Crack length correction and root rotation angle in a sandwich single cantilever beam (SCB) fracture specimen

Saseendran, Vishnu; Carlsson, Leif A.; Berggreen, Christian; Seneviratne, Waruna

Published in:
International Journal of Lightweight Materials and Manufacture

Link to article, DOI:
10.1016/j.ijlmm.2020.06.005

Publication date:
2020

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Crack root rotation is a measure of deviation from clamped boundary conditions of region in front of the crack tip. The root rotation depends on the shear force and bending moment acting at the crack tip. Such rotation significantly affects the compliance and energy-release rate. Crack root rotation analysis of Single Cantilever Beam (SCB) sandwich specimens is presented here. Closed-form solutions for the root rotation angle obtained from the foundation analysis are compared to finite element analysis (FEA) predictions. The derived expressions closely match for a range of sandwich configurations. An expression for the energy-release rate, derived from the foundation analysis was found to agree with FEA predictions over a large range of face-to-core modulus ratios. Energy-release rate and mode mixity phase angle increased with decreasing crack length due to the transverse shear effects. At longer crack lengths, both energy-release rate and phase angle reached a value independent of crack length. The foundation model is used to derive a simple expression for the offset crack length for the SCB sandwich fracture test. It is shown that the obtained formulation agrees closely well with both numerical and experimental values. In addition, SCB fracture tests performed using an in-house built translatable rig showed close relation to both analytical and numerical compliance results.

© 2020 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
errors in calculation of crack tip moment and force components. Hence, the effect of root rotation must be incorporated for accurate moment and force calculations, which is primarily governed by face and core mechanical and geometrical properties. A foundation model analysis of the root rotation angle in both force- and moment-loaded SCB sandwich specimens was presented by Saseendran et al. [10]. Recently, Kardomateas et al. [11] utilized the elasticity and a higher-order sandwich panel theory to obtain elastic constants in foundation models.

The primary objective of this paper is to examine the effect of face and core moduli and thicknesses on crack root rotation in a SCB sandwich specimen, and normalization of the results. In addition, fracture mechanics parameters such as the energy-release rate, \(G_c \), and mode mixity phase angle, \(\psi \), will be examined. The interface fracture toughness, \(G_c \), is commonly evaluated based on the compliance, \(C \), according to the modified beam theory (MBT) method [3]. This approach requires an offset crack length that quantifies the difference in crack length due to root rotation. We will examine the relation between the offset crack length, and foundation parameters. The closed-form expression for offset crack length and compliance are compared against SCB fracture tests. Typical aerospace grade CFRP/honeycomb core sandwich specimens were employed.

2. Analysis

2.1. Analysis of crack root rotation angle, \(\phi \)

An expression for the root rotation angle, \(\phi \), in the following dimensionless form has been suggested by Li et al. [8].

\[
\phi = \phi_f \frac{V}{E_f h_f} + \phi_m \frac{M}{E_f h_f^2}
\]

(1)

in which \(E_f \) and \(E_c \) are the face sheet and core elastic moduli; \(E = E_c \), and \(E = E_f (1 - \nu^2) \) for plane stress and plane strain, respectively, and \(\nu \) is the Poisson’s ratio. Coefficients \(c_M \) and \(c_V \) depend on face sheet and core stiffnesses. \(M \) is the moment and \(V \) is the shear force in the upper face sheet (per unit width). A primary objective of this analysis is to establish the parameters \(c_V \) and \(c_M \) for the SCB sandwich specimen. The analysis is based on the foundation model of the SCB sandwich specimen (Fig. 1), where the face sheet in front of the crack tip is resting on a soft core. This configuration has been perceived as a beam being supported by a Winkler foundation [5,7,10]. From our previous foundation model analysis [10], the root rotation angle, \(\phi \) (Fig. 2), for a force-loaded SCB sandwich specimen can be expressed in terms of foundation modulus, \(k \), as:

\[
\phi = \frac{2\lambda^2 P}{k} + \frac{4\lambda^3 P}{k}
\]

(2)

where \(P \) is the load applied, \(a \) is the crack length (Fig. 1), and

\[
\lambda = \sqrt[4]{\frac{k}{E_f h_f}}
\]

(3a)

\[
k = \frac{E_f b}{h_c / 4}
\]

(3b)

where \(h_f = b h_c^2 / 12 \) with \(b \) being the specimen width.

Substituting Equation (3) in (2) yields:

\[
\phi = \left(\frac{P}{b} \right)^2 \frac{h_c}{2 E_c} + \left(\frac{P}{b} \right)^3 \frac{a h_c}{E_c}
\]

(4)

By comparing the terms in Equations (4) and (1), and with \(V = P / b \); \(M = P a / b \), the coefficients can be re-expressed as:

\[
\phi_f = \frac{h_c \lambda^2}{2 E_c}
\]

(5a)

\[
\phi_m = \frac{h_c \lambda^3}{E_c}
\]

(5b)

Substitution of \(\lambda \) given in Equation (3a) in (5) leads to:

\[
\phi_f = \sqrt{\frac{3h_c E_f}{h_f E_c}}
\]

(6a)

\[
\phi_m = 12^{(3/4)} \sqrt{\frac{h_c E_f}{h_f E_c}}
\]

(6b)

2.2. Finite element (FE) analysis

A parametric finite element study was performed to examine the root rotations in SCB specimens. A 2D FE model was constructed using ANSYS® [12]. Schematic illustration of the model is shown in Fig. 3. Linear Plane 182 element-type was used around the crack tip.
along a ring of four elements. The minimum element edge length was 2.5 \mu m. The linear elements accommodate excessive deformations encountered in the near tip region. Rest of the model comprised of parabolic Plane 183 element type. The FE-model was also utilized to calculate energy-release rate, G, and phase angle, \psi, based on the crack surface extrapolation (CSDE) method [13]. The CSDE method, briefly outlined in Appendix A, utilizes relative crack opening and sliding displacements behind the crack tip to calculate both G and \psi. The phase angle, \psi, is a measure of the mode II component of the stress intensity factor [14]. In the reduced formulation (Appendix A), \psi = 0^\circ \text{ corresponds to pure mode I loading.} It should be noted that the numerical energy-release rate presented here using the formulation presented by Hutchinson and Suo [14] does not include the damage zone. In order to model the damage zone ahead of the crack tip, cohesive zone modeling should be utilized and is out of scope of this work. Hence, the current analysis is valid within the ambit of linear elastic fracture mechanics, wherein the specimens do not develop large damage zones ahead of the crack tip. A crack propagation study employing cohesive layer at the face sheet/core interface for typical honeycomb core SCB sandwich specimens was presented in Ref. [15].

3. Results and discussions

3.1. Root rotation results

The root rotation angle (\phi) was determined from the displacements of the face sheet at the crack root obtained from FEA. The analytical root rotation angle was obtained by substituting the coefficients \(c_M\) and \(c_V\) (Equations. 6) in (1). \(c_M\) and \(c_V\) results for the various sandwich specimens are listed in Tables 2 and 3. The results are based on angle in degrees, and moduli in \(N/mm^2\) and thickness in mm.

The results for \(c_M\) and \(c_V\) listed in Tables 2 and 3 were used to calculate the root rotation angle according to Equation (1). Fig. 4 shows rotation angle obtained from FEA and Equation (6) plotted vs. normalized crack length (a/L) for the range of face sheets and cores considered. For an Al/H100 specimen with a core thickness, \(h_c = 25.4\) mm, FEA and the analytical expression (Equations (4) and (5)) match closely for all face sheet thicknesses, see Fig. 4. The rotation angle decreases with increased face sheet thickness (\(h_f = 25.4\) mm). A thicker core (\(h_c = 50.8\) mm) will slightly increase the root rotation angle, see Fig. 4. At longer crack lengths, the analytical formula yields slightly higher rotation angles than the FEA. The deviation between analytical and FEA, however, is below 7%.

The analysis was also carried out to examine the influence of core modulus on the root rotation. A sandwich with E-glass/epoxy face sheet with \(h_f = 4\) mm was chosen, along with three PVC foam cores with varying density. Refer to Table 1 for elastic properties of the face sheet, and the core. Fig. 5 shows the rotation angle (\phi) plotted against normalized crack length (a/L). The analytical and

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Elastic properties of face sheets and PVC foam cores [16,17].</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elastic Properties</td>
<td>Aluminum (6061-T6)</td>
</tr>
<tr>
<td>Young’s Modulus, E [MPa]</td>
<td>68900</td>
</tr>
<tr>
<td>Shear Modulus, G [MPa]</td>
<td>26000</td>
</tr>
<tr>
<td>Poisson’s ratio, v</td>
<td>0.33</td>
</tr>
<tr>
<td>Density, (\rho) [kg/m^3]</td>
<td>–</td>
</tr>
</tbody>
</table>
FEA results for the softest core, H45, agree closely. With increased core modulus, and crack length, a/L, the rotation angle calculated by analytical expression exceeds the FEA results, but the results are quite close. The largest deviation (11.5%) was observed for the H250 core.

3.2. Energy-release rate and phase angle of SCB sandwich specimen

The compliance and energy-release rate of the SCB specimen is obtained from a foundation model [10,19,20]:

$$G = \frac{2P^2 \lambda^2}{k} \left[a^2 \lambda^2 + 2\lambda a + 1 \right]$$

Based on dimensional considerations and beam theory analysis, the energy-release rate of a face sheet supported by a rigid foundation may be normalized by,

$$G_{BT} = \frac{6a^2(P/b)^2}{E_f h_f^3}$$

Sandwich specimen with aluminum face thicknesses, $h_f = 3.20$ mm and core thickness, $h_c = 25.4$ mm was considered. The bimaterial parameters, Σ, and, α, used by Li et al. [8] are defined as:

$$\Sigma = \frac{E_f}{E_c}$$

$$\alpha = \frac{(\Sigma - 1)}{(\Sigma + 1)}$$

The core modulus was chosen such that the sandwich system under consideration yielded $\Sigma = 500$ and $\alpha \sim 1$. A unit load $P = 1$ N/mm was applied, and G was recorded vs. crack length. Fig. 6a shows G vs. crack length (a/h_f). G increases strongly at short crack lengths due to the increased influence of shear force. The mode mixity phase angle (ϕ) is shown vs. the normalized crack length in Fig. 6b. The predominant effect of shear is evident from the higher mode mixity phase angle at shorter crack lengths. The trends in both energy-release rate and mode-mixity phase angle qualitatively agree with the results for a delamination in elastic layers [8].

A set of sandwich specimens comprising of aluminum and E-glass face sheets thickness, $h_f = 3.20, 4.76$ and 6.35 mm; $P = 1$ N/mm. G was recorded at a crack length $a = h_f = 5$. Fig. 7 shows G/G_{BT} vs. modulus ratio, Σ (Equation (9)). The normalized energy-release rate increases with increasing Σ. The analytical G (see Equation (7)) with foundation modulus, $k = E_f b / (h_c / 4)$ agrees closely with the FEA results.

3.3. Compliance and crack length correction, Δ

A widely used method to determine the face/core interface toughness, G_c, is the modified beam theory (MBT) outlined in the ASTM draft standard [3] for SCB testing. This method refers to the
initiation of debond growth because it uses the load and displacement (P_c and d_c) at the onset of debond growth. G_c is determined by:

$$G_c = \frac{6P_c d_c^2}{B b^2 (a + \Delta)}$$

where b is the specimen width, and a is the crack length. Δ is the offset crack length, refer to Fig. 8a. With this correction, it is possible to express the compliance of the SCB specimen using classical beam theory,

$$C = \frac{1}{3E_f h_f^2} (a + \Delta)^3$$

Δ is determined from the experimental crack length, and compliance, C, data. By plotting the cube root of compliance vs. crack length as shown in Fig. 8b, it is possible to determine Δ by extrapolation to zero compliance. The offset crack length, Δ, may also be determined from the foundation model expression for the compliance, see Appendix B.

4. Fracture testing of sandwich SCB specimen

4.1. Materials and method

Two sandwich systems were tested and evaluated against numerical and analytical models. The face sheet comprised of a 4-ply and 8-ply 5320-1/T650 plain weave (PW) Carbon Fiber Reinforced Plastic (CFRP) prepreg with a stacking sequence $[\pm 45^\circ]_T / (0^\circ / 90^\circ) / (0^\circ / 90^\circ) / (\pm 45^\circ)$ and $[\pm 45^\circ] / (0^\circ / 90^\circ) / (0^\circ / 90^\circ) / (\pm 45^\circ)$, respectively (cured ply thickness (CPT) = 0.185 mm). Two types of Nomex® based honeycomb cores were employed, both with thickness of 12.7 mm. Thus, the two types of sandwich systems fabricated were (a) face sheet thickness, $h_f = 1.47$ mm, core density = 96 kg/m3, cell size = 3.2 mm, (b) face sheet thickness, $h_f = 0.74$ mm, core density = 48 kg/m3, cell size = 9.5 mm. The sandwich panels were vacuum bagged and cured in an autoclave under a pressure of 0.2 MPa. The SCB specimens (254 x 50.8 mm, pre-crack length = 50.8 mm) were cut from the panels after cure using a bandsaw cutter. The specimens were then air dried and piano hinges (length = 25.4 mm) were bonded to top face sheet using an epoxy-based adhesive.

In a sandwich Single Cantilever Beam (SCB) specimen, a vertical force is applied to the top face sheet with the bottom face sheet rigidly fixed, see Fig. 1. As the crack propagates, the fracture tests should remain in the mode I regime, the crack tip stress field must be devoid of any shear component. This can be achieved by enforcing the load application point to always remain vertical. Such an arrangement mandates either a long load application arm or let the specimen slide in the longitudinal direction. The latter option was chosen and a SCB test rig based on the translatable rig was fabricated at the National Institute for Aviation Research (NIAR) and is shown in Fig. 9. The slide and rail system comprised of low friction bearing to ensure smooth sliding of the specimen. The crack propagation was monitored with the aid of a digital microscope and ruler. The setup was installed on a 220 kip servo-hydraulic test machine, and the force and displacement of the loading were recorded at a frequency of 10 Hz until the test was stopped. Load was introduced at a constant displacement rate of 5 mm/min until the crack propagated an increment of about 50 mm, after which the specimen was unloaded.
4.2. Compliance of sandwich SCB specimen: comparison against the foundation model

In the SCB fracture tests, the core density, cell-size and face sheet thickness were varied across two configurations [21]. Seven specimens of each configuration were tested. The face sheet material properties were obtained from the National Center for Advanced Material Performances (NCAMP) directory at NIAR [22]. Moreover, the honeycomb core properties were obtained using the proposed closed-form expressions for a double cell wall configuration by Malek and Gibson [23]. The analytical model of Gibson requires the cell wall dimensions, cell wall paper properties and thickness as input, and have been proven to be robust in numerous Finite Element (FE) based models [15,24–26]. The material properties of honeycomb cores and face sheet are provided in Table 4 and 5, respectively. In Table 4, note that each core type is distinguished using the notation: HRH10-cell size-density.

In order to compare the SCB specimen performance against the foundation based analytical model, the experimental compliance was obtained from the load arm displacement and load cell, $C = \Delta / P$. The compliance from the FE-model was obtained directly from the load application node, see Fig. 3, Fig. 10 shows compliance vs crack length (normalized) for two sandwich configurations considered here. The FE-model closely follow the values predicted using the foundation model with the foundation modulus, $k = E_b / (h_f / 4)$ (refer to Equation (3b)). For the thicker face sheet specimen (8-ply, $h_f = 1.47$ mm), experimentally obtained compliance values closely follow both foundation and FE-model at all crack lengths. For the case with largest cell size of 9.5 mm and thin face sheet (4-ply, $h_f = 0.74$ mm), both foundation and FE-models were found to

![Digital microscope](image1)

![Clamping fixture](image2)

![Guide](image3)

![Slide](image4)

Fig. 8. (a) Crack length correction, Δ, and (b) determination of offset crack length, Δ, according to MBT.

Fig. 9. A translatable base SCB test fixture fabricated at NIAR [21].
closely match with the experimentally obtained compliance at shorter crack lengths, see Fig. 10. The specimens with larger cell size showcased abrupt debonding, which might have led to the scatter for crack lengths \(a/h_f > 85 \), see Fig. 10b. This may also be attributed to discontinuous crack growth due to the large cells.

Compliance \(1/3 \) vs. crack length plots for the two sandwich systems under consideration is shown in Fig. 11. The offset crack lengths, \(\Delta \), calculated using Equation (13) for both specimens are provided in the inset. For the specimen with thick face sheet (8-ply), \(\Delta \) obtained using the foundation model expression (Equation (13)) agrees very well (within 1.5%) with experimentally calculated crack offset length. Whereas, for the specimen with thinner face sheet (4 ply), Equation (13) slightly over-predicts the experimentally obtained offset crack length by 7%. This deviation may be attributed to the scatter in compliance data, especially at larger crack lengths due to large cell size, see Fig. 11b.

5. Conclusions

Closed-form expressions for the crack root rotation angle for a SCB sandwich fracture specimen were derived based on an elastic foundation model. The obtained expressions include the moduli and thicknesses of the face sheet, and core. Finite element analyses showed close agreement with the analytical results. For the range of sandwich specimens chosen in this study, the energy-release rate expression derived from the foundation model agreed well with FEA predictions. Moreover, from the FE analysis it was shown that the energy-release rate and mode mixity phase angle increase with decreasing crack length which is due to the effect of transverse shear. Equivalency of compliance expressions obtained using elastic foundation model, and built-in beam approach was considered to derive an analytic estimate of crack length correction factor, \(\Delta \). The offset crack length increases with increased face sheet thickness and modulus, and decreases with increased core modulus. In addition, the Winkler based foundation model with the proposed foundation modulus correlating quarter thickness of the core was evaluated against fracture tests. The experimentally obtained compliance for SCB specimens with two face thicknesses and two types of cores were found to closely match with both analytical and numerical predictions.

Conflicts of interest

The authors declare that there is no conflicts of interest.

Acknowledgements

The financial support from the EUDP (Grant: 6410-0602) for the DTU part of this research is gratefully acknowledged. The second author’s research has been supported by grants from FAA, NIA and ONR. The FAA, NIA and ONR program managers, Dr. Larry Ilicewicz, Dr. Zhi Chen, Dr. Ronald Krueger and Dr. Yapa Rajakapakse showed keen interest in this project and are gratefully acknowledged.
Appendix A. CSDE Method

A highly refined crack tip mesh is utilized for the CSDE method, refer to Fig. 3. The relative crack flank displacements (δ_x and δ_y) are employed to compute the energy-release rate Hutchinson and Suo [14]:

$$G = \frac{\pi (\delta_x^2 + \delta_y^2)}{2x(c_1 + c_2)} \quad (A.1)$$

δ_x refers to the relative sliding displacement, δ_y to the opening displacement, and x is the distance behind the crack tip. The stiffness parameters, c_m, are given by:

$$c_m = \frac{\kappa_m + 1}{G_m} \quad (A.2)$$

where $m = 1$ and 2 for face sheet, and core, respectively. G_m is the shear modulus, $\kappa_m = 3 - 4r_m$ for plane strain, and $\kappa_m = (3 - 4r_m) / (1 + r_m)$ for plane stress conditions where r_m is the Poisson’s ratio. The mode mixity phase angle is expressed as:

$$\psi = \tan^{-1} \left(\frac{\delta_x}{\delta_y} \right) \quad (A.3)$$

The mode-mixity phase angle is referred to as the “reduced” formulation. In the CSDE method, G and ψ are calculated at various locations behind the crack tip. The results at the crack tip are obtained by extrapolation to $x = 0$. For more details, refer to Ref. [13,27]. A standard FE code can be utilized to extract the displacements. Here, the CSDE method was implemented as a separate subroutine in ANSYS®.

Appendix B. Calculation of crack length offset

The foundation model and beam-theory expressions for the SCB sandwich specimen compliance are:

$$C_{EFM} = \frac{4l}{k} \left[\frac{a^3}{3} + a^2 + \lambda^2 + \lambda + 1/2 \right] \quad (B.1)$$

$$C_{BT} = \frac{1}{3E_f l_f} (a + \Delta)^3 \quad (B.2)$$

Calculation of Δ is formally done by equating the two compliance expressions, but is obstructed by the 3rd order expressions. If the beam-theory expression (Equation B.2) is expanded, we will obtain:

$$C_{BT} = \frac{1}{3E_f l_f} \left(a^3 + 3a^2\Delta + 3a\Delta^2 + \Delta^3 \right) \quad (B.3)$$

Matching terms with equal power in crack length leads to:

$$a^3 = \frac{4l^3}{3k} = \frac{1}{3E_f l_f} \quad (B.4a)$$

$$a^2 = \frac{4l^3}{k} = \frac{\Delta}{E_f l_f} \quad (B.4b)$$

$$a^1 = \frac{2l}{k} \frac{\Delta^2}{E_f l_f} \quad (B.4c)$$

$$a^0 = \frac{2l}{3E_f l_f} \frac{\Delta^3}{l_f} \quad (B.4d)$$

The first Equation B.4a does not provide Δ, but is satisfied exactly, while the remaining equations yield the following expressions for Δ:

$$\Delta_2 = \frac{4l^2 E_f l_f}{k} \quad (B.5a)$$

$$\Delta_1 = 2l \sqrt{E_f l_f / k} \quad (B.5b)$$

$$\Delta_0 = \sqrt{\frac{3G E_f l_f}{k}} \quad (B.5c)$$

where the subscript on Δ indicate the power of crack length. It can be easily verified that $\Delta_2 = \Delta_1$.

These results will be illustrated for a set of sandwich specimens with aluminum face sheets of 2, 4 and 6.35 mm thickness with 25.4 mm thick H45, H100 and H250 PVC foam cores. The material properties of the face sheets, and PVC cores are provided earlier (Table 1). Results for Δ_1, Δ_2 and Δ_3 along with the “exact” value obtained by numerically solving Equation B.1 at crack lengths of 25, 35 and 45 mm are summarized in Table B.1.

<table>
<thead>
<tr>
<th>Core</th>
<th>h_f [mm]</th>
<th>Δ_1 [mm]</th>
<th>Δ_2 [mm]</th>
<th>Δ_3 [mm]</th>
<th>Δ (exact) [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>H100</td>
<td>6.35</td>
<td>23.15</td>
<td>26.5</td>
<td>23.67 ± 0.07</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td>16.37</td>
<td>18.74</td>
<td>16.60 ± 0.41</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>9.73</td>
<td>11.14</td>
<td>9.79 ± 0.01</td>
<td></td>
</tr>
<tr>
<td>H45</td>
<td>6.35</td>
<td>28.71</td>
<td>32.86</td>
<td>29.54 ± 0.10</td>
<td></td>
</tr>
<tr>
<td>H250</td>
<td>6.35</td>
<td>19.47</td>
<td>22.28</td>
<td>19.82 ± 0.06</td>
<td></td>
</tr>
</tbody>
</table>

It is noted that all the estimates of Δ agree reasonably with the exact value and that Δ_1 is very close to the exact value. It is therefore, recommended to use Δ_1 for estimation of the crack length offset.

$$\Delta = 2l \sqrt{E_f l_f / k} \quad (B.6)$$

Upon substitution of foundation modulus expression, k, from Equation (3b), Δ can be expressed in terms of face sheet and core material and geometrical parameters as:

$$\Delta = h_f^{3/4} \sqrt{E_f h_c / 12E_c} \quad (B.7)$$

References

