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Abstract 

Reducing the aggregation of proteins is of utmost interest to the pharmaceutical industry. Aggregated 

proteins are often less active and can cause severe immune reactions in the patient upon 

administration. At the same time the biopharmaceutical market is pushing for high concentration 

formulations and products that do not require refrigerated storage conditions. For a given protein, the 

liquid formulation developer’s toolbox is limited to achieve these goals: pH, ionic strength and 

concentration of a very limited number of excipients are the only solution parameters to be varied. In 

this work, we present a structure-based approach to discover new molecules that successfully reduce 

the aggregation of proteins and apply it to the model protein Interferon-alpha-2a. 
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Introduction 

Protein aggregation 

Protein aggregation is a major concern to regulatory agencies across the world. Not only can 

aggregation cause a decrease in biological activity, but the resulting aggregates have also been raising 

serious safety concerns as they can induce immunogenic side reactions upon parenteral injection(1). 

Pharmaceutical companies therefore strive to inhibit the formation of protein aggregates early on 

during drug development(2). Diagnostic proteins are another potential target to be stabilized by novel 

excipients. 

The process of protein aggregation is very complex, with thermodynamics and kinetics depending on 

formulation conditions, stress, protein sequence and structure(3). Depending on the mechanism of 

aggregation, the resulting aggregates can consist of native or (partially) unfolded protein molecules. 

As shown by mutation experiments, hydrophobic patches on the proteins surface, so called 



  
  

aggregation hot-spots, are crucial to the formation of protein-protein interfaces, a key step in the 

formation of aggregates(4). There is a long list of available computational tools to identify aggregation 

hot-spots from a protein’s primary sequence(5–7). Aggrescan3D (A3D) additionally takes into account 

the tertiary structural information of the protein, mitigating the risk of false positive results from 

hydrophobic residues buried within the protein fold(8).  

Excipients 

Excipients reduce protein aggregation by various mechanisms of action. Computational studies suggest 

that arginine binds non-covalently to certain sites on a protein(9). In combination with glutamate, the 

stabilizing effect of arginine could be further enhanced, probably through a more complex mechanism 

that involves the formation of arginine-glutamate clusters(10). The small molecule drug 

dexamethasone phosphate (DMP) was discovered to reduce the formation of bevacizumab aggregates 

when administered in a co-formulation. Docking studies of DMP on a homology model of bevacizumab 

suggest that binding to a lysine residue that may be involved in  crystal contacts, sterically hinders the 

formation of protein-protein interfaces and thus inhibits aggregation(11–13). This opposes the finding 

in another study by hydrogen-deuterium exchange spectroscopy that identifies a patch of residues in 

the CDR region to be involved in the formation of bevacizumab aggregates at elevated 

temperatures(14). 

Virtual Screen 

Here, we present an approach that aims at identifying new compounds that bind to a predicted 

aggregation hotspot of IFN, thus inhibiting the formation of protein-protein interfaces and 

subsequently aggregation.  

Due to the large, flat interfaces that form during protein-protein interactions, these have long been 

considered difficult targets for small molecules. More recently however many successful examples 

have been presented(15). In order to identify small molecules that bind to a defined protein site, a 

common approach is running a virtual screen, where databases of millions of compounds are tested 



  
  

for affinity towards the specified binding site by docking algorithms(16). The database selection is the 

first step critical to the success of a docking campaign. Not only the database’s size is relevant but also 

its compound diversity and the compounds’ availability. The ZINC15 database is one of the largest 

publicly accessible databases, including more than 700.000.000 compounds, that can be filtered 

according to their commercial availability, reactivity or hydrophobicity(17).  Glide, Gold or Autodock 

Vina are some programs to perform high throughput pose prediction and scoring(18–20).  While 

current docking algorithms account for ligand flexibility, the receptor is considered to be rigid, an 

assumption that can drastically reduce enrichment of active compounds in the highest scoring hits(21). 

Another limitation of docking comes from not accounting for water thermodynamics appropriately. 

Further issues when interpreting docking results can arise from an incorrect calculation of protonation 

states of the binding site. Due to docking’s many simplifications and limitations, its results should be 

considered as a starting point to suggest interesting compounds, rather than a method to elucidate 

detailed features of protein-ligand interaction, such as binding kinetics and free energies. 

Free energy of binding 

A large variety of methods to accurately calculate free energies of binding from atomistic molecular 

dynamics simulations exist. Unbiased simulations can give detailed information on the binding 

mechanism, kinetics and secondary binding sites(22). However, they demand large amounts of 

computational resources. Biased simulations reduce the computational cost by introducing potentials 

that facilitate the sampling of unfavorable regions in the system’s phase space. In the simplest case, a 

biasing potential can be a harmonic oscillator, restraining the distance between two atoms. In practice, 

this is employed for example in meta-dynamics or umbrella sampling(23, 24).  Introducing biasing 

potentials to a system has been observed to cause dissipation of energy in umbrella sampling 

simulations(25). This effect has been overcome more recently by accounting for the energy required 

to attach and release these potentials(26). The resulting attach-pull-release umbrella sampling method 

has a solid theoretical foundation and has been able to accurately predict free energies of binding in 

guest-host systems(27, 28). 



  
  

Experimentally, binding energies can be determined from titration experiments using methods such 

as isothermal calorimetry, surface plasmon resonance, nuclear magnetic resonance or microscale 

thermophoresis. 

Binding is just one aspect to filter for in a virtual screen. Other physico-chemical properties such as 

solubility, reactivity and toxicity are equally important to obtain successful candidate compounds.  

Additional aspects of virtual screens 

A compounds solubility is typically indicated by its 𝑙𝑙𝑙𝑙𝑙𝑙10𝑆𝑆 value, where 𝑆𝑆 is the compounds 

concentration in the aqueous phase in equilibrium with the most stable form of the crystalline 

compound(29).  They are most commonly predicted by quantitative structure-properties relationship 

(QSPR) methods, such as group contributions(30, 31), neural networks(32) or multiple linear regression 

analysis(33). A public challenge to predict the solubility of a set of 32 compounds from a training set 

of 100 molecules revealed the current state of prediction quality: the best performing predictions on 

a dataset including outliers gave R2 values of approximately 0.6 and approximately 20% of 𝑙𝑙𝑙𝑙𝑙𝑙10𝑆𝑆 

values were calculated correctly(34–36). However, solubility predicting methods typically do not 

consider solution pH but are only trained against physiological conditions. In formulation science, 

where pH and ionic strength can differ strongly from this condition, pKas should therefore also be 

considered when assessing solubility. A carboxylic acid will for example show different solubilities 

depending on its protonation state.  

A property closely linked to the water solubility is the octanol-water partition coefficient as a measure 

of hydrophobicity for small molecules(37). The ZINC15 database can conveniently be filtered by 

predicted 𝑙𝑙𝑙𝑙𝑙𝑙10𝑃𝑃 values(38, 39).  

Experimental assessment of protein stability 

Once a compound passed all filters of the virtual screen, we want to test its effect on protein 

aggregation experimentally. 



  
  

Aggregation processes are typically very slow. To predict the stability of a formulation in a reasonable 

time frame, one can therefore test a formulation for surrogate endpoints such as e.g. the interaction 

parameter kd as a measure of colloidal stability or the inflection point (IP) of an unfolding experiment 

as a measure of conformational stability. Alternatively, stress-studies can be performed, where the 

formulation is exposed to an aggregation trigger such as freezing/thawing, heat, shaking, shear or light. 

Light and thermal stress are known to induce chemical changes in the protein that are not the scope 

of this work(40, 41). We therefore apply, heat, freeze-thaw and shaking stress to evaluate the effect 

of the candidate excipients. To benchmark our compounds, we compare them against L-arginine and 

D(+)-trehalose, two substances commonly employed as excipients in protein formulation. 

Results 

Virtual Screen 

We identified a potential aggregation hotspot at residues L26 and F27 of IFN using Aggrescan3D(8) 

(Figure 1). The hotspot’s score remained unchanged among all 25 available structures, showing little 

effect of protein dynamics on the calculated propensity. The highest-ranking residue patch was defined 

as binding site for a subsequent virtual screen. Candidate compounds would ideally bind in proximity 

to the hotspot, blocking it from driving the formation of a protein-protein interface. 

Applying a second solubility filter orthogonal to the ZINC database’s internal 𝑙𝑙𝑙𝑙𝑙𝑙10𝑃𝑃 filter reduced the 

number of candidates from 52,980 by 40% to 33,101 compounds. The compounds were then docked 

with Maestro’s virtual screen workflow using GlideSP and GlideXP. The best scoring compounds were 

then rescored using the MM-GBSA solvent model. After docking the compounds at increasing levels of 

precision and conformational sampling, 167 compounds were predicted to bind in the hotspot’s 

proximity. These were inspected visually and five were purchased based on their price and availability 

(Table 1, Figure 2). 

Binding study 

       
     

    
      
     

  

      



  
  

All five compounds tested for binding readily dissolved in the experimental buffer, owed to the 

rigorous filters applied in the prior virtual screen. Out of the tested compounds, only compound A and 

L-arginine were detected to bind to the target (Table 1).  

A control run using the fluorescent dye from the protein labeling kit as target showed no dose 

response. For A, a dissociation constant of 108 µM ± 24 µM was determined, which corresponds to a 

free energy of binding of -5.44 ± 0.13 kcal/mol. The free energy of binding calculated by the APR-US 

method however was found to be below the measured energy (Figure 3). 

Protein self-interaction 

The apparent molecular weight (Mw) of IFN was measured in the absence and presence of compound 

A using static light scattering (SLS). As expected from the choice of pH and ionic strange, IFN forms 

aggregates in solution. While the aggregation is concentration dependent for low IFN concentrations, 

a plateau is reached at approximately 6 mg/ml. Even though the presence of compound A leads to 

significant reductions in Mw (Figure S-1) it does not quantitively break up aggregates. 

  

Forced degradation studies 

In order to assess how the compounds, influence the formation of particles, aggregation of IFN was 

induced in forced degradation experiments. Sub-visible particles and soluble aggregates were 

quantified after three freeze-thaw cycles with the 5 formulations containing five different excipients 

obtained from the virtual screen. Additionally, a negative control was run containing only protein and 

buffer, but no other stabilizing agent. The only compound to significantly reduce both the formation 

of soluble aggregates and sub-visible particles was found to be compound A. While compounds B and 

C would slightly reduce soluble aggregate formation, they showed no benefit on sub-visible particle 

count compared to the excipient free control (Figure 4). 



  
  

In the next step, IFN was exposed to horizontal shaking stress at different concentrations of compound 

A. The ligand’s concentration range was chosen according to the previously determined dissociation 

constant. The formation of sub-visible particles shows a strong dose response. At high ligand 

concentrations, where all protein molecules are bound to A, sub-visible particle formation is at a 

minimum. With decreasing ligand concentration, the share of unbound protein increases and an 

increase in sub-visible particles is observed (Figure 4).  

As a benchmark test, compound A was compared to the standard excipients L-arginine and D(+)-

trehalose at a concentration of 6.25 µM. All three compounds readily reduce the formation of sub-

visible particles. However, compound A shows a lower particle count than the standard excipients 

(Figure 4). 

In order to rule out that the positive effect of compound A on the protein’s stability is due to a non-

specific effect, the surface activity (Table 2) of the compound was measured. While compound A leads 

to slightly higher surface pressures than the non-surfactant references, its surface activity is far below 

that of a typical surfactant polysorbate 20. 

Furthermore, the effect of compound A’s L-isomeric form, glycyl-L-asparagine, on particle formation 

was tested (Figure 4). Compound A drastically reduces sub-visible particle formation compared to all 

other tested molecules, surprisingly even slightly lowering particle counts compared to the unstressed 

sample. Glycyl-L-asparagine does not have a beneficial effect on particle formation compared to the 

excipient free formulation. 

In order to study the target specificity of compound A, its stabilizing effect was tested in combination 

with a mAb (Figure S-2). Here, all tested compounds reduced particle formation with compound A 

performing slightly worse than the benchmark excipients.  

While compound A showed a stabilizing effect on IFN when formulations were exposed to agitation or 

freezing/thawing, it had no effect on the protein’s thermal stability (Table S-1). Neither did any other 

of the examined compounds. 



  
  

Toxicity Prediction 

The VirtualToxLab tool predicts a very low toxicity of compound A. It was predicted not to bind to any 

of the toxicity related target proteins and its overall toxicity score was found to be 0.079, ranking for 

example below vitamin C which has a score of 0.253. 

Discussion 

The virtual screen was successful with a hit rate of 20% in identifying one out of five tested molecules 

that bind to IFN with µM affinities. Further improving binding affinities could be achieved by allowing 

for more hydrophobic compounds in the screen or increasing the compound’s size. This may however 

have a negative effect on toxicity and clearance of the compound. Even though we were successful in 

identifying a compound that reduces particle formation, docking alone cannot be considered as proof 

of a structure-activity relationship. While MM-GBSA ranked affinities of compounds C to E other than 

compound A higher, they were not detected to bind in MST measurements. As already mentioned, 

this may be explained by the many simplifications made by the docking algorithms. 

In order to obtain additional binding molecules, the same library was docked against an ensemble of 

IFN conformations, leading to the identification of one additional hit, which however showed no 

increase in stability in any forced degradation study (data not shown). This finding indicates that not 

all protein-ligand complexes would result in a stabilization, but only specific interactions. When adding 

the tested compounds to formulations containing mAb-1 instead of IFN, compound A, L-arginine and 

D(+)-trehalose would all reduce particle formation after freeze-thaw stress to the same extend. Given 

the structural diversity of the three compounds, stabilization of mAb-1 can be interpreted as a non-

specific effect. The non-specific stabilization observed with a mAb and the non-stabilizing effect of 

compound A’s enantiomer with IFN both strongly support our initial hypothesis of a specific protein-

ligand interaction leading to a stabilization against native protein aggregation of IFN. It is important to 

point out that the stabilizing effect of compound A may very well be pH dependent, especially due to 

its multiple titratable sites which could result in a pH dependent protein-ligand interaction profile(42). 



  
  

The APR-US calculations show that the affinity towards the stipulated binding site is far below the 

measured one (Figure 3). This may indicate the presence of additional binding sites with higher 

affinities towards the ligand. The presence of multiple binding sites could be confirmed by unrestrained 

simulations adding up to a free energy of binding in the same range as the one measured by MST (to 

be published). Limitations arise from using fixed protonation states for both the ligand and the protein, 

even though interactions between conformations, protein-ligand interactions and protonation states 

are well described. Taking these factors into account e.g. by constant pH MD simulations would 

however further increase the already large computational cost of these simulations. 

A search in the BindingDB database for compounds with binding energies between -3 and -2 kcal/mol 

results in multiple Guest-Host systems, with guests similar in structure and size to compound A. 

Compounds in the -6 to -5 kcal/mol range tend to be more hydrophobic and/or larger(43). This 

indicates that the actual binding mechanism may be more complex than initially suggested. 

Even though we were successful in identifying a stabilizing compound, it is important to point out that 

we readily relied on assumptions regarding the identification of aggregation prone regions and the 

binding site that have yet to be proven. A3D does not take the electrostatics surrounding hydrophobic 

patches into account and was only tested on a limited amount of proteins. The differences in the 

stabilizing effect of the compounds depending on the nature of the force degradation study indicate a 

vague definition of the concept of an aggregation prone region and poses a drastic simplification to a 

complex phenomenon. Heat induced aggregation has been shown to induce non-native aggregation 

involving partial unfolding of the protein. While the compound A was shown to bind to IFN, it would 

not lead to a conformational stabilization as indicated by measurements of IP and Tonset. The stabilizing 

effect of compound A was confirmed in a horizontal shaking stress study, ruling out a change in ice 

crystal formation as origin of the observation. Measurements of the compounds surface activity do 

not indicate a high affinity towards interfaces. Together with the observed decrease in apparent Mw 

from the SLS measurements in the presence of compound A, it supports our hypothesis of an inhibition 

of sub-visible particle formation by impeding the formation of specific native protein-protein contacts. 



  
  

Previous studies have already shown the existence of a stress-structure interaction(14). This poses a 

set-back to our approach, since a novel excipient stabilizing only against a certain type of stress is not 

ideal. It can therefore only be considered a hypothesis that the selection of the binding site is related 

to the observed effects. The actual binding mechanism of compound A has to be determined 

experimentally. Due the self-association of IFN at pH 7.0, this cannot be achieved by NMR but possibly 

by crystallographic methods. Given these insights, it seems sensible to favor ligand-based approaches 

opposed to our receptor-based approach. Establishing relevant stability indicating assays remains 

however a topic of ongoing research(44). 

Given the proximity of the hotspot to the IFN’s receptor binding site, binding kinetics and clearance of 

the excipient are highly relevant for an in-vivo application. A dissociation rate of the ligand that would 

limit the formation rate of the drug-target complex, i.e. a high residence time of the protein-excipient 

complex, will alter the drug’s efficacy. We are currently looking into in-silico methods for the 

calculation of kon/koff and in-vitro activity assays. 

For drug products, toxicity of the excipient candidates remains a critical point. A specifically designed 

database containing only compounds with a proven record of low toxicity could help to overcome this 

problem. Considering however the low hit rate in the virtual screen, further limiting the screened 

chemical space might cause the elimination of any potential binders. Additional in-silico methods to 

predict toxicity can be considered, always taking resulting metabolites into consideration. 

Nevertheless, the discovered compound could immediately be used in diagnostic devices without the 

need for additional toxicity studies. While IFN is currently not a typical reagent in diagnostics, our 

approach can easily be transferred to any other relevant protein. 

Conclusion 

Here, we describe a structure-based approach that was successful in discovering a small organic 

molecule that stabilizes Interferon-alpha-2a and confirmed the hypothesis that the formation of a 

protein-ligand complex can lead to an inhibition of aggregation and particle formation. Our systematic 



  
  

approach helped us to narrow down a database of millions of compounds to merely five.  The 

compound glycyl-D-asparagine reduces the formation of sub-visible particles and soluble aggregates 

after freeze-thaw and agitation stress in a concentration dependent manner that correlates well with 

its binding affinity towards IFN. It shows higher stabilizing activity than its enantiomer glycyl-L-

asparagine and the standard excipients L-arginine and D(+)-trehalose. We gave a new use to tools that 

are developed with small molecule drug discovery in mind and show how they can be applied to 

therapeutic protein formulation development. While a drug discovery campaign targets protein linked 

to a disease, here the drug protein itself is the target.  

Methods 

Virtual Screen 

A homology model of IFN was generated based on the PDB entry 4Z5R using Modeller(45). A potential 

aggregation hotspot was identified by submitting the homology model to the Aggrescan3D server(8).  

The protein structure of IFN was prepared for docking using Maestro’s (Schrödinger, Inc., New York, 

New York, USA) protein preparation wizard with pH set to 7.0. Maestro was used to generate a docking 

grid using the residues that are located in the identified aggregation hotspot as grid center. The ZINC15 

database tranches were selected to include only compounds with a 𝑙𝑙𝑙𝑙𝑙𝑙10𝑃𝑃 ≤  -1, “in-stock” availability 

and standard reactivity. The compounds were then prepared for docking using LigPrep as implemented 

in Maestro. Qikprop was used to predict the compounds physicochemical properties and only 

compounds with a 𝑙𝑙𝑙𝑙𝑙𝑙10𝑆𝑆 value ≥ -1 were retained. All compounds were then docked with Glide HT. 

The best scoring 10 % were then redocked and scored with GlideSP. The best scoring 10 % were 

redocked and rescored using GlideXP and up to 3 poses per compound were generated. These poses 

were rescored using the Prime MM-GBSA model. We then looked manually for substances available 

for purchase below 200€/g. 

Sample Preparation 



  
  

An aqueous bulk solution of Interferon-alpha-2a (Roche, Penzberg) was dialysed (Spectra-Por) into 

50 mM Pi (di-Sodium hydrogen phosphate dihydrate: VWR Chemicals, Leuven, Sodium di-

hydrogenphosphate dihydrate: Grüssing GmbH, Filsum) buffer at pH 7.0. The solution was filtered 

using a 0.22 µm cellulose acetate filter (VWR Chemicals, Leuven), which were shown to be low protein 

binding(46). A protein concentration of 1.4 mg/ml was obtained as determined by measuring the light 

absorption at 280 nm using a NanoDrop (Thermo Fisher Scientific, Waltham, MA, USA). 

Excipient stock solutions were prepared by dissolving the excipient in 50 mM Pi buffer at pH 7.0 and 

adjusting the pH to 7.0 as required either with hydrochloric acid or concentrated sodium hydroxide.  

Buffer was then added to obtain a final excipient concentration of 500 mM. The excipient stock 

solution was then filtered using a 0.22 µm filter (VWR Chemicals, Leuven). 

Binding study 

Binding affinities were determined by microscale thermophoresis (Monolith, NanoTemper, Munich, 

Germany). Interferon-alpha-2a was labelled fluorescently (Monolith Protein Labeling Kit RED-NHS) and 

excipient candidates were titrated using 50 mM phosphate buffer at pH 7.0 with a polysorbate 20 

(Sigma Aldrich) concentration of 0.05 %(47). Excitation-power was set to 20% and MST-power was set 

to “high”. 

Molecular dynamics simulations 

The best scoring pose of the MM-GBSA rescoring served as input structure to calculate free energies 

of binding by the Attach-Pull-Release (APR) Umbrella Sampling approach(26–28). The PDB structure 

generated by the virtual screen, containing the ligand docked to the protein, was reoriented using the 

z-align script from the APR suite. Restraints were gradually attached in 13 windows and the distance 

between the compound and its binding site was gradually increased in 46 windows. For the first 

window of the attachment phase where the APR restraints are set to 0, an additional distant restraint 

was implemented to define the binding site and avoid the ligand leaving. The systems for each window 

were constructed using tleap, adding 20500 water molecules to each system, using the APR procedure. 



  
  

The CUDA implementation of pmemd in Amber16 was used along with the ff14SB, GAFF2 and TIP3P 

force-fields(48, 49). The ligand was parametrized using GAFF2 for bonded and non-bonded 

parameters. Atomic partial charges were calculated with Gaussian 16 (Gaussian Inc., Wallingford, CT, 

U.S.A.) and fitted with the RESP procedure in antechamber. Hydrogen mass repartitioning and the 

SHAKE algorithm were used to allow timesteps of 4 fs(50, 51). Pressure was regulated using a Monte 

Carlo barostat and a Langevin thermostat was used to keep the temperature at 298.15 K. Modifications 

to the APR script were implemented to allow parallel runs of the respective windows on the GPU 

cluster and facilitate system preparation. The simulation time in each window was 112.5 ns resulting 

in approximately 6.6 µs total simulation time. Calculation of the free energy of binding was performed 

by using the thermodynamic integration scheme as implemented in the APR script.  

Toxicity Prediction 

The toxicity for the candidate compound A was predicted using OpenVirtualToxLab(52). 

Forced degradation studies 

Each replicate sample was filled in a separate 2R vial (Fiolax, klar HGA 1/ISO 720). The vials were capped 

and crimped pneumatically. Excipients and buffer were spiked into the IFN solution to obtain a final 

formulation of 1 mg/ml of protein, 50 mM excipient, 50 mM Pi at pH 7.0. 

To evaluate the stabilizing impact of the excipient candidates, samples were frozen and thawed three 

times in a Christ 2D-6 freeze dryer. A temperature ramp of 1 K/min and a hold time of 2 h were used.  

The protein was also exposed to shaking stress using a horizontal shaker (IKA HS 260 basic, 300 rpm). 

Sub-visible particles were detected by flow imaging (FlowCam, Fluid Imaging Technologies, Inc., 

Scarborough, ME, USA). Soluble aggregates were detected by size-exclusion chromatography on a 

Dionex Summit HPLC system at 280 nm using a Superose 12 10/300 GL as stationary phase (GE 

Healthcare Life Sciences, Chalfont St Giles, UK) and 50 mM Pi, 200 mM NaCl, pH 7.0 as mobile phase. 



  
  

Heat induced degradation was measured with by nanoDSF and backscattering (Prometheus NT.48, 

NanoTemper, Munich, Germany) at a heating rate of 1 °C/min from 25 to 95 °C in standard capillaries 

(NanoTemper, Munich, Germany). 

Apparent Mw 

Apparent Mw was measured by static light scattering (DynaPro III, Wyatt Technology Europe, 

Dernbach, Germany) in a 1536 well plate (Aurora Microplates, Whitefish, MT, USA) with 8 µl of sample 

volume and 3 µl of silicon oil (Alfa Aesar, ThermoFisher GmbH, Kandel, Germany). The well plate was 

calibrated with a dilution series of dextran (Sigma-Aldrich Chemie GmbH, Taufkirchen, Germany). Due 

to the sensitivity of light scattering to larger particles, stock solutions were additionally filtered using 

0.02 µm filters (Whatman, GE Healthcare UK, Buckinghamshire, UK) 
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Tables 

Abbreviations 

A3D Aggrescan3D 

APR Attach-Pull-Release 

CUDA Compute Unified Device Architecture 

DMP Dexamethasone phosphate 

ff14SB Amber protein force field 

GAFF2 General Amber force field 2 

GIST Grid inhomogeneous solvation theory 

GPU Graphical processing unit 

IFN Interferon-alpha-2a 

IP Infliction point of temperature dependent fluorescence signal curve 

MD Molecular dynamics 

MM-GBSA Molecular mechanics – generalized born surface area 

MST Microscale Thermophoresis 

Mw Molecular weight 

PDB Protein database 

pmemd Particle-Mesh Ewald Molecular Dynamics 

RESP Restrained electrostatic potential 

SLS Static light scattering 

Tonset Temperature of onset of aggregation 
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Table 1: List of purchased compounds 

Compound Name Structure 𝒍𝒍𝒍𝒍𝒍𝒍𝟏𝟏𝟏𝟏𝑺𝑺 

ΔG MM-GBSA 

(kcal/mol) 

Dissociation 

constant Kd 

(MST) 

Source Purity 

A 
Glycyl-D-

asparagine 

+H3N

H
N COO

-

O

NH3
+

O

 

1.8 -18.9 
108 µM ± 24 

µM 
abcr 98 % 

B L-isoserine 
+H3N

OH

COO

 
0.5 -18.9 

No binding 

detected 
abcr 98 % 

C 

(S)-4-Amino-3- 

hydroxy-butyric 

acid 

+H3N

OH

COO
-

 
0.4 -19.0 

No binding 

detected 

Sigma-

Aldrich 
97 % 
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D 
D-(+)-Glucono- 

1,5-lactone 

O

O

OH

HO

OH

HO

 

-0.9 -32.8 
No binding 

detected 

Sigma-

Aldrich 
>99 % 

E 

L-(+)-Glutonic 

acid 

gammalactone O OH

OH

HO
OH

O  

-0.7 -27.7 
No binding 

detected 
abcr 98 % 

 
L-arginine 

(K47275343 621) 

+H3N COO
-

NH

H2N NH2
+

 

N/A N/A 
657 µM ± 211 

µM 

Merck 

KGaA 
>98.5 % 

 
D(+)-trehalose 

dihydrate 

O O

OHHO
O

OH

OH

OH

OH

HO

OH  

N/A N/A 
No binding 

detected 
VWR >98 % 



 

 

Table 2: Surface pressure data for different excipients. Excipient concentration was 50 mM, except for Tween 20, for which it 

was 0.005% v/v. All measurements were done twice. The errors given correspond to the standard deviations. 

Excipient Surface pressure (mN/m) 
Buffer 1.7±0.2 
NaCl 1.7±0 

L-arginine 3.25±0.15 
D(+)-trehalose 2.1±1.6 

Glycerol 4.75±0.95 
Polysorbate 20 [0.005%] 34.7±1 

Compound A 9.0±0.5 
 

Figures 

a b 

 

 

Figure 1: a: Residual aggregation propensity determined using Aggrescan3D. Highest scoring hotspot highlighted with a red 

circle. b: Visualization of residual aggregation propensity (Blue: low propensity, Red: high propensity).  
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Figure 2: Virtual Screen. Left: Scheme of the virtual screen, designed to identify substances that possess high solubility, low 

reactivity and high affinity towards the defined binding site. Right: visualization of a ligand (blue) bound to IFN (green) in 

proximity to the aggregation hotspot predicted by Aggrescan3D (red).  
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Figure 3: Experimental and calculated binding affinities. a: Dose response curve of A targeting IFN (dots) and the control 

dye (crosses) as determined by MST: Kd=108 µM ± 24 µM. 50 mM Pi, pH 7.0, 0.05% Tween 20, N=3, IR intensity=high. 

Error bars represent the standard deviation of the measurement of three independent samples.  b: Dose response curve 

of L-arginine targeting IFN (dots) and the control dye (crosses) as determined by MST: Kd=657 µM ± 211 µM. 50 mM Pi, 

pH 7.0, 0.05% Tween 20, N=3, IR intensity=high. Error bars represent the standard deviations of the measurement of 

three independent samples. c: Black curve: Free energy of binding as calculated by the APR-US method. Error bars 



 

represent the standard error of the mean. Grey bar: Free energy of binding as determined by MST. The bar’s thickness 

indicates the 68% confidence range. 
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Figure 4: Forced degradation studies.  a: Count of particles ≥ 1 µm after three cycles of freezing and thawing of IFN 

formulations. b: Soluble high molecular weight species after three cycles of freezing and thawing of IFN formulations. A-E 

corresponds to the compounds from Table 1. c: Dependence of sub-visible particle count on A concentration after horizontal 

shaking. The line is a guide for the eye. d: Sub-visible particle count for A and standard excipients at 6.25 mM after horizontal 

shaking. e: Sub-visible particle count after submitting a formulation of IFN to 60 h of horizontal agitation stress. Error bars 

represent the standard deviations of the measurements of three independent samples. 
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S-Figure 1: Apparent Mw. Measured for different IFN concentrations in presence and absence of A as determined by SLS. Error 

bars represent the standard deviations of the measurements of three independent samples. 

 

S-Figure 2: Sub-visible particle count before and after submitting a formulation of mAb-1 to three freeze-thaw cycles. 



 

Table S-1: Inflection point (IP) and aggregation onset temperatures Tonset of IFN formulations. 1 mg/ml IFN, 50 mM excipient, 

50 mM Pi, pH 7.0. 

Excipient IP [°C] Tonset [°C] 
A 68.0±0.0 64.2±0.1 

Glycyl-L-asparagine 68.1±0.2 64.1±0.1 
L-arginine 67.7±0.0 63.8±0.0 

D(+)-trehalose 67.7±0.0 64.5±0.1 
None 67.8±0.1 64.4±0.2 

 

 

 

S-Figure 3:  Potential of mean force depicting the work required to attach the restraints, to pull the ligand from its binding 
site and to release the restraints. The distance for the binding site is set to 0. Error bars represent the standard error of the 
mean. 

 

 


