Corrigendum to “Interdependencies between physical, design and operational parameters for direct use geothermal heat in faulted hydrothermal reservoirs” [Geothermics, 86 (2020) 101806](10.1016/j.geothermics.2020.101806)

Daniilidis, Alexandros; Nick, Hamidreza M.; Bruhn, David F.

Published in:
Geothermics

Link to article, DOI:
10.1016/j.geothermics.2020.101900

Publication date:
2020

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Corrigendum to “Interdependencies between physical, design and operational parameters for direct use geothermal heat in faulted hydrothermal reservoirs” [Geothermics, 86 (2020) 101806]

Alexandros Daniilidisa,⁎, Hamidreza M. Nickb, David F. Bruhnaa,c

a Delft University of Technology, Stinwinweg 1, Delft, 2628CN, the Netherlands
b Technical University of Denmark, 2800 Kgs, Lyngby, Denmark
c GFZ German Research Centre for Geosciences, Telegrafenberg, Potsdam, Germany

As the code was actively developed during the time of publication, the published data suffer from an error with regards to the discount factor applied during the NPV calculation. The published data NPV has been calculated for periods of 100 days, while the discount rate applied was the quoted Annual Discount Rate (ADR) value of the manuscript, namely 7%. When the NPV is calculated at intervals shorter periods than a year, the discount rate needs to be adjusted accordingly. This adjusted Periodic Discount Rate (PDR) should be calculated according to the following equation:

\[
PDR = (1 + ADR)_{\text{period/year}} - 1
\]

For our data this means that the PDR should be 0.018697 or 1.8697% for each period of 100 days for which the NPV is calculated.

This was not done for the published data, due to different versions of the code being used. As a result, the time value of money was discounted much more than it should be (7% each 100 days when it should be 1.8697% per 100 days), leading to lower NPV values. This affects section 3.3 “Lifetime and NPV” of the published article (Figures 9, 10 and 11). We have re-performed the processing after having addressed this issue and plotted the corrected data in the updated figures below. While the qualitative conclusions that were drawn from the published figures are not significantly different from the corrected ones, the quantitative NPV values of the corrected figures differ substantially.

Figure 9 Published.

https://doi.org/10.1016/j.geothermics.2020.101900

Available online 26 June 2020

0375-6505/ © 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/).
Figure 9 Corrected.

Figure 10 Published.
Figure 10 Corrected.

Figure 11 Published.