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Abstract

Reference points are central in the current management of marine living resources. However,
reference points are estimated from data and model estimates. Therefore, they are inherently
uncertain. We present two objective methods for estimating reference points and quantifying
their uncertainty. The first method uses per-recruit calculations, while the second method
relies on a long-term forecast of the managed system. Confidence intervals are calculated
through a combination of the implicit function theorem and the delta method. Both methods
are illustrated for 12 recruitment models using data from the Northeast Arctic cod assessment.
Finally, the methods are validated in a simulation study.
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1. Introduction

Fisheries management aims to find an optimal trade-off between ecological conservation,
economic yield, and social considerations for marine living resources. To this end, biological
and economic reference points provide invaluable guidance for management in evaluating
the current status of a stock and the possibility of exploiting it. However, since reference
points are derived from data and assessment model estimates, they are subject to variability
in data that for instance may be updated every year, and uncertainty in model estimates
and observations. This must be kept in mind when using reference points for management
and conservation.

Reference points can be based on fishing mortality and/or biomass. Some are calculated
as optimum targets. For instance, in the US, biomass corresponding to maximum sustainable
yield BMSY is used as a biomass target (National Research Council, 2014). In Australia,
biomass and fishing mortality corresponding to maximum economic yield (BMEY and FMEY
respectively) are used as target reference points (Australian Government, 2018). Given the
uncertainty in reference point estimates and the adoption of the precautionary approach to
fisheries management (Garcia, 1994), reference points are also used in scientific advice as
limits not to exceed (e.g., FMSY in the US and in the International Council for the Exploration
of the Sea, ICES) or not to fall below (e.g., the biomass limit reference point, Blim) (Caddy
and Mahon, 1995). For data rich stocks, reference points are often based on stock-recruitment
considerations where the spawning component of the stock is conserved to allow for the
stock to retain its reproductive capacity. These reference points necessitate estimating a
stock-recruitment relationship. However, this is not always possible, notably for data poor
stocks, and in these cases, reference points based on simple levels of fishing mortality or
biomass (e.g., percent of unfished spawning biomass-per-recruit, Fx%) and on per-recruit
(PR) analyses (e.g., fishing mortality at maximum yield-per-recruit, Fmax) are often used.
These reference points do not account for the possible correlation between recruitment and
spawning stock size, notably the fact that recruitment decreases at low stock size. This can
sometimes result in fishing mortality reference points that are unsustainable because they are
above FCrash or not providing an optimal economic or biomass yield for the fishery because
they differ from FMEY or FMSY, respectively.

In some assessment models, such as surplus production models, certain reference points
can be calculated directly from, or correspond to, model parameters (eg., Pedersen and
Berg, 2017). In these cases, evaluating their uncertainty follows directly from the maximum
likelihood estimator of model parameters. However, in more complex age- or length-based
statistical assessment models, this is not the case. In these models, reference points are
calculated through optimization of derived quantities such as catch, not as an explicit
expression from model parameters. Therefore, additional steps are needed to obtain reference
point estimates and their uncertainty.

The SAM assessment model is an age-based state-space single stock assessment model
(Nielsen and Berg, 2014). The model was used as the basis of the assessment for more
than 20 stocks in 2019 assessed by ICES (ICES, 2020). The model assumes an exponential
decay of cohorts and links the population process to catch observations via the Baranov
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catch equation and to survey indices via an assumption of proportionality. The SAM model
currently allows for three types of recruitment: random walk on log-scale, Ricker, and
Beverton-Holt stock-recruitment functions. Recently, SAM has been extended to consider
several observational models (Berg and Nielsen, 2016; Albertsen et al., 2017) and to model
several stocks (Albertsen et al., 2018). In the SAM model, reference points cannot be
expressed explicitly from model parameters.

Advice given by ICES for data rich stocks (category 1 and 2 stocks) using for instance, the
SAM model, involves a post hoc analysis based on visual inspection of the spawner-recruit
relationship and on a long-term forecast simulation is used to obtain reference points (ICES,
2017). First, the biomass reference point, Blim, is either obtained by fitting a segmented
regression (hockey stick) to the SSB and recruitment pairs or by a subjective choice following
ICES guidelines for estimation of Blim (ICES, 2017). Then, a simulation-based approach is
used to estimate FMSY based on a weighted average of Ricker, Beverton-Holt and hockey stick
stock-recruitment curves. In addition to estimates of spawning stock biomass, number of
recruits, fishing selectivity, weight at age and natural mortality used as input, this approach
is independent of the assessment model and may involve different assumptions about the
system being managed.

In contrast, several North American assessment models calculate reference points as part
of the model output. The Woods Hole Assessment Model (WHAM, version 0.0.0.9000; Miller
and Stock, 2019) calculates FMSY (Miller et al., 2016a) and Fx% (Miller et al., 2018) reference
points based on PR calculations. Using 10 Newton steps, the yield and biomass-per-recruit
are optimized as part of the model implementation. Through the TMB R-package (Kristensen
et al., 2016), derivatives of the 10 step Newton optimization are obtained via automatic
differentiation and, in turn, the variance of the estimates are provided. Likewise, Stock
Synthesis 3 (SS3, version 3.30.10; Methot and Wetzel, 2013) implemented in AD Model
Builder (Fournier et al., 2012) calculates F0.1, Fx%, FMSY, and F corresponding to a biomass
target as part of the model implementation. For the optimization, a grid search is used
followed by a fixed number of Newton iterations. Again, automatic differentiation provides
derivatives of the Newton optimization along with variance estimates.

While the Newton optimization with a fixed number of steps in, for instance, TMB
provides the correct result, the number of steps must be chosen carefully. A sufficiently high
number of iterations must be chosen to ensure convergence. However, more Newton steps
will increase the computational complexity. The optimal choice will depend not only on the
model, but also on the input data and model parameters.

We introduce a framework for estimating reference points and their uncertainty that
allows for the use of an adaptive optimization algorithm, both in the number of steps and
the step sizes, by adding the optimization criteria to the likelihood function. Reference point
uncertainties are calculated through a combination of the implicit function theorem and the
delta method. Two methods were considered for calculating reference point optimization
criteria. The first method uses PR calculations to find equilibrium yield, biomass, and
recruitment, while the second method uses a long-term forecast of the system for the same
purpose.

For this study, the framework was implemented in the SAM model along with nine
3



new recruitment models. The methods for estimating reference points are illustrated using
data from the 2019 assessment of Northeast Arctic cod (ICES, 2019). To exemplify general
applicability, reference points are estimated for each of the 12 recruitment models and
validated through a simulation study. The simulation study investigates the properties of the
reference point estimators by generating new data from the model. Thereby, variability in
reference points arises from variability in observations and, in turn, variability in parameter
estimates. Through the simulations, we show that the method provides accurate, unbiased
estimates of reference points with correct confidence intervals under the true model. The
method is not limited to the SAM nor state-space models. Further, the method is not limited
to the reference points considered here, but can be applied for any derived quantity that
requires an optimization.

2. Methods

Reference point estimation was implemented in the age-based state-space stock assessment
model SAM (we refer to Nielsen and Berg, 2014; Berg and Nielsen, 2016; Albertsen et al.,
2017; and Albertsen et al., 2018, for full details) using the R-package Template Model
Builder (Kristensen et al., 2016). The source codes can be found at https://github.com/
fishfollower/SAM/tree/reference_points (commit b56f2ec). The original SAM model
was extended to include nine new recruitment options. Further, two methods used to calculate
reference points were implemented. The first method was based on a PR analysis, while the
second was based on a long-term forecast of the assessment model. The two methods were
compared in a case study using data from the 2019 assessment of Northeast Arctic cod and
validated through simulations.

2.1. Per-recruit and related concepts
To introduce the notation used below, we briefly reiterate the PR calculations needed for

the reference point estimation (see e.g., Laurec and Le Guen, 1981; Sissenwine and Shepherd,
1987; Mace, 1994; Mesnil and Rochet, 2010, for further details).

Starting from a cohort containing a single recruit, N0 = 1, the cohort size is projected
by the population model used for the assessment: Na+1 = exp

(
−F̃ · sa −Ma

)
Na, where

F̃ is the fully-selected fishing mortality, sa and Ma are the fishing selectivity and natural
mortality at age a, respectively. For simplicity, we let a = 0 denote the age of recruitment to
the fishery; since a is only used as an index, this does not influence the calculations. Now,
the spawning biomass-per-recruit (SPR) is calculated by

SR(F̃ ) =
∞∑
a=0

w(s)
a · pa ·Na,

where pa is the proportion mature at cohort age a after recruitment and w(s)
a is the average

weight at age in the stock. While we consider spawning biomass, spawners-per-recruit could
be used by letting w(s)

a = 1. Likewise, yield-per-recruit (YPR) can be calculated by

YR(F̃ ) =
∞∑
a=0

w(c)
a ·

F̃ · sa
F̃ · sa +Ma

(
1− exp

(
−F̃ · sa −Ma

))
Na,
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where w(c)
a is the weight at age a in the catch. In the analyses below, weights were used to

scale the abundance at age in the two equations above. However, in general, other scalings
such as relative fecundity can be used if relevant. For simplicity, we do not distinguish
between catch and landings. However, if catch and landings differ, a landing fraction may be
multiplied to the summands and w(c)

a can be changed to landing weights. Further, we only
consider a single fishing fleet. However, the equation for YR may be generalized to account
for several fleets.

Based on the SPR, equilibrium spawning biomass, Se, is obtained by solving the equation:

Se(F̃ ) = SR(F̃ ) ·R(Se(F̃ )); (1)
that is, the spawning biomass that will produce the same biomass. Finally, equilibrium
recruitment,

Re(F̃ ) = R(Se(F̃ )) = Se(F̃ )
SR(F̃ )

,

and yield,

Ye(F̃ ) = YR(F̃ ) ·Re(F̃ ) = YR(F̃ ) · Se(F̃ )
SR(F̃ )

,

can be calculated. While SPR and YPR can be calculated without assuming a stock-
recruitment relationship, a functional relationship is needed to calculate Se, Re, and Ye.

2.2. Recruitment models
In this study, 12 recruitment models were considered to cover a broad range of stock-

recruitment shapes (Table 1). By default, SAM was built with three possible configurations
for the recruitment model: (i) a random walk time series model on log-scale where recruitment
in one year only depends on recruitment the year before, (ii) the recruitment model by
Ricker (1954), and (iii) the recruitment model by Beverton and Holt (1957). In addition,
to these three options, nine recruitment models were implemented. A power function (e.g.,
Cushing, 1971) and a bent hyperbola (Mesnil and Rochet, 2010) of the spawning-stock
biomass were considered. The bent hyperbola relationship is a differentiable version of
the hockey stick, or segmented regression, recruitment used for ICES fisheries management
reference points (ICES, 2017). Moreover, the recruitment model proposed by Shepherd (1982)
was implemented. Further, the generalization of the Ricker model proposed by Saila-Lorda
(e.g., Iles, 1994; Needle, 2001) along with two generalizations of the Beverton-Holt were also
added to the package: a sigmoidal version (Myers et al., 1995) and the version proposed by
both Hassell (1975) and Deriso (1978). Most of these three parameter models can mimic
both the Ricker and the Beverton-Holt recruitment functions. The latter is parameterized
in a way similar to Schnute (1985). However, in common with Deriso (1978), we enforce
stronger constraints on the parameters to ensure positive recruitment for positive spawning
biomass. While Schnute (1985) allowed the shape parameter γ to be negative, we only
consider positive values. Finally, an AR(1) time series model on log-scale and two spline
models were implemented. Both spline models were implemented on the logarithm of the
recruits-per-spawner (see Supplementary Material for details). Similar to Cadigan (2012),
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one spline was implemented to have a non-increasing recruitment rate (R/S) as S increases to
ensure compensatory mortality, while the second spline had no restriction on the parameters.

For the 11 functional models (all except the random walk), either a closed form or numerical
solution can be found for Se(F̃ ) (Table 1). For the random walk, recruitment is not stationary.
Therefore, an equilibrium spawning biomass, recruitment, or yield cannot be found. However,
in a forecast the mean recruitment is constant; that is, E(logRT+n | logRT , Y1:T ) = logRt

for any n > 0 where Y1:T denotes the data available from time 1 to time T . Therefore,
projected values will tend to a stable mean value with increasing variance. Assuming constant
recruitment, these long-term projected values can be used as a proxy for the equilibrium
quantities when calculating reference points.

For three of the models, equilibrium biomass is not always uniquely defined. For certain
parameter values, the Saila-Lorda, sigmoidal Beverton-Holt, and the general spline model
do not have compensatory mortality, where recruits-per-spawning-biomass is decreasing as
a function of spawning biomass. As a result, the replacement line may cross the stock-
recruitment curve twice. Consequently, there are two solutions to equation (1); a stable
solution at high biomass and an unstable solution at low biomass. The numerical methods
will aim to find the stable solution.
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Table 1: Stock-recruitment models and the corresponding equilibrium biomass. In the formulas, S denotes the spawning stock biomass, SR(F̃ )
is the spawners-per-recruit for fishing mortality F̃ , and α, β, γ > 0, δ ∈ (0, 1), and θ ∈ R are parameters. Boldface indicates vectors. For the
random walk, recruitment in year y follows a Gaussian distribution where the mean is the recruitment from the year before. W (x) denotes the
Lambert W function which solves x = W exp(W ) (e.g., Fritsch et al., 1973). In the spline models, IΦ is an integrated spline basis of Gaussian
functions, κ is a vector of knots, while CMP is short for “compensatory mortality property”. Further details on the numerical solvers used can be
found in the supplementary material.

Model R(S) Se(F̃ )

Random walk Ry ∼ N(Ry−1, σ
2
R) Not applicable

Ricker αS exp(−βS) log(αSR(F̃ ))
β

Beverton-Holt αS
1+βS

αSR(F̃ )−1
β

AR(1) Ry ∼ N
(
α+

(
2

1+exp(−θ) − 1
)
· (Ry−1 − α) , σ2

R

)
SR(F̃ )α

Bent hyperbola β
(
S +

√
α2 + γ2/4−

√
(S − α)2 + γ2/4

)
2
√
α2+γ2/4−2α−2

√
α2+γ2/4

(βSR(F̃ ))−2−2(βSR(F̃ ))−1

Power-law αSδ
(
αSR(F̃ )

) 1
1−δ

Shepherd αS

(Sβ )γ+1
β
(
αSR(F̃ )− 1

) 1
γ

Hassell/Deriso αS
(1+γβS)γ

(αSR(F̃ ))
1
γ −1

γβ

Saila-Lorda αSγ exp(−βS)
{

1−γ
β W

(
β

1−γ
(
αSR(F̃ )

) 1
1−γ
)
, γ < 1

Solved numerically, γ ≥ 1
Sigmoidal Beverton-Holt αSγ

1+βSγ Solved numerically
CMP Spline S · IΦ(S; κ,α, θ) Solved numerically
General Spline S · IΦ(S; κ,θ) Solved numerically
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2.3. Reference points
To illustrate the two estimation methods, six fishing mortality reference points (Table 2)

were considered and compared to the fishing mortality in the last year of the assessment
(FStatus quo). Of the six reference points, three depend on the recruitment function (FMSY,
FCrash, Flim) while three can be derived from PR calculations without assuming a specific
stock-recruitment relationship (F0.1, Fx%, Fmax).

For the PR method, fishing mortality reference points at which (i) the equilibrium yield is
maximized (FMSY), (ii) the YPR curve is maximized (Fmax) (iii) the slope of the YPR curve is
10% of its slope at the origin (F0.1), (iv) SR is x% of the unfished spawning biomass-per-recruit
(Fx%), (v) the slope of the replacement line equals the slope of the recruitment function
(FCrash), and (vi) the reference point at which the spawning stock biomass equals the limit
biomass (Blim) where the stock is considered to have reduced reproductive capacity (Flim).
The Flim reference point is only considered for the bent hyperbola, where Blim is included as
a parameter.

For the PR method, each of the six reference points can be defined mathematically
through a criterion, κ(θ, λ, F̃ ), to optimize (Table 2). In general, the criterion will be a
function of model parameters, θ, latent variables, λ, and the fishing mortality to optimize over,
F̃ . For each of the fishing mortality reference points, corresponding equilibrium SPR, YPR,
biomass, and recruitment can be obtained through the PR calculations outlined above. Here,
we focus on comparing estimated fishing mortality reference points and the corresponding
equilibrium biomass.

For the forecast-based method, only FMSY was considered. However, the method can
be applied to any of the reference points considered for the PR method (see subsection
2.3.2). For this method, FMSY is the fishing mortality that optimizes the long-term yield.
Likewise, Fmax, for instance, could be obtained as the fishing mortality that maximizes the
long-term yield divided by the long-term recruitment. This would, however, require an
additional forecast of the system for each additional reference point considered. Again, the
optimization criterion, κ(θ, λ, F̃ ), is a function of parameters, latent variables, and a fishing
mortality. However, the value is calculated from the long-term projections. Likewise, proxies
for equilibrium SPR, YPR, biomass, and recruitment can be obtained from the state of the
system in the last year of the long-term forecast.
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Table 2: Minimization criteria for reference points estimated through a per-recruit calculation. Flim is only
estimated for the Bent Hyperbola model where Blim corresponds to the model parameter α.

Reference point Criterion κ(θ, λ, F̃ )
FStatus quo Not applicable
FMSY − log Ye(θ, λ, F̃ )
Fmax − log YR(θ, λ, F̃ )

F0.1

(
0.1 ∂

∂f
YR(θ, λ, f)

∣∣∣
f=0
− ∂

∂f
YR(θ, λ, f)

∣∣∣
f=F̃

)2

Fx%
(

x
100SR(θ, λ, 0)− SR(θ, λ, F̃ )

)2

Flim
(
logBlim − logSe(θ, λ, F̃ )

)2

FCrash

(
∂
∂f
R(θ, λ, f)

∣∣∣
f=0
− 1

SR(θ,λ,F̃ )

)2

2.3.1. Estimation through PR analysis
To estimate reference points using the PR method, the joint negative log-likelihood of

data and latent variables, `(θ, λ), is augmented by the relevant criterion:

`(θ, λ, F̃ ) = `(θ, λ) + κ(θ, λ, F̃ ).

Then, reference point estimates are obtained as

F̂ (θ̂, λ̂θ̂) = argminF̃ `(θ̂, λ̂θ̂, F̃ ) = argminF̃ κ(θ̂, λ̂θ̂, F̃ ),

where θ̂ is a vector of maximum likelihood estimates of model parameters, while λ̂θ̂ are the
predicted latent variables given data and the estimates. Note that multiple criteria can be
added to the augmented likelihood to estimate multiple reference points at once.

2.3.2. Estimation through forecast
In the forecast method, a reference point is estimated using an iterative procedure. For

a given F̃ , the stock process is forecasted for n years to reach the equilibrium state of the
system, thereby obtaining catch, recruitment, and spawning-stock-biomass as proxies for
Ye(F̃ ), Re(F̃ ), and Se(F̃ ), respectively. Technically, the random processes, logF and logN
are elonged by n time steps such that E(logFt) = log F̃ for all t after the data period. To
propagate uncertainties from the logF process in the assessment period, F̃ is calculated as a
parameter multiplied by F in the final assessment year. Given logF , the logN process, with
recruitment as the first age, is forecasted using the estimated model, including the process
covariance. Then, the joint log-likelihood is optimized to predict the random processes logF
and logN , thereby giving λ̂θ. Subsequently, κ(θ, λ̂θ, F̃ ) is calculated in the final year and
optimized over F̃ to obtain the reference point estimate. Note that the method requires a
forecast per reference point estimate. In the case study and simulations below, the processes
were forecasted for n = 100 years.

To calculate the equilibrium catch proxy, an average over the final 20 years was used. For
recruitment models where recruitment decreases with SSB after a certain point can exhibit
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oscillatory behaviour around the equilibrium values (e.g., Ricker, 1954). Forecasting the
system until the oscillations are damped can be impractical. Therefore, averages were used
to limit the necessary number of years in the forecast.

To re-use computations in TMB, in particular the automatic differentiation, the criterion
can be added by augmenting the joint log-likelihood:

`(θ, λ, δ, F̃ ) = `(θ, λ) + δ · κ(θ, λ, F̃ )

Then,
`(θ, λ, 0, F̃ ) = `(θ, λ)

and
∂

∂δ
`(θ, λ, δ, F̃ )

∣∣∣∣∣
δ=0

= κ(θ, λ, F̃ ).

Hence, the program and automatic differentiation only needs to run with δ = 0. Including
the criterion in the augmented joint log-likelihood does not influence the result of parameter
estimation or latent process prediction. However, the criterion is easily obtained by evaluating
the gradient at the maximum likelihood estimates and predicted latent processes.

Similar to the PR method, the reference point estimate is obtained as

F̂ (θ̂, λ̂θ̂) = argminF̃
∂

∂δ
`(θ̂, λ̂θ̂, δ, F̃ )

∣∣∣∣∣
δ=0

= argminF̃ κ(θ̂, λ̂θ̂, F̃ ).

2.3.3. Calculating uncertainties
In both estimation methods, reference points are estimated on log-scale, since they must

be positive. The reference point estimate is a deterministic function of the model parameters
and processes for a given data set. To calculate the variance of a reference point estimator
on log-scale, the following function could be defined:

g(θ, λ, log F̂ (θ, λ)) = ∂

∂ log F̃
(
`(θ, λ, log λ̂) + κ(θ, λ, exp(log F̃ ))

)∣∣∣∣∣
log F̃=log F̂ (θ,λ)

= ∂

∂ log F̃
κ(θ, λ, exp(log F̃ ))

∣∣∣∣∣
log F̃=log F̂ (θ,λ)

.

Now, reference point estimates can be defined implicitly by

g(θ, λ, log F̂ (θ, λ)) = 0.

Therefore, the implicit function theorem gives the derivative of the reference point estimate
with respect to the model parameters and processes,

∂

∂(θ, λ) log F̂ (θ, λ) = −J−1
g,log F̂ (θ,λ)Jg,(θ,λ),
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where Jg,log F̂ (θ,λ) is the Jacobian matrix of g with respect to log F̂ (θ, λ) and, likewise, Jg,(θ,λ)
is the Jacobian of g with respect to (θ, λ). Consequently, the variance of the reference point
estimator can be approximated asymptotically by the delta method,

Var
(
log F̂ (θ̂, λ̂θ̂)

)
=
(
log F̃ ′(θ̂, λ̂θ̂)

)T
Σθ̂,λ̂θ̂

log F̃ ′(θ̂, λ̂θ̂), (2)

where log F̃ ′(θ̂, λ̂θ̂) = ∂
∂(θ,λ) log F̂ (θ, λ)

∣∣∣
θ=θ̂,λ=λ̂θ̂

and Σθ̂,λ̂θ̂
denotes the joint covariance of

parameters and latent processes. Finally, confidence intervals can be calculated on log-scale
and transformed to the natural scale to ensure that fishing mortality reference points are
positive.

When calculating derived quantities, such as the current stock status relative to a reference
point, the correlation between the estimates must be accounted for. To this end, Equation
(2) is modified to calculate the joint covariance of parameters, latent processes and reference
points. In turn, the delta method can be used to calculate the variance of the derived quantity
as a function of, for instance, the reference point and latent processes.

2.4. Case study: Northeast Arctic cod
To illustrate the two methods, we calculated reference points for Northeast Arctic cod

(Gadus morhua). The Northeast Arctic cod assessment in 2019 used the SAM model (ICES,
2019). Data used in the assessment includes 73 years of commercial catches and four scientific
surveys (for further details, see supplementary Figure S1 and ICES, 2019). We used the same
data and model configuration as the assessment. However, the model was fitted using each of
the 12 recruitment models outlined above: random walk, Ricker, Beverton-Holt, AR(1), bent
hyperbola, power function, Shepherd, Hassell/Deriso, Saila-Lorda, sigmoidal Beverton-Holt,
CMP spline, and general spline.

For each of the 12 recruitment models, reference points and corresponding 95% confidence
intervals were estimated using the PR-based method and the forecast-based method. Further,
Fstatus quo was compared between the methods. For the PR method, FMSY, Fmax, F0.1, F35%,
Flim, and FCrash were estimated. In the forecast method, only one reference point can be
estimated for each long-term forecast. Therefore, only FMSY was estimated for this method.
For the random walk recruitment, FMSY can not be estimated by the PR method while FCrash
is not defined for the random walk, AR(1), and power-law recruitment models. Likewise,
FCrash is not defined for the Saila-Lorda and sigmoidal Beverton-Holt recruitment functions
in the presence of depensatory recruitment; that is, when γ > 1. Similarly, FCrash was not
estimated for the general spline.

In both methods, selectivity in the last year of the assessment was used for calculating
the reference points, while input data such as stock weights and natural mortalities were
averaged over the last 15 years. Assumptions about the long-term selectivity, stock weights
and natural mortalities must be made for both methods. However, other years to average
over could be chosen.
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2.5. Simulation study
To validate the methods, a simulation study was conducted. Based on each of the 12 case

study model fits, 500 data sets were generated. Given the estimated parameter values from
the case study, new logF and logN (including recruitment) processes were simulated.

For the logF process, selectivity was simulated using the estimated selectivity patterns
from the case study while average fishing mortality was simulated from the auto-regressive
process:

log F̄y ∼ N
(
log µy + 0.7

(
log F̄y−1 − log µy−1

)
, 0.052

)
with

µy = 0.6
1 + exp

(
−2 cos

(
y
4 + π

)) .
This process was used instead of the random walk used for estimation to produce more
realistic fishing mortality patterns and to reduce the probability of stock collapse in the
simulations.

Given the fishing mortality, the logN process was simulated from the process model.
Recruitment was simulated using the respective stock recruitment functions. All remaining
parameters, and input data were taken from the case study. Based on the new logF and
logN processes, data were simulated from the observation model.

For each simulated data set, the true model was fitted and all reference points were
estimated by the PR method. In addition, FMSY was estimated by the forecast method.
Estimated reference points were compared to the true values calculated through a PR analysis
using the true parameter values and processes. Bias in reference points was estimated using
relative errors. Likewise, estimated recruitment model parameters were compared to the true
values.

3. Results

3.1. Case study: Northeast Arctic cod
In the case study, 12 recruitment models were fitted to data from the 2019 assessment of

Northeast Arctic cod (Figure 1). While the 12 models reflect very different assumptions about
the stock-recruitment relationship, all models provided similar estimates of spawning-stock
biomass (SSB), and average fishing mortality (F̄ ). Compared to the average over all models,
SSB estimates were within 4.83% while F̄ estimates were within 3.51% for all models. In
contrast, estimated recruitment values were more variable. While 75% were within 1.56% of
the average and 95% were within 5.07%, the highest difference was 31.9%.

Of the four models generalizing the Ricker and Beverton-Holt recruitment, three were
estimated to resemble the Ricker model; namely, the Shepherd, Hassel/Deriso, and the
Saila-Lorda models. In contrast, the sigmoidal Beverton-Holt model was estimated to have
depensatory mortality with an estimated γ of 4.268 (95% confidence interval: 2.195; 8.301).

Similar to SSB and F̄ , FStatus quo was similar for all 12 recruitment models (Figure 2).
Estimated values ranged from 0.397 y-1 to 0.418 y-1, while the length of corresponding 95%
confidence intervals ranged from 0.505 y-1 to 0.529 y-1. Likewise, as expected, the reference
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Figure 1: Estimated spawning-stock biomass (SSB), recruitment (R), and stock-recruitment relationship
(full black line) with 95% confidence intervals (grey area) and 95% prediction intervals conditional on the
model (dashed black lines) in the Northeast Arctic cod case study for the stock-recruitment functions:
Random Walk (A), Ricker (B), Beverton-Holt (C), AR(1) (D), Bent Hyperbola (E), Power (F), Shepherd
(G), Hassell/Deriso (H), Saila-Lorda (I), Sigmoidal Beverton-Holt (J), CMP Spline (K), and General Spline
(L). Estimated (SSB,R) points from the 2019 assessment is indicated by a grey cross and connected to the
corresponding new estimate by a thin grey line. In panel (A), the temporal order is indicated by a dotted
line. For the spline models, knot positions are indicated by a vertical grey line.
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points that did not depend on the stock recruitment relationship were similar between
the fitted models. For F0.1, estimated values ranged from 0.176 y-1 to 0.179 y-1 with 95%
confidence intervals ranging in length from 0.313 y-1 to 0.318 y-1. Estimated values of FMax
ranged from 0.313 y-1 to 0.316 y-1, while estimated F35% ranged from 0.144 y-1 to 0.145 y-1.
Again, 95% confidence intervals had similar lengths for both of these reference points. For
FMax, the lengths ranged from 0.549 y-1 to 0.557 y-1 while they ranged from 0.255 y-1 to
0.258 y-1 for F35%.

In contrast to the recruitment independent reference points, FMSY and FCrash differed
substantially between the models. In the models where it was defined, FCrash ranged from
0.992 y-1 for the bent hyperbola model to 2.3 y-1 for the Saila-Lorda recruitment model. For
the bent hyperbola, Flim was estimated along with the other reference points. For this model,
Flim was estimated to 0.989 y-1 (0.418; 2.349), which is almost identical to FCrash, estimated
to be 0.989 y-1 (0.417; 2.349). This is expected since FCrash and Flim are two ways of defining
a limit reference point such that higher fishing mortality rates will, eventually, lead to stock
extinction.

FMSY was estimated using both the forecast and the PR method. The two methods
provided identical reference point estimates. However, 95% confidence intervals were consis-
tently wider for the PR method. The smallest difference was found for the AR(1) model,
where the PR-based confidence interval was 37.5% wider than the forecast-based confidence
interval. The largest difference was found for the general spline recruitment model where
the PR-based interval was 228.4% wider. For the random walk, AR(1), bent hyperbola, and
sigmoidal Beverton-Holt model, recruitment was constant above a certain SSB. Therefore,
FMax and FMSY were identical for these four models.

3.2. Simulation study
3.2.1. Model parameters

In general, recruitment model parameters were estimated accurately (Figure 3). For the
five two parameter models, median relative bias was between -0.037 and 0.012. In these
models, the parameter furthest from the truth was the β parameter of the bent hyperbola;
that is, half the slope of the recruitment curve at the origin. This was also the parameter with
the highest uncertainty Likewise, the four models with three recruitment parameters generally
provided accurate estimates. However, the β parameter of the sigmoidal Beverton-Holt model
was problematic for some simulations. While the median was close to the true value, some
of the simulations had estimates with a relative bias of 0.35. A similar pattern was seen
for the CMP spline where the estimates of the first two knot parameters fell in two groups.
Again, the median estimates for one of the groups were close to the true values. For both
models, we suspect that some of the simulations did not cover a sufficient range of spawning
biomasses to accurately identify the parameters.

Consequently, confidence interval coverages were generally close to the nominal 95% for
most parameters (Supplementary Material Figures S3-S13). For the bent hyperbola, coverage
of the α parameter was 77.0%, while the coverage was 78.0% and 87.0% for the second and
fourth knot parameter of the CMP spline, respectively. Likewise, the coverage was 82.2% for
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Figure 2: Estimated fishing mortality reference points with 95% confidence intervals in the Northeast Arctic
cod case study. For FMSY, the dots are the PR-based estimates and the triangles the forecast-based estimates.
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Figure 3: Relative errors in recruitment parameter estimates in the simulation study, for the different
recruitment assumptions: Ricker (B), Beverton-Holt (C), AR(1) (D), Bent Hyperbola (E), Power (F),
Shepherd (G), Hassell/Deriso (H), Saila-Lorda (I), Sigmoidal Beverton-Holt (J), CMP Spline (K), and
General Spline (L). The horizontale grey lines show the 10%, 50% and 90% quantiles. Note the change in
y-axis.

the β parameter of the sigmoidal Beverton-Holt. Remaining parameters had coverages above
92.6%.

3.2.2. Fishing mortality reference points
Despite the estimation issues for a few parameters, reference points were well estimated

by the PR method for all 12 models (Figure 4). For the ten parametric models and the CMP
spline, median relative bias ranged from -0.036 to 0.053 across all PR-based reference points.
For the general spline, the relative bias of FMSY was -0.125 while it ranged from -0.027 to
-0.005 for the remaining reference points.

Overall, the PR method provided conservative confidence intervals. For almost half of the
estimated reference points, the confidence interval always contained the true value, while 65%
had a coverage above the nominal 95%. For the sigmoidal Beverton-Holt model, however,
the coverage was 63% for each of the reference points, while the AR(1) model had coverages
around 71%. Further, the bent hyperbola had coverages around 90%, while the coverages for
the CMP spline was 92%, except for the second knot parameter, which had a coverage of
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Figure 4: Relative errors in fishing mortality reference point estimates in the simulation study, for the
different recruitment assumptions: Random Walk (A), Ricker (B), Beverton-Holt (C), AR(1) (D), Bent
Hyperbola (E), Power (F), Shepherd (G), Hassell/Deriso (H), Saila-Lorda (I), Sigmoidal Beverton-Holt (J),
CMP Spline (K), and General Spline (L). The horizontale grey lines show the 10%, 50% and 90% quantiles.
Note the change in y-axis.

87.6%.
For most of the models, the forecast-based method also provided accurate estimates of

FMSY. The mean relative bias ranged from -0.012 to 0.008 for the five recruitment models
with two parameters. Likewise, the median relative bias was -0.006 for the random walk, 0.009
for the Shepherd model, -0.013 for the Hassel/Deriso model, 0.020 for the Saila-Lorda model,
and 0.091 for the CMP spline. For the sigmoidal Beverton-Holt and general spline, however,
the method had substantial relative bias of -0.896 and 0.523, respectively. Consequently,
confidence interval coverages were 2.8% for the sigmoidal Beverton-Holt model and 60%
for the general spline (Supplementary Material Figures S3-S13). In the remaining models,
coverages ranged from 93.6 to 99.6% (Supplementary Material Figures S14-S25).

3.2.3. Equilibrium biomass
Besides estimated fishing mortality reference points, corresponding equilibrium biomasses

were compared to the true values (Figure 5). Again, both methods generally provided
accurate results. Apart from the spline models and the sigmoidal Beverton-Holt model,
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Figure 5: Relative errors in biomass reference point estimates in the simulation study, for the different
recruitment assumptions: Ricker (B), Beverton-Holt (C), AR(1) (D), Bent Hyperbola (E), Power (F),
Shepherd (G), Hassell/Deriso (H), Saila-Lorda (I), Sigmoidal Beverton-Holt (J), CMP Spline (K), and
General Spline (L). The horizontale grey lines show the 10%, 50% and 90% quantiles. Note the change in
y-axis.

median relative bias in the PR method ranged from -0.013 to 0.056. Relative bias was larger
for the three models using numerical methods to find equilibrium biomass. For the sigmoidal
Beverton-Holt, median relative bias ranged from -0.102 to -0.052 while it was between -0.705
and 0.133 for the spline models. For the PR method, equilibrium biomass could not be
calculated for the random walk recruitment model. Confidence interval coverages were similar
to the corresponding fishing mortality reference points.

Likewise, the forecast-based method generally provided accurate estimates of BMSY.
Except from the sigmoidal Beverton-Holt and general spline models, median relative bias
ranged from -0.038 to 0.043 while confidence interval coverages were above 93.8%. For the
general spline model, median relative bias was -0.264 with a coverage of 97.0%. For the
sigmoidal Beverton-Holt model, median relative bias was -1, corresponding to zero biomass,
with a coverage of 2.6%, indicating that care is needed with the method in combination with
depensatory mortality and multiple optima for equilibrium biomass.

18



4. Discussion

Reference points are essential for management and conservation of marine living resources.
However, reference point estimates are subject to uncertainty that should be quantified
and accounted for. To this end, we provided a method for estimating reference points and
their uncertainty in general fisheries stock assessment models. Two methods were used to
estimate reference points: a method based on per-recruit calculations (PR) and a method
based on a long-term forecast. For both methods, the same procedure was used to obtain
confidence intervals. By thinking of reference point estimates as implicit functions of the
model parameters, a combination of the implicit function theorem and the delta method
was used to provide confidence intervals for the estimates. Through the implicit function
theorem, Zheng et al. (2019) recently used similar ideas to quantify local sensitivity of MSY
reference points to perturbations in, amongst others, natural mortality, selectivity, growth,
and maturity. Here, the focus was instead on quantifying uncertainty in estimates given the
model assumptions and data at hand.

To illustrate the general applicability of the methods, reference points were calculated
for data from the 2019 Northeast Arctic cod assessment (ICES, 2019) using 12 recruitment
functions. The recruitment models included two time-series models, four two-parameter
models, four three-parameter models, and two spline models; thereby, representing a wide
range of model classes (see, e.g., Punt and Cope, 2019, for a list of other models not
considered here). Estimates for reference points that do not directly depend on recruitment
(i.e, FStatus Quo, F0.1, FMax, and F35%) were practically identical for all 12 models. In contrast,
FMSY and FCrash were highly dependent, as expected, on the imposed stock-recruitment
relationship. Comparing, or selecting between, the models was outside the scope of this paper.
However, techniques such as AIC (e.g., Albertsen et al., 2017, 2018) and prediction residuals
(e.g., Thygesen et al., 2017) have been used for state-space stock assessment models. For
any validation method, the model should be adequately validated before reference points are
considered. Likewise, knot selection for the spline models was not considered here. Selecting
the position of knots for regression splines is difficult. For fully observed statistical models,
advice can be found in textbooks (e.g., Harrell, 2013). However, in the present model, the
regressor (i.e., SSB) is unobserved. Therefore, using, for example, quantiles of the regressor
is not possible without first fitting another stock-recruitment model. For simplicity, SSB
estimates from the original assessment model was used to place knots in the case study.
However, this is generally not recommended as it requires a double use of the data to fit the
model. Such a procedure may lead to overfitting. Alternatively, subject knowledge may be
used to place the knots a priori, numerous knots can be used while penalizing the parameters
(e.g., Eilers and Marx, 1996), or several knots combinations could be tested until the best
convergence is obtained.

For FMSY, both a PR and a forecast-based method were used for estimation. For all
12 recruitment models in the case study, both methods provided identical reference point
estimates but confidence intervals differed. In agreement with the case study, the PR
method provided wider confidence intervals, reflected by a larger coverage, in the simulation
study. The method for calculating uncertainties relies on differentiability of the optimization
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criterion. Therefore, confidence intervals may be affected when reference point estimates are
close to FCrash. Particularly, when the optimization criterion depends on equilibrium biomass.
Further, Hessian- and delta method-based confidence intervals rely on asymptotic normality,
which is not parameterization invariant. Therefore, different ways of obtaining the reference
points may lead to different confidence intervals for (statistically) small sample sizes. This
applies to considerations between the PR and forecast method as well as different optimization
criteria giving the same optimum. When sample sizes are small, confidence intervals based
on asymptotic normality may be inappropriate. In this case, other methods can be used
to quantify uncertainty in fisheries stock assessments (e.g., Magnusson et al., 2013). In
particular, simulation-based methods such as bootstrapping (e.g., Punt and Butterworth,
1993; Overholtz, 1999; Cadigan, 2012), Monte Carlo simulations (e.g., Grabowski and Chen,
2004; Hart, 2013; Braccini et al., 2015), or simulation studies (e.g., García-Carreras et al.,
2015) have been used for reference points. In state-space models, however, special attention
must be given for resampling-based methods to account for the temporal dependence of data
(e.g., Stoffer and Wall, 1991).

Despite this difference in confidence intervals, we show that both the PR and forecast
method can be robustly used to estimate MSY reference points. In the simulation study,
both methods generally provided accurate reference points estimates with similar relative
errors. However, both methods have limitations. The number of years for the projection in
the forecast method can be limiting as the projection should be long enough to reach the
equilibrium but long projections would also be computationally demanding. The number
of years necessary to get to the equilibrium will vary depending on the fish stock biology,
notably its reproduction and growth, but also dependng on the fishing mortality. For instance,
long-lived species may necessitate a longer forecast to reach the steady state. Similarly, low
fishing mortality may induce slow stock development as the exponential decay over time will
converge less quickly to the equilibrium. This method requires therefore extra checks by
the user to verify that the equilibrium is reached at the end of the forecast. It should be
straightforward when estimating reference points for a stock to start with a low number of
years (e.g., 20-30 years) and gradually increase the years if needed until the stock stabilize.
The necessary verification can be made by, for instance, visual inspection of the forecasted
time series. The PR method does not present this problem when equilibrium biomass is
known analytically. However, when numerical methods are needed, extra checks are needed
to verify the results. In the simulations, equilibrium biomass was difficult to estimate in the
sigmoidal Beverton-Holt model. When calculating equilibrium values, the PR method does
not account for stochasticity in processes such as survival and fishing mortality compared
to the forecast method, but similarly accounts for uncertainty in the stock-recruitment
relationship and the parameter estimates. Ignoring the errors in the hypothetical future
abundance and fishing mortality processes did not seem to affect the median reference points
estimates.

Besides MSY reference points, the PR method was used to calculate F0.1, FMax, F35%,
and FCrash. Further, Flim was calculated for the bent hyperbola (or smooth hockey-stick)
recruitment model. For the bent hyperbola model, Flim and FCrash were identical. This
was expected, since both are limit reference points where the stock can no longer sustain
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itself. The ICES definition of Flim does, however, not easily transfer to other recruitment
models than hockey-sticks. Blim is defined by ICES to be “a deterministic biomass limit
below which a stock is considered to have reduced reproductive capacity” (ICES, 2017).
Then, Flim is the fishing mortality rate leading to Blim in the equilibrium. However, for
the power-law recruitment, reproductive capacity is reduced by any reduction in spawning
biomass. Likewise, for the Ricker recruitment model, reproductive capacity is both reduced
for small and large spawning biomasses. In contrast to Flim, FCrash can be used for any
recruitment model with the compensatory mortality property.

Similar to FMSY, the PR method was able to accurately estimate the five other reference
points for each of the 12 recruitment models. Both the fishing mortality reference points and
corresponding equilibrium biomasses had median relative biases close to zero. Overall, the
method performed better for recruitment models where a closed form solution was known for
equilibrium biomass. For two recruitment models where numerical methods were needed, the
PR method had difficulties for some equilibrium biomasses. Likewise, the forecast method
had issues with these two models: both with depensatory mortality.

In the presence of depensatory mortality, there are multiple possible positive equilibrium
biomasses. This poses a potential problem when estimating reference points. However, in
applications, the estimated values can easily be validated graphically through the stock-
recruitment curve and replacement line Even for recruitment models with a unique positive
equilibrium biomass, estimation problems for reference points can occur. In the model used
here, reference points depend on the stock recruitment function as well as the estimated
selectivity determined by the fishing mortality process. Therefore, the latent abundance
and fishing mortality processes must be estimated well, which can be difficult in state-space
models (Auger-Méthé et al., 2016).

The methods presented here only propagates uncertainty in parameter estimates and latent
processes to the reference point confidence intervals. Therefore, uncertainty in quantities
considered known in the model, as well as the model itself, is not incorporated. This relates
to, for instance, natural mortality, weight-at-age, and mortality. Instead, uncertainty related
to these can be evaluated directly within the assessment model (Methot and Wetzel, 2013)
or by, for example, local sensitivity (e.g., Cadigan and Wang, 2016; Zheng et al., 2019) or
sensitivity analyses (e.g., Zhu et al., 2012). Moreover, the reference point estimates ignore
external factors that are not explicitly considered in the models such as environmental effects
(e.g., Miller et al., 2016b), spatial variation (Punt et al., 2020), mixed fisheries considerations
(e.g., Albertsen et al., 2018; Rindorf et al., 2016) or multispecies interactions (e.g., Trijoulet
et al., 2018, 2019, 2020).

For assessments by ICES, reference point estimates are often calculated through a post hoc
analysis (ICES, 2017). The assumptions of the post hoc analysis will often be distinct from
the assumptions of the assessment model. Further, using model estimated stock-recruitment
pairs as data in a post hoc analysis may lead to bias in the results (Brooks and Deroba, 2015).
In contrast, the methods presented here ensures that assumptions are consistent between
the assessment model and subsequent reference point estimates and automatically treats
stock-recruitment pairs as uncertain model estimates. For the case study considered here,
stock-recruitment pairs only differed slightly between the recruitment models. This indicates
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that the stock-recruitment pair estimates are stable. Therefore, reference points are likely
influenced more by different assumptions about recruitment than by a post hoc analysis.
This should be investigated in the future.

Reference points for both methods were estimated assuming selectivity in the last year
of the assessment, last 15 years average for input data to the assessment (e.g., weight at
age, natural mortality, proportion of mature fish at age), and these were kept constant in
the forecast method. The recruitment was also estimated assuming one stock-recruitment
relationship for the entire time-series. The average years chosen or considering dynamic
values for these variables may affect the reference point estimates (Berger, 2019). Different
methods could be chosen but the same assumptions should be used in the estimation model
and in calculating reference points. Therefore, dynamic values may necessitate calculating
different reference points for each year corresponding to a hypothetical equilibrium. However,
if the dynamic values are modelled by a process, the forecast method can be used to forecast
the system to an equilibrium, assuming it exists.

Although the reference point estimates are ensured to be consistent with model assump-
tions, they are estimated in a separate step after model parameters are estimated. This
allows the use of any general adaptive optimizer. Further, starting values for the optimizer
can easily be altered and tested. Finally, this allows the method to be used with derivative
information obtained by any method: analytical, numerical, symbolic, or through automatic
differentiation. Instead, the SS3 (Methot and Wetzel, 2013) and WHAM (Miller et al., 2016a,
2018) models calculate reference points by applying a fixed number of newton iterations as
part of the model implementation in AD Model Builder and TMB, respectively. While this
method will give correct results, it requires pre-specifying a sufficient number of steps and
does not easily apply without automatic differentiation.

Not only are the methods presented here applicable with any differentiation method,
they are also directly applicable for several other model classes. In particular, the method
is directly applicable for state-space assessment models for multiple stocks (e.g., Albertsen
et al., 2018) or species (e.g., Trijoulet et al., 2020). Further, the methods are not limited to
state-space models, but can be applied for general statistical assessment models. Likewise, the
method is neither constrained to the recruitment models nor the reference points considered
here. For reference points, it is, however, a limitation that it must be possible to express the
reference point as a function of model parameters, latent variables, or derived quantities.

When a precautionary approach to management and conservation of marine living
resources is warranted, the inherent uncertainty in reference point estimates should be
accounted for. Therefore, accurate evaluations of reference point uncertainties are necessary
for managers, and policy-makers to make informed decisions about the trade-offs between
conservation and exploitation of fish stocks. We presented a method for estimating model
consistent reference points and their uncertainty. Reference points based on the same
assumptions as the assessment model make the assessment process more transparent and
allow accurate estimates of reference point uncertainty needed for precautionary management.
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