of our configurations. We apply an optimizer in order to remedy the
distortion of the homogeneity by the normal distribution caused by the
manufacturing tolerance. We do this by determining the optimal position
of the segments within the Halbach cylinder structure. One may view this
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Figure 1: The segmented magnet configuration seen in the xy-plane (a) and in
perspective (b). Note the three radial rings in the six axial layers consisting
of 16 segments each. The black arrows show the magnetization direction for a
Halbach cylinder.

as having bought the exact (nominal) segments required for a given de-
sign, then meticuously characterizing them individually and subsequently
placing them as optimally as possible, thus restoring some of the field
homogeneity from the initial optimal design.

2 Model

The magnet model, known as MagTense [7], is based on three-dimensional
geometrical units (tiles) within which the magnetization is assumed ho-
mogeneous. In the present work we consider one type of tile: a piece of
a hollow cylinder defined by its angular extent (d¢), radial extent (67)
and thickness in the axial direction (dz); see Fig. 2. The center of the
tile is positioned in cylindrical coordinates at ro, ¢o and zp. Assuming
the tile to be homogeneously magnetized with magnetization vector My,
the magnetic induction B or equivalently magnetic field H may be found
at any point inside or outside the tile through the demagnetization ten-
sor field, N. A tile centered at r’ will generate a magnetic field, H, at a
location in space r given by the demagnetization tensor field N:

H(r) = N(r —r') - M(r'), (1)

where the tile is assumed to be homogeneously magnetized. The deriva-
tion of the tensor field, N, is given in Ref. [8].

In order to find the magnetization within a given tile, it is necessary to
find the magnetic field inside the tile and subsequently apply a constitutive
relation valid for the present magnet material. We find the field at a given
point r as the superposition of the fields from all n tiles in the model:

H(r) = Y Hi(x). )



Figure 2: The cylindrical tile on which each magnet segment is based. Note
that rg = %(’Iﬁ —|—’I“2), ¢o = %(gbl + ¢)2) and zg = %(21 + 22) while dr = ro — 7y,
5¢:¢27¢1 andé‘z:fozl.

Given the local field in a tile we assume the following constitutive relation
for the permanent magnet material:

M = ([Lr - [)H + Mrem. (3)

Here I denotes the identity matrix and p, the anisotropic relative perme-
ability tensor, which is given by

1.06 0 0
p-=P[ 0 117 0o | P, (4)
0 0 117

where P is the change of basis matrix from the local coordinate system
(Vi) of the given tile to the global Cartesian coordinate system (V). The
latter coordinate system is defined in the conventional way with Origin at
the center of the magnet and the axial direction of the magnet parallel to
the z—direction. The former coordinate systems are defined individually
for each tile such that the first axis is parallel to the easy axis uc, of
the given magnet segment, the second axis una1 is simultaneously perpen-
dicular to ues and to the third axis up.2, which is parallel to the z-axis
of the global system. The first and second axes of the local coordinate
systems are thus mutually orthogonal and lie in the same plan as the
global x— and y—axes and are thus rotated with respect to these. This
change of basis is necessary, as the relative permeability is different along
the easy axis, compared to the perpendicular directions, simply because



of the anisotropy of NdFeB magnets [9]. The values of the relative per-
meability tensor are assumed constant, i.e. they do not depend explicitly
on the field, and thus only small changes in the magnetization vector are
allowed.

The easy axis of each tile and thus the tile’s local coordinate system
is defined through the Halbach [4] formula for a dipole Halbach magnet
with the field in the center bore. This is given in Cartesian coordinates
as:

[Uealv = (cos 2¢, sin 2¢, O)T, (5)

with ¢ being the conventional azimuthal angle about the z-axis measured
counterclockwise from the z-axis. The transformation from the local coor-
dinate system V"’ to the global Cartesian coordinate system V is performed
by the matrix P having as columns the global coordinates of the easy vec-
tor shown in Eq. 5 along with the previously defined two hard axis unit
vectors:

P(¢) = {[uea]v;[unai]v; [Unaz]v} (6)
cos2¢ —sin2¢ 0

= sin2¢  cos2¢ 0. (7)
0 0 1

It is noted that P is an orthogonal matrix and thus P~* = PT.
The remanent magnetization is assumed to be parallel to the easy axis
and may thus be written in the global coordinate system as

Mrem - MO [uea]v ) (8)

with My denoting the nominal remanence of the magnet material at zero
field.

The magnetic flux density B at a point r from a tile is found, as
mentioned above, by assuming said tile to be homogeneously magnetized
and free currents to be absent. Through the vector potential formulation
it is possible to find B:

B = VxA
A(r) = %LM(T)Xn(r)da/. 9)

r—r/|

Here, the normal vector to the closed surface S with area element da’ is
denoted fi and is explicitly a function of the primed coordinates, which
denote in turn the coordinates on the surface that is integrated over.
The vacuum permeability is po. The details about the evaluation of the
integral in Eq. 9 are given in full in Ref. [§].
Finally, we state the defining equation for the magnetic field:
1

H=_—B-M. (10)
Mo



2.1 Self-consistent model solution

For a given problem a number of tiles are configured following the cylin-
drical Halbach design. Equation 1 is then solved together with Eq. 2
in order to find the field H within each tile. Equation 3 is subsequently
applied in order to update the magnetization. This iteration is continued
until the relative change in the magnetization in each tile is less than a
pre-specified tolerance, here set to 1le—10.

The geometrical part of the model, i.e. solving Eq. 1 needs only
to be done once for a given configuration due to the assumption of a
homogeneous magnetization within each tile. This can be formulated as
a sum of tensor products as in Eq. 2:

H(r) = ZHi(r) = ZP(N(P—1 (r—r'))- PT'M(r), (11)

where N denotes the demagnetization tensor field that captures the geo-
metrical part of the problem. It is noted that the tensor field calculation
takes approximately 1 minute on a single Intel Xeon CPU running at 3.6
GHz. Once this calculation has been done and the tensor field is found for
the whole problem, one may use Eq. 11 directly in the iterative scheme
and the total model solution time on the same system becomes about 0.3
s. This enables a significant amount of model runs to be done in a reason-
able amount of time given a fixed geometry while varying the remanence
of the segments. It is noted that N is found in the local coordinate system
of the given tile.

The analytical expression of the geometrical demagnetization tensor,
and the iterative approach to compute self-consistent solutions have been
validated against results obtained by means of numerical simulations. The
simulations have been performed with the finite element analysis software
COMSOL Multiphysics. These comparisons show excellent agreement
between the solutions obtained with the two approaches [8] thus validating
the approach used here.

2.2 Optimization algorithm
In this paper, the basic hypotheses are that

e The field homogeneity of a segmented magnet configuration may
be optimized by varying the remanence of the segments among the
values corresponding to different magnet grades.

e Real magnet segments that are nominally identical come with a sta-
tistical spread in their remanence both in terms of magnitude and
direction. These deviations will negatively influence the field homo-
geneity due to asymmetry in the system. However, this effect may
be partially remedied by optimizing the placement of individual seg-
ments that are nominally identical within the magnet configuration.

Both hypotheses require an optimization scheme in order to be evalu-
ated. As the geometry is kept fixed, we are addressing a combinatorial
optimization problem. Therefore, we have chosen to use the genetic algo-
rithm (GA) as this method has been proved to handle discrete problems



Table 1: The remanence of the commercially available NdFeB magnet grades.
The list is taken from Bakker Magnetics [10]. Similar values are claimed by

other magnet vendors.
Grade ‘N28UH N30UH N33UH N35UH N38UH N40UH N42UH N44SH

Remanence [T] ‘ 1.08 1.12 1.17 1.22 1.26 1.30 1.33 1.36

effectively [6]. The optimization objective is to minimize the peak-to-peak
value of the field inside a spherical region with a radius of 2 mm centered
at the center of the magnet. The peak-to-peak (p2p) value is defined

conservatively as: ) &)
max(H) — min(H
p2p = e (H) : (12)
where the max and min operators are evaluated with respect to the posi-
tion over a spherical volume with radius 2 mm centered in the bore of the
magnet as stated above and H is the magnetic field norm. Clearly, when
the field is perfectly homogeneous within the spherical volume, the value

of p2p goes to zero.

The optimization algorithm is split into two parts, corresponding to
the two basic hypotheses presented above, respectively. In the first part
the magnitude of the magnetization of each segment is allowed to vary
according to a pre-defined set of allowed (discrete) values corresponding
to the standard NdFeB magnet grades listed in Table 1. High coercivity
UH and SH grades were chosen to avoid any issues of self-demagnetisation
in the assemblies. Since eight-fold symmetry in the Halbach configuration
is assumed only 1/8 of the number of segments are considered as variables
for the GA.

Once a locally optimal configuration of remanence magnitudes has
been found in this way, a perturbation is applied in order to model real-
world magnets that come with a statistical spread in their magnetization
relative to the nominal value. In this paper, we only consider variation in
the magnitude of the remanence, but it is highly probable that a variation
in the direction is also present. This choice is meant for simplicity and
clarity; the algorithm works just as well on orientational variation. The
off the shelf variation in the remanence of a specific grade is in general
around 4 % for most magnet vendors. This is a combination of directional
and magnitude variation. Upon request it is possible to obtain more
homogeneous series of magnets within a specific grade. Thus, we here
assume a variation in the remanence given by a Gaussian distribution
with a standard deviation of 1 %.

The second part of the optimization algorithm has the goal of mit-
igating the effects of the Gaussian perturbation. For this purpose, we
apply a slightly different optimization strategy. It is now assumed that
all n segments have been characterized sufficiently accurately that the 1
% variation is well resolved. Each segment in our configuration can be
placed in four different positions due to symmetry. In this way, the op-
timizer considers a number of groups, ng of nominally identical segments
where ng = n/4. Within each group, the four perturbed segments can be
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Figure 3: The average magnetic field and log;, p2p values as a function of length
and outer radius for the nominal Halbach configuration ((a) and (c¢)) and for
the optimized configuration ((b) and (d)), respectively.

placed at any position thus creating 4! = 24 permutations for each group.
In order to input this into the GA, we use a lexicographical indexing al-
gorithm [11] and thus have a number of variables equal to the number of
groups where each variable is an integer varying between 1 and 24.

3 Results and discussion

In the following we will consider a case of three concentric Halbach magnet
rings each having 16 segments equally spaced in the azimuthal direction
and consisting of six layers in the axial direction, as also shown in Fig. 1.
This choice was made in order to have a geometry with room for variability
and keeping symmetry. With this configuration we have thus a total of
288 magnet segments which are grouped into 72 groups each with four
identical magnets.

We let the length, L and the outer radius, R, vary between 0.05 and
0.2 m and 0.1 and 0.2 m, respectively, while keeping the radius of the bore,
Rg fixed at 40 mm. Note that only the relative geometrical properties are
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of importance.

3.1 Optimal placement of standard NdFeB grades

For comparison, we start with the basic configuration where all the mag-
net segments have the same nominal remanence of 1.22 T (the center of
the list in Table 1). The resulting average magnitude of the field in the
sample region is shown in Fig. 3(a). The corresponding field homogeneity,
denoted p2p, is shown in Fig. 3(c) and it is observed that i) the homo-
geneity improves as a function of length and ii) it is greater than 300 ppm
in all cases. The diminishing end effects of the longer magnet improve the
field homogeneity, however modestly.

To improve the homogeneity, we then apply our first optimization
strategy and let the remanence of each segment (exploiting 8-fold symme-
try) vary between the discrete values given in Table 1. The resulting field
and p2p homogeneity of the optimized configurations are given in Figs.
3(b) and 3(d), respectively. The produced field decreases between 0.1 and
0.3 T while the p2p values increase by up to two orders of magnitude,
thus bringing the field homogeneity down to a few ppm.

The optimized configuration for a specific case is shown in the exploded
plot in Fig. 4. As can be seen from the figure, it is hard to determine the
logic behind the ordering of the individual magnet segments. However, a
trend is that segments near the ends of the cylinder generally have a larger
remanence than segments closer to the center. This most likely happens
to limit flux leakage through the ends of the cylinder.



3.2 Perturbing the optimized solution

Having found a locally optimal configuration employing the approach dis-
cussed above, one may consider the choice of which magnets to obtain
settled. Upon reception of these magnets from a magnet producer one
might then perform some measurement in order to verify the magnets’
properties and subsequently label each magnet individually with its ac-
tual magnetization. It is clear that even a small variation across the
magnets will cause the magnet configuration to be asymmetric and thus
make the field considerably less homogeneous.

To model this situation, we perturb the remanence of the individual
blocks of the solutions presented in Fig. 3(d) with a normal distribution
with a standard deviation of 1 %, as discussed above. The perturbation
was applied through 50 different permutations of the same single normal
distribution composed of 288 random values, i.e. one for each magnet
segment. Doing this we obtain the results shown in Figs. 5(a) and 5(c)
for the mean p2p and minimum p2p values, respectively. It is seen that
the field homogeneity decreases with about two orders of magnitude due
to the statistical variation, interesting enough bringing us back to about
the same level of field homogeneity as before the optimal remanence was
determined.

3.3 Re-optimizing the perturbed solutions

We then test our second hypothesis, i.e. that placing the actual mag-
net segments in a locally optimal way may partially remedy the decrease
in homogeneity. For each of the 50 permutations we re-optimized the
positioning of the magnet pieces while considering the 288 pieces to be
distributed in 72 groups of four each yielding 24" possible permutations.
We found through running the GA optimizer on this using the lexico-
graphical indexing as mentioned above that between 10,000 and 20,000
model runs were sufficient to find a local optimum. The results for the
mean and minimum p2p values are given in Figs. 5(b) and 5(d), respec-
tively. A gain between a half and one order of magnitude is achieved
through this method.

3.4 Probability of getting a satisfying configura-
tion

As the perturbation and re-optimization scheme discussed above is inher-
ently statistical, it is instructive to consider certain probabilities. Given
the ability to measure and characterize the deviation of a specific magnet
segment from its nominal behavior one may ask with what probability
will a certain batch of magnet segments be possible to arrange in such a
way as to yield a field homogeneity better than a certain value?

To answer this question, we first consider the histogram in Fig. 6,
which shows how the perturbed and re-optimized solutions of a certain ge-
ometric configuration behave statistically. It is clear that the re-optimization
does not guarantee a better homogeneity than the perturbed system.
However, it is also clear that there is a finite probability that re-arranging

10
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perturbed (a) and re-optimized (b) systems and the corresponding minimum
values of log;o p2p for the perturbed (¢) and re-optimized (d) systems.

the magnet segments in a clever way may actually increase the field ho-
mogeneity significantly.

The histogram in Fig. 6(a) shows the distribution of the perturbed and
re-optimized solutions for the 1 % standard deviation perturbation while
Fig. 6(b) shows the corresponding histogram for a perturbation with 5
% standard deviation (closer to off the shelf value). In the latter case,
the perturbed solutions distribute roughly similar to those in the former
case. However, the re-optimized solutions form a very narrow distribution
around log,;, p2p = —3.27 thus indicating that for too large a standard
deviation, it is not feasible to find a way to organize the magnet segments
such that an improved configuration may be obtained.

The results for all configurations of the Halbach cylinder are shown in
Fig. 7, which shows the probability of obtaining a solution with a p2p
value less than 100 ppm (log,, p2p < —4) for the perturbed case 7(a) and
for the re-optimized case 7(b). Again, when the magnet is 0.1 m or longer
the homogeneity increases and it is clear that the re-optimized systems
have a significantly larger probability of yielding a p2p value better than

11
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100 ppm than the perturbed systems have.

4 Conclusions

Because of statistical deviations from the nominal remanence, buying off
the shelf permanent magnet segments will degrade the expected homo-
geneity of a given configuration. We hypothesized that this detrimental
effect may be partially countered by placing nominally identical segments
locally optimally. This hypothesis was proven to be right in the sense

12



that we clearly show that the probability of obtaining a solution with a
smaller p2p value is larger when the magnet segments are arranged in a
clever way found through optimization.

Our algorithm natively supports directional variation of the magneti-
zation as well and essentially any magnet configuration desired. Nonethe-
less, we chose to focus on a single, yet relevant example for clarity. Future
work would definitely explore the influence of directional variation and
analyze other basic magnet configurations.

Finally, it should also be noted that one might consider buying a num-
ber of identical sets of magnet segments in the hope that one of them, after
careful characterization, can be assembled to yield a desired p2p value. In
our discussion of probabilities one might say that there is a 50 % change
of achieving 100 ppm or better when buying one set of magnets. With
two sets this increases to 75 % and five sets it is 97 %. Having so many
segments one might cross-link them into multiple configurations, e.g. with
two sets there would be eight magnets for each group of four positions.
Solving this problem through an optimizer will require significantly more
computational time, however, it does seem realistic to do in the not so
far future. It is also noted that for perturbations with standard devia-
tion larger than 1 % it is increasingly difficult or not feasible to find an
optimized solution.
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