
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Apr 24, 2024

Data Driven User Experience for Personalizing Hearing Health Care

Johansen, Benjamin

Publication date:
2019

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Johansen, B. (2019). Data Driven User Experience for Personalizing Hearing Health Care. Technical University
of Denmark.

https://orbit.dtu.dk/en/publications/3d7d1a23-5c43-4252-b95e-3061747df622


Data Driven User Experience for
Personalizing Hearing Health Care

Benjamin Johansen

Kongens Lyngby 2019



Technical University of Denmark
Department of Applied Mathematics and Computer Science
Richard Petersens Plads, building 324,
2800 Kongens Lyngby, Denmark
Phone +45 4525 3031
compute@compute.dtu.dk
www.compute.dtu.dk



Abstract

What is good User Experience? How do we measure it? How do we quantify
it? User Experience is not only about "getting the job done". User Experience
is about guiding and supporting the user, leading them to a subjective end
goal. It’s about creating pleasant experiences and journeys. It’s about creating
emotional and affective bonds, while the user interacts with services or product.
We need ways of implementing user experience in health care to address the
challenges of a lack of clinical resources. Inspired by the 4Ps of medicine, this
thesis tries to address the participatory and personalized perspective.
A UX framework, named data-driven UX is proposed to highlight how patient-
generated data creates value in a clinical workflow. The framework highlights
how UX methodology and tools can be applied to a health care domain, hearing
health care. Hypotheses are validated early, frequently and iterative through
rapid prototyping. Hearing aids are treated as contextual aware devices that
collect data. The contextual data shows that individuals have unique behavioral
patterns related to program and volume interactions. These individual nuances
are not taken into account with the current hearing aid fitting paradigm. It is
also shown that individual behavior can be modeled from contextual parameters,
including acoustic environments, location, and motion. This data can be used
to personalize hearing aids of the future.
Using the data actively in clinical sessions, to debrief patients, help with recall
and to highlight behavioral traits, addressing participatory health care. To
engage the patient, the interface to the medical device must be compelling.
Thoughts on designing compelling interfaces, by addressing mental models, and
using metaphors and microinteraction.
In the end, some considerations of the future of hearing health care are proposed.
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Summary (Danish)

Hvad er god brugeroplevelse (user experience). Hvordan kvantificeres det? User
experiece handler ikke kun om ’at udføre arbejdet’. User experience handler
om at skabe mindeværdige oplevelser med teknologi, produkter og ydelser. Det
handler om at skabe rare oplevelse og rejser. Det handler om at skabe følelses-
mæssige bånd mens brugeren interagere med en ydelse eller et produkt.
Vi har behov for at implementere user experience i sundhedsteknologi for at ad-
dressere de nuværende og kommende udfordringer skabt af mangel på kliniske
resourcer. Denne afhandling vil primært, inspiret af de 4P’er indenfor medicin,
forsøge at addresere perspektiver indendfor deltagende (participatory) og per-
sonaliseret (personalized) medicin.
Et user experience rammeværk kaldet datadreven user experience bliver beskre-
vet. Det forsøger at fremhæve hvordan patientgeneret data skaber værdi i kli-
niskpraksis. Rammen fremhæver hvordan UX metodik og værktøjer kan bruges
i sundhedsvæsnet, specifikt for høretabs behandling.Hypoteser bliver valideret
tidligt, ofte og iterativt ved brug af hurtig prototyping (rapid prototyping). Hø-
reappareter bliver brugt som kontext bevidste (context aware) apparater som
indsamler data. Den kontekstuelle data viser at folk har unikke individuelle ad-
færs mønstre relateret til program- og volumeinteraktioner. Disse individuelle
nuancer bliver der ikke taget forbehold for i det nuværende høreapparats tilpas-
ningsproces. Det vises også individuel adfærd kan moduleres fra kontekstuelle
parameter, inkludering det akustiske miljø, lokation og bevægelse. Denne da-
ta kan bruges til at personalisere fremtidings høreapparater. ” Klinkkere kan
bruge data aktivt til at debriefe patienter, hjælper med at huske og til at frem-
hæve adfærsmønstre, alt for at skabe deltagende medicinering. For at engagere
patienten må brugergrænsefladen på medicinskeapparatert være tiltalende. Tan-
ker omkring design af medicinsek brugergrænseflader, bliver tiltalt ved brug af
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mentale modeller, metaforer og ved at bruge mikrointeraktioner.
Til slut vil der bliver frembragt tanker om fretiden for personaliseret høretabs
behandling.



Preface

This thesis is presented in fulfillment of the requirements for acquiring a Ph.D.
in Engineering, and was prepared at the Cognitive Systems section of DTU
Compute, under the supervision of Associate Professor Jakob Eg Larsen and
Senior Scientist Michael Kai Petersen.
The thesis deals with aspects of how data driven user experience applied to
hearing health care can improve the personalization of hearing aids, encourage
user participation and create a better user experience for hearing aid users. The
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Chapter 1

Introduction

Our everyday life has become digital with technological advancements within
sensor development, increased computing power, connectivity and access to the
world wide web, and deployment of mathematical and statistical models. We
can monitor the world, and ourselves throughout the day, generating insights
with a degree of detail unimaginable a few decades ago. We have changed our
perspective, views and expectations to technology. Technology is expected to
serve our every need, while being pervasive and ubiquitous. Technology have
become a mean of convenience, which generate insights, and improve our life.
Our relationship with technology have changed. We address technology in hu-
man form, exemplified by projecting human traits such as uttering ’Siri is so
stupid, she doesn’t understand me!’. Technology have in large parts become
ubiquitous, and when the user experience is dissatisfying, we see technology in
a different light.
Personal technology is appearing within the health care domain. Technology
enables patients to become an active part of their treatment, for better and
for worse. Patients can now track the development of a skin rash, correlate
minutes of strenuous activity with overall well-being, or track the progression
of Parkinson’s disease symptoms such as trembling. Doctors and other health
care professionals struggle with using data generated by patients. The medical
community has yet to develop strategies, where technology is part of treatment
plans for patients. The gold standard within medical and pharmaceutical sci-
ences is the randomized controlled trial (RCT). The RCT inherently ensures a
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statistical significant result across population, attributed to the intervention or
the drug. RCTs are long term investments and resource intense. This explains
why a new pharmaceutical drug takes 5-10 years before being approved and
cost millions of US dollars. The excellence of RCTs is the ability to general-
ize. In contrast, technology development, especially within personal computing,
is considered retired after 10 years. The mismatch between clinical accepted
studies, and the flexibility of technology development leaves health care workers
in a dilemma. Technology within personal computing and big data opens up
for possibilities of creating personalized medicine but is limited by the current
paradigm of RCT studies. The question to ask is, how can technology be used,
to demo and create value, enabling the medical sciences to leverage insights from
data, without compromising treatment.

1.1 Technological Support in Health Care

Is there even a need for technology in health care? By 2035 the WHO [145] es-
timates a lack of 13 million health care workers globally, to provide the required
services in the health care system. The current health care paradigm is not
designed for a patient-led, and technology-driven, treatment. The lack of scala-
bility, combined with a growing number of patients, and a health care workforce
which grows slower, indicates that health care services are ripe for innovation.
The challenge is to find demonstrations, which highlights the benefits of using
technology within health care.

Successful attempts of supporting health care professionals through technol-
ogy include automatic annotation of radiography1, deep learning for screening
lymph cancer [11] and detection of diabetic retinopathy [44], as a few examples.
These studies stem from the machine learning and deep learning community
and effectively demonstrates how algorithms can automate trivial tasks, such as
annotating X-ray imaging, while leaving the final decision-making to health care
professionals. The focus of these studies is to be as accurate as possible, with a
low false positive or true negative rate as possible. However, this value propor-
tion does not consider the effect on the clinical workflow, and the adaptation of
health care professionals.

A different on the future of health care focuses on patient-led health care. Pa-
tients generate vasts amount of data and insights. The impact has still to be
understood. There is a lack of tools highlighting how this data can better serve
the patient and the health care professional to tailor the treatment for the pa-
tient, or what I call personalized health care.

1https://radiobotics.com/

https://radiobotics.com/
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The health care systems are under pressure due to an increase in expected life
expectancy, a growing population where elders are in the majority, and health
care systems struggling to make ends meet. While this may seem dystopian,
there is hope. With the advent of pocketable computing power, big data, lean
data processes, and improved user experience, the technology could enable a new
era of health care. Hood et al. terms this as the 4P’s of medicine [52]. The four
P’s in this context are: predictive, preventive, personalized and participatory.
Hood [52], describes the impact of the 4P’s as:

As noted above, P4 medicine will lead to digitalization of medicine
— with very broad implications (the creation of patient/consumer-
driven social networks, the quantification of self, the information
technology for healthcare which will capture data of individuals to
create a database for the predictive medicine of the future). The
quantification of wellness and the demystification of disease will cre-
ate wealth for the institutions and organizations that are at the
leading edge of this paradigm change.

The focus of this thesis is on how to personalize hearing health care using UX
methodology. In the process I will propose a model of personalized hearing care,
relying on a closed feedback loop, with user insights driven by data, adaptive
interfaces, and how to leverage knowledge from other users, to provide a better
fit of the hearing aids. The focus revolves around personalizing hearing aids
and includes considerations for the rest of the personalized hearing health care
paradigm. Hearing health care is build on the assumption of hearing loss is only
a sensory loss. Enabling hearing aid users to be an active part of their treat-
ment, I wish to demonstrate that other factors influences both the perception
and usage of hearing aids. These insights can then be shared with clinicians,
which can help the users personalizing their hearing aids. I will use UX method-
ology in combination with data driven insights, to explore how hearing aids can
provide better user experiences. Considering both actively involving patients
in a participatory treatment, and providing a personalized experience, without
causing excessive burden for the health care professionals. The UX methodol-
ogy provides a framework to view the problem of personalizing hearing health
care holistically. Acknowledging that the problem can only be addressed by in-
volving different research disciplines, stakeholders and perspectives on hearing
health care.
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1.2 The Research Objectives and Methods

The research objective behind this thesis is to generate a framework and recom-
mendations for personalizing health care applications, with a focus on hearing
health care. This is phrased as personalizing hearing health care, where the
research methods stem from user experience, human-computer interaction and
human-centered AI. The thesis draws on contextual aware systems including
ubiquitous and pervasive computing, lean user experience (UX) methodology
and interface design drawn from human-computer interaction. I call this data-
driven user experience, or data-driven UX. There are several challenges related
to personalizing health care using UX methods. My objective is to advance
technology-driven health care research with respect to these challenges in the
following ways:

1. Establishing UX methodologies to use data driven insights within health
care.

2. Advance the empirical understanding of applying personalization and par-
ticipation in health care settings.

3. Introducing a new point of view on hearing health care, considering tech-
nology part of the greater sum.

1.2.1 Experimental Methods

To advance our understanding of how users interact with a sound manipulating
device, in a changing context, I have conducted a series of experimental studies.
These include long-term studies, in the wild studies, and laboratory experiments.
When choosing an empirical method, there is a trade off between criteria and
desirable elements [89]: Generalizability, how well the results carry across the
population of users; (2) precision of measurements, or how to control for factors
not related to the study; and (3) realism of the situation or context in which the
context is gathered. Based on these factors I have chosen my studies emphasizing
on relevant factors which enriches the scientific community. Laboratory studies
are commonly used in hearing sciences to investigate the performance of normal
hearing listeners and hearing impaired listeners. In-the-wild studies and long
term studies, are commonly used both within the human-computer interaction
(HCI) and ubiquitous and pervasive computing fields. I have chosen to focus on
these types of studies, as context aware computing resides here. This also means
a compromise of control, versus a higher degree of a realistic situation. Where
the laboratory experiments give a high degree of control, it is rarely applicable
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in real life environments. Observing the problem holistically, to improve the
participation and personalization have been the focal point of this thesis. This
also means that a small sample population have been chosen, as personalization
may not generalize well. Choosing a longitudinal long term in the wild studies
provides several challenges. It requires mature technology to involve the users.
If the user experience is poorer than the current experience, users will drop
out over time. Furthermore, to collect data, the systems needs to be robust,
and to log data in unforeseen situations. On the other hand, working with real
life experiments involves the users in ways a laboratory cannot. Using data
driven imperial studies, and conducting follow-up interviews ensure that the
users wish to continue. The experiment feels less clinical for the test subjects,
and they are willing to participate further on. This brings the research closer
to application and implementation, and general insights can be carried over to
real life applications.

1.3 Motivation

Today health care is experiencing rapid change with outside pressure. IT sys-
tems are being rolled out, and patients want to be more included in their treat-
ment. Hearing health care relies on personal items, notably hearing aids, which
are expected to be worn throughout the day to provide the best conditions of
living with a hearing loss. Modern digital hearing aids can be personalized
to fit the individuals needs. However, in practice personalization falls short
due to several factors. The personalization process heavily relies on manual
fine-tuning combined with oral feedback. Users are asked to recall previous
experiences, and the hearing care professional (HCP) have to translate the bi-
ased oral representation into hearing aid acoustical parameters. This process is
time-consuming, and requires the user to come back, often for multiple fitting
sessions. Hearing aid manufactures do provide simulations of acoustical envi-
ronments, to reproduces acoustical experiences. However, either the clinics do
not have the required physical environments to emulate the simulations, or time
simply don’t allow going in depth with personal preferences. Translating user
needs into acoustical features prove challenging, and only experienced hearing
care professionals can identify the relevant fitting parameters, and the actions
to fit the hearing aids correctly. Additionally, there is a lack of a shared vocab-
ulary between user and hearing care professional, meaning that only a minority
of users can clearly describe an acoustical experience. Despite the wealth of
opportunities, personalization rarely occurs in the fitting process. One barrier
of hearing aid personalization stems from the lack of an established feedback
system. Currently the clinical workflow is linear and based on calendar avail-
ability, rather than need based. The user is only providing feedback based on
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events that can be remembered, and may have a negative bias, even though
their device performs well in most situations. The lack of established feedback
mechanisms results in frustration, when the end user cannot adequately explain
themselves. Hearing aid development today is driven by improving digital signal
process, while limiting acoustical distortion, loss of audio quality, and having
low power consumption. The focus of hearing aid development revolves around
solving difficult listening scenarios, primarily situations characterized by speech
in noise. However, the user experience extends beyond the difficult situations.
As a hearing aid is a personal device, worn many hours a day, it should perform
well in a variety of listening scenarios.

The hypothesis is that hearing care and hearing aid personalization can be im-
proved significantly based on data-driven user experience. The implication is
that hearing health care should be considered a systematic challenge, involving
various stakeholders, different technologies, feedback patterns, and user interac-
tions. The user is required to interact with devices, in order to collect data. The
hearing care professionals must be willing to include data to provide better solu-
tions for the end user. And hearing aid manufactures to see the value in scalable
feedback systems, which may disrupt their current business models. Since the
challenges revolve around systems, the need lies in building proof of concepts,
which can support the various stakeholders, and through improved user experi-
ences, improve the quality of hearing health care, while making hearing health
care more accessible. Today, personalization fails because most people are not
average. People may have needs that only they express, but may be considered
noise or an outlier in an average data set. Personalization can help these peo-
ple, by providing better user experience, and in turn, provide a better quality of
life. The vision is to understand how to personalize a hearing aid such that the
hearing aid becomes pervasive and ubiquitous. That the user only realizes that
they wear a hearing aid when they need to recharge it. Wearing a hearing aid
should restore the auditory ability to such that walking in the woods becomes
as full of experiences for a hearing impaired, as for a normal hearing listener.

The aim of this thesis primarily revolves around improving the user experience
for the end user and hearing care professionals. User experience provides the
fundamental tools to investigate the personalization of hearing aids. Using the
methodology of lean and rapid prototyping allows the designer to rapidly verify
hypotheses. The lean and data-driven methodology supplements the current
road-map-driven hearing aid development, by providing early insights into new
types of offerings validated with the end user. UX provides value by highlighting
areas of value, both commercially and for the user, which may not require new
devices, but rather new mindsets. Rapid prototyping, using existing products
and services, can generate insights, such as user behavior, with relatively few
resources committed. Interweaving data in the UX process allows for both long
term deployment studies, and to scalable studies, where data can be gathered.
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This adds a complementary dimension to qualitative UX, where workshops,
interviews, and observational studies, can be combined with in-the-wild, quan-
titative user studies. UX with a focus on hypothesis validation is the backbone
of the thesis.

A shared vocabulary of acoustical experiences supports the interactions between
HCP and user. By collecting contextual data, including acoustical context, time,
activity and location, the user and HCP have visual landmarks to aid conver-
sation in the fine-tuning process. Adding a layer of user interactions provides
insights into the coping strategies of the user. Contextual data from physi-
cal environments and users context about user behavior and habits. Utilizing
contextual data can be valuable in the fine-tuning process, and provides visual
feedback mechanisms. However, privacy concern should be considered, meaning
that the contextual data must provide more value, than negative consequences,
without inferring privacy. Opt-out options should be a part of the system de-
sign. Not only does the user be willing to collect and share data with their HCP,
but the HCP also needs to know the data is accessible and how to use it. The
consequences of this is a change in the clinical workflow.

To gather information about user interactions new types of user interfaces are
investigated. The current interface offerings are based on direct control on the
hearing aid, a physical remote control, or a remote control app. Designing a
new user interface that supports user interactions with sound augmentation is
essential in motivating users to provide interaction data. Firstly, a common
and accepted sound vocabulary does not exist, thus only basic descriptors such
as loud, sharp, and dull can be used. This is then translated into actionable
hearing aid parameters, which augment sound accordingly. Secondly, there’s a
challenge in translating an auditory experience into a visual interface, which in
turn augment sound. Questions such as how does round sound look like, what
is a sharp sound, what does focused sound visualize and so on. Conceptually I
argue that visual metaphors may address these challenges. Specifically, a map
metaphor may help guide the user in navigating in sound.

The final challenge of hearing aid personalization is extending the UX philosophy
beyond the current offerings. Meaning, how can we build intelligent interfaces
which can dynamically adapt to the changing context and the user intentions.
I will briefly touch on the future of sound augmentation, and how novel inter-
actions, driven by computational interactions, will create new user experiences,
and change the way we interact with hearing aids.
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1.4 Outline and Contributions

The thesis contributes to research into UX methodology for health care applica-
tions using a case study of personalizing hearing health care. The main outcomes
of this work can be summarized with the following contribution statements:

Chapter 2 An introduction to hearing loss. Provides an overview and intro-
duction to the case study of hearing health care. A short introduction
Hearing loss, hearing loss prevalence, and how the human auditory sys-
tem is provided. The chapter provides a theoretical model of personalized
hearing health care, founded on the current state-of-the-art research within
self-fitting hearing aids, user-driven algorithms, and context-aware hearing
aids.

chapter 3 A primer to user experience in health care. This work provides the
theoretical foundation for user experience. The work proposes a data-
driven user experience model, used to collect data and generating value
from insights. This is the methodological foundation this thesis provides.

chapter 4 Physical context. This dissertation contributes to building a frame-
work investigating how hearing aids are used in rich contextual scenes,
encountered in an everyday life setting. These insights demonstrate that
the physical context of hearing aids include acoustical features, time, lo-
cation and movement.

chapter 5 User context. This thesis provides a further understanding of differ-
ent coping strategies from individuals. It shows the complexity of person-
alizing hearing aids, as each user have unique patterns. The proposal is to
use several interaction patterns, combined with measurements, to profile
the individuals. This data can be fed into a model, which can estimate a
better first fit from users like me.

Chapter 6 Supporting user feedback. This thesis advances the understanding
of coupling visual and auditory interfaces to support user interactions.
Providing the user with metaphors to navigating an auditory landscape,
in the form of a map. Creating user interfaces which supports user interac-
tions are the foundation for collecting user data, which can be transmitted
to the clinician or used to train algorithms.

chapter 7 Adaptive interfaces and future outlooks. The last contribution il-
lustrates how physical context, user context, and user feedback can create
adaptive interfaces for personalizing hearing health care. Considerations
in how to build these interfaces are demonstrated.

chapter 8 Summarizes the main contributions presented in this dissertation.



Chapter 2

The status of hearing aids
today

This chapter introduces the case of hearing loss and hearing health care. Hear-
ing loss is highly prevalent, increasing with age caused by presbycusis, and also
found increasingly in younger populations. Preventive care, through education
and early screening, can reduce the need for hearing health interventions. Hear-
ing and the auditory system is complex, the focus has been explaining how hear-
ing works as a sensory system. Research shows that hearing is more complex,
and also relies on perceptual brain processes. The technological interventions
of hearing care today are hearing aids, which artificially amplify soft sounds
while preserving good signal to noise ratios. However, hearing aids fail to solve
the problem of hearing loss, which may explain why only one in seven [21] with
a hearing loss uses hearing aids. And why 24% of hearing aids in a Danish
population is used less than an hour per day [34]. At the end of the chapter,
I present the motivation of this thesis, grounded in a personalized hearing care
paradigm, with considerations to the current paradigm of hearing health care.
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2.1 Prevalence of Hearing Loss

Hearing loss is one of the most prevalent diseases and handicaps. Studies show
that hearing loss was the fourth leading cause of years lived with disability
(YLDs) in 2015 [139]. Furthermore, hearing loss affects 1.3 billion people. In
comparison, vision loss affects 661 million people [140], meaning between 15-20
percent of the world population suffers from hearing loss. A European review
found at the age of 70, 30% of men and 20% of women have a pure-tone average
loss of 30 dB or more [116]. For people above the age of 80, 55% of men and 45%
are suffering from a hearing loss. The World Health Organization (WHO) [148]
estimates that 466 million people live with a disabling hearing loss in 2018, and
expect these numbers to grow to respectively 630 million in 2030, and more than
900 million in 2050. The majority of hearing loss have been attributed to age-
related factors. However, hearing loss is not old (wo)mans disease. Shargodsky
et al. [121] found a significant increase of hearing loss in US adolescents from
14.5% in 1988-1994, to 19.5% in 2005-2006, and found 20% of Americans aged
12 or older are suffering from a hearing loss. The WHO predicts that “some 1.1
billion teenagers and young adults are at risk of hearing loss due to the unsafe
use of personal audio devices” [147]. These numbers indicate a trend where
the prevalence of hearing loss increases across age groups, including adolescents
and young adults. Meaning, the future hearing care solutions must cater to a
broader audience with a more diverse demographic background. The prevalence
of severe hearing loss is more frequent in lower income groups [121], and in low
income and developing countries [148]. These groups may have limited access
to hearing health care, and may not be exposed to preventive measures.

2.2 What is Hearing Loss

The accepted answer is a decreased sensitivity of the ear. Hearing loss occurs
when weak sounds no longer elicit activity from the auditory nerve, and strong
sounds elicit an attenuated response, compared to that of a healthy ear. Sensory
hearing loss is often caused by dysfunction outer hair cells (OHC), for example,
caused by mechanical damage or trauma, aging (presbycusis), heredity, medi-
cally as a side effect of chemotherapy and otoxicity [117], or a combination of
these. The clinical screening of hearing loss identifies decreased sensory sensitiv-
ity. The clinical standard for hearing loss screening is a pure-tone audiometry
threshold (PTA) test, which identifies reduced hearing threshold sensitivity. The
patient is screened in each ear with a pure tone ranging from 250 to 8000 Hz and
asked to click a button, indicating when a tone is heard, and in which ear [6].
The outcome of this screening is a pure-tone audiogram (audiogram), illustrated
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in Figure 2.1. The audiogram illustrated the auditory threshold for the right ear,
marked in red, and the left ear, marked in blue. If the sensitivity in any band is
greater 20 dB, it is considered a hearing loss. A PTA screening takes between
10-15 minutes. The WHO [144] differentiates between four levels of hearing
impairment: Slight/mild 26-40dB hearing loss, Moderate 41-60dB hearing loss,
Severe 61-80dB hearing loss and Profound over 81dB hearing loss. There are
limitations to this method of hearing screening. It requires a quiet environ-
ment, preferably a sound-insulated room to reduce disturbance from outside.
The method only accounts for pure tones, not for complex sound environments.
Amplification is one among several parameters, discussed later, that affects a
person hearing threshold. The test results are prone to false-positives and true-
negatives, caused by unknown ’internal’ noise. The method only accounts for
pure tones, not for complex sound environments. Amplification is one among
several parameters, as will be discussed later, that determines a person hearing
threshold.

Figure 2.1: Example of an audiogram from a hearing-impaired person. The
audiometric threshold for respectively right ear (red line), and left
ear (blue line) is marked for pure tone thresholds between 250 Hz
to 8000 Hz. The y-axis denote the hearing threshold in dB.
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2.2.1 The consequences of hearing loss

The consequences of hearing loss can broadly be divided into three main topics
of impact; functional, social and emotional, and economic. Functional impact
relates to the degradation of the sensory organ of the ear, this includes a lower
number of outer- and inner hair cells. Unaddressed hearing loss results in dif-
ficulties in the individual’s ability to communicate with others. This includes
degraded speech perception and comprehension. The functional impact also
decreases sensitivity to external sound stimuli. The primary clinical manage-
ment intervention is hearing aids. In cases of profound hearing loss, cochlear
implants can be considered an intervention. The functional impact profoundly
affects children, where untreated hearing loss results in degraded learning abil-
ities, and language development [76, 102].
Social and emotional impact is caused by reduced communication skills. This
can have a significant impact on the quality of life for hearing impaired. Hearing
loss is directly related to increased rates of depression, social isolation, loneli-
ness, altered self-esteem, and diminished functional status [5, 39, 128]. The
recent finding suggests untreated hearing loss increases the risk for cognitive
disorders. This includes an increased risk of dementia [81, 82], where lack of
early prevention of hearing loss accounts for up to 10% of dementia cases.
Economic impact is mainly related to reduced quality of life and loss of pro-
ductivity. Archbold et al. [4] estimate an annual cost in 2013 of £30 billion in
the UK alone. The main contributors are related to reduced quality of life and
lost earnings accounting for more than 98% of the costs, while both increased
cost for general practitioners and social workers have a small impact. Associ-
ated costs in the US is estimated to billions of dollars in lost productivity [54].
disability-adjusted life year (DALY) is a measure for reduced quality of life. The
WHO [96] describe DALY as “the DALY extends the concept of potential years
of life lost due to premature death to include equivalent years of “healthy” life
lost by virtue of being in states of poor health or disability”. A DALY can be
thought of as the loss of an imagined healthy year: a year without health issues,
disability or death. The burden of disease can be thought of as a measure of
the distance between the current health status and ideal health. In high-income
countries hearing loss is the sixth leading cause of DALY, and is predicted to
be among the top 10 diseases in 2030 [87].

2.2.2 Reducing impact through prevention and interven-
tions

Hearing loss can be prevented by timely prevention, early hearing screenings,
and education, and can significantly lower the associated societal cost of hearing
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loss. In high-income countries, hearing screening of newborns is used as preven-
tive measures for hearing loss. The clinical assessment consists of either auditory
brainstem response (ABR), measured using electroencephalography (EEG). The
child is exposed to a short burst of acoustical clicks or pure tone burst and the
ABR response is recorded [86]. Alternatively using otoacoustic emission (OAE),
where a tone or click evokes a response in the outer hair cells, called a distortion
product otoacoustic emission (DPOAE). DPOAE reflect frequency inactivity
[69]. If the child fails the screenings, a hearing intervention is used to support
language learning. Depending on the severity of the hearing loss either hearing
aids or cochlear implants are used. Cochlear implants have the greatest impact
on children less than 3.5 years old, and only minor benefits after the age of 7
[76, 122], due to brain plasticity.

If preventive measures fail, a hearing instrument like a hearing aid or cochlear
implant can support the user. However, there are several barriers to acquiring
an intervention. First, the high cost of entry leaves many in need without
proper hearing care, add to this the long term cost of batteries. A hearing aid
cost 1000 US dollars and upwards, the more expensive products costing 2500
US dollars or more. In some high-income countries, such as Denmark, and the
United Kingdom, governments refund, or partially refund the cost of acquiring
a hearing aid. In the USA the cost can be covered by insurance schemes, or
for servicemen the Veteran Affairs (VA). The high cost limits the accessibility
in low-income groups and low-income countries, where public funding schemes
are not available. At a fraction of the cost of hearing aids, personal sound
amplification product (PSAP) can be an alternative to hearing aids. However,
these devices are neither medically approved, they only lower the price for entry,
and they underperform in acoustical properties compared to hearing aids [114],
making them less desirable. Hearables, such as Apple Airpods, Bragi Dash or
Doppler Labs Here One, all feature microphone arrays, active noise cancellation,
and a form factor similar to hearing aids, and may try to move into the hearing
aid market. Secondly, there is a lack of clinical resources within hearing care.
In Denmark, the public funding scheme has a waiting list of around a year [129]
for receiving hearing care treatment. While private vendors are incentivized
by selling products as efficiently as possible. This means a hearing aid fitting
session may conclude within 30 minutes, including time for selecting a model,
and training. In low-income countries, the lack of hearing care professionals
limits access to hearing care. WHO [146] reports that low-income countries
have less access to hearing health care, with less than one audiologist per million
people. When looking at cochlear implants, the cost is exceedingly high due to
the medical procedure involved. The gap between clinical resources and the
increasing number of hearing-impaired people are growing. The third barrier
is dissatisfaction with the technology. McCormack & Fortnum [88] list the
performance related to hearing aid value and speech clarity as a primary point
of dissatisfaction. This relates to the ability of the hearing aid to function in
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noisy situations, have perceived poor benefit, poor sound quality, does not suit
the type of hearing loss, or is perceived to be broken. McCormack & Fortnum
also indicated that using hearing aids are driven by attitude. Meaning, people
perceive they hear well enough without a hearing aid, and they cannot identify
situations where they would benefit from a hearing aid. These barriers may
explain why in average it takes a person with hearing loss 10 years before using
hearing aids [26], despite the negative consequences.

2.3 The Hearing as a Sensory Organ

The human ear is an extraordinary and finely calibrated sensory organ, closely
coupled with our brains. The complex system translates and transmits weak
airborne mechanical signals, sound, through complex electric and chemical re-
actions and impulses, to our brains. The highly non-linear auditory system can
distinguish between tiny differences in air pressure change. The human hearing
threshold is at 0 dB, while the pain threshold is at 1013 dB! The ear have
a remarkable dynamic range, and through various organs can amplify fading
sounds. This summarizes the hearing system as a sensory system that deals
with amplification, compression and frequency analysis. The sound The system
can be understood using a simplified situation of a pure tone. A human subject
is affected by a pure tone of 1000 Hz, this is within the speech threshold. The
sound wave travels through the ear canal, and excites the tympanic membrane.
Vibrations of the tympanic membrane is amplified by the three tiny bone struc-
ture, the malleus, incus and stapes. The stapes is directly attached to the oval
window, which itself is a thin membrame. The sound wave now enters the inner
ear, also called the cochlear. The cochlear, a snail shaped organ forming part of
the inner ear, transforms a mechanical signal into an electrical impulse. The ex-
citement of the oval windows creates a pressure difference in the chamber called
scala vestibuli, which in turn excites the basilar membrame. For intuition the
cochlear is unrolled as a tube, this is illustrated in Figure 2.2. OHCs amplifies
weak sounds, without amplifying loud sounds. This is known as compression
of incoming sound. Using compression enables a highly dynamic range to be
encoded in the auditory nerve. The basilar membrame (BM) is excited by the
amplified signal from the OHCs. This creates a travelling wave, which peaks at
certain frequencies. At the base, closest to the oval window, the BM is stiffer,
and more sensitive to high frequencies. The end furthest away from the base, is
called the apex. The apex is softer and more flexible, and is more sensitive to
low frequencies [95]. As the BM moves the inner hair cells that are attached to
it releases an electrical impulse to the auditory nerve. The inner and outer hair
cells are transmitters of electromechanical and chemical signals. The auditory
nerve amplifies the electrical signal send to the brain. When the OHC have
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sustained damage, the compressive features and amplification is reduced.

The auditory nerve sends the acoustical signal to the brain, this neurological
pathway accounts for the other half of the audiotry system. There is still lim-
ited understanding of how the auditory cortex work. The auditory cortex is
responsible for sound, speech and music perception [112]. However, the effects
of hearing loss on the auditory cortex is not fully understood. It is known that
brain plasticity degrades the auditory cortex. This thesis focus on how the ear
works as a sensory organ.

Figure 2.2: Simplified illustration of the inner ear. The figure on the left illus-
trates how sound travels from the oval window to the apex of the
cochlear. The right illustrations show how the basilar membrane
is excited by different sound waves, and the signal is transmitted
to the auditory nerve.

Auditory scenes Auditory scenes are an analogy that explains how the au-
ditory system works. Bregman [15] explains how the auditory system works by
the following analogy:

Imagine that you are on the edge of a lake and a friend challenges
you to play a game. The game is this: Your friend digs two narrow
channels up from the side of the lake. Each is a few feet long and
a few inches wide, and they are spaced a few feet apart. Halfway
up each one, your friend stretches a handkerchief and fastens it to
the sides of the channel. As waves reach the side of the lake they
travel up the channels and cause the two handkerchiefs to go into
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motion. You are allowed to look only at the handkerchiefs and from
their motions to answer a series of questions ... The lake represents
the lake of air that surrounds us. The two channels are our two ear
canals, and the handkerchiefs are our eardrums. The only informa-
tion that the auditory system has available to it, or ever will have,
is the vibrations of these two eardrums.

The auditory scene is illustrated by Goldstein [41], with slight alterations shown
in Figure 2.3. The highlighted oval illustrates the simplified view on how per-
ceptual sensory hearing works, and how digital hearing aids addresses the issue
by focusing only on parts of human perception, to explain an acoustical scene.

Figure 2.3: Adopted from Goldstein [41] illustrating Bregman’s description of
an auditory scene. The white oval highlights the information dig-
ital hearing aids use to recreate a contextual rich auditory scene.

2.3.1 How does hearing aids work

Today hearing aids work by restoring sensitivity that is no longer provided by the
outer hair cells. The assumption is that hearing loss is primarily driven by a loss
of sensitivity. This can be solved by amplifying weaker sounds. Early hearing
aids and hearing horns relied primarily on amplifying soft sounds and did not
have compression features. They worked well in quiet environments but had
limited use in noisy environments. With the introduction of the digital hearing
aid more, auditory features were introduced. Digital hearing aids use both slow
acting compression, which preserves gain frequency and works well in low noise
environments, and fast acting compression, which quickly adjusts gain level
noisy environments. Fast compression systems are of high importance and can
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balance between, presenting a speech at comfortable loudness levels, protect the
user from transient uncomfortably loud sounds and improve speech intelligibility
by amplifying weak speech segments [83]. Adaptive directional microphones
can change from an omnidirectional setting, where a 360◦ spatial acoustic scene
is provided to the user, and narrow beamforming where the frontal focus is
prioritized. The third feature relates to improving noise reduction systems.
These systems assist the user by separating the target sound, from the noise
floor. For hearing impaired listeners this can provide up to 6dB improvement,
meaning the target signal is perceived double as loud, as the noise. However,
digital hearing aids have been limited by acoustical processing artifact distorting
the auditory scene or distorting the target signal. Feedback identified by a loud
squealing noise is caused by the proximity of microphone array and speaker.
Feedback distorts the sound signal and causes discomfort. Furthermore, the
focus of hearing aid development has been on miniaturizing technology and
form factor, while preserving a low power consumption. These constrain limits
the processing power of a hearing aid, which usually has a few dedicated digital
signal processors on an embedded system.

Lack of personalization of hearing aids The current clinical workflow is
not optimized to personalize hearing aids and lacks a closed feedback loop. The
fitting process is illustrated in Figure 2.4. The fitting process starts with a
hearing screening. The screening determines the sensory hearing loss and is
reflected in an audiogram. The HCP will then enter the audiogram data into a
fitting proprietary fitting software, which converts the audiogram to hearing aid
settings, primarily gain adjusted. The fitting is the starting point of the fitting
process, where the HCP will choose a prescriptive formula such as NAL-NL1
[30], NAL-NL2 [68] or a proprietary fitting rational by the hearing aid manu-
facturer. These fitting rationals are based on average values from a population
and do not guarantee satisfaction among all users. The user then receives the
hearing aids and can use them. It is common only to provide the user with
one program, which is based on average fitting settings acquired from clinical
studies. Fine tuning is a common practice to find a more satisfactory setting for
the program. The linear flow of fine-tuning is based on the availability of expe-
rienced HCPs. Personalizing by fine-tuning requires several visits to a hearing
clinic. Fine tuning is a two-step process. Step one includes the user recalling
and translating the issues they have with their hearing device. And step two
involves the HCP translating the needs of the user, into adjustable hearing aid
parameters. A lack of common vocabulary between HCP and hearing aid users
may hinder the feedback process. Studies have shown that experienced HCPs
workflow can be reduced into a linear workflow with the following steps uti-
lized for troubleshooting: decreasing Low-Frequency gain, decreasing gain and
output, increasing gain and output, reducing high-frequency gain, decreasing
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maximum output, removing or decreasing distortion, removing peak clipping,
and increasing high-frequency gain [57, 134]. The lack of personalization in the
clinical workflow may result in dissatisfied user. As mentioned earlier, the top
reasons for not using hearing aids are poor performance of the device.

Audiogram

Screening

Hearing aid fitting
Hearing aid 

performance

Hearing aid fitting Hearing aid use

Re-fitting

Figure 2.4: The current linear fitting paradigm starts with a hearing screening,
then the hearing aid is fitted, and used. If needed and if resources
are available, the user can come back and get the hearing aid re-
fitted.

2.4 The Complexity of Hearing Loss

Hearing loss is a complex problem, which is solved by utilizing hearing aids.
Unfortunately, there is still a mismatch between the expected outcomes and the
actual outcomes of using hearing aids. Cognition and hearing is an alternative
approach to describe how the human auditory system works. Research shows
that hearing loss is more than a sensorial loss. Kral et al. [75] argues that hearing
loss is a neurocognitive degradation, and have profound effects on executive
function, sequential processing, and concept formation. Samar et al. [122] show
that hearing loss is more than a perceptual loss. It is also a brain loss. They
compared performance with children in various age groups and found that a
cochlear implant has maximum effect before the age of 3.5 years. Meaning,
hearing loss may also be attributed to a brain degeneration problem, due to the
plasticity of the brain. Lesica [79] argues that hearing loss distorts the neural
activity, and that hearing aids of the future must account for this distortion, and
for hidden hearing loss, brain plasticity and central processing deficits. Brody
[16] argues that hearing loss relates to cognitive impairment. Hearing impaired
with similar audiograms may have a signal-to-noise ratio (SNR) difference of
up to 15 dB [71]. Meaning, that they perceptually have more difficulties in
understanding speech. Wendt [143] shows increased peak pupil dilation with
decreasing speech intelligibility, which is attributed to listening effort. Ng et
al. [98] shows that noise reduction has a positive effect on working memory for
hearing-impaired listeners. And hearing-impaired listeners with adequate noise
reduction schemes have a higher working memory capacity [83]. Rönnberg et
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al. [113] hypothesize that hearing loss directly affects both long and short term
memory. The direction of these studies indicates that working memory and
hearing loss are correlated, indicating that untreated hearing loss thus give rise
to lower cognitive functions.

Hidden hearing loss is a new direction within hearing research. In mice exper-
iments, damage to frequencies above 12000 Hz has had adverse effects. The
experiments show that with a normal audiogram, degraded hearing occurs. Ku-
jawa et al. [77] states “This primary neurodegeneration should add to difficulties
hearing in noisy environments and could contribute to tinnitus, hyperacusis, and
other perceptual anomalies commonly associated with inner ear damage”. Later
studies have found that the neurodegeneration may be caused by age, and have
the same effect [120, 137]. The consequences of hidden hearing loss relate to
speech discrimination and temporal processing, even with a normal audiogram
[80, 107, 119].

These studies show the complexity of hearing and hearing loss. They also give
insights to why hearing aid fails today. The field of hearing research is still
evolving, and the bulk of research is still focused on sensorial hearing loss, the
accepted gold standard. In order to address hearing loss, we may need to rethink
how hearing aids work, and how they can perform better. We must accept that
treating hearing loss is a complex problem, and needs to be better understood
to address the issues. In this thesis, I primarily focus on current hearing aid
technology. It is important to articulate, that hearing loss is complex and not
fully understood.

2.5 Current and Future Trends in Hearing Health
Care

Hearing loss and hearing care are complex and intertwined. To understand and
address the problem, we have to address it as a systematic challenge, rather
than a decomposed problem for digital signal processing, clinical research and
technology development. The current state of the art within research addresses
the problem for different angles. From the clinical perspective, several studies
have addressed the shortcoming of hearing care. De Wet Swanepoel et al. [132]
have worked on developing a smartphone-based screening method for developing
countries and making hearing care more accessible and affordable. Early mobile
screenings may reduce the cost of hearing health care long term. Ratanjee-
Vanmali et al. [111] have worked on the concept of an online clinic. These
studies address the issue of availability of hearing care professionals through
technology. If these clinical approaches are scalable, they may support the grow-
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ing markets of low-income countries, and high growth market like the Chinese
market. Several of the major hearing aid manufacturers are working on remote
care solutions, such as Starkey Remote Programming, Oticon RemoteCare, and
GN eSound Assist1.

To address the topic of personalizing hearing aids and clinical workflow, stud-
ies have proposed methods where the user themselves can tune and personalize
their hearing aids. This includes a trainable hearing aid, also called self-fitting
hearing aids (SFHAs) [22, 31, 33, 66, 67], where the user can perform a pure-
tone audiometry threshold, and fit the hearing aids themselves. Others employ
updates to the clinical workflow. Dahl and Hanssen[25] uses an interactive table-
top to improve the fine-tuning process, allowing the user to simulate everyday
situations and creating dialogues with clinicians. While Boothroyd and MacK-
ersie [14] let users explore and find their optimal hearing aid settings related
to overall gain, low-frequency cut, and high-frequency boosting while listening
to speech. Aldaz et al. [1] use smartphones to register context, and based on
user input trains a hearing aid based on user preferences and finds users prefer
the personalized algorithms. Aldaz et al. [1] states the main shortcomings of
modern hearing aids to learn about the user as:

(a) a hearing aid has limited sensor inputs, relying entirely on two
onboard microphones to collect information about incoming sounds;
(b) a hearing aid has a restricted user interface, even if a remote con-
trol is available; (c) compared to other computing devices, a hearing
aid has reduced processing power, which prevents the implementa-
tion of more advanced machine learning algorithms.

UbiEar by Sicong et al. [124] is the closest to a context-aware hearing aid that
has been reported. They use a smartphone to label acoustic events and acoustic
scenes. Other reported context-aware devices include work by Tessendorf et al.
and Wang et al. [133, 141]. Jens Nielsen [100, 101] uses Gaussian processes to
estimate a better fitting paradigm to personalize hearing aids.

In summary, several shortcomings of the current paradigm of optimizing hearing
aid fitting have been identified. First, the complex problem of hearing loss and
hearing care is boiled down to a sensory deficit. Secondly, the current practices
of hearing aid fitting heavily relies on manual tuning and adjustment. Digital
hearing aids are still relying on limited processing power and are fitted based
on generalized fitting rationals like the NAL [30]. Thirdly, and possibly the

1Starkey Remote Programming https://www.audiologyonline.com/ask-the-experts/
starkey-livio-ai-hearing-care-24366, Oticon RemoteCare https://www.oticon.
com/professionals/tools-and-support/remote-care, ReSound Assist https://www.
resoundpro.com/en-US/assist

https://www.audiologyonline.com/ask-the-experts/starkey-livio-ai-hearing-care-24366
https://www.audiologyonline.com/ask-the-experts/starkey-livio-ai-hearing-care-24366
https://www.oticon.com/professionals/tools-and-support/remote-care
https://www.oticon.com/professionals/tools-and-support/remote-care
https://www.resoundpro.com/en-US/assist
https://www.resoundpro.com/en-US/assist
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main point is the missing feedback loop. There is not an established paradigm
on using annotated contextual information to improve hearing aid fitting. The
closest to a personalized hearing aid comes from using trainable hearing aids
and algorithms to estimate user preferences. Despite the research efforts, a
commercially context-aware and personalized hearing aid does not exist. The
related work shows that hearing health care is a systematic challenge, and cannot
be solved using only amplification. Despite several studies showing that people
are dissatisfied with hearing aids, the issues still have to be solved. And an
acoustical amplification may not be adequate. to the knowledge of the author,
no studies have addressed hearing health care in the light of user experience.

2.6 Personalizing Hearing Care

An alternative approach to addressing personalized hearing care is through the
lens of user experience. Building on established technological advancements,
user experience methodology, including lean UX, can generate valuable insights,
fast. There are several challenges that must be addressed to personalize hearing
aids, and treat more people world wide. The main challenge is the lack of
feedback. The focus is on optimizing the digital signal processing in hearing
aids, and the feedback gathered from clinical trials does not reflect real life
usage. There is little knowledge of how hearing aids are used. One way to
break the glass ceiling is by closing the feedback loop. Building mechanisms
which can support the user in their everyday lives, and tools which can support
the clinicians when needed, would improve the user experience. There is a
knowledge gap between laboratory studies and in the wild studies which must
be addressed. Hearing aids have limited contextual awareness, and by improving
the contextual awareness of both user and environment, the user experience can
be improved. As a research community, we must also acknowledge that hearing
loss is more than a sensory loss. It should be acknowledged that hearing loss
affects other senses, the brain, and human behavior and that these parameters
may be supplementing the sensory hearing loss in personalizing hearing care.
To address this issue hearing aid technology must be viewed as an ecosystem
of connected devices, and not only as a device which only observes contextual
sound. Humans navigate the world with a wealth of information, and so should
hearing aids. With the rise of wearables and smartphones, the sensing capacity
exists and is waiting to be used. The user can actively be engaged in the
fitting process through intuitive feedback interfaces. The fitting process and the
everyday life of hearing impaired can be enriched by considerate feedback and
data collection. In turn, this makes the fitting process participatory, generating
insights for both user and clinician alike. Today the fitting process is linear
and calendar based, which may rather reflect the needs of the clinician than the
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needs of the user. Improving the process, and shifting attention to care, rather
than sales, could improve the clinical workflow.

Lastly, and out of the scope of this thesis, is a high barrier of entry, which re-
quires an infrastructure that can support the process of hearing screening and
acquiring technological intervention. Due to the lack of clinical resources, the
screening and prevention paradigm must change. Remote screening, smartphone
screening or home screening, should be considered for the future of hearing im-
pairment treatment. Providing scalable technology which can provide insights
allowing for the remote fitting of hearing aids could provide vast value. This
is true for communities where access to hearing care is limited. I propose to
view hearing care as a personalization challenge. Expanding the clinical work-
flow figure, Figure 2.4, to include more in-depth screening, and more tools to
personalize hearing aids, while also learning from other users are presented in
Figure 2.5. This figure illustrates that the screening should consist of an ex-
tended test battery including cognitive assessments and signal-to-noise ratio
(SNR) assessments. The fitting also changes, and user-generated data is in-
cluded. The hearing aid performance is updated and now have an additional
three interconnected step. Context, relating to the physical context and the
user context. User feedback and interaction, relating to interfacing supporting
the user. And, adaptive interfaces, updating hearing aid settings and personal-
izing hearing aids based on user input and hearing aid performance. Screening
now includes sensory hearing sensitivity assessment, cognitive assessment and
signal-to-noise ratio assessment. The screening can be performed in a clinical
setting, in a remote setting, or by the user themselves. The logged data is
then anonymized and sent to a database, where it is compared against other
users. The combined information of the users personal assessment, and with
other users, helps reduce uncertainty for the first fitting. The goal should be
two-fold. To enable a lower barrier entry for early screening, and to offer a
more profound toolbox for hearing loss screening. Hearing aid fitting is the
next step. Here the software can support the clinician in fitting the hearing
aids, and provide relevant tips on counseling and training. Using data from
other users ’user like me’, including screening data and hearing aid usage, the
software can propose settings estimated to the current user preferences. Sup-
porting fitting based on ’users like me’, addresses the needs of users who may
other needs than an average setting can provide them. Alternatively, using
remote care solutions, the clinician can fit the hearing aid remotely, or using
an artificial intelligence engine, the system may automatically fit the hearing
aids. The next step, personalizing hearing aid usage is radically different from
the current offerings. It consists of four interconnected phases. The hearing
aid performance is the fitting paradigm and similar to today’s offerings. The
context relates to data collected about the physical context, such as acoustical
scenes, activity and time. The user context is related to how the user interacts
with the hearing aid. To enable the contextual awareness, the systems need
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both an updated data management system, and user interfaces to support user
interaction. The user is then asked to provide feedback, which is inferred from
behavior and interactions, or through questions asked through dialogues. Alter-
native interfaces encourage users to actively partake in hearing aid treatment.
The interfaces generate insights about the hearing aid performance, opening up
the black box while providing educational value to the user and expanding their
auditory vocabulary. The last step is adaptive interfaces, which dynamically
update behavior based on hearing aid performance, context and user feedback.
The data collected in the hearing aid usage is then relayed back to the fitting
procedure, where clinicians can actively use the insights of context and user
feedback for optimizing the hearing aid settings, either in a re-fitting session or
remotely. The data is further anonymized and fed to a users like me model,
which can help other users with similar patterns, to get a personalized hearing
care solution. The model has several feedback loops, where feedback can be
utilized by intelligent systems to improve the user experience, and it can be
used for hearing care professionals as a decision support system. In the the-
sis I primarily focus on the personalizing of hearing aids, including contextual
awareness, creating interfaces suited for interactions, and reflect on how to make
adaptive interfaces. I will use UX methodology to motivate the investigation
and insights.

UX methodology provides a toolbox considering existing, and emerging technol-
ogy, to generate value. When considering personalized hearing care a top-down
problem, also need a top-down mindset to create value. Providing tangible
value that is easy to incorporate in the current workflow provides more value
than improving speech intelligibility with 2% in the lab.

Cognitive
Audiogram

SNR

Screening

Hearing aid fitting
Counceling

Training

Hearing aid 
performance

Adaptive interface

USER FEEDBACK
system & ‘clinician’

CONTEXT
physical & user

Users Like Me

Optimized first fit

Hearing aid fitting Personalized hearing aid usage

Figure 2.5: Personalizing hearing health care. The motivation for this thesis
is within the personalized hearing aid usage and users like me.
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2.7 Summary

Hearing loss is viewed as degradation of sensitivity, related to a loss of hearing
sensitivity. Hearing loss is measured using a clinical procedure where hearing
thresholds across varying frequency bands are investigated for both ears. Hear-
ing loss is highly prevalent and may affect as many as one in five.

I propose a framework of personalizing hearing health care. This framework
stems from hearing aids, and consider personalization of hearing aids a system-
atic challenge. The elements added to personalizing hearing aid usage, context,
user feedback, and adaptive interfaces, will each be discussed in the thesis. Using
technology and data as enablers, will shed light on how a different perspective
can improve the clinical workflow, and in turn make hearing health care more
participatory and personalized.UX methodology is applied to cast new light on
personalizing hearing health care, while providing value to the hearing aid user
and the hearing care professional.



Chapter 3

User Experience in Health
Care

This is the challenge designers and vendors of interactive products
face: Experience or User Experience is not about good industrial
design, multi-touch, or fancy interfaces. It is about transcending the
material. It is about creating an experience through a device. [49,
Mark Hassenzahl]

This chapter introduces the framework of UX within hearing health care, and
how UXmethodology can supplement the clinical workflow and research paradigm,
by generating alternating views driven by hypotheses. The chapter revolves
around validating or rejecting hypotheses using UX tools. First, an introduction
to UX including the roots of UX is presented, and how it can be utilized within
the health care domain. The introduction includes the principles of Lean UX,
design thinking and how to design with data. Based on the paradigms of UX,
lean UX, design thinking and designing with data, a theoretical framework for
data-driven UX is presented. The framework consists of five overlapping steps,
which all are driven by iterations, validation, and a feedback loop. Starting
with observing and empathizing while defining the problem, then asking ques-
tions and formalizing hypotheses, leading to defining & describing user goals,
which is the foundations of building data-driven systems that can be tested,
and when ready are deployed and collect data, the final step is to validate or
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reject the hypotheses, and most importantly, ask why. The process is iterable,
and may not proceed linearly. Further considerations about complexity, stake-
holders and technology maturity are considered as underlying parameters in the
model, which modulate the data-driven UX process.

User experience within health care receives little attention. Health care is a
heavily regulated domain, and with good reason. As a consequence, the health
care system is dominated by tangible and measurable outcomes. Within user
experience, only usability caters for this need, where safety and functionality
is the primary focus. Rather, have a safe and clunky user interface, than a
pleasant one that will be used.

The EPIC system In late 2013, two regional hospital providers in Denmark,
Region Hovedstaden and Region Sealand, signed a contract for a unified IT-
hospital system. The service would include building a new digital IT platform
with the management of patient data and a unified clinical workflow. Before
the EPIC system, each hospital would use a custom build IT solutions, and
different clinics would use different software suites. Several of the IT solutions
had different providers, and the legacy systems lacked maintenance. The idea
of a unified IT system was based on case studies from American hospitals. A
unified IT-platform had improved efficiency and removed old legacy systems.
The interfaces would be complimentary, and it would be easy to add extra
features over time. However, 6 years later, and sundhedsplatformen is still
struggling to gain traction. It is criticized from a host of stakeholders, including
politicians, health care workers, and taxpayers. What went wrong?

The challenge with public IT systems is the management of stakeholders. The
decision makers are rarely working with the systems, but are the ones manag-
ing the finance. Combining this with a health care system under pressure the
idea is to relieve staff, and resources, by making the IT systems more efficient.
The primary evaluation tool for such IT systems is whether the specification of
requirements are fulfilled, or not, and does not evaluate quality. This creates a
gap between the user of the system and the decision makers. What happened
in the case of the EPIC system?

From the start, the EPIC system was heavily criticized by health care workers.
To ensure consistency across medical entries, a requirement is using drop-down
fields for journal entries. This ensures that only known entries are added to
the system, which in theory should make the system more efficient and safe, by
reducing human error. Doctors are notorious for writing journal entries short-
hand, with several duplicates. However, it quickly turned out that especially
doctors were frustrated with this solution, as it was not flexible. The drop-down
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fields can be checked off from the specification of requirements and usability is
fine, reducing erroneous inputs. However, the user experience is not satisfying
creating opponents of the system. The simple and relatively cheap fix to avoid
this frustration, among others, is to utilize user experience. Including health
care workers in the design and development process would have highlighted
these issues earlier. Yes, the system itself might have had fewer features, but if
these features created value, the system would be a joy to use.

To cater for the new needs in health care, and the future of personalized
medicine, health care must move beyond usability, and towards user experience
in health care. The functionalist mindset needs to change, and accommodate
other means of creating value. Meaning, keeping safety and treatment as the
primary focus, while improving and supplementing the treatment through non-
measurable impacts and actions, which involves the patients, gives the health
care professionals better decision-making tools, and improve the overall experi-
ence in the health care sector. Hood and Price [53] terms this aspect of medical
care as

Participatory medicine means that patients, researchers, physicians,
and the entire health care community join forces to transform the
practice of medicine to make it more proactive than reactive—and,
in turn, less expensive and more effective.

Considering medical care as a participatory domain have both positive outlooks
and face challenges. Hood and Auffray [51] predicts that each patient will gather
billions of data points, which can be processed and distilled in simple models,
enriching both the individual (N=1) and the general population by changing the
medical paradigm. To succeed two major challenges must be addressed. First,
technological challenges include big data management and a core IT infrastruc-
ture must be developed. Secondly, the societal implications, meaning ethical,
regulatory, privacy and economic aspects. Defining who is included in ’partic-
ipatory’, including patients, doctors, and others. Changing education both for
patients and health care workers. Providing social networks for patients, as
seen in the quantified self movement. And finally, doctors, and other health
care workers, need to be educated on how to handle the patient-generated data.
User experience methodology can be an enabler, addressing the questions posed
in participatory medicine. And as a result, optimizing wellness and minimizing
disease in the individual patient.
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3.1 Insights From User Generated Data

Patient-generated data is surfacing in health care. With widespread access to
the internet, people are prepared when showing up at the general practitioner, or
at the hospital. Some times with misinformation. The prevalence of mobile and
wearable technologies enables collecting user-generated data, providing insights
on activity, mobility, sleep and so on. However, using this data is currently not
being utilized in a clinic, despite research providing insights on how to couple
the quantified self paradigm and the health care paradigm [130, 131].
The clinical paradigm is not geared for these kind of interventions. The lack
of agility within the domain of RCT and clinical guidelines, mean that digital
interventions may be retired when approved for clinical practices. The rapid
phase of technological development coupled with the lack of education, generates
a gap, where clinicians retorts to known clinical practices. The consequence
is a lack of clinical guidelines for digital and technological which the health
care workers can use. Due to regulatory constraints, and established practices
in research with human subjects, driven by the pharmaceutical and medical
research areas, utilizing digital tools in care and treatment are currently facing
a limited adaptation. Despite the promise of improved treatment, technology is
not widely adopted. It faces limited adaptation, as the devices must be approved
by clinical standards. The contradiction of lab approved equipment, where
conditions can be controlled, versus equipment used out of the lab, have only
been verified limited. The challenges may stem from the lack of collaboration
between research fields, such as medical sciences and computer science.

New research fields are starting to rise, including mobile health (mHealth),
telehealth, and using artificial intelligence (AI) and other digital interventions
in health care. In the past 20 years several studies involving diverse cross-
functional teams of designers, developers, clinicians, and other researchers have
investigated digital tools in health care. In fields where counseling is part of
the clinical workflow, there is a higher occurrence of technology usage. The
monsenso studies present a framework, where bipolar disorder patients can track
and log both passive data events, and qualitative data related to the mental state
of the patient [9, 8, 36]. Other studies show that wearables and patient-generated
data can support the treatment of dementia [135]. Rosenkilde et al. [115], shows
that wearable devices can compliment gold standard clinical data to investigate
habitual exercise in overweight patients. These studies demonstrate how patient-
generated data provides value in the clinical workflow. To solve the challenge of
participatory and personalized medicine a wider adaptation of technology should
be encouraged. The current clinical verification standards are geared towards
long-term medical interventions and lack the flexibility and agility of short-
term technological interventions. The technological interventions may better
address wellness aspects compared to medical interventions. Emphasizing that
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personalized medicine is both wellness and disease, and new insights should be
generated for both. User experience is an enabler for creating system value and
supports the participatory aspect of personalized medicine.

3.2 A Primer to User Experience

We encounter a variety of user experiences through our everyday life. Starting in
the morning with our alarm going off, and we ask our phone ’how’s the weather
today’, promptly receiving a weather forecast. To interacting with apps and
wearables through the day, and, till we lay in bed turning off our phones. We
are interconnected with technology, and with other humans. And woven in
between all of this is user experience.

The term User Experience started to surface in the early 2000s. UX stems from
human-computer interaction, usability, and interaction design. Hassenzahl and
Tractinsky [48] highlights UX is “Beyond Instrumental”, differentiating it from
usability and interaction design. Nielsen and Norman [104] describes UX as
“"User experience" encompasses all aspects of the end user’s interaction with
the company, its services, and its products.” And Garret [38], points out that
“every product that is used by someone has a user experience: newspapers,
ketchup bottles, reclining armchairs, cardigan sweaters”.

A primary goal of user experience is to move from the materialistic domain, to-
ward the experiential domain, where experiential is emphasized. In recent years
we have seen a shift from materialistic joy, towards experiential joy. Studies
have shown that experiential investments (i.e., travels, event tickets, a dinner)
make people happier than material purchases (i.e., electronic devices, clothing)
of the same value, where the value is denoted as a momentary value [136, 20].
A post-materialistic culture have emerged since the 1990s as a contrasting view
of the narcissistic culture developed through the 1980s. Interestingly, we rarely
seem to recall the momentary experience, as humans, we are too preoccupied
enjoying it at the moment. We do however recall experiences. Most married
couples feast on the vivid recall of their wedding day, and parents emotionally
describe the birth of their firstborn (and the next ones).

We arrive at a definition of UX consisting of both functional elements, such as
task-specific fulfillment, and aspects considering design, hedonics (pleasantness
and unpleasantness). I focus on the experience of encountering a meaningful
event (in Danish: "Oplevelse"), and less on the experience gained in that event
(in Danish: "Erfaring"). UX is a multidimensional model which links user
needs and values, with outcomes reflected in an interaction pattern whether
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the medium being a service, a product, or an experience. Thus, UX seeks
to enrich the human-computer interaction, by enriching the user, and by that
create memorable user experiences.

The key takeaway is user experiences are more than users, usability, and func-
tion. User experience is about experience and experiences.

3.2.1 A Short Note on Usability.

Usability is a primer for user experience founded on functionality, thus the
name usability, in contrast to user experience. The theories have overlapping
elements. Usability and UX are co-existing. The aim of usability is narrowing
and focusing, or generating tangible answers. Where UX is about being broad
and holistic, looking at the user journey, and the user and system as a holistic
interface. Preece, Rogers, and Sharp [108], addresses usability in the following
domains:

• effective to use (effectiveness)

• efficient to use (efficiency)

• safe to use (safety)

• having good utility (utility)

• easy to learn (learnability)

• easy to remember how to use (memorability)

User experience and usability have different outlooks. Usability seeks to help
the designer in answering specific questions. Examples of these are, "will this
system support users in being more effective?", or "will the user be guided to
avoid safety issues". User experience goals, on the other hand, encompasses a
range of emotions and felt experiences. Both desirable and undesirable. Such
goals include pleasantness, desirability, sociability and cognitive stimulation.
Today UX in many cases goes beyond the interaction, and also encompasses
what happens before, between and after interactions.

The following example illustrates the difference between usability and user expe-
rience. Asking Siri through voice commands, in general, good user experience,
which is limited by usability, by asking: "Hey Siri, please enable flight mode",
"Sorry, you’ll have to unlock your iPhone first." This is frustrating for the user
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when you can ask for weather updates or other trivial tasks vocally, but you
can’t enable flight mode. This example shows how usability overrules user ex-
perience. The aspect of security is weighted higher by the developer, than the
user experience. To address both the usability and user experience aspects, the
developers and designers could us voice-detection algorithms, to determine the
unique patterns of the talker, or a front facing camera could verify the user.
This, in turn, would create a more pleasant user experience.

User Experience in Perspective. UX is human-centered design, resting
between interaction design, visual communication, immersive experiences, and
well-designed digital platforms. UX has evolved from being primarily focused
on the visual experience, and today encompasses both the visual domain, the
auditory domain, and the cognitive & psychological domain. It is important
to acknowledge that UX is not only about the presentation of a media, but
rather about the experience one has while interacting or being supported by a
UX system. User experience stems largely from qualitative research and ob-
servations, including contextual observations, qualitative interviews, prototype
testing, with the goal of verifying early concepts, through late stages product
deliveries.

3.2.2 Lean UX

Lean UX, a term coined by Laura Klein, builds on the principles of user ex-
perience design and a lean paradigm. She states that Lean UX is composed
of the following items, hypotheses validation, user-centered, agile, data-driven
(measurable), Fast and Cheap (sometimes), and Iterative [72]. In essence, lean
UX strives to validate ideas, or hypotheses, at a very early stage, limiting the
commitment of sunk costs. Klein highlights three distinct phases. First, vali-
dation with a focus on validating whether users will buy your product or not.
This including early validation by interviewing, using questionnaires, and find-
ing pain points for the user. It is about finding the gap, and how to bridge the
gap through a product. A tool for this is landing pages, easy, fast and cheap to
produce, and can quickly verify if there is a user need. Secondly, design includ-
ing considering how to verify and test design and designing the product. User
stories and user story maps are tools that can support the design process. The
goal is to sketch out a design, which should verify if it addresses the user needs.
Wizard of Oz prototyping provide fast insights on features. Bootstrapping, and
design paradigms such as Google Material Design1 can accelerate the design
process - there is no need to reinvent the deep plate. Sketches, wireframes, and

1Google Material Design https://material.io/design/

https://material.io/design/
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prototypes can help to get closer to actualizing a product. Third, the product,
where a minimum viable product (MVP) is key to early success. The minimum
viable product has to be both minimum, i.e., address the pain point with little
complexity, and viable, i.e., feasible. The MVP tests the hypotheses while data
is collected to verify if the product is viable. The product phase also includes
working of requirements and building a cross-functional team that delivers. The
Lean UX process is illustrated in Figur 3.1.

The lean UX framework requires a highly agile process supporting several it-
erations to ensure pain points are addressed and value is added. It reflects a
process where designers and developers strives to build minimum viable prod-
ucts, in order to test and validate, rather than building perfect and beautiful
products – not that an MVP cannot be either, or both. The iterative process of
lean UX keeps looping through the three elements of designing, measuring and
learning, build on the lean framework.

PRODUCT/
SERVICE

DESIGN
create hypotheses, 

assumptions and “interfaces”

MEASURE
data collection

LEARN
(in)validate hypotheses, 

assumptions, ROI.

PRODUCT/
SERVICE

DATA

IDEAS

Figure 3.1: The lean loop, integrated with lean UX. The process is iterative,
and providing continuous insights. Adopted from Klein [72].

The desired outcome from the lean UX process is a minimum variable prod-
uct, which can validate hypotheses. This is in contrast to the maximum viable
product, where feature after feature is added. An example of a maximum vi-
able product is the recently re-launched taxing system EFI. Using a bottom-up
approach the Danish ministry of tax managed to write a specification of re-
quirements on several hundred pages. When the system was launched, it did
not live up to expectations. It was scrapped and re-designed. A key value-
adding feature was to collect old debts before they expired. However, rather
than focusing on the top-level goal, the focus was to make sure the specification
of requirements was fulfilled. A minimum viable product, on the other hand,
would have focused on validating key value adding parts of the project and their
dependencies. Collecting old debts would have been identified as a core issue,
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and the focus would have been to build a MVP which could rank, and collect
old debts while minimizing loss. A visual representation is illustrated in Figure
3.2.

Figure 3.2: By focusing on outcomes, or high level goals, rather than features,
experienced through tasks, design teams can build minimum viable
products to validate hypotheses in an agile and iterative process.
Courtesy Camilla Falk-Jensen [56].

Jeff Gothelf accurately states where UX is heading, and what the key principle
of lean UX is:

Features and services are outputs. The business goals they are meant
to achieve are outcomes. Lean UX measures progress in terms of ex-
plicitly defined business outcomes... By managing to outcomes (and
the progress made toward them), we gain insight into the efficacy of
the features we are building [43].

3.2.3 Defining Value Through User Story Maps

User story maps, not to confuse with user journeys, is a key concept in user
experience. A user story map is a tool which brings a hierarchical perspective
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into developing user experiences. User story maps serve as a platform for de-
signing products and as a communication tool. First, as a communication tool,
it creates a platform for shared understanding. Cross-functional teams lead to
an ongoing discussion between engineers, developers, designers, and UX design-
ers, and the user story map can help facilitate this discussion. User story maps
allow different groups of designers to actively participate and communicate in a
product or service development workflow. Second, user story maps functions as
a tool to validate hypotheses and concepts and strive to identify a glsmvp. User
story maps help scope user needs into activities while creating a hierarchy of
prioritized tasks. Third, user story maps are a storytelling tool. It helps identify
user goals and needs, and a storyline is build for different stakeholders. In the
process of using user story maps, both engineers and developers are encouraged
to actively partake in the shaping and development of the user story map. User
story map helps the stakeholders to detach themselves from a ’feature’ driven
mindset to a value-adding mindset. This support the team in keeping the big-
ger perspective in mind, and balancing it with feature development. It can also
be phrased as a top-down approach, which compliments the bottom-up driven
feature development. User story maps addresses a problem through a top-down
approach, driven by needs, goals, and pains, and fulfilled by features. After
the iterating once, the user story map can be evaluated bottom up, ensuring
technical feasibility.

User story maps consist of three distinct layers, goals, activities and tasks, that
are both vertical and horizontal dependant. The vertical dependencies, means
goals are dependent on activities, which in turn is dependent on activities. Using
user story maps in health care is illustrated by an example, visualized in Figure
3.3. Goals are related to user intentions, needs, and goals. The example is
drawn from a case study applying UX for heart failure patients [58]. In this
example, the user story maps addresses to stakeholders, nurse and patient, and
their interaction. The goal, indicated in blue, is better understanding symptoms
related to heart failure and A tailored treatment plan for the patient. Where the
first is primarily related to the patient and the latter to the nurse. Goals are
often vague, to allow for flexibility in the design process. Typically, less than a
handful of high-level goals are selected. Adding more increases the risk of either
not formulating it as goals, and rather formulate it as activities and tasks, or,
trying to build a product that becomes big and difficult to manage. Activities
are formalized after the high-level goals, indicated in yellow. The activities relate
to a series of actions that a user and system performs to address the high-level
goal. Continuing with the previous example, to better understand symptom the
user needs to self-report systems, get information about the symptoms and so
forth. To tailoring the treatment plant, the nurse must track weight and receive
fast feedback on a change in symptoms. The third layer is the tasks, marked in
white. Tasks are what engineers are familiar with, as they often reflect a feature
or a subset of features. Continuing with the previous example. The patient
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must report a range of symptoms such as breathlessness and sleeping. And to
track the weight, the weight needs to be entered, edited and reviewed.

This example of providing an easy overview of the patient stems from a goal.
This goal can either be hypothesized based on available information, or it can
stem from observational studies, workshops, and interviews. When the high-
level goals have been identified, they need to be sorted by how much value they
generate for the user. The user can and should be involved in this process by
providing input to the designer. After the goals have been prioritized, activities
to these goals can be provided. These activities are related to user input and
actions. These activities stem from the designers’ perspective and hypothesize
on how to provide value to the user. A goal usually has multiple activities
assigned.

Horizontal dependencies mean that if activity A provides input or data to activ-
ity B, then activity A must occur before activity B. As an example, information
about symptoms is only made available when the symptoms have been regis-
tered. The horizontal dependencies force the UX designer to evaluate the user
story map. If a task has already been addressed, there is no reason to repeat
it. These dependencies guard against unnecessary complexity and helps reduce
visual clutter from the user story map.

An inherent property of user story maps is the use of slicing. User story maps can
get out of hand, and grow with exponential speed. Actively using both horizontal
and vertical slicing, different development paths can be articulated. Slicing
appropriately helps define the minimum viable product, which may consist of
only one or two high level goals, and a few activities. Slicing helps prioritize
what is most important to build, in order to validate concepts or hypotheses.
For example, does activity A provide value. Validation of slices provides fast
and actionable insights in the development cycle. A minimum viable product is
illustrated in Figure 3.3.

A short note on mock-ups, prototypes, proof of concepts (PoCs), and
MVPs . The primary goals of these concepts are to have different levels of
complexity through the development phases. In the early phases, a focus on
defining both problem and value prompts the use of less complex solutions,
to generate insights. Later in the development process, more complexity can
be added, to closely resemble the final product or service. One concept is not
mutually exclusive, and most if not all are encouraged to use in the development
phase. I define the concepts as follows, in order to create a shared understanding.

In the perspective of UX, it is important to have a shared understanding of
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Figure 3.3: Example of a partial user story map highlighting the MVP for a
heart failure patient. Credit, Benjamin Johansen [58].

the different concepts. Mock-ups are focused on illustrating conceptual ideas
without being functional, a mock-up can be different ideas for screen elements,
used to investigate what goals are important for the user. Paper prototypes are
used similar early in the process of development and can provide insights fast.
Between PoCs and prototypes is the concept of wizard of Oz solutions. A wizard
of Oz solution is a semi-functional prototype, where a human is emulating ac-
tions performed by a system. As an example, you wish to create a calendar and
location-based concept, to propose restaurants to visits while you are exploring
a new neighborhood. To verify this, you find a handful of testers. Rather than
developing a functional system, you use third-party services, such as access to
the test subject calendar and a map with access to their location. You then
add events to simulate how the system would do it. Wizard of Oz solutions
can be effective as the test user may believe that the concept tested is working.
The test user can then focus on providing input on the user experience, rather
than the technical limitations. PoCs can act as a tool to validate concepts, as
the name implies. PoCs may lack the technical feasibility, and is used primarily
to validate concepts, ideas, and goals. They may be a bit further than mock-
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ups. Prototypes add the missing functionality after the PoC have been verified.
Adding functionality leads towards a prototype. Prototypes do not necessarily
have to be digital or fully functional. Sometimes paper prototypes give more
insight into validation than a technical counterpart does. The last way of testing
and validating hypotheses are building a MVP. Based on the earlier validations,
and iterative updates of the user story map, it should now be clear what goals
provide value. The next step is building a MVP which can be tested in real life
settings. The MVP have to be technical feasible, but does not have to be the
end product. Again, the importance is to validate hypotheses. If the designers,
developers and customers are happy, work towards an alpha release can now
start.

3.2.4 Microinteractions

Microinteractions are the small interactions which ensure a pleasant user expe-
rience. Saffer [118] describes microinteractions as

Microinteractions differ from features in both their size and scope.
Features tend to be complex (multiuse case), time-consuming, and
cognitively engaging. Microinteractions, on the other hand, is sim-
ple, brief, and should be nearly effortless..

Microinteractions may not the essence of a product, but is what can make or
break a user interaction. As an example, early in my Ph.D. studies, I was work-
ing prototyping chatbots for user interactions. The idea was to change setting
on the hearing aids, by using third-party services. After a couple of months, we
finally managed to build a prototype, where the user through text commands
could control the hearing aids. The prototype was functional, we could change
settings through text, we were thrilled, but had overlooked a seemingly minor
detail. The delay in time between interaction and action. At best the users
were annoyed and wouldn’t use the system we developed, and at worse they
were furious. We understood that the interaction paradigm was good, but it
had one major flaw. It took 3-5 seconds before the user received auditory feed-
back, despite the visual feedback telling them the change had occurred. This
mismatch between expectations and executions created a poor user experience.
Microinteractions are not only about designing and executing interactions, but
they are also about identifying when and how they provide value.

Microinteractions consist of four distinct parameters, Trigger, rules, feedback,
and loops & modes, as illustrated in Figure 3.4. Triggers initiate the microinter-
action, rules determine how the microinteraction works, feedback shows how the
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rules work, and loops and modes are metarules that affect the microinteraction.
The trigger is initiated by the user. In the chatbot example, the user starts

Figure 3.4: Structure and flow of microinteractions. (Courtesy Dan Saffer
[118])

a conversation with the chatbot, and ask for a setting update. Triggers can
be both physical or non-physical and provide the starting point for a microin-
teraction. However, triggers do not need to be user initiated and is increasing
system initiated. This is based on the device initiating a change when certain
conditions are met. For a hearing aid, the noise reduction processor automati-
cally adjusts the SNR to provide the user with more speech intelligibility. Rules
define how the input, a trigger, performs an action to generate an output. For
the hearing aids, the rule governs, that if the SNR is below a certain threshold,
then increase settings that provide better SNR. For the chatbot case, when a
user selects a certain set of actions, several rules came into action, one keeping
an account of the answers provided, and a second one deciding which parameter
to change. Rules are inherently invisible for the user, while feedback provides
insights into how rules manipulate triggers. Feedback can take many forms, the
most common are visual, auditory and haptic. In the case of a hearing aid, most
of the feedback comes from acoustics. A hearing aid may provide a brief series
of ’dings’ to indicate the user that settings have changed. In the chatbot case,
the feedback mismatch defeated the purpose of the microinteraction. The visual
feedback told the user that a change had occurred, and the user might have put
away their phone. And five seconds later loud acoustical feedback in the form of
’dings’ would occur. The user would then have to match the acoustical feedback
with the auditory feedback to confirm the right settings were selected. Lastly,
loops and modes are meta-rules. These instances can happen over time or based
on conditional changes. Loops are similar to a while statement in programming,
and if nothing changes, then nothing happens. While modes reflect a fork in a
microinteraction, and should be avoided if possible. Changing between physical
button changes and an interactive display are an example of modes. Modes take
you away to perform a subtask, before returning to the main task.
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3.2.5 Elements of Value

Creating value have been mentioned several times, as a key element in (lean)
user experience. Value is a cornerstone in user experience and goes hand in
hand with good experiences. If there is a lack of value creation, the product
becomes functional, but not valuable. Once the user doesn’t believe a perceived
value is fulfilled, there is a high likelihood of terminating the use of a product or
service. The robotic seal PARO serve as an example. It is possible to provide
elders with a teddy bear, which may create comfort. Adding a layer of intelli-
gence and robotics creates value. Now the teddy bear is more than a functional
item, it becomes animal-like. Meaning, the elders bond with the animal, cares
for it, and look forward to interacting with it. Almquist, Senior and Bloch [3]
describes four elements of assessing value, based on Marlows pyramid of needs,
and appropriately named the value pyramid. These level are the functional,
emotional, life-changing and social impact, and consist of 36 elements in total.
Studying several big cooperation’s and their offerings shows that the most suc-
cessful companies provide several elements of value, across several levels. The
elements of value are geared towards generating business value and also fit into
the user experience domain. Actively using the elements of value in ideation
sessions provides insight into which areas should be prioritized. Often it re-
quires stakeholders to identify where value is created. Then, several concepts
can be developed, deployed and tested by end users. As an example, the current
solution from several hearing aid companies is a companion app to their hearing
aids. The companion app is a remote control. Reviews on Google Play store
and Apple app store reveals a big divide between the manufactures perceived
value, and the perceived value from the end user.

3.2.6 Quantifying User Experience

User experience has been quantified through measuring a number of clicks on
web pages, to tracing eye movements on screens, to quantify search patterns or
areas of interest. But how do we quantify human behavior in a cohort of hu-
mans affected by impairments, such as hearing loss? However, with the recent
increase in mobile computational power, accessibility to high performing intel-
ligent systems build on machine learning and deep learning, the vast amount of
data, including personal data being logged around the clock, and the formal-
ization of the field of "data science" in the early 2010s, we are now in a new
era of penalization and user experiences. We have to reconsider our view on
user experience. To drive UX in the future we need to include and embrace the
elements of scalability, agility, and data-driven insights from human-generated
interactions. We cannot solely rely on the classic UX toolbox and need to build
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new toolboxes that can pool data from thousands, and even millions of users,
that can generate insights from users, either on a group level or individual level,
and which dynamically adapt to the user context and intents to create unique
user experience. The technological maturity we have reached allows us to cre-
ate new user experiences, we need only to embrace it, which is easier said than
done. The future UX designer needs to extend the toolbox and will be able to
work hand-in-hand with data scientist, machine- and deep learning specialist,
and can translate the user needs into complex models, which can be translated
into tangible AI models.

3.3 Data Driven User Experience for Health Care

Data-driven user experience is where data science meets user experience, and
data science becomes human-centered, memorable, and enriched with humans
in the loop. It is all about creating value for humans with the support of
technology. Technology is a mean, not the goal. The starting point should be
humans, their goals and values, and to identify how technology best support
humans.

Data-driven user experience is about personalizing services to patients based
on patient-generated data. Data-driven UX tries to address some challenges
participatory medicine is facing. Data-driven UX about enhancing the com-
munication between clinicians and patients. Making patients more involved in
their treatment. Data is an enabler that can spark conversation and which sup-
ports the decision-making process of clinicians. Data-driven UX works as an
enabler between clinicians and patients, and it provides a foundation for devel-
oping intelligent personalized systems to better support the clinical workflow in
health care settings. The model is based on the experimental work and observa-
tions done in conjunctions with this Ph.D. thesis. The theoretical background
and framework stem from elements of design thinking, human-centered product
development, and lean UX. It is an iterative process with overlapping phases,
and even though it is here projected as a linear process, in reality, the process
is more circular, with breaks and jumps. The model is thought of a starting
guideline to help developers and designers creating meaningful user experiences
in health care settings while considering key stakeholders, such as patients and
health care professionals. The model is not limited to hearing health care and
can be used across health care domains. It does have a technological focus, and
can also be applied to validate physical products and services. Based on this I
propose the following elements, each described in detail.

Emphasize This element builds on observations and data collected. The goal
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of the emphasize phase is to identify pain points and challenges. Questions
asked include, why does this matter, what is the impact, how is it done to-
day. This is an observational part of the model, aimed at non-judgemental
observations to help formalize hypotheses.
A wide variety of observational techniques can be used in the emphasize
stage. Anthropological and ethnographic studies can help designers ob-
serve a new paradigm domain, through observational studies. Following a
’fly on the wall’ approach, where the researchers tag along with a health
care professional through a working routine. This approach may highlight
pain points in the process for both health care professionals and the pa-
tient. Interview approaches can also be applied. Talk out loud sessions,
which can both be used to explore or to validate designs, forces the inter-
viewee to word their thoughts. This approach can be effective in revealing
subconscious decision-making. Digital driven approaches including col-
lecting data. This data may already be collected and available through
existing devices. For example, activity and motion patterns, coupled with
geolocation data, are useful reassures to evaluate the activity patterns of
depressed patients. The data can help identify patterns. Both the dia-
logue based and data-based approaches can be combined, to highlight the
pain points in the treatment process. The important thing of the empha-
size phase is to better understand the context and problem investigated.
It is not important which tool is used. The tools should be selected based
on availability, and of the assumptions of the researcher on how to best
create insights.

Define goals and values Based on the observations the designers and devel-
opers identify the goals and values of the various stakeholders. The result
should be a better understanding of what drives and motivates the stake-
holders, and how this can be used to create a great user experience.
From the observational studies, the researcher should have a better un-
derstanding of the context and underlying problems, challenges and pain
points. The next step is to identify what the goals and values are of the
various stakeholders. Different stakeholders may have different goals, a
health care professional may strive to see as many patients as possible,
while the patient wants the most accurate information. The stakeholders
may also share common goals. Both health care professionals and patients
may wish to reduce treatment time or reduce uncertainty. User story maps
is a tool that can help identify and prioritize stakeholder goals. Explic-
itly mapping goals help researchers to formalize the goals. This creates a
shared understanding, and serve as a communicative tool, which can fa-
cilitate communication in the research team and calibrate the team. This
process is iterative. The team may agree at the first session, or it may take
several sessions to agree. It can also be coupled with follow-up sessions
between researchers and stakeholders, and thus work as a validation tool.
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However, it should be highlighted that this is a starting point and that
the next phases must not be forgotten.

Formalize hypotheses The next crucial step is defining hypotheses. This step
is central to the model and cannot be neglected. Based on observations
and collected data, new questions can be asked. The goal is to formulate
less than a handful of hypotheses to be tested and to rank them in order
of perceived importance. This steps also include articulating assumption
and sharing them between the team members.

The research team must consider which hypotheses will be evaluated. It
can range from simple to complex hypotheses. The hypotheses may appear
easy to state and difficult to answer. If the hypothesis is ’Design sugges-
tion a is more efficient than the existing interface’, then the team must
consider and define efficiency, is it reduction in clicks, is it having a higher
patient throughput, or is it something completely different? The beauty
of defining hypotheses is that they create insights, both to the problem
space and the solution space. Through validation some hypotheses are
scraped – think off: ’yes it works, but, I can’t see myself using it’. The
perceived value have to be higher than the perceived trade-off. Building
hypotheses are the backbone of data-driven UX. Hypotheses should reflect
value generating insights, in case they do not, they should be reformulated
or removed.

Design, build and validate This step is about building interfaces that can
validate hypotheses. Through the iterative process, this can range from
paper-prototypes to minimum viable products. The importance here is
to match the interface to hypotheses and to make sure questions are an-
swered.

After clarifying what needs to be validated, through the formalization of
hypotheses, building systems is the next step. Building interfaces which
answers hypotheses can range from a wide variety of complexities. In the
case of data-driven UX it is important to keep in mind, that it is highly
iterative, and that the system build should reflect this. This means that
in the beginning of a development product, paper-prototypes may be ideal
to verify hypotheses. In the thesis, UX for heart failure, using paper based
cards yielded more insights than the equivalent of a paper-prototype on
a phone. The lessons learned, low fidelity prototypes is more powerful in
the early design stages, where the hypotheses are more vague and build
on many unknowns. In the later stages, high fidelity prototypes, and even
working prototypes, can be used to identify value adding elements. For the
researcher the point is to always focus on validating hypotheses, and doing
so with the least investment. Adding value to the validation phase can
also be done through data collection. Meaning, when technology allows
for it, then use it to collect data. Tools like rapid prototyping, “which
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allows crucial design decisions as early as possible” ([91]), can effectively
be used. The goal of rapid prototyping is to provide early insights, and
may compromise on scalability.

Analyze The goal is to validate if the interface creates value by validating
hypotheses. The goal is here to validate or invalidate hypotheses based
on the insights. New questions may arise, that needs to be answered, and
then thus this ties in with the observational nature of the emphasize step.

Analysis of insights can be done by evaluating the answers of a hypothesis.
It frequently occurs more questions are raised than answered, and this
guides the researcher to focal points.

To sum up, the focus of data-driven UX is to provide great user experiences and
enable participatory medicine. Data-driven UX is an iterative process, with
frequent validation, which seeks to reduce uncertainty. It has a user-centered
perspective, where technology is a mean to the goal, and not the goal itself.
Sometimes inferior technology creates the best user experiences. Apple exem-
plifies this through its product offerings, which is priced higher than competitors,
and sold through branding and perceived luxury value, rather than functional
value. If the functional value is what people buy, then Apple would have a
limited market share.

The data-driven UX model is the underlying guiding principles of this thesis.
Each step may not be explicitly stated. The reader may notice how various
points of the project highlights different processes.

3.3.1 Consideration for Data Driven UX

Data-driven UX strives to reduce complexity to allow for fluency and flexibility
in the validation stage. Complexity should be at an adequate level and is an
important design factor. However, there may be simpler solutions to validating
the problem. Take for example the case described later with using rapid pro-
totyping. The hypothesis is people are different and interact differently with
their hearing devices. The underlying assumption is that the difference in in-
teraction patterns reflects the different personality and behavioral traits, and
may also be an indicator of being exposed to different contextual sound envi-
ronments. Let’s investigate how two different development teams approach the
task, denoted team a, and team b. Team a have a classic IT development per-
spective. They start out writing a specification of requirements, with a focus
on features, also known as outputs. They then calculate the required amount
of engineering, design, UX, etc., resources to develop the system. Engineering a
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system from scratch increases complexity, cost and resource allocation. Team b
takes an alternative approach. They choose to focus on validating hypothesis,
rather than building a fully functional system. Their choices include existing
3rd party frameworks. Using standard interfaces and offerings, team B reduce
complexity, development costs and time. And they verify the hypotheses earlier
than engineering team a. There are drawbacks of both approaches, team a have
a longer lead time, and needs more stakeholder management. They do however
get a more robust system, and if the framework is flexible enough, they have a
foundation to build on later. If it turns out their assumptions were wrong, they
may have to rebuild the system or build a new system. Team b quickly validates
their hypotheses and want to scale up. They quickly realize that their solution
is not scalable nor deployable. They then have to interact with team a to build a
functioning system. The conclusion of complexity is, in the early design stages,
to stay lean one should consider lower complexity to validate hypotheses. As
the development stages progress, the complexity can increase. The foundation
is laid by the lean data-driven process, and the agile development then supports
the work carried out earlier. All projects should have varying levels of complex-
ity, depending on the scope and the maturity of the design process. Too high
complexity early limits flexibility, while little complexity late limits scalability
and deployability.

Stakeholder management The last consideration in data-driven UX is stake-
holder management. Stakeholder management plays a peripheral role in data-
driven UX, though an important role. For a holistic view on data-driven manage-
ment, one needs to consider, that it is rarely the designers, developers or users,
that have the last say. This becomes evident in the health care case. Take the
data-driven UX process within health care. Working with cross-functional teams
means a big variety of stakeholders have to be involved. As earlier mentioned, in
the scoping phase doctors, nurses, hospital management, even politicians may
need to be involved. Despite the best intentions from the designers, the health
care professionals may have a different outlook. Managing stakeholders means
asking the right questions. For scoping it means asking, how does this creates
value for you and your employees, does this make it more efficient, can we save
time, etc. It also deals with the actions required in organizations, where middle-
and top management controls resource allocation. If no resources are granted,
no development happens. When validating yet other stakeholders have to be
engaged. Here users play a central role. And yet again, health care professional
should also be included, software developers, and whoever else is important. As
one may guess, different stakeholders are important at different stages of the
development. Stakeholder management is about valuing the variety of stake-
holders, and utilizing stakeholders at the right time. As data-driven UX is an
iterative process, so is stakeholder management. And hypotheses can be vali-
dated across various stakeholders, or can be used to rule in or out stakeholders.
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3.4 Summary

This chapter highlights how UX can be used in health care to address the chal-
lenges posed in participatory medicine. Considerations to the history of UX and
why UX can be an enabler, by providing fast insights and value. A few prominent
UX tools have been mentioned, which can be used to build prototypes to verify
the need for participatory medicine. This includes rapid prototyping, which will
be used to validate hypotheses related to hearing aid users program and volume
interactions. Iterative lean UX approaches to creating new hypotheses, and new
ways to validate these. Learning from interviews with hearing aid users, on how
they perceive using hearing aids and how they relate their behavior to the usage.

Data-driven user experience relies on the UX methodology, and include a foun-
dation of data. In combination with intelligent systems, the data provides value
to health care workers and users. Data-driven UX bridges the gap between
clinical workflows and technology. The data will provide valuable insights, in
collaboration with hearing aid users. It will provide stepping stones to the future
of personalized hearing health care.
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Chapter 4

Hearing in Context

This chapter introduces context and the three parts of context, physical, user
and computing. The focus is on physical context and how contextual aware
devices can enrich the user experience for hearing impaired users. The Meriam-
Webster dictionary defines Context as “the interrelated conditions in which
something exists or occurs”. Context is a central theme in understanding why
hearing aids fail in everyday use. The physical context for hearing aid users
are distorted, and hearing aids help with augmenting the distorted signal. This
chapter illustrates how contextual aware devices provide input to users and hear-
ing care professionals. A major challenge is the neglect of individual context.
Resulting in an average setting for a non-average behavior. The chapter uses
examples of physical context drawn from the three contributions: "Modeling
User Intents as Context in Smartphone-connected Hearing Aids" Appendix C,
"Learning preferences and soundscapes for augmented hearing" Appendix G and
"Inferring User Intents from Motion in Hearing Healthcare" Appendix D. These
studies highlight how time, location and activity affect the physical context, and
supplements the acoustical knowledge.

Several experiments have shown that normal-hearing listeners have a signal-to-
noise ratio, of up to 6 dB improvement, compared to hearing impaired. Killion
[70], found that with a slight 30 dB hearing loss a 4 dB deficit in SNR can
be expected, degrading with 1 dB per 10 dB frequency hearing loss. When
hearing-impaired use a hearing aid with noise reduction, they have similar per-



48 Hearing in Context

formance [12]. However, humans, also those who suffer from hearing loss, rarely
navigate with sound alone. Several contextual cues are used to change the per-
ception of sound. For example, the visual and auditory cortex interconnects in
sound processing. Also, social context alters perception. At a children birth-
day a more comfortable noise reducing setting may be preferred, to attenuate
the squeals of playing children. While at a jazz restaurant, with similar noise
level and degraded SNR, the preference may be to enhance speech intelligibility
by enhancing higher frequency, rather than improving SNR and degrading the
ambiance experience.

4.1 Context Aware Computing

Every day, we are exposed to changing environments, social organization, cul-
ture, and different computing systems. Humans use the wealth of information
available at the fingertips consciously and unconsciously. A human makes thou-
sands of decision from dusk to dawn. The world is navigated based on both
external and internal stimuli. The constant exposure to changes in both the en-
vironment, the social bonds and with technology, is what is defined as context.
Context is ubiquitous and surrounds humans just like air does. It is not possible
to navigate the world without relying on contextual information.
Hearing impaired listener misses out on contextual cues. This includes cues
related to navigating the world, such as acoustical cues, which reduces the sen-
sory experiences. At worst, it means missing out on warning signals such as
squealing tires or sirens. Hearing impaired listeners have a decreased sensitivity
negatively affecting speech intelligibility. This is caused by missing out on con-
textual cues, including temporal shifts, distorted interaural intensity difference
(IID), and distorted interaural time difference (ITD). Where IID is caused by
the shadowing effect of the head, and relates to high frequency distortion. ITD
is caused by the frequency difference between high and low frequencies [95].
Degraded hearing results in difficulties with source location, caused by IID and
ITD. On a personal level, missing out on contextual cues included in speech
reduces quality of life and causes higher rates of social isolation and depression.
Context affects humans, and lack of contextual cues affect hearing-impaired lis-
teners to a higher extent. What is the definition of context in context aware
computing?

Dey & Abowd, define context as computing environment, user environment, and
physical environment. Dey, and Dey & Abowd draw a similar conclusion from
previous work and describes context as

Context is any information that can be used to characterize the sit-
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uation of an entity. An entity is a person, place, or object that is
considered relevant to the interaction between a user and an appli-
cation, including the user and application themselves ([27, 28]).

A meta-study conducted by Bauer and Novotny [10] defines two higher levels of
context, respectively generic and domain-specific context. Within the generic
context, there are three sub-categories, social context, technology context, and
physical context. I define context by merging the previous description and add
the notion that if a piece of information characterizes a situation, then that is
context. I use the three following descriptors:

Social context the user, their interests goals, background, demographics, so-
ciographics etc. Also, includes the social and cultural environment, defined
by norms, culture and organization. The social context carries informa-
tion about the social relations and organizations. Most description of
social context comes from the fields of anthropology and sociology, and is
also used within ubiquitous and pervasive computing.

Physical context the physical atmospheric environment. This includes ob-
servable and measurable phenomena including sound, light and luminos-
ity, pressure, and temperature, indoor & outdoor, and related semantic
labels. Time measured in seconds, minutes, hours, days, and so on, and
also time as categorical labels including weekdays & weekends, morning,
noon, evening, events, among others. The context of movement, such
as speed, velocity, orientation, rotation and categorical labels to motion,
such as running, in vehicle and cycling. Location includes descriptors of
geolocation, country, region, proximity.

Computing context the technology power, interface, connectivity, network-
ing capabilities, security, efficiency, awareness etc. Some devices are ubiq-
uitous such as servers, while others are present in our everyday such as
smartphones.

For example, the social context of the user plays a key role in understanding
how hearing impaired navigates in a contextual rich world. Different norms
warrant different usage of the hearing aids. The changing context of a work
environment, moving from a quiet office to a loud meeting, leads to a different
use of the hearing aids. It is worth to consider that culture and norms may
hinder the acceptance and usage of a hearing aid. The user plays a central role,
which cannot merely be described through an audiogram. The user context is
built on demographics, technology acceptance and usage, habits, and skill level,
among others. User context can be reduced in dimensionality, and are unique
for each individual, making it difficult to generalize, and average across all users.
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Context is a central theme in personalizing hearing health care. Context for
personalizing hearing health care primarily consist of physical context and user
context, and to a smaller degree computing context. Hearing aids augment sound
and affect the perception of context. Context on the other hand directly affects
the hearing aid output. If the environment is noisy different settings are engaged
compared to a quiet environment. The context can also be used to generate
feedback when refitting the hearing aids. An overview of how physical context
fit into personalizing hearing care is illustrated in Figure 4.1.

Cognitive
Audiogram

SNR

Screening

Hearing aid fitting
Counceling

Training

Hearing aid 
performance

Adaptive interface

USER FEEDBACK
system & ‘clinician’

CONTEXT
physical & user

Users Like Me

Optimized first fit

Hearing aid fitting

Feedback and refitting

Personalized hearing aid usage

Figure 4.1: Contextual aware devices are a central theme in personalizing
hearing health care, highlighted in orange. The context is af-
fected by the output from the hearing aids, and can be used to
give feedback to the hearing aid user and clinician.

4.2 Mobile and Pervasive Computing

In 1991, Mark Wieser [142] introduced a vision of intelligent environments, with
systems aware of changing context, and with an observed change in behavior.
The main takeaways from Weiser are: computers need to disappear and become
an unconscious thought of interaction, computing devices need to be intercon-
nected and to compliment interactions, and humans have to accept computers
as an embedded part of their everyday life. There is still a long way to go to
embrace Weiser’s vision. Smartphones and wearables have become ubiquitous
sensor devices providing a wealth of insights about the user. IoT devices are
penetrating the production industry, providing timely and relevant information
about machine performance. More and more data accumulates every day. Yet,
we are still aware of and dependent on our devices. People are glued to the
screen of smartphones, and treat it as a pocketable laptop computer, rather
than a ubiquitous device. Quite the opposite of Weiser’s vision. The future of
computing systems needs to become embedded in everyday life. The devices of
Weiser’s vision should not be competing for our attention and act as distrac-
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tions. Rather, they should augment humans, through context-awareness and
with awareness of human intents.

For hearing aids, this may be a utopia, but being a ubiquitous device is the main
driver for hearing aid acceptance. How do we get hearing aids to conform to a
ubiquitous and pervasive environment? The question remains, how do hearing
aid augment humans, and yet be ubiquitous and pervasive.

Mark Weiser ends his article by stating: “Machines that fit the human environ-
ment instead of forcing humans to enter theirs will make using a computer as
refreshing as a walk in the woods” ([142]). And I hope that we can move towards
this vision for hearing health care. Augmenting human hearing, while making
the intervention desirable. To augmenting hearing aids relies on context-aware,
interconnected, intent-aware devices.

4.3 Hearing Aids as Context-Aware Devices

The limitations of hearing aids as context-aware devices stem from historical
form factor and hardware limitations. Today hearing aids consider only one
contextual parameter, audio. Historically hearing aids did not have a support-
ive computing context to provide nuanced contextual information. That has
changed, and today hearing aids work as Internet of things (IoT) devices, which
can connect to third-party services and provide a wealth of contextual infor-
mation. Including location, WiFi, or activity data from other connected IoT
devices and wearables. Providing access to auditory features, hearing aids work
as a sensor device. Intelligent systems can leverage the combined input to create
better user experiences. An example of simple systems using multimodal data is
weather apps. By providing location, weather services can provide local forecast
fast and convenient. Using historical data collected across multiple sites, the
service can forecast weather including wind condition, humidity, and chance of
precipitation.

The computing context is rapidly changing. Smartphones have the comput-
ing power of personal computers. Smartphones host an array of sensors, in-
cluding location, motion sensors such as gyroscopes and accelerometers, sound
sensors through multiple microphones, images sensors, biometric sensors, am-
bient light sensors, are the most common sensors. Most come with multiple
central processing units (CPUs) and the newer versions come with dedicated
graphics processing units (GPUs) carrying out machine learning, deep learning,
and artificial intelligence tasks. The smartphones are interconnected through
various radio antennas, ensuring connectivity with local devices through Blue-
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tooth and near field communication (NFC), streaming data through WiFi access
points, and connecting remotely to the Internet through 4G and 5G technology.
Context-aware systems consist of pairing smartphones and wearable devices,
with temperature sensors, motion sensor, and environmental sensors. Or even
independent Internet of things, with embedded intelligence, called the Internet
of Things (IoT) devices. In summary, humans have adopted the computing con-
text and are feeding it with contextual data. Context-aware devices are limited
by limited battery life, and to some extent optimized user interactions. Adding
a layer of intelligence brings these systems closer to becoming context-aware and
better adapt to the user. The trends we have observed is increasingly sophis-
ticated systems, termed "adaptive", "context-aware", "intelligent", etc. The
intersection of these systems is context. They are further augmented with in-
telligence, from simple Boolean operations to modern systems build on massive
data sets, using weeks of computation to train.

What composes augmentation of hearing through intelligent context-aware sys-
tems? There are several elements. First, hearing aids are seen as sound ma-
nipulators, which are aware of the sound environment. Secondly, in this set-
ting context relates to human, device, and surroundings. Thirdly, intelligent
context-aware systems relate to systems that are interconnected, can communi-
cate between systems and humans and are context-aware, with a knowledge of
where they are, what is happening, and how they can interact with the context.

A hearing aid is a context-aware device. Hearing aids rely solely on the contex-
tual information provided from an acoustical signal. From a microphone array
of two or more microphones, the hearing aids can estimate sound pressure level,
directionality, and distinguish between noise and a signal. The primary research
focus has been on optimizing sound input using various algorithms on embedded
systems, and match a sound output to a degraded hearing. These systems have
several assumptions build on physical models of human hearing and acoustical
properties. Hearing aids are sophisticated head worn wearables with certain
limitation. The form factor needs to be small. This limits the physical comput-
ing components in the device. The battery is the biggest physical component,
and hearing aids are designed around batteries. The assumptions are that a
smaller form factor and longer battery life are the most valued attributes of a
hearing aid. A requirement is that the battery must last several days, prefer-
ably a week. This notion may stem from the high cost of dedicated batteries
or from a usability requirement. Such requirements have limited the develop-
ment of hearing aids, despite the vast amount of know-how within the industry.
Hearing aids are considered independent, embedded systems, restricted to the
current development paradigm. There is a need to reconsider the ecosystem
around hearing aids and how to make the hearing aids’ context aware. Drawing
analogy to Henry Ford, who asked what people wanted, and the prompt answer
was more horses. People could not imagine a technology that didn’t require
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horses and would be more powerful than the existing technology. Hearing aids
are facing the same glass ceiling, and are ripe for disruption.

One way to augment the computing context of hearing aids is to utilize con-
nected devices. With the recent advancement of increased connectivity, hearing
aids can connect to smartphones via Bluetooth of Bluetooth low energy. This
enables a paradigm shift in the computational context for hearing care. Hear-
ing aids can become an acoustical sensor, which streams audio to a pocketable
computer, or smartphone. The computing device can analyze the signal, and
provide feedback to the user and the hearing aid. Furthermore, moving away
from embedded systems, to software ecosystems, would provide the foundations
of context-aware hearing aids, which would use a multitude of sensory informa-
tion to better understand context. This is a dream. Albeit, we will demonstrate
examples of how hearing aids can be used as wearables, or hearables (Section
2.2.2) of the future.

4.3.1 Physical Context for Hearing Aid Users

Physical context relates to the surrounding conditions. This includes sound,
lighting, environmental factors like sun and wind, atmosphere, and venue type.
The main driver of hearing aids today is related to physical context. The sound
is the primary factor. People suffering from hearing loss have a different sound
perception than normal listeners. As sound perception is degraded, it has an
effect on several levels. Signal to noise performance is dropping, reverberation
is perceived differently, room acoustics changes, and even the perception of
the atmosphere may change. For the past many years the focus has been on
augmenting human hearing, to improve speech intelligibility. Measures of speech
intelligibility are the gold standard within hearing research. This procedure
is carried out in an anechoic chamber, where noise can be added artificially.
However, most experience sound in a physical environment, where ambiance
and social context have an influence on the performance. People end up with
hearing aids that perform well for one auditory condition, such as speech in
noise, or with reverberation. We argue that the physical context is more than
the sound. Using a pair of hearing aids test subjects collect information related
to acoustical features. The signal and data received has been pre-processed by
the hearing aid algorithms, and is the hearing aid output. This feature vector
contains information related to signal-to-noise ratio, noise levels, directionality,
and a contextual flag related to the type of sound (including speech, noise and
quiet). Using contextual data collected by hearing aid users, we investigate what
an everyday look like for a hearing impaired listener.

We utilize the sensing capabilities of smartphones and hearing aids to generate
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information related to the physical context. The smartphone provides informa-
tion related to location, based on GPS signal, on movement and activity type.
The hearing aids provide information about the acoustical environment, includ-
ing labels of the environment type. The hearing aids provide a contextual sound
vector, with the following features:

Sound pressure level estimated loudness in dB

Noise floor the tracked sum of all sources not classified as speech.

Modulation envelope tracking the envelope of the acoustical signal. Corre-
sponds to a line drawn from the top peaks of the signal.

Modulation index estimated difference between the modulation envelope and
the noise floor.

Signal-to-noise ratio estimated as the difference between sound pressure level
and noise floor.

The hearing aids capture this vector once a minute. Due to hardware limitations,
the sound feature vector is used rather than a spectrogram. Limiting post sound
processing and customization, and potentially the choice of learning algorithms
applied later. However, it is memory light, low in power consumption, and
privacy preserving. Based on the data we create four clusters, using k-means
clustering algorithm [46]. We find four clusters respectively, C1: "quiet", C2:
"speech in noise", C3: "clear speech" and C4: "normal speech". The clusters
are compared with the soundscape labels provided by the hearing aids. The
compositions is shown in Figure 4.2. It can be observed that the clusters we
find contain a mixture of elements from the hearing aid label flags. Cluster 1 is
primarily made up of the ’quiet’ flag. Cluster 2 is a mixture of "speech in noise"
and "noise". Cluster 3 primarily consist of "speech in quiet". And, cluster 4
has a smaller percentage of "speech in quiet", and a larger percentage of "quiet"
and "noise".

We compare the clusters with the soundscape vector, by examining the centroid
of the clusters. Cluster 1, "quiet", have low levels of sound pressure level and
noise floor. Cluster 2, "speech in noise", captures higher levels of noise floor and
modulation envelope, and the flags ’speech in the noise’ and ’noise’. Cluster 3,
"clear speech", captures high values of both sound pressure level and signal-
to-noise ratio, Cluster 4, "normal speech", have similar attributes as cluster 3,
with sound vector values closer to the mean.

It is hypothesized that humans encounter different contextual environments.
And that these environments vary over time. To investigate this, two test sub-
jects collected data over a period of six weeks. The percentage-wise distribution
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Figure 4.2: Four clusters, C1-C4 and their composition of the original hearing
aid labels. C1: quiet, C2: speech in noise, C3: clear speech and
C4: normal speech [73].

of average hourly usage is illustrated in Figure 4.3. The graph visually indicates
a difference in exposure to acoustical environments for the two subjects. Sub-
ject 1 is primarily exposed to speech related content, both normal speech, and
speech in noise. After 5 PM, the amount of speech in noise decreases, and the
exposure of the quiet environment increases. Subject 2 has a balanced exposure
to speech and quiet environments throughout the day. Between 4 PM and 19
PM, the subject have a higher exposure to speech compared to the rest of the
day.

The soundscape vector provides insights into the everyday life of contextual au-
ditory exposure. It gives a sense of what kind of life a person is living, which
can help in personalizing the treatment for the person. In clinical settings, the
clinician can explore what the different acoustical environments mean for the
hearing aid user. Intelligent systems could potentially use soundscape data an-
notated with user labels and feedback, to optimize hearing aid settings. The
two subjects experience a changing context over a day. The current medium
setting may fit neither of these subjects. For subject 1, a personalized setting
emphasizing speech, and a second setting reducing noise, may be a better fit.
Whereas subject 2 may prefer a medium balanced setting, supplemented by
either a setting providing ambiance or a speech focused setting. Data can po-
tentially generate insights and contextual awareness. In turn, this can be used
both clinically by an audiologist, or hearing care professional. Both for new and
first-time users and for experienced users who return for adjustments. Alterna-
tively, this can be used for long term optimization of hearing aid settings based
on the changing needs, and context, of the end user. Giving access and insights
to the contextual auditory environment allow users to compare their perceived
auditory exposure with the hearing aid observed auditory features.

4.3.2 Time as a Contextual Parameter

Physical context is more than the auditory soundscape. Expanding the sensing
capabilities of hearing aids with location, movement, activity and time, gives a
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Figure 4.3: Contextual auditory environment for subject 1 (top) and subject 2
(bottom), averaged over six weeks of usage. Average percentage-
wise exposure to the varying context on the y-axis. The color
representation is; white for quiet, light green for clean speech,
green for normal speech and dark green for speech in noise. The
y-axis represents the hour of the day, averaged across six weeks
[73].

detailed image of context. We will discuss each in turn, and how it affects the
user interactions.

Time is an intuitive concept, with a shared understanding across populations.
Humans use the time to measure the passing of events, the anticipation of future
events as a reminder of past events. As clocks have become ubiquitous, ranging
from middle age clock towers to the invention of the pocket watch, wristwatch
from the quartz movement in the late 1970s, and today’s use of digital clocks in
smartphones and wearables. The passing of time provides a shared vocabulary,
with a shared understanding. Time as a contextual parameter allows for putting
things in new perspectives. I divide time into two major categories, inspired by
statistics. Discrete-time (events) and continuous time (events). Hearing aids log
time to some extent. To save power and reduce bit operations, time is stored as
discrete events. Meaning, average hours of use can be extracted from hearing
aids. It is a matter of bit operations, where updating and replacing an integer,
or float value, is much cheaper, than appending values to a vector or matrix.
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Several studies investigating self-reported usage with logged usage have been
conducted [17, 18, 24, 55, 78, 85, 151]. This gives a good indication of the total
and average usage of the hearing aids, which have a positive correlation with
outcome-based measures. These studies show that hearing aid users overesti-
mate the use of hearing aids, compared to objective measures. These studies
have been limited to a discrete perspective on time. Only a few studies have
been conducted for hearing aids, where continuous time logging is used. Aldaz
et al. [1], uses a smartphone and time logging to optimize hearing aids. And to
the knowledge of the author, no studies have been published on continuous usage
logging for hearing impaired. Meaning, we only know what hearing impaired
users experiences, through anecdotes and interviews.

We see time as an important factor in personalization. Time give cues about
unique behavioral patterns. The example of hourly usage was mentioned in the
previous section. Another example is used for the correlating program interac-
tions with the time of day. This is illustrated in Figure 4.4. One can observe
how the auditory context changes throughout the day, illustrated in 15-minute
bins. Coupling auditory context on a timeline allows the user to investigate
how they use their hearing aids. It allows the hearing care professional to ask
relevant questions, such as: "how do weekends differ from weekdays", or "what
would you need in an environment characterized by speech"? If a timeline is
not desired, the average hourly usage can be used, as illustrated in Figure 4.3.
This can be extended to illustrate the average daily use, or dividing the average
use into weekends and weekdays.

Mon 00:00 Tue 00:00 Wed 00:00 Thu 00:00 Fri 00:00 Sat 00:00 Sun 00:00

Week 45

Week 44

Week 43

Week 42

Week 41

Week 40

Week 39

Week 38

P1

P2

P3

P4

OFF

QUIET CLEAN SPEECH NORMAL SPEECH SPEECH IN NOISE

Figure 4.4: Example of coupling time with auditory context and program in-
teractions. The green hues indicate the auditory context [73].

Time binds insights together in a format the users and clinicians can understand.
It helps to tell stories of everyday life, and how things perceptually integrate.
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Time is part of the analytical foundation.

4.3.3 Limited Implications from Location

Most, if not all, smartphones have built-in GPS sensing capabilities, and many
apps taking advantage of this sensing. Geolocation, as acoustical sound, carries
information about the context. It supplements user intents with a geotagged
point. As an example, the home may have a different sound environment than
work, the bus has a constant level of noise, and running in the woods may be
quiet. Locations can provide general labels, associated with a stationary sound
environment, or specific labels based on user intents and usage. As an exam-
ple, a cinema will most of the time provide an acoustic scene with higher sound
pressure levels. Alternatively, attending a lecture may provide an acoustic scene
characterized by a clean speech signal, and lower sound pressure levels. One can
use 3rd party services such as Google places API1 or Foursquare places API 2.
These services are crowdsourced and contain labeled data from thousands of
people tied to a geographical location. Both Google Places and Foursquare
places have high-level categories, such as shopping, and sub-categories such as
clothing or supermarket, which can be used to label data. An alternative ap-
proach is cluster geolocation based on density. Unsupervised clustering, such as
HDBSCAN [90], can be an effective method for this. Using time as a marker
of location change and alternatively, distance, are two other approaches [2] to
HDBSCAN. In an unpublished study, we use HDBSCAN to find the top visited
locations. We cluster geolocation labels, and then based on the density, we rela-
bel each cluster denoted locationN . This approach pseudo-anonymize locations,
while keeping a label. The user can be prompted or motivated to annotate their
location with semantic meaning, such as home, work, gym, etc. Allesandri et
al. show that humans visit around 25 locations [2]. Communicating that loca-
tion is pseudo-anonymized have in our experiments led to a higher acceptance
of using location. The promise of more convenience in exchange for sensitive
information, such as location data, convenience some but not all. Anecdotally
we experience that half of our test population actively asked to switch off loca-
tion when applicable. Location is perceived as a severe compromise of privacy.
Location cannot be relied on as a contextual feature, as some wish to avoid it,
leading to missing data.

The limitation of using locations to determine the acoustical context is the vari-
ability in the two signals. The location signal is stationary. Meaning, a location
may not change labels if the location, or building, is being re-purposed for a
different use. A cinema may change into a supermarket. This may not change

1https://developers.google.com/places/web-service/intro
2https://developer.foursquare.com/places-api

https://developers.google.com/places/web-service/intro
https://developer.foursquare.com/places-api
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the contextual location but would change the acoustical context. In contrast, an
acoustical context is non-stationary. The acoustical signal changes over time,
sometimes rapidly within a few minutes. A lecture hall is an example of a
changing context over time. Early in the morning lectures may be conducted,
later in the day students working in groups drastically change the scene, and
in the evening the lecture hall may be used for movie screenings or receptions.
The second drawback of locations is the granularity provided by GPS sensors.
A GPS location consist, a longitudinal and latitudinal coordinate, and height
can be estimated. This works for outdoor locations, which in many cases are
two-dimensional. Buildings, in contrast, can have several floors, and building
materials can distort or block GPS signal. GPS may not be able to identify
whether the location is a lecture hall is located on the first floor, a lab in the
basement, and meeting rooms and offices floors above the lecture hall. What
would then be the most correct label? Several attempts on indoor locations have
been investigated such as the Active Bat system [45], or using wifi [7]. None of
these approaches for the indoor location have been widely adopted yet.

4.3.4 Movement and Activity as Significant Event Identi-
ficators

The last type of contextual information gathered relates to motion and activ-
ity. Using dedicated motion sensors and third party activity recognition API
libraries 3, enables the extraction of time-stamped motion data. Motion is an
indicator of the physical activity of a user. It highlights when a user moves from
one activity state to another, such as stationary to walking to driving. Motion is
used as a state indicator and indicates a state change. Meaning, motion enables
insights into how states changes, and can supplement the geolocation. For ex-
ample, a user reports that they work on the fourth floor. The contextual sound
is relatively stable, reporting a quiet environment. The user moves for a few
minutes, and the contextual sound changes. It is reported by the user that a
meeting has started. Around noon 10-minute walking segment occurs, followed
by a noisy environment with high sound pressure levels. After half an hour, 10
minutes motion occur, and the contextual sound is logged as quiet. The user
reports the previous segment as lunch. The geolocation has been stationary in
the three scenarios, while the contextual sound has changed drastically. Here
motion and activity highlight stories, geolocation could not.

Layering more contextual information tells a story with more details, than re-
lying on solely one contextual parameter. Smartphones, wearables, and IoT

3Activity Recognition API https://developers.google.com/location-context/
activity-recognition/, Core Motion https://developer.apple.com/documentation/
coremotion

https://developers.google.com/location-context/activity-recognition/
https://developers.google.com/location-context/activity-recognition/
https://developer.apple.com/documentation/coremotion
https://developer.apple.com/documentation/coremotion
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devices come with vast sensing capabilities. Interconnecting the devices enables
sensor sharing, in essences enabling context-awareness across devices. Getting
closer to Weiser vision of the computer for the 21st Century. Figure 4.5 illus-
trates how multiple devices can enhance the contextual understanding. The
hearing aids collect contextual information related to the acoustical environ-
ment. The smartphone collects movement from embedded motion sensors and
geolocation from a GPS antenna. This information is then processed, locally
or remotely, to add semantic labels. The contextual awareness can be fed into
intelligent systems, and ultimately create a good user experience.

12:00 14:00 16:00 18:00 20:00 22:00 00:00

PROGRAM

PLACE TYPE

ACTIVITY

LOCATION

ENVIRONMENT

PROGRAM P1 P2 P3 P4 Off

PLACE TYPE Bus_Station Bicycle_Store Real_Estate_Agency

ACTIVITY Walking Running Cycling In vehicle

LOCATION L1 L2 L0 L90 L76

ENVIRONMENT Quiet Speech Speech in noise Noise

Figure 4.5: Four types of contextual information. The acoustical context
called environment, Location relates to both the geolocation and
the labeled place type, activity is based on motion and labeled
accordingly. Program is the user interactions with the hearing aid
[74].

4.3.5 Verifying Auditory Context from Hearing Aid Users

To verify the type of physical context, we rely on user input, to label the context.
This also encourages users to share their intents in a given context. In clinics,
the increased awareness of hearing aid performance in annotated context can
support the fitting process. From a series of experiments, we utilize program
and volume interactions as pseudo-labels for user intents. A program or volume
interaction, initiate a discrete event, reflecting a mismatch between the user
perceptual model, and the augmented sound signal from the hearing aid. The
hypothesis is that context influences user interactions, and the research question
is how user interactions are affected by context. We assume the user interactions
are the labels and use these labels for training a naïve Bayes model. Initially, the
model is trained with a week of observations, updating the prior of the model.
The prior is updated and the model re-trained on a rolling basis over time. In
Figure 4.6 we illustrate the effect of various environmental contextual parameter
to predict user intents. We use the training data to predict the posterior, or the
inteded label. We can then calculate the posterior value for each of our test set,
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while continously updating the prior or likelihood. We use a naïve Bayes model
for this. Defined as:

Pr(p | w) = Pr(w | p)Pr(p)

Pr(w)

or in words
Posterior =

Likelihood× Prior

Average Likelihood

User

Pred 
Act/Loc

Pred: 
Sound

Pred: 
All

Activity

Sound

Figure 4.6: Naïve Bayes prediction of contextual program preferences for one
subject over four days. The upper three tracks (green, blue and
yellow gradients), represent the soundscape environment, motion
activity, and user selected programs, respectively. The following
three tracks of color bars (yellow gradients) show conditional prob-
abilities for user preferred programs, based on a) motion activity
and location alone (Act/Loc), b) soundscape environment alone
(Sound), c) motion activity, location, soundscape and time com-
bined (All) [60].

The model predicts the most likely program based on previous observation based
on activity and motion, location and acoustical features. The best performance
is achieved when combining several modalities. Using only one, such as sound-
scapes, location, or motion, results in poorer predictions. There are still chal-
lenges related to these models. First, more data is needed and more features
are needed to improve the predictions of the model. The sampling frequency is
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relatively low, with one update per minute, or when user interaction is instan-
tiated. Access to raw data, such as spectrograms, would enable the possibility
of using deep learning frameworks to relabel the acoustical features. Secondly,
this model accounts for physical context, and not the user context. No prior
knowledge exists on how the user is feeling, what desires the user have or the
level of fatigue. The program labels are assumed to reflect these features, and in
reality, it is only a limited reflection. To better understand the physical context,
and how it affects hearing aid usage, we need to understand the user.

4.4 Summary

The advent of sensor-packed devices, ranging from smartphones, through per-
sonal wearables, to IoT devices, are candidates for creating intelligent context-
aware systems. Petabytes of data are collected on a daily basis, yet still much
of rest in a server center. The foundation for making context-aware devices ex-
ist, sensor-packed personal hardware, inter-connectivity, and advanced artificial
intelligence systems. Hearing aids are part of this system, and still need to find
the killer app, to break the glass ceiling.

In this chapter, we examined what computing context and physical context. We
illustrated that hearing aids are context-aware devices with limited computing
context. Despite the lack of resources hearing aids can be part of bigger eco-
system. Understanding context is one of the keys to solve the challenge of the
use and non-use of hearing aids. The challenge cannot be solved by relying
only on the acoustical signal. We observe that two subjects experience different
acoustical context. This can help in personalizing hearing aids, and to distin-
guish between a person mainly in quiet settings, or with a more dynamic sound
environment. The device of the future must include context awareness. We
have shown that time, location, and activity all contributes to certain behav-
iors. And, statistical modeling, such as a Naïve Bayes model, may be able to
predict human goals based on contextual information.



Chapter 5

Personalization of the User
Contextt

This chapter focuses on providing insight on designing for the user context,
within hearing health care. To design for better user experiences we need to un-
derstand the user. This chapter highlights a two-fold description of users. One
is from the user experience paradigm and the other stem from contextual aware
devices. The first part of the chapter describes the view on personalization
from the UX perspectives, including defining personas and highlight individual
differences. While the second part of the chapter investigates how using rapid
prototyping quickly provides insights on user context for hearing aid users. The
hypothesis is: to personalize hearing health care both the physical context of a
user, and the user context must be understood. The topic covers how to collect
quantitative data, how to collect qualitative data, and how to use this data to
better understand the user. The chapter uses examples of user context and user
behavior drawn from the contributions: "Hearables in Hearing Care: Rethink-
ing Hearing Aid Fitting by Learning From Behavioral Patterns" Appendix A,
Discovering Usage Patterns Through IoT Device" Appendix B, and "Person-
alizing the Fitting of Hearing Aids by Learning Contextual Preferences From
Internet of Things Data" Appendix E.

People are unique and have different behavioral patterns. Behavioral psychol-
ogy has spent decades on profiling different behavioral characteristics, and we
know for sure, that people have different behaviors. The challenge with hearing
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impairment is that everyone is treated equally. The fitting rationale does not
compensate for individual differences and is fitted based on physical measure-
ments. The PTA and neglects both how people behave, and the kind of everyday
life they lead. In the clinical workflow HCPs can ask the hearing impaired how
they intend to use the hearing aids. Questions related to age, if they live with
a spouse, and how active the lifestyle is, all provide input on which situations
the hearing aid can be expected to perform in. However, clinical resources are
limited, and it may take as little as 15 minutes for a customer to exit a hearing
clinic with a pair of hearing aids. The visit includes a hearing assessment, which
takes 5-15 minutes, selecting a product, and having the hearing aid fitted. In
the case where time is limited, the user is often left with a medium setting,
where the HCP relies on the build in settings of the fitting software.
An alternative approach is to support the user and clinician by using quanti-
tative measures. These measures provide insights into the everyday life of the
hearing aid user. In the previous chapter, contextual information was used to
provide insight into the environment hearing aids are used in. Here the focus
will be on how to use quantitative data to investigate the user context. This
fits into the personalized hearing care model, as illustrated in Figure 4.1. The
user context and physical context provides a foundation for scalable hearing
care solutions, generating insights for both clinicians and hearing aid users, and
potentially input for intelligent systems.

5.0.1 Quantitative Tools for Describing Behavior

User experience is known for using qualitative methods to investigate behavior.
The toolbox consist of interviews, observational studies, and questionnaires, fol-
lowed up by a session of coding. These tools work well for a small group of
participants, but may not generalize well. Just imagine trying to code and iden-
tifying themes from interviews conducted on 100s of people! At the other end
of the scale is questionnaires with lickert scales. Questionnaires are often a one-
shot method, and gives insights quickly which can be compared across subjects.
Example questions could be: "How often do you have problems understanding
speech?", or "On a scale from 1-10 how much does loud noises bother you?".
Ecological momentary assessments (EMAs) is a collection of methods which as-
sess the everyday life of a person. Shiffman, Stone, and Hufford [123] define
EMA as “Ecological momentary assessment (EMA) involves repeated sampling
of subjects’ current behaviors and experiences in real time, in subjects’ natural
environments.”. EMAs allows the user to rapidly attach meaning to a current
context, and works well over shorter periods, in experiments or when they are
not perceived as disturbances. The frequency of questions asked for an EMA
typically range from once every 30 minutes in the span of a few days, or daily
for a year. EMAs are limited to a subset of questions, which may be specific
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for a certain domain. EMAs have been successfully carried out within audiolog-
ical research. However, most studies are from 2014 or earlier, and the findings
are biased by focusing on difficulties [37, 47, 50, 150]. Despite these findings,
EMAs are not clinically accepted within hearing aid fitting. A different take
is using quantitative observations. This is a quantitative fly on the wall ap-
proach, where the researcher potentially collects big amounts of data, and try
to generate insights from these data sets. The idea is to investigate behavioral
traits over many users, many trials, long time periods or a combination of the
aforementioned. As an example, what can we learn from millions of keystrokes?
Dhakal et al. [29] shows how keyboard typing can be used to create a cluster of
users based on features related to typing, such as word per minute or error rates.
While arguing that the same features can be used as a security measure. Net-
flix group people based on their interaction patterns with the service and uses
key metrics such as engagement and retention [42]. Interviews provide many
insights, but are not scalable. At the other end of the scale is EMAs, which
are both scalable and provide a high level of insights. The different approaches
have a varying scale of scalability, insight, and effort required. An overview is
illustrated in Figure 5.1.
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Figure 5.1: An illustration of insight and scalability of different observational
methods. The size of the bubble indicates a simplified notion of
time, effort and awareness put into collecting the data. Based on
[106].

In the case of personalized hearing health care the technology should be ubiq-
uitous and pervasive, and not interfere with the user’s everyday life. We want
to contribute with a framework, which is scalable and can be deployed to thou-
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sands of hearing-impaired listeners. Using program and volume interactions as
a starting point to highlight individual differences and behaviors. To personal-
ize hearing health care, the individual must be considered, while learning from
other users’ behavior.

5.0.2 Personas, archetypes and clusters

Personas can help articulate certain characteristics for a hearing aid user. In
the realm of personalized hearing health care, it can help to identify archetypes,
which can guide the clinical workflow and potentially intelligent systems. A
persona describes characteristics of a real user, or users. Allan Cooper et al.
[23] describes personas as:

Although personas are depicted as specific individuals, because they
function as archetypes, they represent a class or type of user of a
specific interactive product. A persona encapsulates a distinct set
of behavior patterns regarding the use of a particular product (or
analogs activities if a product does not yet exist), which are identi-
fied through the analysis of interview data, and supported by sup-
plemental quantitative data as appropriate. These patterns, along
with specific motivations or goals, define our personas. Personas are
also sometimes referred to as composite user archetypes because
personas are in a sense composites assembled by grouping related
usage patterns observed across individuals similar roles during the
Research phase.

Why do personas play such a central role in UX and interaction design? Per-
sonas help address different needs, values, goals, and motivations. Personas in
UX are heuristically derived or from field study observations. As an example,
when designing an app for travel booking several personas emerge, the business-
woman with a focus on efficiency and working while traveling, the young female
solo traveler looking for experiences or the family of four. These archetypes
have different needs, values, and goals, and guides the UX process in different
directions. If for example, we wanted to serve everyone needs, we’d end up
with a product that satisfies no one. Imagine being a family and always getting
recommend the most efficient, and expensive tickets. Personas can be used in
tandem with user story mapping.

Archetypes showcase generic traits representing a group. These traits can be
derived from individuals as a representation of a bigger group, or an individual
can be placed within a representative archetype group. The former is common
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within a UX process, based on field studies, observations and interviews, one
or several people create an archetype or persona. The later is based on large
studies, where groups of people are analyzed and then clustered into represen-
tative groups. This practice is common in statistics and demographic research,
where age, sex, income level, marital status, level of education, and occupation
can generate archetype groups. A related approach from psychology groups
people based on personality traits, as popularized by psychologists such as Carl
Jung [65] on psychological types, or the Big Five Personality Traits popular-
ized by Lewis Goldberg [40]. An algorithmic approach cluster people based on
features. Clustering techniques cluster across high dimensional vector spaces,
based on feature vectors of featuresN . Three common approaches to reduces
the feature space are principal component analysis (PCA), independent compo-
nent analysis (ICA) and multi dimensional scaling (MDS). Afterward, based on
the clustering pattern, techniques such as k-means [46, 127] clustering relying
on centroid radius and the number of clusters, the nearest neighbor approaches
such as kd-tree search [94], or density based scan such as DBSCAN [35] using
an epsilon parameter to determine cluster based on density. An algorithmic
approach reduces bias from the researcher and relies on quantitative measures.

5.0.3 Archetypes From Audiogram Data

The audiogram is the de facto standard of hearing aid fitting. What can we
learn from it? The test subjects in the various pilot studies have been fitted
individually based on their audiogram. An audiogram is visualized in Figure
2.1. In our studies, the audiogram is compromised of 11 frequency bands from
125 Hz to 8000 Hz. Based on WHO guidelines hearing impairment can be
categorized as slight, mild, moderate and moderate-severe [144]. This grouping
only accounts for the severity of the hearing loss, not the shape. Bisgaard et al.
[13] propose 10 audiogram classes based on shape of the hearing loss curve and
the severity of the hearing loss. From our studies [59, 61, 64], we do not observe
correlation between WHO classified hearing loss and user behavior. We apply
a dimensionality reduction method to investigate if behavior can be described
from the audiogram. PCA is used to reduce the 11 band audiogram into a
lower dimensional space. The two first components of the PCA account for
respectively the slope and the severity of the hearing loss. The severity, the first
component explains 52,4 % of the variance, while the second component, the
slope, explains 32,6 % of the variance. The two first components explains 84,4
% of the variance within an audiogram. PCA can visualize these two dimensions
of hearing loss, while still preserving privacy. This is illustrated in Figure 5.2.

The axis of the figure is respectively principal component 1 and principal com-
ponent 2. The colors indicate different subjects, while L and R denote either left
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Figure 5.2: An example of using PCA on audiograms from 10 test subjects.
The PCA scales the 11 frequency bands into 2 dimensions, visu-
alized as component 1 and component 2.

or right ear. It can be observed that most subjects have symmetrical hearing
loss for both ears, while some subjects such as P8 and P4 have different hearing
loss across the ears. From visual inspection, three major clusters can be identi-
fied. Cluster 1 occurs in the upper left corner, Cluster 2 in the lower left corner
and Cluster 3 in the top right corner. Two ears appear to be outliers. We then
couple the clustered audiograms with interview insights. The audiogram may
be a good start to estimate potential hearing aid usage. At least we see that the
severity and the slope both promote different behavioral patterns. Archetypes
based on audiogram data are described as:

Perceptual SNR The subjects located in Cluster 2 have a preference for pro-
grams with a distinct sharpness and crispness attributed to amplified mid-
and high frequencies. These people prefer to perceptually and cognitively
improve SNR, rather than relying on the hearing aids noise reduction al-
gorithms. This archetype prefers to have spatial awareness and to be able
to orient within the acoustical scene. The hearing loss for this archetype
is characterized by a ski-slope shape and a moderate hearing loss.

I don’t really need a hearing aid This archetype is characterized by using
the hearing aid on-off. The archetype is aware of when help is needed.
Consider their hearing loss annoying, and knows when to use hearing aids
to correct it. Cluster 1 is characterized by a mild hearing loss, mostly in
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mid-frequencies.

Comfort and high SNR Prefers to attenuate noise more and to use the hear-
ing aids beamforming focus. Characterized by using programs that work
well in noisy environments. Cluster 3 is characterized by a moderate hear-
ing loss and with a cookie-bite or flat shape.

People in the upper right corner have a preference for neutral sounding pro-
grams, and to use more noise reduction. In contrast, users in the lower left
corner tend to prefer brighter sounding programs. The raw audiogram data
shows that these users have a steep fall off in high frequency. Compensating
by adding brightness, gives a better sound experience for these users. Interest-
ingly, a user notes, “I prefer the brighter sounding programs because they help
me more understanding speech, especially in noisy environments. However, the
sound is not as pleasant as programs with more flat sounds.”

5.1 Finding Similarities for Hearing Aid Users

The audiogram only tells the story of the physical measurable part of the hearing
loss and does not acknowledge the individual differences and behavioral traits.
And this may be a reason why the current personalization of hearing aids are
sub-satisfactory.
A question raised is, how can we supplement the audiogram. Leading to, what
happens over time, if people change habits, work, or the context is affected
in other ways? We start the discussion by investigating what alternatives can
be used to personalize the hearing aids. Using lean prototyping we investigate
what stories volume and program changes can tell about user behavior. We
use a framework of rapid prototyping, to quickly deploy prototypes and collect
hearing aid data. This interaction data form the bases for comparing users from
quantitative interaction patterns.

We hypothesize that internal motivation and perceptual exposure is as impor-
tant as the actual sound environment. We look at this through hearing aid ma-
nipulations. Interaction patterns exhibit behavioral traits, which can be used
as a foundation for personalization of hearing aids. What effect do weekends vs
weekdays have, what about the time of day, and if we provide test subjects with
the same devices, same program, and volume settings, do they then exhibit dif-
ferent interaction patterns. If the answer is yes, then what interaction patterns
do they exhibit, and how can we use this when personalizing hearing care?
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5.1.1 Investigating User Context With Rapid Prototyping

To address some previously asked questions, we recorded how hearing aid users
use their hearing aid over several weeks. We hypothesized that people are more
than an audiogram and that we can tease different behavioral patterns apart,
based on volume and program interactions. We provided test subjects with a
commercially available hearing aid, and created 10 IFTTT recipes, to log the
interactions with the hearing aid. Rapid prototyping was used as a research
tool to move the research from a laboratory to ’the wild’. Research within
hearing is primarily focused on clinical studies, or observatory studies with con-
clusion questionnaires, not in-the-wild studies. The rapid prototyping process
allows the researcher to circumvent the technological limitations of the hear-
ing aid, by augmenting it with 3rd party services. During early workshops,
this technique was used to simulate what would happen when a user interacted
with their hearing device. To establish data-driven personas, interviews and
passive data collection was used. Through interviews, it was discovered, that
the design of the product mustn’t drastically slow down the interaction. This
was discovered when testing alternative interfaces, where audio feedback slower
than 500 ms were unacceptable. To discover individual interaction patterns, we
fitted the test subjects with hearing aids, containing four distinct acoustically
different programs. Perceptually the difference is described as contrasts. Each
program alters the following settings, volume gain in mid- and high frequencies,
beamforming directionality, noise reduction and attenuation. We keep the pre-
scribed dynamic compression settings, which balances the hearing aid output
with acoustical input level, to fit the dynamic gain range for the user. The
fitting parameters are the same across the following studies.

Volume gain in mid- and high frequencies Contrast was obtained by al-
tering the high-frequency gain, either increasing high-frequency gain re-
sulting in a perceptive sharper, brighter and distinct sound which empha-
sizes hissing sounds, such as z and s. In contrast, lowering high-frequency
gain, and flattening the gain prescription results in a flatter and muted
sound experience. This can be perceived as more comfortable, as high fre-
quencies sound muffled. The general shape is preserved, and perceptually
be experienced similar across sound environments.

Beamforming directionality A metaphor for altering the beamforming di-
rectionality is a pair of horse blinders. With a high level of directionality,
sound from the back and sides are reduced. Perceptually sound from the
front is enhanced. At the other end of the spectrum is no blinders. By sim-
ulating the shape of the human pinna, the outer ear, sound from the back
is attenuated, while sound from the sides and front are preserved. If no
natural attenuation is provided, a 360 degree sound field is provided. The
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directional sound is similar to a narrow torchlight beam, while the broad
directionality is closer to the light cast from a lamp near a wall. This ef-
fect is accomplished by utilizing a microphone array pair to determine the
shape of the sound field. The setting was set at either a minimum, allow-
ing for immersive sounds, and at maximum to accomplish a frontal focus.
By default, the directionality becomes pinna like in quiet environments.

Signal-to-noise ratio (SNR) Noise reduction aims at balancing the signal
between the target signal, speech, and noise. The noise reduction system
of hearing aids can improve the SNR with 6dB. Perceptually a 6 dB SNR
improvement should increase the target signal to double strength. The
signal to noise ratio can be estimated using the noise floor and the target
signal. In one end of the spectrum, a 6 dB signal improvement can be
applied, while in the other end 0 dB improvement is applied. In the
field studies, noise reduction is only engaged when noisy environments are
detected and disengages in quiet environments.

Four programs are uploaded to the hearing aid. This is the maximum number
of programs, due to the software constraints of the hearing aids. Programs here
denotes a change in the volume gain shape, the directionality and the noise
reduction parameter. The volume gain setting ranges from -4 to 8. The users
can interact with volume and program independently. Volume is reset to 0 when
a program change occurs.

5.1.2 Different Volume and Program Interaction Patterns

Based on related work we picked various metrics to measure and compare dif-
ferent types of users. Solheim & Hickson [125] and Laplante-Lévesque et al. [78]
measures the average daily usage of hearing aids. Both studies conclude that
users tend to overestimate the usage of their device. Laplante-Lévesque used
clustering analysis to show to archetypes of users: “’Regular’, where hearing
aids are typically switched on for between 12 and 20 hr before their user powers
them off (57% of the sample), and ’On-off’, where hearing aids are typically
switched on for shorter periods of time before being powered off (43% of the
sample)” ([78]).

To collect data related to hearing aid program and volume interactions, a rapid
prototype architecture was designed. The Oticon Opn released in 2016 com-
bined with the web-based service IFTTT. User-initiated volume and program
interactions are logged in a Google sheet, owned by the test subjects. Data
access rights were granted to researchers by test subjects and could be revoked
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at any time. All data point contains a timestamp, an action, either volume,
program or connection. The data is extrapolated, and used as follows:

Time & date One of the main contributions from these papers are the minute
by minute logging of hearing aid usage. The data is timestamped, and the
timestamps are used to analyze recurring daily, weekly or monthly events.
The time is further used to analyze the difference between weekends and
weekdays. Finally, it is used to compare how behavior change over time,
where we hypothesize different stages of adaptation occurs. The time
stamps are a convenient format to use for data analysis, as it’s actively
used to separate data.

Average daily usage Number of hours the device is used. This number is an
approximation from the data, as this data could not be collected. The
approximation is based on an assumption, that if no interactions occur
between 10 PM and 6 AM and if a disconnected event occurs, the device
is set to off. If no event occurs within 30 minutes of a disconnected event,
we treat it as an off event.

Program usage Two measures of program usage is used. Daily usage in hours,
and daily percentage usage split between programs. The connection event
is used to divide the programs.

Volume usage Similar to program usage. We log a given program with a
given volume setting. The volume is reset to 0 when a program change is
initiated. If no volume change is observed, we assume the volume is 0.

Within this smaller pilot study, the test subjects exhibitA unique behavioral
patterns. The average daily usage for five subjects ranges between 3.54 hours to
8.08 hours (mean = 6.58 h, SD = 1.78), these findings are similar to Solheim &
Hickson (mean = 6.12, SD = 4.94). Through post-study interviews we confirm
the two groups of regular and On-off users, where the test subjects with the
lowest average time, confirmed that the hearing aid was frequently switched off.

It gets more interesting when comparing program usage patterns between sub-
jects. A comparison of how subjects use programs are illustrated in Figure 5.3.
The figure shows that subject 3 prefers the default program, subject 2 prefers
two programs and subject 1, 4 and 5 uses, or at least tryout, all programs.
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Figure 5.3: Program usage distribution for five subjects, based on data from
[64]. The subjects are along the x-axis, and the y-axis shows the
percentage wise distribution of programs. The programs are P1
(tan), P2 (brown), P3 (light blue), and P4 (dark blue).

5.1.3 Weekdays and weekends

The data shows that the regular and on-off user may not cover all aspects
of hearing aid usage. The five subjects program interactions over weekdays
compared to weekends seems to differ. All subjects use their hearing aids less
on the weekends than weekdays. We report an average usage of 7.8 hours per day
during weekdays and 5.4 hours during weekdays. For this small sample size, the
difference between weekdays and weekends are significant (F1,4 = 17.0, p < 0.2).
We define additional archetypes from this data, the conscious user, using hearing
aids primarily during weekdays in working hours, and limited use on weekends.
The weekend warrior, living an active lifestyle and don’t need or want to use
hearing aids in the weekends.

5.1.4 Adaptation Over Time

How does the program and volume interactions change over time? This question
relates to how the subjects cope with multiple programs. Without personaliza-
tion, the subjects would receive one program. We wish to highlight, that one
program may not be enough to satisfy the needs of the user. Over the course of
several weeks, we observe the program interaction changes. Most subjects ex-
periment at the beginning of the experiment, using several programs. However,
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with time the subjects become more familiar with the capabilities of their de-
vice. We denote the first weeks as an exploration phase, where the subjects have
a higher number of program interactions, and generally explore more programs.
After a few weeks, the participants find their favorite programs, and most set-
tle for two programs. This is a consideration when deploying new technologies
within health care, as a period of adaptation occurs. The trade-off between ex-
ploration and exploitation is a unique trait. Some people like to explore more.
Through interviews, we found people with a more tech-savvy mindset to prolong
the exploration phase, and smooth into the exploitation phase. Other subjects
would explore for a short time, before resorting to exploitation, when they found
their favorite settings for a given context.

(a) Subject 1 (b) Subject 2

(c) Subject 5 (d) Subject 7

Figure 5.4: Four subject displaying different periods of exploration and ex-
ploitation. The x-axis denotes the number of weeks, and the y-axis
is the number of minutes per hour usage. The programs are P1
(tan), P2 (brown), P3 (light blue), and P4 (dark blue) [59].

5.1.5 Micro adjustments through volume interactions

Volume is gain control. This indicates a satisfactory program has been selected,
but the gain settings are not adequate. How can we actively use volume? When
correlating program usage with volume settings, it becomes evident if some
programs are too loud, too soft, or if they work as intended. We observe that
the volume is not an either-or state, meaning, the volume can be increased and
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decreased in the same program, depending on time. We attribute this behavior
to a changing context, where different intents occur. For some users, the gain
prescription is too loud, or too intense, while others do not need to adjust
volume. The users will adjust the volume in several increments while exploring.
From the data, we observe that users over- or undershoots, seen through several
interactions in a short time span, before settling on the desired volume. Over
time, this over-/undershoot effect diminishes, when the mental model matches
the gain output from the hearing aid.

5.1.6 Balancing between different interactions

In the included studies the test subject can only interact with the program and
volume. We were interested in investigating what the interaction effects be-
tween program and volume were. We looked at the percentage-wise distribution
of program and volume interaction for the sum of interactions, using data to
illustrated different interaction patterns. If the users could only change pro-
grams, all interactions would be program changes. Alternatively, If the users
can only change gain, volume gain would account for 100 % of all interactions.
The standard in a hearing aid fitting is one to two programs. An average user
would then primarily use volume interactions, if any, as this would be the only
enabled interaction domain.
Interestingly, most subjects have a balance between program and volume inter-
actions. This is illustrated in Figure 5.5. If there are more program changes
than volume changes, it indicates that the gain level is acceptable, while the pro-
gram illustrates adaptation to various contexts. One or two volume adjustments
are needed to personalize the device to the current context. Fewer program in-
teractions than volume interactions indicate that the desired program setting
is found, and several gain adjustments are used. The subject population we
investigated have a balanced usage, with a preference for changing programs.
This illustrates that these users, despite having four programs, actively uses the
volume gain to adjust their devices to a changing context. It also illustrates,
that given the possibility, no user relies only on the default program. The users
actively use the program control and volume control, to update and customize
their devices.

We then ask "how does interaction between program and volume behave over
time"? The average volume with respect to the program, and with respect to
time, is illustrated in Figure 5.6. This figure illustrates that the interaction
between the program and volume tells an additional story. It shows how test
subjects gain preferences depends on the usage time of a given program. Mean-
ing, is the gain preferences stable, i.e., no gain change, and in case not, how
do these gain changes look like. This adds an additional input to the interac-
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Figure 5.5: Percentage-wise distribution of total interactions between program
and volume interactions. Program changes illustrated in dark blue,
and volume changes indicated in light gray. With a 50/50 split,
a program interaction is followed by a volume interaction, caused
by the volume being reset from a program interaction [61].

tion between program and volume and how the program interacts with volume
across users. Program P1 is used as an example. This program is characterized
by a natural sound mimicking the pinna omni shadowing effect and with no
noise reduction. The perceived ’natural’ sound of P1 is firstly intense, showed
in a decrease of volume gain. Over time the test subjects adapt and manually
increase the perceived intensity through volume gain. Other programs such as
P4, seems to need an increase in volume gain, as this setting flattens the over-
all gain while increasing noise reduction. Interestingly, one subject prefers to
decrease volume across all programs, indicating a too loud gain prescription.
Using the program and volume interactions with respect to each other, gives a
tool for debriefing patients. The insights also illustrates that the preferences for
each program are unique.

5.1.7 Visualizing behavior as a conversation tool

The collected data is treated as time series data. It is visualized using program
duration over a week. This is illustrated in Figure 5.7 for one subject. Times-
tamps enable building visualizations which can encompass long time series. It is
more informative illustrating hourly usage, rather than per minute usage. The
clinician can actively use the data while debriefing a patient in a clinical setting.
From the illustrated example the clinician can ask why the preference in pro-
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Figure 5.6: Volume with respect to the program. Programs with less than 20
interactions have been excluded. The colors denote programs, the
x-axis is time, and the y-axis is the average volume at at a given
time, t [61].

gram changes over time, why some weeks are dominated by yellow and others
by orange, and so on. Such tools provide new insights for the clinical workflow.
The clinician can use such visualization to analyze trends over long time peri-
ods. And can act as a feedback tool, highlighting what instructions or changing
of hearing aid settings affect the usage pattern. Enabling user and clinician to
discuss events. Providing a quick overview of preferences and behaviors. And
supporting memory recall.

5.2 Personas From Interaction and Interview Data

From program and volume interaction, and from the audiogram data, we define
personas. The personas reflect data collected from interviews, where the test
subjects were debriefed using their data as a communication tool. A user was
debriefed and asked why the subject preferred the noise attenuating programs,
the response was, “I work in noisy environments throughout the day. When
I get home I just want peace and quiet. This program is really comfortable
and sounds nice... But I don’t really think it helps me.” The personas are
summarized as:

The tech savvy The tech-savvy user loves technology. This user has several
devices and actively seeks out ways to make life more convenient through
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Figure 5.7: Subject 4s program interactions over 7 weeks. The x-axis is week-
days, y-axis weeks, and the programs are colored from yellow to
red [61].

technology. This user is curious when it comes to technology and is willing
to try several settings out in varying context to tune the hearing aids. The
tech-savvy is characterized by frequent program changes, and to test the
hearing aids out in challenging situations.

The active The active user have an active lifestyle. This user has a dynamic
life where new events and contextual sound data creates experiences. This
user needs contrasting programs to cater to changing needs. This is re-
flected in using the open pinna omni program to create immersive sound
experiences. Supplemented by using a noise reducing program in evenings.
The user can also be physically active and needs a device which can with-
stand physical abuse.

The ’I use it when I need it’ This persona is characterized by low average
usage, and infrequent interactions. This user mostly relies on one or two
programs, and may not enjoy fiddling around with the hearing aid. Based
on the user interactions, this persona likes to have an everyday program
and a program that can help when it gets noisy. This person uses hearing
aids when they feel there is a need. Most of the time they spend in quiet
surroundings, such as an office, and shut off the hearing aids and the data
stream. This person will stay in the default program more than 80% of the
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usage time. This persona is usually aware of the surroundings and only
use the hearing aid when needed. The persona is similar to the ’on-off’
type described by Laplante-Levesque et al.

The observant The observant likes to explore. The observant will usually be
curious in the beginning, trying to match a setting to a context. Over
time the observant accurately can describe challenging listening scenarios.
The observant benefits from visualizations to emphasize the experiences.

The complient This persona reflects the ’average’ 70+ years old women which
are usually used to model hearing aid settings after. This person needs
one program, doesn’t like technology, and needs the hearing aid to be out
of the way.

Most of the personas do not fit the average persona and archetype used in the
hearing aid industry. The compliant may be the most prevalent persona in
reality, but the other personas are neglected and end up with the same settings
as the compliant. Data-driven personas provide insights on non-typical users.
Using these personas can help the clinician in personalizing hearing aids.

5.3 Data as a Communication Tool in the UX
Process

From the three papers, we hypothesize that data can be an enabler within health
care. Most subjects overestimate the usage of an assistive device, in this case,
hearing aid. Several studies show this behavior. We focus on using data actively
through a fitting process, in contrast to using only descriptive statistics. This
makes the usage transparent for the user, clinicians and researchers alike. Using
data actively can be an enabler within healthcare. When the process becomes
transparent, the user can actively engage in their data, explaining why so-and-
so happened. Combining data with timestamps enables focus communication.
The drawbacks and challenges include involving users to share data, optimizing a
clinical workflow based on debriefings rather than ’guess and remember games’,
and active participation from both users and clinicians. Data acts as an enabler
for the user. The user can actively participate in their treatment, using data as
a discussion starter. As the data per se is objective, the user can then decide
how and what to change. This ties into the participatory P of the four Ps of
medicine mentioned earlier. These examples illustrated how data actively can
be used to personalize hearing aids based on behavioral traits. Such data have
yet to be actively used when personalizing hearing aids. We do however see
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potential in using behavioral data, with contextual data, to personalize hearing
aids.

5.4 Summary

The recently developed hearing aids with IoT capabilities open for alternative
approaches for personalization. Using minute-by-minute data generated by users
supports hearing care professionals when personalizing hearing aids. With a
relatively small amount of data, based on volume and program interactions, the
clinician has access to data as a conversation starter. The data can be used
for persona and archetype generation, dealing with the cold start problem of
hearing care and health care. These tools assist the clinicians in personalizing
hearing health care, using off-the-shelve products.
The data benefit the end user in becoming more aware of their needs and how
to address these using technology. Making data available and visually appealing
encouraging the user to actively participate in their treatment. Inclusive health
care is one element in the future of health care, and act as an enabler for users
to be involved in their own treatment and to provide the users with timely and
relevant feedback.

This chapter illustrated how to use off-the-shelve hearing aids, coupled with
third-party services to enable an internet connected device. This works as a
technology enabler, providing the technical foundations for a personalized hear-
ing treatment. To build the user experience, we need to understand the users.
Combining qualitative data through interviews and observations, quantitative
behavioral data, and data related to the complications enables nuanced per-
sonas. In theory scalable, allowing the UX process to include big data sets.



Chapter 6

Hearing Aid Interfaces for
Feedback

Collecting user feedback generates value for the hearing aid user, the clinician
and potentially also for intelligent systems. Personalizing hearing aid usage re-
lates to collecting user feedback. This chapter introduces how to collect passive
user feedback through optimized interfaces. Providing an interface to support
these interactions gives a more accurate interaction surface. It also supports
the user experience by matching the user mental model and intents, to a visual
interface. A more accurate interface improves the efficiency of hearing aid in-
teractions and provides a pleasant experience. The chapter will highlight how
known metaphors can support the mental model of the hearing aid user. The
map provided, helps the user navigating and matching an auditory context,
to augmented sound output. This is done by modulating the acoustical signal
through a visual modality of a smartphone app. Providing users with compelling
interfaces can facilitate usage while solving underlying problems. The chapter
is based on the contribution: ’Mapping auditory percepts into visual interfaces
for hearing impaired users’ Appendix F. The user feedback collected through
interactive interfaces can be used to provide insights to the user and clinician.
For the user, an appropriate interface allows for fast and accurate interaction
with the context. The clinician can receive annotated contextual data. This
feedback can be used to improve adaptive interface. This is illustrated in Figure
6.1.
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Figure 6.1: User feedback is provided through interactive interfaces. This
feedback is based on contextual data and can be used both in
clinical settings and as input for intelligent systems.

6.1 Improving Interactions with Hearing Aids

The offers from most hearing aid providers today is either a haptic interface
on the hearing aid, remote control or a remote control app. These interfaces
fulfill the same goal of changing program and volume of the device. However,
they do only provide limited feedback on the device. Hearing aid users rely on
button presses. Anecdotal, a user pointed out that using the buttons are more
discrete than using either a remote or a smartphone. Hearing aid user perceives
it inappropriate to modulate the hearing aids from an external device, rather
than manipulating the hearing aid directly.

Why does the current user interaction fail? From an interaction point of view,
it is about a mismatch between control and display. MacKenzie [84, p. 73-79]
describe this as “Control-display relationships are some- times called mappings
since the relationships attribute how a controller property maps to a display
property”. For hearing aids the mismatch between control and display can be
limited, simply by omitting controls. This can be done with fitting only one
program on a hearing aid. Now the control is one-dimensional, namely volume
gain increase or decreases, modulated through a display. In the case where
multiple programs are available, the control and display do not match. The
degrees of freedom within a hearing aid program is vast, including attenuation,
compression, directionality, noise reduction and spatial awareness. This is then
coupled with volume gain, increasing the complexity of the control. The display
remains almost unchanged, now the user can select between program 1 and
program 2, and can change volume gain in these programs.

The challenge is that an established framework for navigating in high dimen-
sional acoustical spaces, neither exist in HCI nor within hearing research. It is
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similar to driving a car without experience. How does the gas pedal work, and
the brakes? What about the gears? Add the cognitive load of navigating the
roads, avoiding crashing, and keeping the speed limit. It takes months, if not
years to become a good driver. Even with explicit controls and displays, such as
the speedometer and the haptic feedback from the speeder, it requires training
to ride a car. For hearing aids, you are expected to walk out of a clinic, with
limited training, and being able to steer your hearing aid. It will take years
before we see self-driving cars or self-driving hearing aids.

6.1.1 Using Metaphors to Enrich the Auditory Interface

Articulating audio is difficult. This is probably caused by the lack of a shared
vocabulary. Trained musicians, audiologist, and others that work or have a
deep interest with sound are exceptions. Metaphors and cognitive models can
address the discrepancy between the visual and auditory domain. The usage of
metaphors to understand an interface can accelerate adaption and creates more
satisfaction. Metaphors in this context is both for naive and experienced users.
A known metaphor within physics and engineering is the pipeline and liquid
metaphor. This metaphor explains how electricity flows through circuits. Stu-
dents without prior knowledge of electrical systems and circuits can understand
this metaphor. For human communication, metaphors can provide a common
language. This can help a HCP in the fitting of hearing aids. Caroll and Thomas
[19] explains how metaphors are used to transfer learning in computing systems
as “People develop new cognitive structures by using metaphors to cognitive
structures they have already learned.”. Meaning, using experiences can sup-
port the development of new cognitive structures, which can support the user.
Metaphors are powerful in conveying information. We actively use metaphors
as an integral part of the language. Metaphors are used to transform abstract
concepts into an understandable, or relatable, abstraction, which helps share a
common understanding between individuals.

The metaphor must be congruent with the way the system really works. Hearing
aid manufactures creates narrow metaphors for hearing aid settings. When the
hearing aid is fitted the user may get instructed that they have a restaurant
program and a regular program. But what does it mean to have a restaurant
program? And what does the user do if the program does not work well in
restaurants? The lack of concurrency between a "restaurant" program and the
auditory output, provides a displeasing user experience. Metaphors should be
used concisely to improve the user experience.

In the case of mapping auditory sound to visual sound, we use the metaphor of
navigating a map. The challenge with communicating auditory features is the
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lack of shared vocabulary. As an example, for some test subjects amplifying
mid- and high frequencies become too sharp and distort the auditory scene.
For others, this amplification improves the perceptual SNR and helps them
navigate the auditory scene. Matching the auditory features with the perceptual
information is individual, and challenges the designer. The power of metaphors
is to detach from the actual auditory features, and rather rely on similarities
from other domains and past experiences.

We use the metaphor of a map to guide the user interactions. A map is an
abstraction of the real world. Maps convey information about multidimensional
data, such as relational and relative distance, height differences, and visual ori-
entation of shapes and colors. Within cognitive science, this is called imaginary
and percept [112, p.339-372]. Human has a strong notion of creating mental
images, and to accurately recall these, or imagine a distance from one object to
another.

When navigating we use markers for orientation. This can be landmarks, signs,
or abstractly, items orientation on a map. The map is always visible for the user
and resembles a static map from an atlas. In contrast, using the haptic interface
of a hearing aid relies on the user’s ability to have a mental map of the settings.
The user can use acoustical cues from bips, to navigate. Using acoustical bips
temporarily uses the available auditory memory, and the user can miss out
on speech and contextual cues. We propose to preserve the auditory working
memory resources, by using relevant visual information. This would engage
the visual working memory. We propose an alternative interface, build on a
map metaphor. The interface is illustrated in Figure 6.2. Labels, colors, and
space as markers. In this space, the positioning of the ball, contrasting colors,
and labels helps the user navigate. Using two audiological parameters, namely
brightness and attenuation, as symbolic markers. The users are encouraged
to explore the auditory map. A ball is utilized as a pointer. The inspiration
comes from map applications, where the user’s position is indicated by a pointer.
Google Maps uses a blue ball, with a light blue halo, illustrating uncertainty
in location precision. The user can tap or drag the ball around, to select the
desired position. Think of it as a mental route planer, where a line can be drawn
between the starting point and the desired endpoint. Colors and shapes divide
the map into distinct areas. This is similar to how continents are visualized on
a map. Country borders are here illustrated by gray lines. Using colors and
shapes gives the user a visual cue on what to expect. For example, moving from
the west towards the east, the user perceptually may be aware of brightness
alterations. While moving from north to south, perceptually correspond to
modulating attenuation.

The second part of utilizing metaphors in auditory interfaces is denoted "learn-
ing to navigate the map". Firstly, the interface changes the current interaction
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pattern. The user can now change both program and volume in one interaction,
whereas the conventional interface requires the user to first change program,
then volume. In current hearing aid solution, the general practice is to update
one fitting parameter at a time, whether this being gain settings, volume, or
it is the SNR, directionality, and rationals, reflected in program changes. This
essentially shortens the path between the beginning and end point, by translat-
ing a Manhattan distance: d(x, y) =| x1 − x2 | + | y1 − y2 | into an Euclidean
distance: d(x, y) =

√
((x1 − x2))2 + ((y1 − y2)2). These interactions are often

provided with auditory feedback, either as a tone, indicating the current status,
by announcing the change in speech, or by listening to the change in acoustic
scene provided by the digital signal processing (DSP). The alternative approach
we utilize is a two-dimensional tweaking of the acoustic scene. The user is
instructed that the colored fields correspond to contrasting changes in sound
perception. While manipulating the dot outwards or inwards, respectively in-
creases or decreases the volume gain. They are then told they can perform both
actions simultaneously. The user is given more control, or freedom, to operate
their device. At the same time, they are given visual feedback, on where their
favorite settings are, with respect to gain and auditory features. In practice,
this means the users can use the visual interface like a map which they can
explore. The interface supports the user in matching a given context, both au-
ditory, social and activity-driven, with a certain point in the map. The interface
further supports interactions through distance. The user learns over time, that
the neighboring fields correspond to a smaller change in acoustical manipulation
than jumping from one corner to the other. This supports a mental model and
an imaginary model of a map. Objects in proximity are equally manipulated by
the relative proximity.

Thirdly, microinteractions support the map metaphor. With the proposed in-
terface the user receives appropriate visual feedback, coupled with auditory
feedback. The trigger of moving the ball engages with the rule of program and
volume change. The user gets instantaneous feedback and can repeat the same
interaction over and over with the same result. Visualizing both volume and
program control in the interface helps to match the user expectation with the
system output. This improves the microinteraction flow, and ultimately the
user experience.

Considerate design decisions like the map metaphor illustrate how to improve
the user experience, by updating interface changes, and making a minor adjust-
ment to the interaction patterns. Considering what brings value, or thinking
about outcomes, supports the user experience. In contrast, focusing on output,
such as volume change or program change, works for feature development, and
may not support the user experience. Considerate choices grounded in psychol-
ogy and cognitive sciences, support the perceptual value of interfaces. And in
turn, opens up for the possibility of engaging users.
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6.1.2 Gestalt Principles in Hearing Aid Interfaces

The Gestalt principles stem from a group of German psychologist in the 1920s.
The key principle is that the perceptual whole is different from the sum of
its parts. In other words, focus on the organization of the entire shape, not
just on the shape’s parts. These principles can be applied to the auditory
domain. Bregman [15, p. 9-36] extensively discus how to apply the Gestalt
principles for auditory scene analysis. We use the Gestalt principles to fuse an
auditory display, provided by the hearing aid output, and the visual display on
a smartphone. We abstract the auditory features the hearing aids output, to
visual shapes and colors. Some gestalt principles are used to help the user when
mapping from the visual to the auditory domain. 1) Proximity relates to how
close different objects are together, this principle is used when visually grouping
objects, as illustrated in Figure 5.2. Proximity relates to spatial distance. We
use proximity to illustrate that neighboring programs are more similar, then
programs on the diagonal. 2) Similarity, are similar to proximity, and no clear
distinction exists. Similarity also relates to color gradients, shapes, etc. We
use color similarity to abstractly illustrate similar programs. 3) Continuation
and Completion relate to the phenomena of being able to mentally continue
broken lines. We use circular diagrams to guide the user’s eye. This supports
the user when moving the ball inwards or outwards. 4) Organization, relates
to how objects appear spatially. The red ball seems to be closer to the user, as
it overlays the other shapes in the app interface. This helps the user identify
the ball as an interactive element. 5) Context relates to perceiving the value in
relation to the greater picture. In our example, the combination of the placement
of the ball, and the auditory output provides the context for moving the ball
around.

The test subjects reported that this interface was much more intuitive than the
current remote control interface. We attribute it to using descriptive labels,
such as crisp or lively while providing the user visual guidance on where they
are located. This organization of interface better match the display-control
expectations earlier mentioned.

Mental Models for Hearing Aid Interfaces Mental models are the users’
representation of how something works Norman [103, p. 26] states: “Mental
models, as the name implies, are the conceptual models in people’s minds that
represent their understanding of how things work. Different people may hold
different mental models of the same item”. Mental models are described as any
thought process in which there are defined inputs and outputs to a believable
process which operates on the inputs to produce outputs [105, 126]. Conceptual
models are simplifications of how a system or technology work. A manual, a
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Figure 6.2: The app consists of four distinct programs and volume interaction
in one. By moving the red ball, users may increase the brightness
perception (x-axis), attenuate ambient sounds (y-axis) and adjust
the perceived loudness (from center to edge). [62]

speedometer, or an onboarding screen are all embeddings of conceptual models.
I define a mental model as the abstract representation on how technology, can
transform an input, to an expected output. For example, hearing aids volume
reflects the mental model. The thought of more ’loudness’ is easily translated
into volume gain. The high level of abstraction of hearing aid program settings
does not have an equivalent matching model, i.e., if the user change from pro-
gram 1 to program 2, the input, the user change, results in several outputs,
which is black-boxed for the user. These two scenarios is illustrated in Figure
6.3. The hearing aid program consists of several features being updated when
changed. We focus on matching the user intent with a meaningful output. The
associated labels, Lively, Crips, Natural and Focused, reflects an abstracted out-
put of the hearing aids. This, in turn, creates a better user experience for the
hearing aid user.
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Figure 6.3: Two examples of mental models. The upper illustration shows a
match between user intentions and the system output with regard
to volume changes. The lower illustration shows a mismatch be-
tween the user intentions and the system output for hearing aid
program change.

6.1.3 Using Feedback to Understand Hearing Aid Usage

We asked the test subjects to provide feedback through a questionnaire. We
asked questions related to audiological parameters, including how easy or diffi-
cult it is to change brightness, reduce ambient sounds, etc. Annotating questions
with audiological features gives insights into how the user mental model, matches
the designers mental model. These questions provide a direct link between audi-
ological settings and user intents, helping clinicians in fitting hearing aids. The
responses from the questionnaire indicate that the test subjects understand the
difference between attenuation and brightness, where more than 90% indicates
it is very easy to change using the proposed interface. 70% found it easy to
modulate program and volume simultaneously. The main concern related to
volume is the reduction in increments, meaning the volume is changed with ±2
in contrast to the regular ±1. We ask for the program the test subject use the
most. This is the perceptual recall of program usage, which we know can be
positively biased. The default program Lively is the preferred program. A test
subject states: “Lively is most suitable in general, and works better when I need
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to focus on one person”. Interestingly 9 out of 10 test subjects neglects the Neu-
tral program, attributing it with too little received value. Either the program
does not provide enough attenuation and noise reduction, or it is not bright
enough to improve SNR. The Neutral program is the default medium program.
The most interesting finding is illustrated in Figure 6.4. The test subjects were
asked to rate which program performs respectively best to attenuate noise and
increase speech focus. The subjects could answer more than once. These find-
ings show that lively works well at increasing speech focus, whereas focus works
better at attenuating noise. Such findings help the clinician matching both the
user intents and percepts when updating hearing aid settings.
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Figure 6.4: Perceptual benefits from the four programs. Lively is preferred to
increase speech focus, and Focus is preferred to attenuate noise.
Based on data from [62].

6.1.4 Conclusion

When designing interfaces to gather feedback from the user, the interaction pat-
terns must be considered. This includes metaphors, which effectively conveys
information, and creates a shared understanding. Being able to translate a sys-
tem output using metaphors, can support a shared understanding of a topic.
We actively used metaphors of space, labels, and colors to support the user in
navigating the map. Mental models of the user should also be expected. Ex-
perts, users and designers may have different mental models. To succeed in
designing health care application, there needs to be a match between the dif-
ferent mental models. We propose to work with outputs that matches inputs.
High-level labels can provide the context needed for the user to understand what
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the system does. When a user is exposed to a new interface an associated learn-
ing curve follows. The designer should strive to reduce this learning curve, to
reduce frustrations, and negligence. Using microinteractions and gestalt prin-
ciples can help the user understand the interface, create trust and ultimately
better user experience. If the user finds the interface pleasant to use, the user
interface can be designed to collect feedback data from the user and, create a
closed feedback loop. Transparency of how the system work, what data is col-
lected, and how the user react, all create support for the clinical workflow. In
this case, a hearing care professional can use the data and feedback to improve
the performance of the hearing aid. Ultimately, creating personalized hearing
care through participatory interactions.



Chapter 7

Perspectives and Future
Outlook

This thesis have covered several perspectives on personalizing hearing health
care. First, the causes and prevalence of hearing loss was presented. This also
gave a brief introduction to how hearing aids work. It also opened up for some
perspective of the future trends of hearing aid development. The scope of this
thesis lie within using hearing aids as an enabling technology, to address how to
personalize hearing health care.
Understanding the context how hearing aids are used in is the first step to
personalize hearing aids. Considering hearing aids as part of a context aware
ecosystem, enables hearing aids to become a provider of valuable contextual in-
sights. This showcases what kind of acoustical environments users are exposed
to, and the corresponding coping strategies. To investigate coping strategies,
program and volume interactions was logged. These two parameters provides
insights on how hearing aid users, augment acoustical features to match intents.
In the clinical workflow, this data can be used to generate insights and optimize
the fitting. This includes how users perceptually evaluate auditory scenes, and
how they mentally map an intent to an expected outcome. To better support the
users within this interaction paradigm, the interface to the hearing aids were
optimized. Engaging interfaces not only help the user in matching a mental
model with a context, it also provide valuable feedback. Building interfaces on
metaphors and gestalt principles, which support the user interactions, encour-
ages the user to actively participate in their treatment. This thesis have focused
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on how to use technology as an enabler participatory hearing health care. With
the future outlooks, I briefly discuss how to address the personalization of hear-
ing health care. And, I look into how to address the challenge of providing
hearing health care to more in need. This chapter uses ideas from the contribu-
tion ’Modeling User Utterances as Intents in an Audiological Design Space’ H
to describe scenarios of personalized hearing health care. This last chapter will
summarize the contributions of this thesis, including how to use user generated
data to create insights and train AI models, discuss the implications, and how
we move on from here.

7.1 Adaptive Interfaces

The last component of personalization of hearing aids is adaptive interfaces.
Hearing aids have an interface limited by hardware and memory constraints.
This limits the hearing aids to a few program slots. These programs, or settings,
can only be updated at a clinical visit. If the user wishes to change the auditory
settings on their devices, or are dissatisfied with the performance of the devices,
they need to visit a clinic.

A challenge is to serve people with limited access to clinics. This can be caused
by poor health, low mobility, or geographical limitations, etc. Several of the
big hearing aid manufacturers have opened up for remote fitting. This means
the fitting can be done via a remote video connection, and the clinician can
push new settings to the device. This is known as telehealth [32], meaning,
consultation over the phone. Telehealth addresses the challenge of providing
access to clinics. However, telehealth cannot solve the problem of scalability,
which may be a greater problem. Firstly, as mention in Chapter 2, there is
a lack of health care workers. A remote care solution relies on a health care
worker conducting a clinical consultation. The remote care solution solves the
problem of accessibility, but not the problem of scalability. Second, if the user
cannot describe their situation or challenges, a remote solution will not solve
this problem. Education, or supportive technology, which can help the user in
uttering their needs, are needed to optimize the fitting. Thirdly, the remote care
solution does not utilize contextual information, as sketched out in this thesis.
The clinician still has to guess the optimal setting to match the user’s need.

Conversational interfaces are rapidly becoming popular. Many people have
greeted a chatbot, which can sustain dialogues. The most advanced conver-
sational interfaces emulate human speech and even sound human. Notably,
the Google Duplex AI which carries out natural phone conversation to reserve
a table at a restaurant, or making an appointment at the hairdresser. If the
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boundaries are too strict, the interface act as question-answer machines, and
do not consider context. On the other hand, without design boundaries, the
conversational agents may act unexpectedly. Tay, a twitter bot launched by
Microsoft, turned into a racist within hours of deployment [97, 138].

We propose a different approach to adaptive interfaces. The adaptive interface
meets the following criteria: it accounts for contextual parameters, including
sound, activity, and user demographics. User feedback is an integral part of the
system, meaning the system over time adapts to user behavior. The adaptive
system is part of an ecosystem, utilizing a pool of training data. This feedback
system uses information from other users and their context, to improve the
model. The adaptive interfaces in personalized hearing care are illustrated in
Figure 7.1. This part of the model interacts with user feedback. The interface
propose a program pair, and the use provides feedback by selecting the most
appropriate. The program pairs are selected based on contextual information.
The model can then update the program setting, and remembers the context,
user intent and user interaction. This information is fed to a training pool of
users like me, to help train the model for other users. The output of the model
can also be used in a clinical workflow, supporting a clinician in fitting hearing
aids based on user behavior.

We propose an interactive conversational agent. The conversational agent mim-
ics human memory and has a short term memory component, called attention,
and a long term memory. The input to the conversational agent is a context
vector. This context vector consists of physical context parameters, notably
auditory parameters related to SNR, noise floor, modulation, and soundscape
flags. It also receive input from the user. This is called a bag of utterances.
The two inputs are then processed in an intent extractor. And the output of
the intent extractor is fed through a parameter tuning block. The parameter
tuning block estimates two program settings with the highest probability match.
These programs are then returned to the user, which picks one of the two as
a preference. An overview of the model is illustrated in Figure 7.2. The agent
can either be accessed through a written interface or an oral dialogue interface.
For this prototype, we have worked on a speech interface, which will be as the
interface in the chapter.

7.1.1 Modelling Utterances as Intents

Natural language processing (NLP) is used to extract the meaning of the user ut-
terances. We use a third party speech-to-text engine, and end up with sentences
or sequences of words. to extract meaning from the utterances we use word
embeddings. Word embeddings is an effective procedure in natural language
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Figure 7.1: Adaptive interfaces use contextual information and user feedback
to improve the user experience.

understanding (NLU) and NLP, as demonstrated by Mikolov et al. [92, 93].
A sentence is tokenized, and the individual words get encoded using a 1-of-K
encoding. We utilize the concept of skip-grams on longer sequences such as sen-
tences, or on documents, to create sequence embeddings [109]. Instead of using
a pre-trained vocabulary, such as an English dictionary, Wikipedia or Google
news, we create a dictionary from user utterances. Meaning, the model keeps
updating the dictionary based on user input. Pooling user input from several
users creates a larger vocabulary. We estimate the similarity between different
utterances based on a cosine similarity between the word and sentence embed-
dings. For example, ’There is too much noise’ and ’I can’t hear because there are
too many people’ have short cosine similarity than ’Turn down volume’ or ’It’s
quite’. Using the same embedding approach, we estimate the intents similarity
of sentences. For example, the hearing aid settings related to the utterance
’I cannot hear the professor lecturing’, maybe, more frontal focus, more noise
reduction or more volume amplification. The intent extract uses a RASA em-
bedding model [99, 110], which cast the intents and utterance embeddings into
a shared low dimensional space using supervised learning inspired by StarSpace
[149].

7.1.2 From Intents to Fitting Parameters

To find the optimal fitting parameters, we use work from the audiological do-
main. Jenstadt et al. and Thielemans et al. [57, 134] identifies 7 components,
from a PCA, which the audiologist can fit a hearing aid from. These include
gain for soft, normal and loud inputs, maximum power output, compression and
unwanted sounds. We use a recurrent neural network (RNN) to create a sequen-
tial embedding of perceived intent and corresponding fitting actions. The model
compares known dialogues with new dialogues, to estimate program settings.
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Figure 7.2: Proposal for a conversational agent. The agent uses both contex-
tual information and user input. Probabilistic it proposes A/B
program pairs. The user chooses one of the two, and the model is
updated. [63]

The model predicts the highest likelihood for the four program settings in the
hearing aid. The two highest ranked settings are presented to the user, as an
A/B test. This extends the model to include user feedback, which is stored in
the long term memory of the system. Exemplified below is a conversation with
our conversational agent:
utterance: “can’t understand what is being said”
intent: enhance speech
action: increase B high frequency and soft gain
reply: “maybe try setting B ?”
utterance: “what does B do ?”
intent: explain B
reply: “it adds brightness to better separate sounds, do you prefer setting B ?”
utterance: “its very noisy in here”
intent: noise reduction
action: adjust B beamformer, attenuation and noise reduction thresholds.
reply: “try setting B, do you prefer B ?”
utterance: “its better”
intent: confirm
reply: “great I’ll remember you like setting B in this listening environment”
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7.1.3 Considerations for Adaptive Interfaces in Hearing
Health Care

Adaptive interfaces are the last piece of personalized hearing care, from a tech-
nological perspective. However, it does not fully address the full system of
hearing health care. More work must be put into how adaptive interfaces im-
proves the user experience, both for clinicians and for hearing aid users. The
implications of using conversational agents and artificial intelligence must be
further investigated. The conversational agent automates several human tasks
normally carried out by a clinician. One challenge is whether it will be accepted
by the clinician. HCPs may fear they will lose their jobs, even though the con-
versational agent can automate trivial tasks. Also, as the end user is interacting
with a machine, it will also have profound effects on the hearing aid user. The
user experience will be personalized to the user, based on user behavior and
interaction, creating great user experiences. The conversational agent may even
be perceived as a human! The question is whether we are ready for these inter-
actions, and are willing to provide the necessary data. These ethical concerns
must be addressed, before deploying and launching such systems. On the other
hand, such systems may break the glass ceiling of hearing health care today,
providing scalability and reaching many in need.

7.2 Integrating UX Design Principles in Health
Care

The data-driven UX model described in Chapter 3 sketches out a framework
that can accelerate insights within the health care domain. Using the five ele-
ments provides value from the early discovery phases to product delivery. The
power of data-driven UX lies within the cross-section of lean UX and data sci-
ence. Rapidly iterating with a focus on hypothesis validation can provide fast
answers. And rather than being limited to the current technology, one should
investigate whether alternative solutions exist, such as third-party services. The
approach should be to validate hypotheses, and it should not be either driven
or limited with the current technological offerings.
UX methods use a top-down approach when addressing the challenge of per-
sonalizing hearing health care. The focus on addressing systematic challenges
provides different insights, compared to a bottom-up approach.
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7.2.1 Making Hearing Aids Contextual Aware

One of the main contributions of this thesis is considering hearing aids as con-
textual aware devices. Hearing aids are small, discrete head-worn devices, which
can provide acoustical information. When coupled with other sensors, including
smartphone and wearables, a wealth of contextual information becomes avail-
able. When translated, this sensor data creates insights for the user and the
user behavior, and it provides insights for health care workers. It is important
to present the data as valuable information. Context awareness within hearing
care works as a communication tool. Data is not dangerous, it is informative.
It provides hearing care professionals (HCPs) a tool which highlights scenarios
which may need hearing aid adjustment.
The hearing aid of the future may look very different from what we have today.
With the advancement of low-cost hearables, such as Apple Airpods, head-worn
hearing devices might be more accessible. These devices could address the need
for early care, or may even provide preventive and predictive insights on noise ex-
posure. This could be scaled up, where millions of people provide insights into
noisy environments and could generate information on noise pollution. Con-
nected head-worn devices could have positive implications reaching far outside
of hearing health care!

7.2.2 Conducting Trials With N=1

Conducting trials with one or few subjects can provide valuable insights, that
can supplement clinical trials. In the case of hearing health care, the longitudinal
studies allow clinician and researcher to better understand the coping strategies
of a hearing aid user. These strategies can already be implemented in the clini-
cal workflow. We imagine using dashboards or creating reports, which can help
clinicians in the fitting process. Letting people explore and exploits, motivates
the user to engage with the technology. In the wild studies are accepted within
the human-computer interaction and ubiquitous and pervasive computing com-
munities. Cross collaboration with health care professionals is needed if the
research should make an impact. As research communities, we need to embrace
each other and respect each other’s differences. I believe this thesis can be a
starting point in integrating HCI principles, such as UX methodology, within
hearing health care.

The last consideration is related to the use of adaptive and autonomous systems.
If adopted, hearing health care could reach the ones in dire need. Most cases of
severe hearing loss occur in low-income countries, which lack the infrastructure
to provide hearing health care. A mobile or online accessible technology could
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be changing the lifes of million of people.



Chapter 8

Conclusion

The objectives of this thesis were to investigate how data driven user experience
can provide value in a health care setting. I found that UX for health care
enables participatory data driven insights. When clinicians and patients come
together around informative data, new insights on the treatment is highlighted.
I defined a data-driven UX framework which can be used in health care. The
contribution provides insight in how different UX tools can be used to validate
relevant hypotheses. Using tools such as rapid prototyping and 3rd party ser-
vices, health care products can generate insights into the treatment of chronic
diseases. UX is driven by top-down processes. This enables a holistic view of
a problem, and how technology can address this. In the case of hearing health
care, improving hearing aids does not fix the problem. Talking about hear-
ing aids are used, creates new clinical insights. Contextual aware devices and
hearing aids provide insights into hearing aid usage. Using rapid prototyping
approaches, it is illustrated how little data can create big insights.

Involving the user in their treatment, also when it comes to early UX investi-
gations, may guide the development of future products, services, and clinical
workflows. Feedback is an integral part of the flow. Data can help paraphrase
questions, to better match clinical parameters with user perception. I showed
that using considerate interfaces encourages user interaction. Even when there
is a lack of clear guidelines on mapping between two domains, a rapid prototype
approach can quickly validate whether the designer intentions are valid.
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I hope this thesis has provided tools to rethink health care research, and to
propel health care research into personalized medicine.
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Abstract
The recent introduction of Internet connected hearing in-
struments offers a paradigm shift in hearing instrument fit-
ting. Potentially this makes it possible for devices to adapt
their settings to a changing context, inferred from user in-
teractions. In a pilot study we enabled hearing instrument
users to remotely enhance auditory focus and attenuate
background noise to improve speech intelligibility. N=5, par-
ticipants changed program settings and adjusted volume
on their hearing instruments using their smartphones. We
found that individual behavioral patterns affected the usage
of the devices. A significant difference between program
usage, and weekdays versus weekends, were found. Users
not only changed programs to modify aspects of direction-
ality and noise reduction, but also continuously adjusted
the volume. Rethinking hearing instruments as devices that
adaptively learn behavioral patterns based on user interac-
tion, might provide a degree of personalization that has not
been feasible due to lack of audiological resources.

Author Keywords
Hearing impairment; user behavior; health; aging; aug-
mented audio

ACM Classification Keywords
H.5.m [Information interfaces and presentation (e.g., HCI)]:
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Introduction
The current practice of fitting a hearing instrument relies on
a trained audiologist, and it takes on average two months,
with 2-3 visits, to fit the hearing instruments [6]. Hearing
instruments are rarely fitted optimally at the first consulta-
tion, as the amplification of specific frequency bands only
explains part of the problems encountered when aiming to
understand speech in noise. Postponing the first visit for a
decade [3] from first experiencing hearing problems until
acquiring a hearing instrument provides other challenges.
During this period the brain may have started to rewire due
to its inherent plasticity and consequently the ability to com-
prehend speech may have begun to degenerate [7, 9]. As
a result it may be difficult for the wearer to separate voices
in challenging listening environments. In many cases there
may be a lack of audiological resources for optimally ad-
justing the device. A perceived bad user experience may
result in the user giving up on adapting the settings or sim-
ply returning the hearing instrument to the clinic. Kjeldsen
and Matthews [5] identifies two types of tests in the hear-
ing instrument fitting: as a minimum identify the needs for
amplification in the frequency bands affected by the hear-
ing loss based on an audiogram and subsequently assess
the user’s ability to separate sounds in noisy environments
in sessions with trained audiologists. It may be difficult for
users to describe how they perceive sounds in words in or-
der for the audiologist to adjust the settings. Furthermore,
the listening experience is only simulated based on audio
samples in the clinic, which may differ from the problems
the user actually encounters in real life. Other papers within
the HCI literature have addressed the issue of retrieving
and describing a situation. Dahl and Hanssen [2], build a
tabletop prototype, where the user could choose between
predefined soundscapes, but such participatory approaches
may require that an audiologist is present to be useful.

In this paper we investigate how a hearing instrument is
used throughout the day. Meaning, rather than simulating
listening scenarios in a clinic, we aim to infer the optimal
settings based on how the user adjusts programs and/or
volume as the context changes in real life situations. In the
present study we focus on the temporal dimension of inter-
action patterns observed over hours and days within a 10
week period. To our knowledge, no other studies have in-
vestigated in situ temporal interaction patterns of hearing
instrument users at this level of detail. Traditionally hearing
instruments have been perceived as independent devices
limited by memory size and processing power, and only
recently been able to wireless connect with smartphones.
Utilising the power of an Internet connected hearing instru-
ment, we investigate how a snapshot in time, represents
a situation where the hearing instrument performs subop-
timal. In this scope, the hearing instrument is perceived
as a device that augment a soundscape. Previous studies
within HCI have described similar devices augmenting hear-
ing, usually involving a pair of binaural microphones and
a pair of head worn speakers[8] [10], however, they have
not investigated adaptation patterns or user fitted hearing
experiences.

We propose a different way of hearing instrument fitting,
connecting hearing instruments with smartphones and the
Internet, making them cloud connected devices. Based
on data and user engagement, we generate new types
of personalization of hearing instruments. We propose a
paradigm shift where audiological best practice and inter-
ventions includes decisions making from user generated
data reflecting everyday usage.



Method
Participants
6 participants volunteered for the study (6 men), from a
database provided by Eriksholm Research Centre. The me-
dian age was 61.8 years (std. 11.1 years). All participants
have more than a year experience using hearing instru-
ment. The participants suffers from a symmetrical hearing
loss, ranging from mild-moderate to moderate-severe as
described by the WHO[12]. All have an iPhone 4S or newer.
One participant was excluded due to missing data.

Figure 1: The interface of the
Oticon ON iPhone app available
from the App Store (iOS) to control
the hearing instruments. To
increase volume the user swipes
up, and to reduce, swipes down. To
change program the user taps the
black circle and taps on a program
to select it. The app then
communicates directly with the
hearing instruments via Bluetooth,
and data is send via the iOS IFTTT
app.

Apparatus
Each subject were equipped with two Oticon Opn™ hear-
ing instruments, stereo Bluetooth low energy (BLE) 2.4
GHz. All subject used personal iPhone 4S or newer iPhone
models with Bluetooth 4.0. The logged data consist of any
user initiated program change or volume change through
the Oticon ON iPhone app (see Figure 1), formatted as time
series data, transferred using IFTTT (If-This-Then-That),
stored in the cloud and shared via Google Drive. The hear-
ing instruments were fitted with four programmes. The sub-
jects were provided with a test user Google account prior
to the experiment. The account was used for data collec-
tion, and the subjects had full ownership of the account and
data.

Procedure
Subjects were fitted with OPN hearing instruments by an
audiologist. The hearing instruments were fitted based on a
unique frequency dependent volume amplification for each
subject. Each subject was fitted with four programmes,
through the Genie 2.0™ fitting software. The programs
emulates different types of auditory focus, by increasing
amounts of signal processing to enhance voices and re-
duce background noise when encountering challenging
listening scenarios. These are trade offs between speech

intelligibility, and background sound amplification. The four
programs are:

• P1: Resembling an omnidirectional perception with
a frontal focus. Sounds from the sides and behind
the listener are slightly suppressed to resemble the
dampening effect of the pinna.

• P2: similar to P1 but gently increasing balance and
noise removal when encountering complex listening
environments.

• P3: similar to P1 but increasing balance and noise
removal even in simple listening environments.

• P4: similar to P3 with high sensitivity to noise in-
creasing balance and noise removal in all listening
environments.

Results and Discussion
In this section we first analyse the collected data to explore
what differentiates the program usage based on the time of
the day. Next we probe whether demands related to specific
activities influence the behavioral patterns, by comparing
program usage on weekdays (Mon-Fri) against weekends
(Sat-Sun). Subsequently we discuss to what degree such
learned behavioral patterns could sufficiently provide a
foundation for adapting the device settings based on tem-
poral aspects alone. For the analysis, only data collected
between 8AM and 12AM is used, under the assumption
that the hearing instruments would be switched off during
the night. Data was collected between 12AM and 8AM, as
the participants not always switched off the hearing instru-
ments, introducing noise in the data set.

The difference between programs
Each subject shows unique interaction patterns when it
comes to program usage. It should first of all be noted that
the usage time for each participant varies between 3.5 to 8



hours per day. The total usage can be observed in Table 1.
To determine if there is a significant difference between the
usage of the four programs an analysis of variance was per-
formed. The mean usage of the four programs are: P1 18.4
minutes per hour (mph), P2 1.5 mph, P3 0.6 mph and P4
4.1 mph. Meaning, the difference in usage time related to
the four programs was significant (F(3,4) = 23.1, p < .0001).

Average daily usage

S1 3.54 h
S2 7.21 h
S3 7.41 h
S4 6.66 h
S5 8.08 h

Table 1: Average hours of usage of
the hearing instrument for each
subject (S1-S5).

P1 P2 P3 P4

S1 65% 17% 3% 15%
S2 80% 0% 0% 20%
S3 96% 0% 0% 4%
S4 67% 9% 10% 15%
S5 62% 9% 1% 28%

Table 2: Average usage of hearing
instrument per subject. P1-P4 are
programs, and S1-S5 are subjects.
The average usage is in
percentage of total usage of the
device from 8AM to 12PM.

The subjects have a preference for using P1, while P4 is
second. The preference for P1, may reflect that it provides
a frontal focus with a slight dampening of sounds from the
back. This is similar to the acoustical characteristics pro-
vided by the natural shape of the ears and head. This sug-
gest that P1 may provide adequate compensation in most
of the listening scenarios encountered during the day. The
three other programs offer increasing degrees of frontal fo-
cus and noise removal, where on average program P4 is
preferred. However, from Table 2, subject 1 seems to pre-
fer P2 which offers increased brightness facilitating speech
intelligibility to P4. Based on the program changes alone
it seems that at least two different auditory focus settings
are needed. One program for less demanding listening sce-
narios allowing the user to shift the attention between sev-
eral sound sources, and another program for challenging
environments with multiple voices and background noise
requiring more attenuation of ambient sounds.
Table 2 shows the average usage of the four programs, P1-
P4. Interestingly, we found that program P1 was preferred
74% of the time. This is significantly different from previous
findings of respectively 33% [1] and 37% [11]. This could
be due to manufacturer-specific noise reduction and gain
reduction algorithms[4]. An interesting observation along
the temporal dimension is illustrated in Figure 2. As an il-
lustrative example, subject 4 uses P1 over the course of the
day. However, the more supportive program P4 is primar-
ily used between 11AM and 4PM and again between 7PM
and 10PM. In Figure 2c patterns for the same two programs

are shown for Subject 2. A notable difference appears for
the usage of P4, who uses P4 from 9Am to 5PM, and then
barely uses this program for the rest of the time period. The
patterns thus seem highly individual and any design of al-
gorithms for automatically adapting device settings would
need to incorporate temporal aspects in regards to the indi-
vidual preferences.

The different usage in weekdays compared to weekends
The next question to investigate is whether specific activi-
ties in weekdays and weekends change the behavioral pat-
tern. The average use on weekdays are 7.8 hours per day,
and 5.4 hours per day for the weekends. The difference be-
tween the aforementioned is significant (F1, 4 = 17.0, p <
.02). To understand how the usage patterns varies between
the weekdays and the weekend, a statistical analysis was
performed on the four programs across participants. The
different usage of the four programs was significant (F3,12 =
23.1, p < .0001). However, the interaction between program
and day was not significant (F3,12 = 1.4, p > .5).
This indicates that the behavioral patterns vary over the
course of a week. From Monday through Friday P1 is on
average used 71% (of 7.8 hours) versus 80% (of 5.4 hours)
Saturday to Sunday. Both the overall usage time and re-
duced selection of the P2-P4 programs, indicate that the
user activities during weekends may represent fewer au-
ditory challenges. In the light of this, we argue that any al-
gorithms aiming to adapt the device settings according to
behavioral patterns should also take these weekly patterns
into consideration.
Using Subject 2 and 4 as contrasting examples in Figure
2d and 2h notice how the P4 usage pattern changes be-
tween weekdays and weekends. Subject 2 uses P4 more
throughout the day (Mon - Fri), and only uses the program
sparingly during evenings in the weekend. Subject 4 prefers
P4 primarily during afternoons in the weekends, whereas



(a) Mon-Fri for subject 1 (b) Sat-Sun for subject 1

(c) Mon-Fri for subject 2 (d) Sat-Sun for subject 2

(e) Mon-Fri for subject 3 (f) Sat-Sun for subject 3

(g) Mon-Fri for subject 4 (h) Sat-Sun for subject 4

(i) Mon-Fri for subject 5 (j) Sat-Sun for subject 5

Figure 2: Program usage over time, from 8AM to 12AM. P1 is
beige, P2 is brown, P3 is light blue and P4 is dark blue. The left
hand columns represents usage over weekdays, and the right
ones represents usages in weekends.

this usage patterns is not found during weekdays.

Volume and program interactions
An additional parameter to investigate when modeling the
behavioral patterns are the volume change interactions.
The volume interaction can be interpreted as a fine tuning
of the desired auditory scene, by increasing or decreasing
the intensity, thus zooming in or out of an auditory scene. In
Figure 3 a comparison of the 5 test subjects and their us-
age of volume with respect to program can be observed.
The light to dark blue colors reflect decreasing volume,
while the yellow to orange gradients reflect an increase in
gain. It can be observed that most subjects decrease the
volume in P1 during the weekend. Subject 4 prefers to pri-
marily reduce the volume, in contrast with Subject 5 which
prefers to mostly increase the volume. In these cases we
hypothesize that the gain settings of the devices might need
to be adjusted. Subject 1 adjusts the volume both up and
down from Monday through Friday, whereas the volume is
only decreased during weekends.

While the above user interaction over a 10 week period can
be inferred directly from the program change and volume
adjustment, we subsequently in follow-up audiological ses-
sions with the subjects found that the behavioral patterns
were aligned with the aggregated program usage history
data continuously collected over 4 months by the devices.
Subsequently we interviewed the test subjects to determine
what defined their program and volume preferences. The
P1 program was preferred in most listening scenarios be-
cause it allows the users to selectively shift their attention
omnidirectionally to any sound sources. However, when en-
countering more challenging acoustical environments, the
three alternative program settings were selected, whether
the aim was to enhance speech intelligibility, attenuate am-
bient sounds or remove background noise. Additionally



(a) Mon-Fri for subject 1 (b) Sat-Sun for subject 1

(c) Mon-Fri for subject 2 (d) Sat-Sun for subject 2

(e) Mon-Fri for subject 3 (f) Sat-Sun for subject 3

(g) Mon-Fri for subject 4 (h) Sat-Sun for subject 4

(i) Mon-Fri for subject 5 (j) Sat-Sun for subject 5

Figure 3: Program usage with respect to volume gain, from 8AM
to 12AM. For each column the left figure is P1 and right figure is
P4. Left hand columns represents usage over weekdays, and the
right are usages in weekends.

users increased or reduced the perceived loudness of these
settings by continuously adjusting the volume.

Perspectives
These results indicate that the users predominantly pre-
ferred to combine volume adjustments with settings provid-
ing an open frontal focus coupled with a natural attenuation
of ambient sounds in 74% of the usage time. This differ
from earlier studies reporting that an omnidirectional fo-
cus was only chosen in respectively 37% [11] and 33% [1]
of listening scenarios. In contrast to earlier studies using
simulated sound environments [2] our findings are based
on the actual acoustic environments encountered by users
over several weeks of usage. It is difficult to compare these
studies, as the data generated in our study represent snap-
shots of user intents triggered by the changing auditory
context throughout daily life. When compared to earlier
studies, the quality of sound enabled by recent advances
in digital signal processing provided by the state of the art
devices used here is also likely altering how the auditory
focus is perceived subjectively. The method of continuous
data collection may facilitate long term personalization of
auditory interfaces not limited to hearing instruments but
encompassing next generation hearables in a wider sense.
We propose that our data driven approach could potentially
be used to individualize settings based on continuous in-
teraction with Internet of things connected devices. In turn
providing a dynamically optimized personalization, inferred
from learned behavioral patterns.
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Abstract. Hearables are on the rise as next generation wearables, capa-
ble of streaming audio, modifying soundscapes or functioning as biomet-
ric sensors. The recent introduction of IoT (Internet of things) connected
hearing instruments offer new opportunities for hearables to collect be-
havioral data that capture device usage and user intents and thereby
provide insights to adjust the settings of the device. In our study 6 par-
ticipants shared their volume and interaction data capturing when they
remotely changed their device settings over eight weeks. The data con-
firms that the participants preferred to actively change programs rather
than use a single default setting provided by an audiologist. Furthermore,
their unique usage patterns indicate a need for designing hearing instru-
ments, which as hearables adapt their settings dynamically to individual
preferences during the day.

Keywords: Hearables, quantified self, usage patterns, behavioral data

1 Introduction

Hearables may be the wearable of the future. They fit on or in the ear, providing
audio playback, soundscape argumentation, and integrate biometric sensors[6].
More than $28 million have been raised from crowdfunding for hearables since
2014[5] showing an increased interest in hearables. However, many start-ups have
struggled to deliver, and have been forced out of the market in the process. Nick
Hunn projects that the market for hearables within 2 years will increase to more
than 230 million units, with a market revenue of more than $30 billion[5].

Hearing instruments are a medical device subcategory of hearables, which
offer advanced capabilities for augmenting listening scenarios, including amplifi-
cation, noise reduction and speech enhancement. The latest generation of hear-
ing instruments connects to smartphones through Bluetooth, enabling them to
communicate with other apps or cloud services supporting the IFTTT standard,
effectively making them IoT connected devices.



Hearing instruments primarily support enhanced speech intelligibility in chal-
lenging listening scenarios characterized by speech in noise or multiple talkers.
However, only a small fraction of the 360 million people suffering from severe
hearing loss[12], including 48 million Americans (20% of the populatioon)[9] suf-
fering from hearing loss, use hearing instruments.

In a previous study, Laplante-Levesque et al.,[7] investigated the usage of
hearing instruments, and compared self-reported use, and historical summarized
use from the hearing instrument (average on/off time). It was found that there
are two distinct types of behaviors associated with hearing instrument usage.
Users wearing the device from morning to bed, and users using the hearing in-
struments when needed. The hypothesis of this study is that each participant
have a unique behavior, and that there may be more than one usage pattern.
They furthermore concluded that the average wear of a hearing instrument av-
eraged 10.5 hours. This is well beyond the battery capacity of current hearables,
with Apple AirPods claiming up to 5 hours play on a charge [1] and technologies
with binaural microphones, such as the Doppler Labs Here One and the Bragi
Dash claims 3 hours of use on a battery charge[4, 3]. In comparison, current
hearing instruments batteries can sustain a week of use, or more, before the
need for changing batteries.

This paper investigates the usage patterns of hearing instrument users based
on user initiated program and volume changes through a pilot study of 7 weeks.
These adjustments are converted into time series data saved in the cloud using
IFTTT to transfer data. Previous studies have primarily used summarized his-
torical data retrieved from the hearing instrument software, whereas IoT devices
may potentially learn from usage data, such as volume and program interactions,
to dynamically adapt the hearing instruments to behavioral patterns. In this ar-
ticle hearing instruments will also be referred to as hearables.

2 Method

6 participants (median age 61.8) with more than 5 years experience of hear-
ables were recruited for the study. Half of the participants were retired, while
the other half are still working. Participants were equipped with two Oticon
OpnTM hearing instruments connected personal iPhones using Bluetooth. All
user initiated program selection or volume changes were recorded as time series
data stored over a 7-week period. All participants were provided with a Google
Drive account used for data collection, allowing them to retain full ownership
of the data. The hearing instruments were fitted based on audiograms by an
audiologist to provide individualized frequency dependent amplification for each
subject. Rather than a single optimized setting the hearables were fitted with
four alternative programs from the Oticon OpenSound NavigatorTM

These programs are trade-offs between speech and noise balance, i.e., speech
intelligibility, and of background sound amplification. The OpenSound Navigator
works with three modules to analyze the sound, these are described by Le Goff
et al,.[8] as: Analyze, analyzes the sound environment both omnidirectional, and



backward, estimating where a noise sources are placed. This simulates how sound
normally are perceived by the human ear, with more sound attenuation from the
back and the sides of the listener. Balance, which determines speech sources and
attenuate noise sources between speech sources. This balances the signal-to-noise
ratio (SNR). And, noise removal, which attenuate noise sources and amplifies
speech above the hearing threshold.

Each of the programs gives various support depending on the context, from
simple environments such as speech in quiet to more complex environments with
multiple talkers and ambient background noise, such as an outdoor cafe.

The four programs are:

– P1 : Resembling an omnidirectional perception with a frontal focus. Sounds
from the sides and behind the listener are slightly suppressed to resemble
the dampening effect of the pinna.

– P2 : similar to P1 but gently increasing balance and noise removal when
encountering complex listening environments.

– P3 : similar to P1 but increasing balance and noise removal even in simple
listening environments.

– P4 : similar to P3 with high sensitivity to noise increasing balance and noise
removal in all listening environments.

2.1 Participants

6 participants were recruited for the study (6 men). The median age was 61.8
years (std. 11.1 years). All participants have used hearables for more than 5
years. All have an iPhone 4S or newer. Half of the participants are retired, and the
other half are working. The hearing loss ranges from mild (26-40dB), moderate
(41-60dB) and severe (61-80) as described by the WHO[11]. Two participants
were not included in the study due to lack of data or missing data. A short
summary of each subject is provided in Table 1.

Subject Age group Hearing loss Experience with OPN Occupation

1 50-59 Moderate-severe No Working
2 70-79 Moderate No Working
5 50-59 Mild Yes Working
7 70-79 Mild-moderate No Retired

Table 1: Demographic information related to 4 subjects

The study was carried out in Denmark in the autumn of 2016, and follow
up in January and February 2017. Participants were instructed at Eriksholm
Research Centre.



2.2 Apparatus

Each participant were equipped with two Oticon OpnTM hearing instruments,
stereo Bluetooth low energy (BLE) 2.4 GHz, Near-Field Magnetic Induction
(NFMI). All participants used (personal) iPhone 4S or newer models, Bluetooth
4.0 (or newer). The data streamed by the hearables consist of any user initiated
program change or volume changes (-4 to 8) accompanied with a time-stamp of
the interaction, stored in the cloud on a test subject owned Google spreadsheet
and shared via Google Drive. The hearing aids were fitted with four audio profiles
P1, P2, P3 and P4, described earlier.

The participants were provided with a private test user Google account prior
to the experiment. The account was used for data collection, and the participants
have full ownership of the account and data. Data was collected over a 7-week
period.

2.3 Procedure

Participants were fitted with OPN hearing instruments. The hearing instruments
were fitted based on a unique frequency dependent volume amplification for each
subject, by an audiologist. User initiated program and volume changes are col-
lected trough the ON app, which in combination with the IFTTT app collects
and store usage patterns as time series data. Each user initiated action is stored
as a row on a private Google drive spreadsheet. 10 IFTTT recipes1 were installed
on the participants smartphone. The participants were encouraged to explore the
hearables and their functionality with no further instruction provided in which
scenarios the programs would be best suited. Participants could then test the
device, while the researcher and an audiologist were present. The participants
were informed that data would be continuously streamed for the duration of the
experiment. Each participant was fitted with four programs, through the Genie
2.0TM fitting software using the OpenSound Navigator. Follow up consultations
with an audiologist was planned for the end of the study. These consultations
included an interview about the use of the hearables along with: Usage his-
tory collected by the device compared with the collected cloud data. Secondly,
inquiring into the usage of specific programs to further understand the users
preferences and intents in various scenarios. Leading to defining new program
settings for a follow up study. The aim would be to tease apart the need for
increasing attenuation of ambient sound sources, noise removal and improving
speech intelligibility associated with different scenarios.

3 Weekday program usage over 24 hours

The program patterns in Fig. 1 & 2 ranging from P1 (beige), P2 (brown), P3
high (light blue), to P4 (dark blue), illustrate the large differences between users,
their contrasting needs throughout the day, as well as their changing preferences

1 accessible online: https://ifttt.com/p/benjaminjohansenphd/shared



for weekday vs weekend activities. General trends towards increased support
during the day can be seen for users 1,5 and 7. Conversely, less need of support
in the evening is reflected in the behavior of user 2. In addition, the bright
sound represented by the P2 (brown) versus the full sound of P3 (light blue)
may indicate how preferences for the P2 increases speech intelligibility, whereas
P3 provides a less intense listening experience. Likewise, the program usage on
weekdays could be driven by the demands of work related activities, while the
preferences on weekends might to a larger degree reflect individual baselines
defining their cognitive processing needs[2, 10].

(a) Mon-Sun for subject 1 (b) Mon-Sun for subject 2

(c) Mon-Sun for subject 5 (d) Mon-Sun for subject 7

Fig. 1: Aggregated average program time. The time is displayed in minutes for
each hour, and is aggregated for the full data collection period. The use of P1
(beige), P2 (brown), P3 (light blue), and P4 (dark blue), varies for each test
subject as well as over the course of the day.

4 Changing preferences in the weekends

4.1 Weekends as a baseline

In Fig. 2 a comparison between weekday usage (left side of the figure) and week-
ends (right side of the figure) is illustrated for subject 2 and 5. It can immediately



be noticed that the behavior pattern varies from weekdays compared to week-
ends. A clear trend of preferring P1 in the weekend is evident. The preference
for a more natural sound in the weekend can be due to a less challenging con-
text, compared to weekdays (and working days). It can also be observed that
the weekends have a later onset of the day.

From these observations it seems as the weekend reflects a baseline state
where the user prefers natural sound and does not need the enhanced speech
intelligibility and noise reduction associated with the P4 program.

4.2 Varying context creates different needs

An interesting observation from Fig. 2.a and 2.b for subject two, is the distinct
pattern of removing background noise from morning to late afternoon. In a
follow up interview, this subject indicated that he works in the transportation
industry, and indeed works between 8AM and 4PM. The choice of this program is
to reduce noise. This subject along others, indicated that the weekends have the
least troublesome scenarios, and a more natural sound, such as the one provided
by P1, is preferable in these contexts.

Subject 7 have a distinct pattern using the automatic and supportive pro-
grams, especially P3. These programs increase speech intelligibility and have a
higher sensitivity to background noise. This subject play cards 2-3 times a week
for several hours. Due to the nature of the card game and a room with poor
acoustics, the P2 and P3 program increases speech inteligibility.

Both of these subjects mentioned that the weekends contains less challenging
scenarios. Anecdotal, the reason for wearing the hearables later in the day is
caused by reading the newspaper in the morning. The newspaper creates an
uncomfortable sound environment containing rattling and sharp noises, where a
quiet environment is preferred.

5 Program use over several weeks of use

From Fig. 3 the preferences for program use over several weeks can be observed.
Due to some weeks without data, caused by a lack of Internet connection (e.g, in
outdoor environments), some subjects have fewer weeks represented than others.
It can be observed that the majority of the subjects uses two or more programs
the first 3 weeks. While at the end of the pilot study they seem to prefer two
programs, typically P1 and a program that assist in challenging listening envi-
ronments. This indicates that over time the participants become aware of the
capabilities of the hearables, in which scenarios it can support them as needed,
and at which times it performs the best. From the figure it is visible that a pref-
erence for the more open and natural sounding P1 is used most frequently. This
indicates that the participants prefers a natural sound, and when a challenging
scenario occurs, they change to a supportive program.

A second observation indicates that the preference between the changes in
many cases includes two contrasting programs. Over time a preferred supportive
program for the subject emerges.



(a) Mon-Fri for subject 2 (b) Sat-Sun for subject 2

(c) Mon-Fri for subject 5 (d) Sat-Sun for subject 5

Fig. 2: Comparison of weekday and weekend patterns for subject 2 and 5. The
data is aggregated over the full study period, and is displayed as an average
minute per hour. Notice the distinct pattern of less support in the weekends
(brown and teal colors are preferred). P1 (beige), P2 (brown), P3 (light blue),
and P4 (dark blue).

5.1 Perceived sound quality

The perceived sound quality is a motivator for behavioral use of hearables. The
primary focus from the established hearing aid industry have been on increased
speech intelligibility and dealing with challenging listening scenarios. However,
from interviews of the subjects in this study, the majority of the wear time is not
spent in challenging environment. The natural open characteristics of P1 seems
to provide a natural sound environment, which provide sufficient amplification
in most listening scenarios, involving only few speakers and less background
noise. As confirmed by accumulated usage history, the P1 is used to reproduce
a natural sound up to 75% of the time.



(a) 7 weeks of use for subject 1 (b) 5 weeks of use for subject 2

(c) 7 weeks of use for subject 5 (d) 5 weeks of use for subject 7

Fig. 3: Preference of using the hearing aid over time. The data is aggregated and
averaged per week of collected data. Notice how the first weeks include use of
more programs, while this decline towards the end of the data collection period.
This indicates that the user finds a ”preferred” setting over time. Some subjects
have missing data due to lack of Internet connection (outdoor environments).

6 Program duration and volume changes

The program changes can explain part of the behavioral patterns of each of the
subjects. The programs can be observed as macro settings modifying a sound-
scape by adjusting the noise removal and attenuation of ambient sound sources.
As earlier mentioned, P1 has the least effect on the soundscape, with a frontal
focused omnidirectional producing a natural sound, while P4 has increased noise
removal and attenuation of ambient sound sources. The interaction between pro-
grams and volume can be interpreted as user intents.

The volume control on the other hand works as a micro adjustment. By
controlling the volume gain the user can zoom in or out of a soundscape, alter-
nating how present in the current context they wish to be. This does not affect
the reproduced sound from the programs, only the gain and intensity of the
reproduced sound.

6.1 Fine-tuning using the volume control

To illustrate the use of the volume control for fine-tuning, the usage patterns for
subject 2 and subject 7 can be observed in Fig. 4. In Fig. 4 the average change
in volume gain is displayed, with respect to the two contrasting programs of P1
and P4, blue for decreasing and orange for increasing gain.



Fig. 4a indicates a unique pattern for subject 2 of a need for an increase
in volume, around meal times. In the weekend, shown in Fig. 4b the volume is
primarily decreased, and only increased in the late evenings on weekends. This
pattern is contrasting with subject 7s pattern, seen in Fig. 4c where the volume is
always decreased in P1. In P4 there is a contrasting volume change from evening
meal time, and just after this meal time.

(a) Mon-Fri for subject 2 (b) Sat-Sun for subject 2

(c) Mon-Fri for subject 7 (d) Sat-Sun for subject 7

Fig. 4: Comparison of volume interactions with respect to weekdays (left figures)
and weekends (right figures) for subject 2 (top) and subject 7 (bottom). Notice
the distinct difference in volume patterns between the two subjects. Observe the
contrasting volume changes for weekdays versus weekends.

Comparing just these two programs for two subjects with respect to volume
shows how the subject intentionally uses a combination of a program and a vol-
ume to adjust the auditory experience. Furthermore, it highlights the difference
between usage pattern between two subjects. One prefers to primarily increase
volume, while the other prefers to decrease volume. These changes also occurs
at different time intervals, indicating a need for personalized hearables.

7 Conclusion

These results show how user generated volume and program interaction data may
capture preferences for personalizing the listening experience to the changing



context. The usage patterns highlight individual needs for selecting contrasting
programs rather than a medium one size fits all setting often provided by default.
The shared user generated data might potentially be used to learn behavioral
patterns enabling the devices to automatically adapt their settings and thus
optimize the user experience of hearables.

It seems that at least two programs are needed to optimize the hearing ex-
perience. Test subjects prefer to change settings of the hearables in the course
of a day. This is visible in the emerging patterns, where each user has unique
usage patterns. These patterns are influenced by the changing context.

At least two programs are needed to satisfy the needs of the users of hearables.
It can be observed that most users tend to have an early onset of testing the
various modification of the soundscape observed by changing programs. Later in
the period they find a preferred program that works in most situations. For all
subjects this is program P1, the one that reproduces sound most naturally.

These observations could be the foundation for the future design of hear-
ables. The findings in this paper can be used to optimize, not only the listening
experience, but also how the devices can learn from human behavior to adapt to
the user. This could lead to a ”I forgot I’m wearing an in-ear device”, which re-
produces sound naturally. At the same time, the device could be used to enhance
a social interaction, when needed, by enhancing speech intelligibility.

We suggest a need for better control, or smarter devices, that learns and
adapts to the users individual patterns are needed in the future. These devices
can be used in any hearable augmenting sound, to create an enhanced user
experience.
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ABSTRACT
Despite the technological advancement of modern hearing aids,
many users leave their devices unused due to little perceived bene-
fit. This problem arises from the limitations of the current fitting
procedure that rarely takes into account 1) the perceptual differ-
ences between users not explained by measurable hearing loss
characteristics and 2) the variation in context-specific preferences
within individuals. However, the recent emergence of smartphone-
connected hearings aids opens the door to a new level of context
awareness that can facilitate dynamic adaptation of settings to
users’ changing needs. In this position paper, we discuss how user
auditory intents could be modeled as context collected via mobile
devices and suggest what kinds of contextual information are rele-
vant when learning situation-specific intents and the corresponding
preferences of hearing impaired users. Finally, we illustrate our
ideas with several examples of real-life situations experienced by
subjects from our study.
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ACM Reference Format:
Maciej Jan Korzepa, Benjamin Johansen, Michael Kai Petersen, Jan Larsen,
Jakob Eg Larsen, and Niels Henrik Pontoppidan. 2018. Modeling User Intents
as Context in Smartphone-connected Hearing Aids. In UMAP’18 Adjunct:
26th Conference on User Modeling, Adaptation and Personalization Adjunct,
July 8–11, 2018, Singapore, Singapore. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3213586.3226211

1 INTRODUCTION
In recent years, hearings aids (HA) have undergone great technolog-
ical advancements transforming these once bulky, analog devices
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into powerful, yet discrete wearables. However, despite this sub-
stantial change, a considerable fraction of the hearing impaired
population fitted with HA does not wear them [20]. One of the
most commonly reported reasons for non-use of HA is that they
bring users little benefit. However, as at the same time, numerous
studies prove the effectiveness of modern HA [8], we rather seek
the source of the problem in the limitations of the current fitting
procedure.

The current audiological approach bases on prescriptive formu-
las that determine the frequency-gain curve for a user with specific
audiogram i.e. hearing loss characteristics measured as audible
hearing thresholds at different frequencies. There are, however,
several issues with this approach which lead to suboptimal settings
that often do not provide satisfactory level of help to users. First of
all, it is well established that hearing loss is not just weakening of
neural activity, but also its serious distortion [18] and thus hearing
impairment cannot be fully characterized by an audiogram. Kil-
lion et al. [15] demonstrated that the ability to understand speech
may differ by up to 15-20dB difference in signal-to-noise ratio for
subjects with nearly identical audiogram. Similarly, the perceived
loudness of soft sounds can vary greatly as shown by LeGoff et al.
[17]. Even though modern HA are equipped with advanced signal
processing algorithms that go beyond simple amplification, they
are rarely taken into account and, without proper control, may even
work against wearers. For instance, noise reduction can introduce
distortions of spatial cues that might be crucial for some users to
distinguish between different auditory streams [18]. All these vari-
ations in users’ cognitive processing capabilities help to explain
why the standard ’one size fits all’ approach fails, and indicate that
more personalization is needed when fitting HA.

Yet, it has been also established that there are large variations in
setting preferences not only between different users, but also within
individuals. Keidser et al. [14] demonstrated that the preferred fre-
quency gain characteristics are highly dependent on the auditory
environment the user is in. Likewise, Johansen et al. [13] showed
that individual users, when given a set of settings varying in terms
of omnidirectionality, brightness and noise reduction and freedom
to change between them in real, non-clinical environments, exhibit
consistent usage patterns of multiple, often very contrasting, set-
tings. These results indicate that user preferences are dependent
not only on users’ cognition but also on the environments and situ-
ations they experience every day. As a result, it is not even ’one size
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fits one’ approach that should be aimed for, but rather continuous
adaptation to individual users’ perception in dynamically changing
contexts.

Contextual personalization of HA has been researched for many
years. Over a decade ago, Dillon et al. [6] presented a concept of
HA with trainable frequency-gain curve based on acoustic mea-
surements of environment and ecological momentary assessment,
and discussed the potential benefits of such solution. In the follow-
ing years, the introduction of body-worn gateway devices made
it possible to connect the HA with smartphones and prototype
intelligent HA systems. Aldaz et al. [4] developed a prototype that
used reinforcement learning to discover user preferences based on
auditory and geospatial context by prompting users to perform
momentary A/B listening tests. However, only with the emergence
of the current state-of-the art HA such as Oticon Opn [21], it has
become possible to go beyond ecological momentary assessment
by continuously tracking both users’ interactions with their HA
together with auditory context perceived by these devices. For more
than a month, Korzepa et al. [16] continuously observed how users
switch between different HA settings in different auditory contexts,
discussed possibilities and challenges of learning contextual prefer-
ences directly from continuous data and suggested the application
of conversational AI interfaces and collaborative filtering in this
process.

The advancements in the connectivity of hearings aids, acces-
sibility to various sources of contextual data as well as rapidly
increasing adoption of smartphones among the elderly open up
new possibilities for building context-aware and user-adapted solu-
tions for hearing healthcare. To that end, one of the key elements
is the ability to distinguish between different situations hearing-
impaired users experience in their daily lives and understand the
difficulties they face and the intentions they have in these situa-
tions. The purpose of this position paper is to present our views on
how to facilitate such context awareness in HA. In Section 2, we
explain how user auditory intents can be modeled as context and
propose different types of contextual information that are relevant
to hearing impaired users. In Section 3, we demonstrate how con-
text can represent the underlying intents based on a few examples
of real-life situations experienced by the subjects of our study.

2 USER AUDITORY INTENTS AND CONTEXT
User intent is a common term used in web search domain and refers
to the information a user is looking for with a specific goal such as
learning/doing something or going somewhere. Web browser and
its search engine constitute an interface that attempts to identify
what a specific user intent is and provides the user with the most
relevant information. Analogically, we define user auditory intent
as what a hearing impaired user expects with respect to a specific
listening situation. Some examples of auditory intents can be under-
standing a specific person in a noisy environment, enjoying quiet
sounds of nature or zoning out from distracting noises. We will
refer to them also simply as user intents in this paper. Likewise, HA
constitute an interface that is capable of filtering and processing
the content, in this case, different auditory streams.

Even though modern HA have highly advanced signal process-
ing capabilities, they make no attempt whatsoever to identify user

intents. In the light of the evidence that users exhibit very con-
trasting preferences in different situations [13, 16], it is clear that
the lack of adaptation leads to wasting the great potential offered
by modern HA. Without understanding user intents, these devices
will not be able to offer the optimal settings at the right time. How-
ever, learning the actual user intents is challenging as it would
require getting users’ explicit feedback and giving it an actionable
form. To address this problem, we assume that we could instead
use context, i.e. the state of the user and the situation the user is in,
as a representation of user intents. This can be greatly facilitated
by the emergence of smartphone-connected hearings aids which
bring completely new opportunities for collection and processing
of contextual information.

Nonetheless, context awareness is certainly not enough to offer
users the optimal settings. HA also need to know user’s contex-
tual preferences, or in other words, what settings user prefers or
benefits from most in a given situation. User preferences can be
inferred by continuously observing user’s adjustments of settings
and the corresponding context in a non-invasive manner [16] or by
asking user to perform ecological momentary assessment, e.g. in
the form of A/B tests [4, 23]. Given enough data, multiple streams of
contextual information and the corresponding preferences can be
also potentially modeled through recurrent neural networks similar
to how Rajkomar et al. [22] used multiple layers of healthcare data
such as medications or test results as sequential events to predict
patient hospitalization outcomes. However, inferring contextual
user preferences itself is beyond the scope of this paper as we focus
here on discussing the potential of different context sources that
might facilitate accurate modelling of user intents. We present them
in the following sections.

2.1 Auditory context
Acoustic scene might be the richest source of information that can
help to determine user intents. Numerous auditory streams mix
together and form so-called soundscape - sound understood as
environment that is perceived by humans. Soundscape can consist
of e.g. nature sounds, human speech, music or appliance noise. They
all might provide useful insights into what users do and what their
auditory intent is, and can be represented in a number of ways.
Basic information about the soundscape can be extracted from HA
as theymeasure various sound characteristics in different frequency
bands and use them as control parameters for signal processing
algorithms. [16] represented the auditory context by clustering
records based on sound pressure level, noise level, signal-to-noise
ratio and modulation characteristics. The authors also used HA’
in-built sound classification that labeled soundscapes as quiet, noise,
speech in quiet or speech in noise. These characteristics allowed
the authors to identify primary patterns related to soundscape.

Another information that can be learned from soundscape is
its higher level representation that is connected to a physical loca-
tion or specific sources of sound. This can be achieved by means
of acoustic scene classification (ASC) which has been widely re-
searched for the past two decades. The methods of ASC primarily
use probabilistic models (e.g. Hidden Markov Model [7]) or neural
networks (e.g. convolutional neural networks [24]) usually with
the input in the form of Mel-frequency cepstral coefficients (MFCC)
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calculated from short audio frames. ASC has the potential to dis-
tinguish between various environments users spend their time at
every day such as supermarket, street, bus, restaurant, party, forest
or seashore. Such acoustic environment awareness allows to infer
much more about user intent. For example, it is very likely that
in a restaurant or at a party, the user wants to understand speech
despite the surrounding noise while in a forest or at a seashore, the
user might rather want to focus on the sounds of nature.

Yet another highly informative component of soundscape is
connected with what HA are primarily optimized for - enhancing
human voices. The characteristics of human speech such as pitch,
timbre or pace vary greatly between speakers dependent on their
gender, age, language, possible disorders and many other factors.
Additionally, signal processing in HA influences speech differently
due to its varied characteristics and, as a result, users’ perception of
different speakers is challenged [9]. Voice- and speaker-awareness
in HA would allow to learn user preferences and personalize set-
tings with respect to voice characteristics. Simple distinction be-
tween male and female combined with basic hand-crafted features
representing pitch and timbre would be already very informative
but one could go even further. Speaker embeddings have been re-
cently widely used for tasks such as speaker recognition or diariza-
tion with state-of-the-art results achieved by deep learning methods
(e.g. [11, 19]). Speaker embeddings are real vector representations
of different speakers that encode distinctive characteristics of their
voices. Using such embeddings, HA could not only learn which
types of voices need what processing to optimize user’s perception
without being constrained to a set of arbitrary features that might
miss some important characteristics, but also they could help to
selectively amplify specific, for example familiar, voices in order to
solve the cocktail party problem [10].

2.2 Location
Similar to how acoustic scene analysis gives insight into the user’s
location, geolocation data can provide information about the acous-
tic environment and the corresponding user intents. In this way,
these two context sources can complement each other by provid-
ing information if one is lacking. When both are available, they
can be used as labeled data to adapt and optimize ASC model to
user-specific environments. Location plays also another important
role - it might be mapped to an activity which in turn could be
interpreted as specific intents.

The type of location may often be obtained via a public API such
as Google Places API [3] or Foursquare Places API [1] based on
geographic coordinates. We see particularly big potential in the
latter one which, in many countries, has very detailed venue maps
and supports adding new, private or public, places. Additionally,
venue category structure is very fine and hierarchical (e.g. Arts &
Entertainment → Performing Arts Venue → Theater) which can
facilitate learning user preferences on different levels of granularity.

Most commonly visited locations can be also learned based on
clustering of geospatial coordinates (e.g. by HDBSCAN [12]). This
approach might prove helpful especially when there is no access
to venue type information. However, as locations expressed as a
cluster of coordinates do not carry any semantic information, it is

not possible to benefit from learned preferences without knowing
to what degree the new locations resemble the familiar ones.

2.3 Time and motion
Some user intents might be related to the way users move. For
example, when biking, the user might want to keep maximum
omnidirectionality faithfully preserving spatial cues to be aware
of the location of other traffic participants and potential dangers,
while when in a car, the user might prefer to reduce traffic noise to
focus on driving. Motion or activity can be easily predicted using
one of many public APIs such as Google’s Activity Recognition
API [2]. Moreover, motion can be used to track location changes
more robustly.

Time is another factor that can support modelling user intents
as it often carries information about repeating activities that user is
involved in. As shown by Johansen et al.[13], user preferences can
greatly change throughout the day and week (especially weekdays
vs weekends). Naturally, time context carries lots of uncertainty as
what a user does at a specific time may vary greatly, but it might
often prove very informative when coupled with other context
sources. Time can be also potentially considered as a measure of
mental fatigue. Listening in challenging environments requires
higher listening effort and increases mental fatigue, especially for
hearing-impaired people [5]. Tracking time of day and time spent
in challenging listening conditions could conceivably allow to ad-
just HA settings (e.g. increase noise reduction) according to the
estimated level of mental fatigue of a user.

3 DISCUSSION
Relating user intents to a single source of context is naturally prone
to errors that might arise not only from limited accuracy of context
classification but also from excessive generality. For instance, in a
noisy environment with speech, the user might want to understand
a specific speaker or zone out from the noisy surroundings. To
model user intents, different context sources need to be used in a
complementary way. An example from a not yet published study,
where we collected data over 2 months capturing user’s interactions
with the HA and the corresponding context from 10 users, may
illustrate both the different components defining the context as
well as how they relate to the actual user intents which we learned
through interviews with the test persons.

Figure 1 shows how a subject changed his HA program pref-
erence and the corresponding context classification for acoustic
environment, location, type of location and activity over a period
of 12 hours. Between 1pm and 5pm, the subject attended a bridge
card game competition. In order to focus on the game, he aimed
to attenuate the ambience and chose the program reducing noise
(’P4’). Interestingly, the HA does not detect much noise, but mainly
speech. In this case, the environment classification alone would not
be sufficient to capture user intents and the corresponding program
preference. Nor would it explain the preference for a brighter, more
intense sound later in the evening, caused by a wish to enhance a
TV soundtrack. However, adding the location and time might here
generate recognizable patterns.

Another subject reported the benefit of a program offering max-
imum brightness and amplification of soft sounds during walking
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12:00 14:00 16:00 18:00 20:00 22:00 00:00

PROGRAM

PLACE TYPE

ACTIVITY

LOCATION

ENVIRONMENT

PROGRAM P1 P2 P3 P4 Off

PLACE TYPE Bus_Station Bicycle_Store Real_Estate_Agency

ACTIVITY Walking Running Cycling In vehicle

LOCATION L1 L2 L0 L90 L76

ENVIRONMENT Quiet Speech Speech in noise Noise

Figure 1: Example of user setting preferences (four programs - P1-P4) juxtaposed with different types of context captured
in a continuous manner for a period of 12 hours. Environment is obtained through HA’ in-built environment classification,
location is represented as cluster membership based on HDBSCAN clustering, activity was estimated by Google’s Activity
Recognition API and place type was queried using Google Places API.

his dog in the evening when his intention is to enjoy the subtle
sounds of nature. In this case, motion combined with acoustic scene
and possibly time would be needed to capture and act upon this
user’s preference. Yet another subject indicated the benefits of us-
ing a highly omnidirectional program with some added brightness
when his intention is to understand other speakers during lunch in
a noisy corporate canteen. In this case, location, acoustic scene and
time could be combined to define the user intent. The last example
is a subject who generally prefers an omnidirectional, bright setting
enhancing the gain in mid and high frequencies, but complains
that some female voices get too shrill in that program. Tracking
the speakers’ voice characteristics might facilitate adjusting the
brightness to optimize the user’s listening comfort.

The quoted examples serve as yet another proof that hearing
impaired users have greatly varying intents and setting preferences
that go beyond the need for speech understanding. Understanding
intents and personalizing settings with respect to them requires
redefining the concept of context awareness in hearing aids. Basic
distinction between quiet/noisy and speech/non-speech environ-
ments is simply not sufficient to discern between many situations
in which user auditory intents differ. However, the new genera-
tion of smartphone-connected hearing aids opens the door to infer
behavioral patterns from multiple kinds of context that can be ob-
tained through ubiquitous mobile sensors, powerful deep learning
techniques and widely available cloud APIs. Combining various
soundscape characteristics, location, motion, time and potentially
other contextual features not considered in this paper would be a
major step towards a whole new level of user-adaption that could
unlock the full potential of modern hearing aids.
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Abstract
Sensors in our phones and wearables, leave digital traces
of our activities. With active user participation, these de-
vices serve as personal sensing devices, giving insights to
human behavior, thoughts, intents and personalities. We
discuss how acoustical environment data from hearing aids,
coupled with motion and location data from smartphones,
may provide new insights to physical and mental health.
We outline an approach to model soundscape and context
data to learn preferences for personalized hearing health-
care. Using Bayesian statistical inference we investigate
how physical motion and acoustical features may interact to
capture behavioral patterns. Finally, we discuss how such
insights may offer a foundation for designing new types of
participatory healthcare solutions, as preventive measures
against cognitive decline, and physical health.
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Hearing impairment; user behavior; health; aging; aug-
mented audio; activity; motion; mental health
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Introduction
In the past century humans have gone through a cultural
evolution, drastically transforming dietary patterns and man-
ual labor, leading to mostly sedentary work and spend-
ing hours in front of computer screens. The resultant lack
of physical activity has contributed to a dramatic rise in
lifestyle inflicted type 2 diabetes, heart disease and demen-
tia [9]. There is an urgent need for conceptualizing new
preventive approaches, where awareness of motion will
be fundamental in order to deliver personalized participa-
tory healthcare solutions [14]. To target the comorbidity of
chronic diseases we need to integrate both physical, mental
and social aspects of health.

Several studies have linked lack of physical activity to men-
tal health issues, including dementia, cognitive decline [8]
and depression [16]. Even small measures of physical ac-
tivity has a preventive effect on mental health [4], and for
some disorders are positively correlated with higher self
rated quality of life [1]. Likewise, hearing loss is correlated
with lack of physical activity [2, 3]. Additionally, a connec-
tion between hearing loss and cognitive decline has been
established [11]. One of the major risk factors for dementia
is caused by untreated hearing loss [10]. Recent research
indicates that physical exercise may alleviate hearing loss in
mice [5]. This may indicate a direct relation between hear-
ing health and physical activity in humans.

The introduction of Internet connected hearing aids offers
new insights into the life’s of hearing aid users. Contextual
features, such as motion and activity data combined with
GPS location gives an objective measure of the level of
physical activity. Combining this with the corresponding
acoustical sound environment may potentially offer a more
personalized treatment of hearing loss.

Capturing contextual user preferences
A longitudinal study, aiming to learn preferences for hearing
aid settings dependent on the context, were carried out in
the winter 2017-2018 at Eriksholm Research Centre, Den-
mark. 10 participants volunteered for the study (9 males, 1
female). The median age was 62.9 years (std. 11.5 years).
All participants are regular smartphone users, and have
used hearing aids for a year or more. All subjects used ei-
ther an Android or iOS compatible phone. Data was logged
for eight weeks, or more. One subject dropped out after four
weeks, and was excluded.

Location data consists of clustered GPS positions, while
motion activity is estimated by the smartphone accelerom-
eter sensors. User interactions include changes between
four acoustically contrasting program settings, and volume
adjustments, either initiated on the hearing aid, or via the
accompanying smartphone app. Soundscapes are mod-
eled as a vector representing aspects of sound pressure
level and modulation characteristics processed by the hear-
ing aids. All data is time stamped. An example of subject
3’s time line for a week is shown in Figure 1, where the top
three bars show contextual sound environment, motion ac-
tivity and user preferences related to selection of contrast-
ing hearing aid programs. We then process the motion data
using a Bayesian probabilistic approach. Subsequently, we
combine the probabilities with additional contextual param-
eters including GPS location, inferred activity, time and day
of week.

Modeling human behavior
We combine three modalities to model human behavior:1)
Motion activity patterns captured by the smartphone, sam-
pled as categorical events. 2) Locations derived from clus-
tered GPS coordinates sampled as categorical events.
3)User initiated program changes combined with the cor-
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responding soundscape context, segmented according
to time, as discrete categorical events. Based on a naive
Bayes prediction we investigate the influence of the afore-
mentioned modalities. These predictions are shown in Fig-
ure 1, for subject 3 for four days. The top green bar illus-
trate changing sound environments, the blue bars shows
motion activity, while the yellow-red bars shows, user initi-
ated program changes in response to motion and sound-
scape, and three predicted scenarios based on activity and
location, soundscape, and the activity, location, and sound-
scape combined.

User

Pred 
Act/Loc

Pred: 
Sound

Pred: 
All

Activity

Sound

Figure 1: Naive Bayes prediction of contextual program
preferences for subject 3 over four days. The upper three tracks
(green, blue and yellow gradients), represent the soundscape
environment, motion activity and user selected programs,
respectively. The following three tracks of color bars (yellow
gradients) show conditional probabilities for user preferred
programs, based on a) motion activity and location alone
(Act/Loc), b) soundscape environment alone (Sound), c) motion
activity, location, soundscape and time combined (All).

Changes in motion and location generate discrete events in
time series data, providing a visual segmentation of sound-
scape data. Motion can also be interpreted as contextual

information, when location is not available. As an example,
a subject walks to lunch around 12. The location is not up-
dated, but the inferred motion, walking, indicates a change
of environment. This is confirmed by the soundscape data,
reflecting that the environment changes from a quiet office
to a noisy canteen. Motion in our study not only defines a
specific state, but may also mark the beginning or end of a
segment in the acoustical soundscape. From Figure 1 we
see that changes in motion may trigger user intents related
to program changes, which might not seem evident when
considering the acoustical soundscape alone. Thus, motion
plays and integral part in predicting user intents and behav-
ior. Additionally, the amount of motion also characterizes
the overall level of activity or physical exercise reflecting the
lifestyle of the user. We speculate such features related to
fitness might potentially correlate with other healthcare met-
rics e.g. a lower resting heart rate. Further analyses of vari-
ability in motion patterns could indicate declining trends in
physical activity. This could potentially be used in personal-
ized preventive healthcare solutions, to proactively monitor
the onset of diseases before symptoms are observed [14].
We enrich the data by using GPS location. Using clustering
algorithms, we determine various places visited by the user.
This can then be used to further segment the data, and
helps predict user intents. We also categorize the places
using Google places API.

Individual behavioral patterns are reflected in the coverage
of data related to contextual sound environments, motion
activity and user initiated interactions. While the sound data
is sampled once per minute fsound = 1

minute , both motion
activity (including location) and user interactions are dis-
crete events fmotion = [0 : n], and finteraction = [0 : n].
We interpret these discrete events as conscious actions by
the user, which can be used in a probabilistic model. The
data is treated as time series data, segmented into hourly
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and daily bins, along with a bin for the full experiment.

Combining knowledge of motion, time, activity and location,
with individual preferences, facilitates participatory hearing
healthcare solutions. Such user preferences continuously
change dependent on the contextual environment, activ-
ity, time or cognitive state of the user [6]. It is essential as
Korzepa et al. [7] has argued to incorporate user intents
for predictive modeling. Here, physical motion and activity
is a central component. Our Naive Bayesian approach il-
lustrates the impact when including or omitting contextual
parameters related to soundscape, motion, and location, in
order to predict user intents over time, see Figure 1.

We wish to further investigate how contextual data form
sequential patterns. An alternative could be to interpret
GPS locations as clusters forming spatial trajectories. The
current position in a motion sequence would be predicted
based on the preceding and subsequent locations. GPS
coordinates are thus treated as a vocabulary similar to
word2vec embeddings [12]. Such sequences have been
shown to capture demographic patterns that may be used
to classify gender, age or marital status of the users [15].
Likewise deep learning neural networks may be trained to
predict patient outcomes, by combining embeddings from
multiple modalities e.g. interventions, test results or pre-
scribed medicine in electronic healthcare records, as shown
by Rajkomar et al. [13].

Discussion
The prohibitive costs of healthcare will cause a shift from
reactive treatment towards data driven personalized, pre-
dictive and preventive approaches. Based on our pilot study
we suggest: First, in order to infer personalized hearing
healthcare insights, complementary motion, location and
soundscape environmental parameters need to be com-

bined. Second, analyzing large amounts of longitudinal
data gathered through internet connected devices, we may
provide predictive hearing healthcare suggestions of con-
textual coping strategies learned from multiple users. Third
applying a data driven approach to model user intents, pat-
terns may be extracted as a basis for developing next gen-
eration preventive healthcare tailored to the needs of each
individual. However, to provide personalized, predictive, and
preventive hearing healthcare, the user needs to be an in-
tegral part of a continuous feedback loop involving context-
aware devices and health care professionals.
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Abstract: The lack of individualized fitting of hearing aids results in many patients never getting the
intended benefits, in turn causing the devices to be left unused in a drawer. However, living with an
untreated hearing loss has been found to be one of the leading lifestyle related causes of dementia and
cognitive decline. Taking a radically different approach to personalize the fitting process of hearing
aids, by learning contextual preferences from user-generated data, we in this paper outline the results
obtained through a 9-month pilot study. Empowering the user to select between several settings
using Internet of things (IoT) connected hearing aids allows for modeling individual preferences and
thereby identifying distinct coping strategies. These behavioral patterns indicate that users prefer to
switch between highly contrasting aspects of omnidirectionality and noise reduction dependent on
the context, rather than relying on the medium “one size fits all” program frequently provided by
default in hearing health care. We argue that an IoT approach facilitated by the usage of smartphones
may constitute a paradigm shift, enabling continuous personalization of settings dependent on the
changing context. Furthermore, making the user an active part of the fitting solution based on
self-tracking may increase engagement and awareness and thus improve the quality of life for hearing
impaired users.

Keywords: quantified self; hearables; sound augmentation; behavior patterns

1. Introduction

1.1. The Growing Societal and Personal Costs of Hearing Loss

There are enormous societal implications related to hearing loss that are estimated to top
£25 billion a year in the United Kingdom alone, including reduced productivity, which decreases the
economic output [1]. However, the personal costs are even more severe: hearing loss is considered one
of the biggest risk factors for dementia. Livingston et al. estimate that a third of the lifestyle-related
causes of dementia can be explained by untreated hearing loss in midlife, partially due to a decline
in cognitive functions. Meanwhile, multiple studies have shown that “hearing aids can prevent or
delay the onset of dementia” [2] and may attenuate cognitive decline [3], by both reducing cognitive
load and improving working memory [4–6]. Despite the availability of devices, often fully covered
by health insurance or through public health care, less than 5% of people suffering from a hearing
loss address this by using a hearing aid [7]. Even after acknowledging the need, on average it takes
hearing-impaired persons a decade before they acquire the devices [7]. Furthermore, less than 25% of
those who have a hearing aid use them [8]. In a scoping study by McCormack and Fortnum, the top
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reasons for not using a hearing aid were that the devices did not provide sufficient benefits in noisy
situations and there was a perceived poor quality of sound [9].

One may ask, why is it that people do not choose to use hearing aids, given the evidence of a high
risk of incident dementia, and knowing that these could potentially alleviate cognitive decline? Studies
analyzing outcome measures capturing the user satisfaction indicate that this is largely determined
by two factors: (1) whether the user perceives an improved quality of life through use of the devices,
and (2) to what degree they help overcome limitations when interacting with others around the user.
The degree to which the user feels involved in the traditional clinical fitting process highly impacts
the overall satisfaction [10]. Alternative models for selling hearing aids over the counter based on
do-it-yourself audiometry tests may technically provide the same fitting as provided in a clinical
setting [11]. However, the lack of dialogue and hearing care counseling has been shown to result in
lower satisfaction. Actively involving the user in shaping the listening experience when adapting to
the devices appears to be crucial.

1.2. The Lack of Personalization in Hearing Health Care

Currently, hearing aids are by default, fitted solely by relying on a pure-tone audiogram
measurement. The audiogram defines the thresholds at which a sine wave tone can be perceived,
in order to determine which frequencies should be amplified to compensate for the hearing loss.
A mild hearing loss may involve a 20–40 dB decline across frequency bands, typically spanning from
mid range (2–4 kHz) to high range (5–10 kHz). However, this test measures only the sensitivity to
an artificially produced tone, rather than the sounds that characterize a normal listening experience.
Killion points out that individuals with similar audiograms may have up to a 15 dB difference in
their ability to understand speech in noisy environments [12]. Wendt et al. have further shown that
individuals benefit from noise-reduction algorithms [13]. Likewise, Marozeau and Le Goff show
that the concept of loudness is highly individual, which in turn may determine whether soft sounds
should be amplified to provide added intensity or are merely perceived as unwanted moderately
loud noise [14,15]. This highlights some challenges, even in clinical settings, to optimize the hearing
experience. Today’s solution uses discrete steps, varying the thresholds in regard to noise reduction
and attenuation [16]. In order to simulate real-life listening scenarios, clinicians are often limited to
playing back a few audio clips, capturing situations such as attending to several talkers in a crowded
cafe or a conversation in a car masked by background noise. More advanced solutions for simulating
true listening scenarios, such as Oticon Sound Studio, enable the hearing care professional (HCP)
to compose auditory scenes consisting of all sorts of environmental sounds, such as a drill hammer,
a bird chirping or a crying child. In a lab setting, such simulations can optimize the fitting process,
as found by Dahl and Hansen (2016) [17,18], as these make it easier to determine true user needs
in simulated listening scenarios, potentially decreasing the number of follow-up visits to the clinic
for follow-up fitting. However, a major challenge in hearing health care worldwide is the lack of
audiological resources. Few, if any, HCPs have the option of extending the fitting procedure further to
personalize settings, as the time allocated is highly constrained. Hence, the need for fundamentally
different solutions is of high demand.

1.3. Learning Preferences From User Behavior

In a previous study, Laplante-Levesque et al. [19] investigated the usage of hearing aids and
found two distinct types of behaviors: Users wearing the device from waking up until going to bed,
in contrast to those using the hearing aids only when needed, possibly driven by external demands and
context. However, all users have unique behavioral patterns. Aggregated data averaged over longer
periods does not convey the fine structures of hearing aid usage. Without somehow establishing a
dialogue between HCPs and users, it has up to now, not been possible to identify and learn preferences
from these fine structures.
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Instead, aiming to infer preferences by connecting directly to users through their smartphones,
Aldaz et al. investigated the feasibility of using machine learning to predict the optimal settings, on the
basis of the signal-to-noise ratio (SNR) and attenuation for the hearing aids. They found that half of
the test subjects preferred the personalized settings [20]. Other attempts at using machine learning to
optimize hearing aids have shown similar findings [21,22].

1.4. Making User-Generated Data an Essential Part of Hearing Health Care

Quantified self (QS) and personal informatics (PI) have increased in interest in the past decade.
With the prevalent usage of smartphones and wearables, personal, quantifiable, and accurate data on
everyday phenomena has become broadly available. Such data has been applied for health tracking
within QS and covers a vast range of phenomena, including menstrual tracking [23], mental health in
students [24,25], Post-traumatic stress disorder (PTSD) effects [26], sleep patterns [27] and diabetes
management [28], to mention only a few. The examples illustrate that such data can lead to new
personal discoveries, insights and improved health in terms of quality of life.

The Oticon Opn is the first hearing aid that is connected to the Internet and is able to interact
with other Internet of things (IoT) devices, such as cars, smart light bulbs, music streaming or learning
from cloud-based artificial intelligence (AI) services provided through the “if-this-then-that” (IFTTT)
standard [29]. Essentially, hearing aids can, as U.S Food and Drug Administration (FDA) approved
medical hearables, be considered state-of-the-art wearables capable of providing augmented hearing.
From a technical point of view, a hearing aid is a miniature size IoT connected smart speaker, equipped
with an omnidirectional microphone array. Combined with embedded advanced signal processing
or neural networks, hearing aids may continuously adapt to learned user preferences or the features
characterizing the changing soundscapes. Coupling the hearing aids with other sensor data, such as
heart rate, motion and location, will add further insights to the context of soundscapes experienced
throughout a day. Because of the unobtrusive placement behind the ear, this type of wearable can be
worn during the majority of the waking hours. Investigating how the user adapts to the volume or
changes program settings can provide additional information about individual sensitivity to noise,
motivation to interact and the changing cognitive state. Not only the external context but also the
user’s state, cognitive capabilities or sense of fatigue may affect how preferences are altered in order
to cope with the changing listening scenarios during the day. This changing context may be stable
over time, forming patterns repeated at specific hours of the day, on weekdays versus weekends,
and varying over weeks, months or years. Thus, applying tracking methods from QS and PI can lead
to insights into user preferences inferred from behavioral patterns and soundscape data.

This paper explores how to infer user preferences solely on the basis of user-initiated program and
volume changes throughout a 9 month pilot study, without taking the corresponding soundscape data
into account. These adjustments are converted into time-series data saved in the cloud, using IFTTT to
transfer data. Previous studies have primarily used summarized historical data retrieved from the
hearing aid software, whereas IoT devices may potentially learn from usage data, such as volume
and program interactions, to dynamically adapt the hearing aids to behavioral patterns. In this study,
we look at the long-term behaviors and patterns displayed for five test subjects over at least 9 months.
This study investigates both daily, weekly and monthly interaction patterns, in order to highlight
differences between weekdays and weekends, and changes in behavioral patterns when modifying
device settings, as well as more general usage patterns, when aiming to personalize augmented hearing
by learning from user-generated data. The hypotheses to investigate include the following: Do users
wish to actively select alternative programs to individualize their listening experience? Do these
preferences constitute unique behavioral patterns? Is it possible to identify specific coping strategies
displayed in program and volume interactions over time?



Computers 2018, 7, 1 4 of 21

2. Materials and Method

2.1. Participants

N = 6 participants volunteered for the study (six men), from a screened population provided
by Eriksholm Research Centre. Age ranged from 49 to 76 (median age of 62.8 years). All participants
had more than a year of experience using hearing aids. The participants suffered from a symmetrical
hearing loss, ranging from mild–moderate to moderate–severe as described by the World Health
Organization (WHO) [30]. All had an iPhone 4S or a newer model. Subject 6 was excluded because
of missing data. The test subjects received financial compensation for transportation only. All test
subjects had signed an informed consent before the beginning of the experiment. An overview of the
subjects can be seen in Table 1.

Table 1. Demographic information related to six subjects.

Subject Age Group Hearing Loss Experience with OPN Occupation

1 58 Moderate–severe No Working
2 76 Moderate No Part-time work
3 65 Moderate No Working
4 75 Mild–moderate No Retired
5 54 Mild Yes Working
6 49 Mild–moderate No Working

Subject 1 worked in construction. This subject had a dynamic work environment including noisy
construction sites, quiet meeting rooms and driving in between.

Subject 2 worked in the transportation sector as a bus driver. This subject was exposed to a constant
noise level while at work. The subject retired half-way through the experiment. The subject
returned to work in the last month of the experiment, only part-time.

Subject 3 worked in an office environment. This subject attended many meetings, including
teleconferences. The subject reported that the acoustics in the canteen at work were poor.
This subject had many international travels, spending time primarily on flights.

Subject 4 was retired. The subject spent several days a week playing cards, with a high noise level
and several competing talkers. The subject lived an active life, including activities such as sailing,
and was exposed to various sound environments.

Subject 5 worked in an office environment. The subject had many meetings in or out of the office,
experiencing multiple auditory environments during weekdays.

Subject 6 worked in the naval industry, restoring boats and supervising team-building events on
sailboats. This subject was subjected to heavy noise exposure from power tools, as well as engine
and wind noise. The subject tended to wear the hearing aids when the noise was acceptable or
otherwise was not obscured by hearing protection.

2.2. Apparatus

Each subject was equipped with two Oticon Opn hearing aids, stereo Bluetooth low-energy (BLE),
2.4 GHz (Oticon A/S, Smørum Denmark). All subjects used a personal iPhone 4S or newer iPhone
models with Bluetooth 4.0. The logged data consisted of any user-initiated program change or volume
change through the Oticon ON iPhone app, formatted as time-series data, transferred using IFTTT,
stored in the cloud and shared via Google Drive. The hearing aids were fitted with four programs.
The subjects were provided with a test user Google account prior to the experiment. This account
was used for data collection, and the subjects had full ownership of the account and data and could
terminate access, and thus the experiment, at any given time.
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2.3. Procedure

The subjects were fitted with two Opn hearing aids by an audiologist. The hearing aids were
fitted on the basis of a unique frequency-dependent volume amplification based on a pure tone
audiogram for each subject. Each subject was fitted with four programs, through the Oticon Genie
2.0 release 17.1 Opn fitting software (Oticon A/S, Smørum, Denmark) on a PC with Windows 7, via a
Sonic Innovations EXPRESSLink3 (Sonic AG, Bern, Switzerland). The programs were changed after
3–4 months of use, half-way through the experiment.

Whereas hearing aids traditionally apply a beam-forming algorithm to make the auditory focus
more narrow in noisy environments, the Opn devices instead omnidirectionally preserve all signals
resembling voices while filtering out ambient noise. In the present experimental design, all four
programs preserve any sounds with voice-like modulation characteristics, but to varying degrees for
attenuated directional and diffuse background noise [16]. Rather than providing a default medium
setting offering a compromise in terms of directionality and noise reduction, the four programs
represent contrasting aspects of omnidirectionality, brightness and noise reduction. Assessing which
programs are preferred, making it possible to assess how users apply aspects of omnidirectionality or
noise removal, to spatially differentiate auditory streams, which is essential in order to cognitively
separate and selectively attend to competing voices or interfering sounds [31]. There were three
dimensions altered in this experiment: brightness and noise reduction, coupled with attenuation.

Brightness perception of sound is directly related to volume gain, primarily in high frequencies.
Increasing brightness may contribute to interaural level difference (ILD), which may give up to a 20 dB
difference in sound perception. Even without directly affecting the speech frequency spectrum,
added brightness helps with separating streams by improving sound localization in the 10 kHz range
related to the shape of the pinna. The experimental setup thus highlights whether the program
usage provides sufficient spatial cues for separating the auditory sources in a given context. That is,
the program usage reflects whether the users rely on binaural differences in loudness and head
shadow to attenuate ambient noise and enhance the amplification of high frequencies, which improves
sound localization [32,33], or actively reduce directional and diffuse noise [13] in order to cope with
the changing auditory environments. An increased brightness results in further amplification of
mid-frequency sounds, typically consonants, which improves speech intelligibility. However, added
brightness may in some situations be perceived as too harsh, as other sounds with similarly high
frequency characteristics will likewise be amplified and seem shrill.

The noise reduction includes both attenuation of interfering sounds not resembling voices coming
from a specific direction, for example, a dog barking or a passing car. Additionally, it removes the
amount of diffuse noise removal, such as background noise from an air-conditioning system. A low
attenuation of directional sources without noise reduction preserves ambient sounds, resembling the
natural dampening provided by the shape of the head and the ears, whereas a high attenuation of
interfering sounds with non-voice characteristics coupled with noise reduction, artificially creates
a better SNR.

In the experimental setup, P1 was always the default startup setting, which in each experiment
was compared against the alternative programs listed below, and which is illustrated in Figure 1:

P1 Resembling an omnidirectional perception with a frontal focus. Sounds from the sides and
behind the listener are slightly suppressed to resemble the dampening effect due to the shape of
the head and the pinna.

P2 Similar to P1 but gently attenuating directional noise and removal of diffuse noise when
encountering complex listening environments.

P3 Similar to P1 but increasingly attenuates directional noise even in simple listening environments.
Has less amplification in mid and high frequencies, producing a “rounder” or “softer” sound.
Provides the highest amount of diffuse noise reduction.

P4 Similar to P3 with even lower thresholds for attenuation of directional noise and diffuse noise
removal in all listening environments.
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P5 Identical to P3 with regard to high attenuation and high noise reduction. Has added amplification
in mid and high frequencies to provide a brighter sound.

P6 Similar to P4 with high attenuation. However, no noise reduction is applied. Has an increased
amplification in mid to high frequencies, producing a brighter sound.

P1 constituted the default program throughout the experiment. The choice of using P1 as a baseline
was based on the acoustical characteristics of this program, which mimic the natural dampening of
sounds due to the shape of the ears and the binaural shadowing effect of the head. The result is
an omnidirectional focus with only a slight attenuation of sounds coming from behind and from the
sides. Using P1 as a default program thus highlights when users actively select any other program,
offering additional attenuation of noise or increased brightness, improving the spatial separation
of sounds.

P1

N o
A t t e n u a t i o n  

H i g h  N R

N o  N R

H i g h
A t t e n u a t i o n  

P2

Wa r m e s t

Wa r m

N e u t ra l

C r i s p

C r i s p e s t

P5P3

P4

P6

Figure 1. Six programs were used over the period of 9 months. The horizontal represents the amount
of attenuation applied, from natural dampening only based on the shape of the head on the left side, to
maximum attenuation of ambient sounds on the right-hand side. The vertical represents the amount of
noise reduction, ranging from no noise reduction at the bottom, to maximum removal of diffuse noise
at the top. The colors represent the brightness of the sound, from dark blue hues, indicating crisp and
bright sound produced by greater amplification in high frequencies, to orange hues, indicating a soft
and round sound, caused by less amplification in the mid and high frequencies.

The experiment consisted of two periods. The first period ran from September 2016 to
January 2017, and the second period, from February to June 2017. An intervention occurred in
the middle of the experiment, to further investigate whether a change in programs also generated
a corresponding change in user behavior. Programs 1 and 4 were available in both periods of the
experiment. For the first half of the experiment, programs 1, 2, 3 and 4 were used. After the intervention,
programs 1, 4, 5 and 6 were used, as illustrated in Figure 2.



Computers 2018, 7, 1 7 of 21

P3

P4

P1

S e p t e m b e r  -  J a n u a r y  F e b r u a r y  -  J u n e

P6

P5

P2

Figure 2. Graphic illustration of the two test periods, run in the fall of 2016 and spring of 2017.
The programs used from September to January were P1–P4, while from February to June, the programs
used were P1 and P4–P6.

For the first visit, the participants were instructed to “use the program that fits the situation the
best” and “to use the hearing aids as you would normally, but primarily controlling it from the iPhone
app”, in order to explore the programs and natural behavior. The test subjects were not informed
about what the four programs represented. The test subjects were further encouraged to adjust the
volume gain if needed.

The volume control does not reflect decibel values. It ranges from −8 to 4 and gives visual
feedback to the user when interacting with the iPhone app.

3. Results

Even on the basis of the limited data collected in this pilot study, analyzing only the aspects
of time and user interaction, while not considering cognitive capabilities, the individual differences
between users are evident. These differences lead to different coping strategies, which highlights the
need for personalyzing settings individually. However, the clinical resources in hearing health care are
already overburdened, meaning that any further individualization would require that such preferences
are automatically learned from user-generated data.

The behavioral patterns inferred from data in this pilot study indicate that users prefer to switch
between highly contrasting aspects of omnidirectionality and noise reduction depending on the context.
This is very different from the prescribed medium “one-size-fits-all” program, frequently provided
by default in hearing health care. The key takeaway is that a single prescribed audiological setting
did not fulfill the needs of the test subjects in this study. Rather than selecting one program offering a
balance between omnidirectionality and noise reduction, the test subjects typically changed between
programs that appeared highly contrasting in terms of attenuation or brightness.

3.1. Behavioral Patterns Inferred from User-Initiated Program and Volume Changes

The observed program and volume changes alter the perceived soundscape along several
dimensions, attenuation, noise reduction and brightness, as described in the Methods section. Overall,
the subjects of the experiment described in this paper primarily altered the settings along these three
dimensions. For an overview of the programs, see Figure 1.

The selected programs thus reflect when a user prefers to increase the brightness to enhance
spatial separation of sounds, which improves the ability to selectively attend to any sound, or remove
diffuse noise and sounds that do not resemble voices, in order to increase the SNR and thereby improve
speech intelligibility. With only five test subjects, we see different behavioral patterns in relation to
usage time; see Table 2. This indicates that some users comply by wearing their hearing devices from
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when they wake up until when they reach bedtime, while others may selectively decide to wear their
hearing devices only when they see a perceived benefit, depending on the context.

Table 2. Total usage time for all six programs in hours, for five test subjects.

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Total usage time (h) 486.25 1189.90 255.78 373.32 551.62

A more detailed percentage-wise split of the program distribution for each program is illustrated
in Figure 3. The color for P1 is yellow, for P2 is dark yellow, for P3 is brown, for P4 is orange, for P5 is
red and for P6 is maroon. The same color scheme is used throughout the paper.
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Figure 3. Percentage-wise distribution of programs throughout the entire experimental period. P1 is
yellow, P2 is dark yellow, P3 is brown, P4 is orange, P5 is red and P6 is maroon. We note that a user
such as subject 2 relies primarily on one program, in contrast to the more diversified program usage of
subject 4.

This figure shows that three of the subjects preferred the default omnidirectional focus with added
brightness more than 70% of the time. They alternated using programs providing more attenuation
and directionality, such as P3–P6, when needed. Subjects 3 and 4 actively chose one or more programs
with more attenuation and directionality (P4–P6), whereas subjects 1 and 5 used brighter sounding
programs (P2 and P5) to cope with a changing context. We found that program P1 was preferred
on average 66% of the time. This was significantly different from previous findings of respectively
33% [20] and 37% [34]. This could be due to this being the default program, or more likely, that it
fulfilled the needs in most contexts by providing an omnidirectional frontal focus mimicking the
natural dampening of sounds from behind and from the sides, caused by the shape of the ears and the
shadowing effect of the head.

The usage patterns indicate that one program may rarely be adequate, as most users have a need
for more than one program to cope with the changing context. Even in a small test population,
it becomes evident that the majority actively selects contrasting settings depending on the context.
The next sections display these individual preferences in more detail.

3.2. Unique Patterns Characterized by Program Changes

The user preferences are characterized by attenuation, noise reduction and brightness perception.
Various coping strategies are observed in the program interactions. The following figures contain
the average daily usage per hour, from 06:00 to 24:00; the average daily usage per hour in weekends,
from 06:00 to 24:00; and an overview of the full experimental period, for one or more subjects.
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The first observed coping strategy is based on alternating the brightness perception. By increasing
the gain of mid to high frequencies, the perceptual brightness is increased. Subjects 1 and 5 both
actively chose a more bright sounding program, either P2 (dark yellow) or P5 (red) to compensate
for their hearing loss. They wished to increase speech intelligibility by perceptually adding more
detail, both to speech and source localization. Both of these subjects used P2 and P5 20% of the total
time, as observed in Figure 3. In Figure 4a,b, the average program usage in minutes per hour between
6:00 AM and 12:00 PM, is illustrated, for subjects 1 and 2. For both subjects, it seems that the brighter
programs (P2 and P5) were used to complement P1 more often in the morning than in the rest of
the day. Subject 1 furthermore used the directional program P4 in the evenings to complement P1.
Interestingly, the need for added brightness depended on the day and time. This can be observed
in Figure 4e,f, where a full overview of the programs over the test period is illustrated. The vertical
axis represents weeks, the horizontal axis represents the time of weekdays, and the dashed line marks
the intervention when programs were adjusted during the experiment. From these illustrationm it
becomes visible that both subjects 1 and 5 actively chose P2 and P5 programs on weekdays, while
the selection of these programs, as well as the overall usage of hearing aids, was reduced during the
weekend. Both test subjects reported that programs P2 and P5 sounded either more “harsh, bright,
or crisp”, depending on the context, but enhanced speech intelligibility and the overall intensity of the
auditory environment.
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Figure 4. Cont.
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(e) (f)

Figure 4. Behavior characterized by preference for switching between omnidirectionality without noise
reduction and using more gain in high frequencies, termed brightness. Subjects 1 and 5 appeared
to actively use brightness to improve speech intelligibility in challenging listening situations. This is
seen in the active choice of selecting the programs, marked as dark yellow above the dashed line in
the first half of the experiment, and marked as orange below the dashed line in second experiment.
(a) Subject 1, average daily program usage; (b) subject 5, average daily program usage; (c) subject 1,
average daily program usage in weekends; (d) subject 5, average daily program usage in weekends;
(e) subject 1, detailed program usage; (f) subject 5, detailed program usage.

Test subject 1 described the usage of the brighter sounding programs as follows:
“When I attend meetings, which I do a lot, I like to shift my attention between the participants in

order to hear everyone in the room. Thus combining omnidirectionality with a more bright timbre.
It may not sound as nice, or pleasant compared to my default preferences. However, it helps me
understand what is being said. When the meeting ends, I usually change to another program.”

After an intervention, during which the programs were changed, both subjects 1 and 5 actively
chose a brighter sounding program. The intervention added attenuation and noise reduction to
a brighter sounding program (P5), while retaining the increased high-frequency gain. Despite this,
the subjects preferred the brighter sound, indicating that brightness was what supported these subjects.

3.3. Alternating Between Omnidirectional and Frontal Focus

An alternative coping strategy is characterized by changing between an omnidirectional natural
sound without noise removal, towards a frontal focused sound with increased noise reduction.
This strategy was evident for subjects 2 and 3, as illustrated in Figure 5. Looking at the average usage
per hour for subject 2 (Figure 5a) and subject 3 (Figure 5b), it can be seen that P1 was preferred, and
the frontal directional program P4 was used to compliment P1 when the context changed. For subject
2, this was more evident between 7:00 AM and 8:00 AM, whereas subject 3 seemed to increasingly
use the program from 8:00 AM, with a peak at midday, and then decreased the usage during the day,
whereas P1 was increased throughout the day.

Test subject 2 used a coping strategy, with a directional program P2 between 7:00 AM and 4:00 PM
in the first of the experiment before the intervention when the programs were adjusted. Coincidentally,
at the same time, subject 2 retired from his job, which is reflected in the change of preferences defined
by the frontal directional focus (dark red) on weekdays in the first half of the experiment. Subsequently,
this behavioral pattern reappeared when he began working again part-time, resulting in sporadic
usage of the same program towards the end of the experiment. Subject 2 described the behavioral
pattern as follows: “When I drive I do not like the road noise, and noise in the bus. I prefer a program
that attenuates these noises.” A similar pattern appeared for subject 3 after the interventions towards
the end of the experiment, when the frontal focus with noise reduction was preferred on Mondays and
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Tuesdays. This augmentation of sound was displayed on some Fridays and Saturdays, suggesting a
need for increased speech intelligibility. Subject 3 reported that the directional program “helps in noisy
environment, such as a restaurant or a bar”.
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Figure 5. Behavior characterized by preference for switching between omnidirectionality without noise
reduction versus frontal focus with noise reduction. Subjects 2 and 3 appeared to actively attenuate
noise to improve speech intelligibility in challenging listening situations. This is seen in the active
choice of selecting the programs, marked as dark red (P4) above the dashed line, and bright red
(P5) below the line in second experiment. (a) Subject 2, average daily program usage; (b) subject 3,
average daily program usage; (c) subject 2, average daily program usage in weekends; (d) subject 3,
average daily program usage in weekends; (e) subject 2 detailed program usage; (f) subject 3 detailed
program usage.
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3.4. Active and Habitual Users

Laplant-Levesque describes two types of users, which either wear the hearing aids from waking
up until bedtime or on a more casual basis, only using the hearing aids driven by external demands
[19]. Subject 1 had a unique behavioral pattern characterized by many interactions, constituted by
both program changes, and on/off events. This test subject was working in different environments
throughout the day, which was reflected in preferences for changing between brightness, attenuation,
noise reduction or even “silence”, depending on the changing context. The subject reported back that “I
wear the hearing aids when I have a need. For example, when I’m in a quiet office, I prefer not to wear
them”. This pattern can be observed in Figure 4e and supports the findings from Laplante-Levesque.
The user had a relatively low hourly usage of 13.74 min, as shown in Table 3. However, the detailed
and fragmented illustration gives a level of detail not previously seen. Interestingly, both subjects 3
and 5 had a usage time per hour that was less than 20 min. These subjects did however seem to switch
off the hearing aids for periods. In contrast, when turning on the devices, they used them for hours,
without any off events.

Table 3. Average usage in minutes per hour, for five test subjects.

P1 P2 P3 P4 P5 P6 Average Per Hour

Subject 1 9.71 1.41 0.11 1.14 1.07 0.31 13.74
Subject 2 25.48 0.00 0.01 1.38 0.14 0.66 27.67
Subject 3 9.28 0.00 0.00 2.46 0.30 0.06 12.10
Subject 4 6.70 0.69 2.86 8.98 0.15 0.84 20.23
Subject 5 12.65 1.64 0.21 0.78 1.18 0.05 16.51

Test subject 2 had a visually different coping strategy, remaining in the default omnidirectional
program for extended periods and changing to a frontal noise reducing program when needed.
It is interesting to see the adjustments being related to the dynamically changing context of work
scenarios. Furthermore, subject 2 had the highest average usage time, with 27.7 minutes of use per
hour. The amount of detail displays the need for assessing when and why a hearing aid is used as it
is. The authors are not aware of similar findings in the literature, other than anecdotal findings from
hearing care clinicians. This subject would be classified as a “habitual user”, without concern for the
fine structures of program changes motivated by a changing context. This information is lost when
averaging and aggregating data.

3.5. Alternating and Unique Patterns

The previous sections highlight the similarities and differences in various coping strategies.
However, for several subjects, the coping strategy changed over time, for some, even radically. Subject 4
displayed an evident detour from the original behavioral pattern, as illustrated in Figure 6. Initially,
subject 4 used both brightness and attenuation of noise to improve speech intelligibility in challenging
listening situations. This subject primarily remained in the omnidirectional program for the first
part of the experiment. After the intervention, this subject actively changed to using the frontal
focused program as the default program. Only a few program changes to a similar program without
noise reduction and the default omnidirectional program occurred. This suggests there is a need for
continuous personalization, as user preferences might change over time. Furthermore, it indicates how
a change in lifestyle, or context, may radically alter the needs of the user. Such changes in user needs
are rarely addressed today because of the limited resources in hearing health care.
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Figure 6. Behavior characterized by switching between omnidirectionality, brightness and frontal
focus with noise reduction. Subject 4 initially actively used both brightness and attenuation of noise
to improve speech intelligibility in challenging listening situations, while later primarily preferring
a frontal focus combined with noise reduction. This is seen in the active choice of selecting the programs,
marked as yellow and brown above the line in first experiment and bright red and dark red below the
line in second experiment. (a) Subject 4, average daily program usage; (b) subject 4, average daily
program usage in weekends; (c) subject 4, detailed program usage.

3.6. Weekdays versus Weekends

A significantly different behavioral pattern, for all subjects, can be observed in the difference
between weekdays (Monday through Friday) and weekends (Saturday and Sunday). The average
minutes of usage per hour for weekends is illustrated in the previous Figures 4c,d, 5c,d and 6b.
The usage of the hearing aids was overall lower during weekends. All test subjects confirmed that
lower usage in the weekend was due to a less demanding context. Several highlighted that “weekends
are usually less challenging, both in regard to context and to mental work load”. This indicates that
the environmental context in weekends provides, in general, fewer challenges than in weekdays.
Furthermore, as a result of changes in activities, the need for increased support is lower in the
weekends. Subjects 1, 3 and 5 all mentioned that they did not benefit as much from the hearing aids
in weekends because of less demanding activities, the exception being when they attended a social
event with competing speakers, and noisy environments with poor acoustics. This behavioral pattern
was consistent over several months, indicating a reduced need for hearing devices during weekends.
If the listening scenarios were perceived as less challenging during weekends, the resulting usage
patterns could be interpreted as a baseline characterizing the minimum needs of the user. In contrast,
weekdays were likely to represent more dynamic and challenging sound environments, causing the
users to actively change programs dependent on the changing context.
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In current hearing health care, these unique behavioral patterns cannot be addressed because
of limited clinical resources. From the previous findings, we see the majority of the five test subjects
actively used more than one program. They did this to increase the dynamical width of the experienced
sound environment. At least two contrasting programs, such as P1 and P4, were needed to cover the
needs of these test subjects.

3.7. Unique Behavioral Patterns over Weeks, and within Weeks

Subject 3 increased the volume of the omnidirectional program in the last third of the experiment,
which may indicate an adaptation to the volume gain. Both subjects actively adjusted the volume
gain in the omnidirectional program to increase speech intelligibility, as shown in Figure 7c. Subject 5
chose a different strategy on weekdays. This can be observed in Figure 4f, where additional selection
of brightness, marked in two shades of orange, appears on Tuesdays. However, the volume was
increased more in the omnidirectional program. Lastly, Subject 3 tended to use the frontal focused
program on Monday and Tuesdays, while actively increasing the volume. This was in contrast to
weekends, on which the default program was used with only few volume adjustments, as shown
in Figures 5f and 7c. This indicates two coping strategies: either choosing a program with more
directional focus, or combining omnidirectional characteristics with a volume increase.

These behavioral patterns may indicate that some user actions are driven by recurring events,
while others change dynamically over time.
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Figure 7. Cont.



Computers 2018, 7, 1 15 of 21

Mon 00:00

Tue 00:00

Wed 00:00

Thu 00:00

Fri 00:00

Sat 00:00

Sun 00:00

Mon 00:00

22, '17

18, '17

13, '17

09, '17

05, '17

00, '17

48, '16

44, '16

39, '16

−4

−3

−2

−1

0

1

2

3

4

weekday and time

w
ee

k,
 y

ea
r

(e)

Figure 7. Volume interactions over the full experimental period. The red colors are volume increase
up to +4, and blue colors are volume decrease down to −4. (a) Subject 1; (b) subject 2; (c) subject 3;
(d) subject 4; (e) subject 5.

3.8. Unique Patterns Characterized by Volume Change

Another interactive parameter is volume gain. Essentially, a non-linear amplification of soft
sounds is applied across all frequency bands, rooted in a fitting rationale based on the user’s
audiogram [15]. Adjusting the volume gain additionally provides the user with the opportunity
to either zoom in or out, while keeping the desired noise attenuation or brightness preferences
associated with the selected program parameters. Figure 7 displays the individual differences of
volume interactions for the five test subjects. This figure illustrates the individual preferences for
actively using the volume to complement or tune the current program used. Subject 1 (Figure 7a) and
subject 2 (Figure 7b) had a limited use of the volume, indicating that the brightness and attenuation
was sufficient. Both these subjects primarily used P1, where subject 1 used brighter programs around
20% of the time. In contrast, subject 3 (Figure 7c) subject 4 (Figure 7d) and subject 5 (Figure 7e) actively
used the gain to adjust the current program. Subject 3 primarily used P1 and P4 and began increasing
the volume after the intervention. Subject 4 primarily relied on P1 and P4. This subject actively used
the volume in either program.

3.9. Number of Program and Volume Interactions

The number of interactions between the program and volume indicates whether a user prefers
controlling the attenuation, noise reduction and brightness, or the overall gain of the device, where the
volume ranges from −8 to 4. It should be noted that the devices reset the volume to 0 after a program
change. The volume interactions can thus be interpreted as an indication of moving away from the
default settings. If the program changes for a user account for the majority of interactions, there are
few deviations from the default volume, and vice versa.

In Figure 8, the percentage of usage split between the number of program and volume changes
is illustrated. This does not indicate the amount of volume steps, but instead, a discrete count of
volume changes.



Computers 2018, 7, 1 16 of 21

Sub
jec

t 1

Sub
jec

t 2

Sub
jec

t 3

Sub
jec

t 4

Sub
jec

t 5
0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

ag
e

Program Change Volume Change

Figure 8. Percentage-wise distribution of total interactions between program and volume interactions.
Subjects 1, 3 and 4 had close to an even split between volume and program. This indicates that both
volume and programs were used to augment the sound environment. Subject 2 had a significantly
lower number of volume interactions, compared to the rest of the subjects. This however, indicates a
preference for using the programs, rather than volume, to augment sound.

Three out of five subjects had a balanced split between program and volume interactions.
This indicates that such adjustments are needed in order to augment the sound and thereby achieve
the desired outcomes. For two subjects, there was a preference for using the program changes more
frequently than the volume interactions. This was evident for subject 2, who had significantly fewer
volume interactions.

Looking only at the aggregated and split number of interactions, it is evident that each user
interacted with their hearing aids in unique ways. Some users perceptually benefitted from changing
the attenuation, noise reduction and brightness, while others utilized the volume to further customize
the default programs provided.

3.10. Volume Interactions With Respect to Programs

Volume interactions with respect to programs indicate how the hearing aids are used. Figure 9
illustrates volume changes over time, with respect to a program, before changing to another program.
It is observed that volume interactions varied considerably across the test subjects. Subject 4 seemed to
primarily decrease volume, and subject 3 seemed to primarily increase volume. These nuances would
disappear if simply averaging volume over a longer period.

Interestingly, it is observed that all subjects lowered the volume of the default omnidirectional
program (light yellow) from the beginning. However, if the subjects remained in the program, the
volume was increased. For all subjects, the omnidirectiona focus of program P1, which amplifies any
sounds within a 360◦ radius, may be perceived as louder. These illustrations show how users adapt
to the increased gain, or intensity within minutes. As one subject phrases it: “P4 sounds round and
nice. However, when you speak I’m not sure how much I benefit from this program. On the other
hand, if I use P2 or another bright program, I understand more, but I need some time to adjust to the
sound. Actually, I like the sound of P2”. This illustrates that programs with a rounder sound, P4–P6,
with added attenuation, sound nice and round. However, the lack of added high frequency gain limits
the ability to separate sources and lowers the contrast in consonant utterances. Today’s hearing aids
modify only the overall gain, without taking such short-term adaptation of the perceived loudness
into consideration.
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Figure 9. Volume with respect to program. Programs with less than 20 interactions have been excluded.
On average, the volume gain for P1 (light yellow) was initially reduced and over time increased across
all test subjects. This suggests that the omnidirectional characteristics and lack of noise reduction were
initially perceived as being too intense, in turn triggering that the subjects decrease the volume. As the
subjects adapted to the perceived loudness over time, the general trend was to increase the volume
again. (a) Subject 1 coped by increasing volume in the brightest program (P2, yellow). This may
indicate a need for more presence, and more amplification in high frequencies, in order to improve
speech intelligibility; (b) Subject 2 coped by actively using volume to zoom in and out. This subject
primarily used the default program P1; (c) Subject 3 coped by initially lowering the volume in P1 and
over time increasing the volume again, when adapting to the intensity. The increase in volume gain
seen in programs with noise reduction may suggest a need to zoom in to compensate for a perceived
lack of intensity; (d) Subject 5 actively used programs and reduces the intensity of sound by lowering
the volume in P1; (e) Subject 4 preferred to reduce volume in the selected programs to reduce the
presence. This preference seems also reflected in the actively chosen programs, which provide more
attenuation of non-voice directional sources and removal of diffuse noise.

4. Discussion

4.1. The Opportunity for Personalizing Hearing Health Care as hearing aids Become Internet of Things Devices

There is an urgent need to rethink how users can be empowered to become an active part of
an individualized fitting process; WHO has warned that more than 1 billion young adults are at
risk of hearing loss when listening to music at too high a level [35] and predicts that hearing loss
will be the seventh highest cause of chronic diseases in 2030 [36]. Hearing loss is one of the most
common sensory deficits and is more common than vision impairment [37], as it is estimated that one
in four adults aged 45 years and older have hearing loss [36], out of which, a third have a disabling
hearing loss (40 dB or more) [38]. These numbers stress the necessity for alternative approaches
providing large-scale personalization of devices currently not feasible because of a lack of audiological
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resources. On an anecdotal note, an audiologist shared the following story regarding the challenge of
personalizing hearing instruments:

“The hearing aid user comes in for a refitting in the middle of the week. I ask, ’Recall
a situation where the hearing aids did not perform as you wanted it to’. The patient thinks,
and comes up with, ’Well, yeah, I don’t remember that much, but Monday I had an episode.’

I then have to guess what is the essence of this episode, and try to refit the hearing aids to
better accommodate similar situations in the future. However, I face several challenges.
One is that the users rarely recall episodes, unless they are significant. If it’s a compliant
user, they may be writing notes. The second happens only in rare cases. Furthermore,
I have to guess what’s needed to be tuned to give a better experience. All of this is based
on memory recall and heuristics”.

Establishing sufficiently accurate information about the situation and context, in this case to
reconfigure the hearing aid, is not a unique problem in health care. Larsen et al. highlighted a similar
problem when treating PTSD patients [26].

4.2. One Size Does Not Fit All

When enabling users to change between multiple settings as outlined in the present study, a first
research question would be whether test subjects are willing to interact with their devices. From a
limited set of users, we observe over several months that there appears to be an urge to actively change
not only programs but also modify them by adjusting the volume. A caveat here is that the users
in the present study were hearing impaired individuals who were highly motivated as test persons
to improve their listening experience. Future studies would need to address to what extent broader
segments of hearing-aid users would similarly wish to actively improve their listening experience.

From the pilot study presented in this paper, it is evident that users are not one-size-fits-all.
The data indicates not just one but several unique behavioral patterns, defining “arch-typical”
approaches to dynamically modify settings. We outline these as different strategies for coping in
a changing context depending on cognitive state and effort related to multiple listening scenarios.
The diversity of these interaction patterns are affected by the changing context. From only time,
program and volume interactions, it becomes clear that various factors stimulate users to adjust,
and thus personalize, their hearing aids to adapt to a given context. Here, the context may be summed
up in behaviors related to the difference between weekdays, for which in many cases work-related
activities represent external demands, in contrast to weekends, which might be characterized by
leisure activities, defining a baseline in the general needs for augmenting listening scenarios. However,
we also observe user interactions that might rather be related to the cognitive load experienced during
the day, when selecting programs in the evening, offering attenuation of noise in order to rest the ears
and brain. The diversity illustrated in the user interactions highlights the need for a personalized
fitting process. Our findings indicate that there are multiple coping strategies involving not only
noise reduction and volume, but also changing the timbre of the sound, when aiming to optimize the
listening experience for each user.

Whether this results in improved speech intelligibility for the users or an overall better listening
experience remains to be validated. Solely looking into the unique behavioral patterns, we observe
individual coping strategies that seem to be preserved over days, weeks or even months.

4.3. Involvement and Engagement May Lead to a Higher Satisfaction

Empowering users to change settings related to both attenuation of noise and the timbre in
terms of brightness, we observe consistent behavioral patterns suggesting that engaging with the
hearing device creates an awareness about how to best cope in different sound environments. Future
studies involving more users need to assess to what extent the ability to modify settings and volume
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translates into a significant improvement in hearing aid outcome measures defining the perceived
user satisfaction.

Several of the users in the present study have hinted at this. One of our test participants said the
following: “When I’m part of such an experiment, where I have to pay attention to when and how
I can benefit the most from my hearing aids, it does affect how I use them. Even when a program
which enhances brightness sounds harsher in some context, on the other hand it helps me understand
speech. I wouldn’t have chosen such a program before the experiment, but would rather have stayed
in a program which by default attenuates noise. Now I can better see the benefits of the different
programs, in order to assess when one, or the other, would be most beneficial for me.” For the program
with automatic noise reduction and attenuation engaged on the basis of acoustical characteristics,
the test subjects reported that they had difficulties in hearing the perceptual difference, unless they
chose the extremes of the spectrum.

4.4. The Next Steps to Create Better Hearing Experiences

While considered out of scope in the present study, we plan future experiments investigating
how the observed user-initiated program and volume changes relate to the changing auditory context.
That is, whether the sound pressure level, modulation characteristics and SNR describing how the
devices perceive the changing sound environments correlate with user-initiated program or volume
change. Alternatively, if the auditory context remains constant whereas the user interacts by changing
the program or volume, it may rather reflect the user’s cognitive state related to the time of the day
or fatigue; or, if apparently similar soundscapes do not always trigger the same user preferences in
terms of program or volume changes, it may indicate that the activities are different: a similarly noisy
environment occurring in a workout session or during an important meeting may trigger very different
user interactions. Additional contextual parameters retrieved from smartphone motion data, calendar
events or biometric sensors such as heart rate may need to be combined in order to describe both the
sound environment and the corresponding user preferences.

Essentially, our aim is to investigate how to optimally learn intents from user-generated data and
thereby predict contextual preferences on the basis of behavioral interaction patterns.

Overall, we wish to explore how active participation can improve the outcome measures
constituting user satisfaction. Empowering the user to become an active part of the treatment is
not limited to audiology but constitutes a central component when rethinking health care by involving
patients, supported by IoT technologies and the ability to learn from user-generated data.

Optimizing the clinical workflow of hearing aid fitting by making the user an active part of
the solution will have an impact for the clinicians, the next of kin and policymakers. What we see
in the data of this pilot study, where users to a much higher extent than reported previously were
able to cope by remaining in an omnidirectional setting without noise reduction, may reflect their
ability to actively shift their attention, resulting in a corresponding attenuation of unwanted sounds
in the auditory cortex. We listen with our ears, but understand using our brains. Empowering
hearing impaired users to actively define their preferences could trigger a paradigm shift allowing for
context-aware augmented hearing solutions, which dynamically adapt devices to the changing context
by continuously learning from the user generated data.
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Abstract
Auditory-visual interfaces for hearing aid users have re-
ceived limited attention in HCI research.We explore how to
personalize audiological parameters by transforming audi-
tory percepts into visual interfaces. In a pilot study (N = 10)
we investigate the interaction patterns of smartphone con-
nected hearing aids. We sketch out a visual interface based
on two audiological parameters, brightness and directional-
ity. We discuss how text labels and contrasting colors help
users navigate in an auditory interface. And, how users by
exploring an auditory interface may enhance the user expe-
rience of hearing aids. This study indicates that contextual
preferences seemingly reflect cognitive differences in au-
ditory processing. Based on the findings we propose four
items, to be considered when designing auditory interfaces:
1) using a map to visualize audiological parameters, 2) ap-
plying visual metaphors, turning auditory preferences into
actionable interface parameters, 3) supporting the user nav-
igation by using visual markers, 4) capturing user intents
when learning contextual preferences.
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Introduction
Designing interfaces for the changing demographics of an
increasingly aging population should not be limited to hap-
tics or visual impairment, but include auditory paradigms,
as a third of 65+ years old have a disabling hearing loss.

It is estimated that 20% of the American population have
a hearing loss [10], and one in 3 adults aged 65 or older is
suffering from a disabling hearing loss (40 dB or more) [14].
The World Health Organization (WHO) further estimates
that 1.1 billion young people are at risk due to loud mu-
sic exposure [15]. Yet, only limited research within the HCI
community has been addressing how to improve the current
haptic interfaces of hearing aids. The focus has typically
been on visual interfaces, as exemplified by the WCAG 2.0
guidelines making web sites accessible for the visually im-
paired [4]. How to map auditory percepts have previously
been related to visual shapes and size as in Köhlers Gestalt
principles, reflecting how sounds like "bouba/kiki" are asso-
ciated with round or edged forms [8, 11]. Conversely, how
to map visual icons into auditory sounds [2, 6, 13]. How-
ever, the challenge of visually representing and interacting
within auditory scenes has rarely been addressed. Nor the
potential in designing interfaces enabling hearing impaired
users to manipulate how sounds are perceived based on
audiological parameters.

Recent advances in user experience (UX) have been driven
by speech interfaces, including speech recognition and
speech synthesis, combined with the uptake of smart-
speakers and digital assistants such as Alexa, Siri and
Google Assistant. Gartner predicts a third of all search will
by 2020 be non-screen based on voice [5]. However, for a
large part of the aging population voice interaction involves
enhancement of speech intelligibility or ambient noise re-
duction.

Pilot study
Using smartphone connected hearing aids, we explore how
to map such auditory preferences into actionable parame-
ters in a visual interface. Based on a pilot study (N = 10),
we asses how high dimensional auditory percepts may
be conceptualized as simple color contrasts and spatial
metaphors.

N = 10 participants volunteered for the study (one female,
nine males), from a screened population provided by Erik-
sholm Research Centre. Age ranged from 39 to 76 (me-
dian age of 65 years). All participants had more than a
year of experience using hearing aids. The participants
suffered from a symmetrical hearing loss, ranging from
mild-moderate to moderate-severe. The study has two
goals: 1) to investigate the ability to modify audiological
parameters using a visual interface, and 2) to investigate
the individual behavioral patterns, inferred from continuous
contextual data collected by hearing aid and smartphone
sensors, coupled with the users interactions as illustrated
by Johansen et al. [7] and Korzepa et al. [9]. In this paper
we focus on the first goal. In particular, we wish to address
the following issues: 1) How do we design ’intuitive’ inter-
faces, using map and navigation as metaphors? 2) how do
we map characteristics of brightness or noise reduction to
colors, shapes or other markers? 3) Could such interfaces
enable users to successfully navigate and adapt the set-
tings of their hearing aids?

Extending the haptic interface of hearing aids
Hearing aids have been engineered as small behind-the-
ears devices with built-in microphones. Thin cables con-
nects to the speaker units positioned inside the ear canal.
The most prevalent interface for hearing aids are physical
buttons, used to increase or decrease volume gain. Users
may press buttons on either device. The same buttons may



enable the user to change between alternative programs,
by sustained button presses. The devices provide auditory
feedback through series of ’beeps’, depending on the inter-
action. Volume changes happen within a second, while pro-
gram changes may take several seconds before being fully
engaged. The haptic interface is essentially a sequence of
steps, which enables the user to move through alternative
programs in a cycle as illustrated in Figure 1. Volume ad-
justments moves up or down. The haptic interfaces allow for
rapid interaction. However, the user may struggle to keep
track of what constitutes the current program or volume set-
ting.

4 1

23

Figure 1: Haptic button press
interfaces enable users to
sequentially move within a cycle of
programs. Perceptually the user
moves clockwise or anti-clockwise,
but can only move in steps to the
nearest neighbor, but not jump
from e.g., 1 to 3.

Figure 2: Four distinct programs
illustrated as four different colors.

Bluetooth connected hearing aids can enrich the interac-
tion by visualizing settings on a smartphone app. One ap-
proach enables users to select between program settings
associated with symbolic icons related to locations such
as "restaurant", or activities like going for a walk in "nature"
[12], thus mapping one context to one setting. This helps
to inform the user of the current state of the hearing aid.
Both haptic button presses and symbolic icons are limited
to sequential steps, and do not support parallel interaction
patterns.

Mapping from auditory to visual metaphors
Bregman [3] describes auditory scene analysis metaphor-
ically, as similar to making out the numbers and size of
boats at sea, as well as the characteristics of the wind,
based only on two handkerchiefs being excited by the waves.
We similarly face the challenge of transposing the sense of
moving within a high dimensional auditory space into a two
dimensional visual interface.

Initially we investigated whether symbolic icon buttons
would reflect the actual usage scenarios. Hearing care pro-
fessionals (HCP) often simplify the usage of alternative set-

tings by labeling programs to a specific location, activity, or
with a generic "program"-name. However, our findings indi-
cate that such contextual labeling may introduce a limiting
bias, obscuring the highly individual preferences related to
different usage scenarios. This means that one program
translates into many scenarios, unlike the current approach
where a program maps to one scenario.

Labels, colors and space as markers
Our metaphor can abstractly be interpreted as a spherical
’space’, where the user can move around. In this space
we use both positioning of the ball, contrasting colors and
labels, to help the user navigate.

We used two audiological parameters, brightness and at-
tenuation, to create a map, rather than symbolic icons.
Essentially empowering users to modify their listening ex-
perience, and to explore the auditory map. Increasing the
perceived brightness enhances spatial cues, enabling the
user to selectively allocate attention to separate voices.
Or, conversely attenuate ambient sounds to increase the
signal-to-noise ratio (SNR), making it easier to separate
competing voices. The enhanced brightness perception is
visualized as two color segments in the top half of the cir-
cle, combined with associative labels naming them "lively"
and "crisp". The two remaining parts were assigned noise
attenuating programs, accordingly labeled "natural" and "fo-
cused". Discrete program selection is illustrated in Figure 2.
with four distinct programs.

A colored ball is used as a visual pointer, reminding the
user of their current location. The ball can be moved ac-
cordingly, and augment the sound while updating the set-
tings. To help the user navigating we use text labels, rather
than icons. Four labels characterizing the sound are, "lively",
"crisp", "focused" and "natural". As an example, "crisp"



might be associated with the sensation of auditory cue
localization, while "focused" might reinforce aspects of di-
rectionality. Assessing the spatial metaphor, all users in the
pilot study, spanning the age of 39 to 76 years old, find it
easy to adjust both the brightness, and the attenuation. Ad-
ditionally, most users prefer a visual interface to the current
haptic interfaces of hearing aids. The subjects find the mov-
ing ball responsive and visually intuitive in navigating the
auditory space, irrespective of age.

However, attaching labels, may bias the end user. An alter-
native view of navigating the auditory scene is presented
in Figure 3. The labels have been removed, and colors,
saturation, depth, contrasts, and shapes alone define the
auditory space visualized as a sphere. This may support
the user in exploring the room, rather than moving through
a discrete space.

Figure 3: An abstract visualization
of the interface based on color
contrasts and saturation, without
associative textual labels .

Learning to navigate the map
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Figure 4: Proposed app interface.
By moving the red ball, users may
increase the brightness perception
(x-axis , attenuate ambient sounds
(y-axis) and adjust the perceived
loudness (from center to edge).

To build up auditory awareness one would assume that
training is needed to navigate spatially, just as it is when
learning to ride a bike. When first learning to ride a bike
one may start pedaling, and can thus get from A to B. This
is the stages where one starts to use a hearing aid. Later,
one experiences the gears of the bike. This is similar to
changing between four discrete programs. Later, brakes are
discovered to regulate speed. This corresponds to adjusting
the volume. Wearing the devices combined with a contex-
tual selection of programs and volume, allows one to steer
the bike. However, navigating a bike, or an auditory space
requires practice. The perceptual difference when adding
brightness, or adding attenuation, impacts the loudness.
The brighter sounding programs may perceptually exceed
or fill the sphere, compared with the lower bottom attenu-
ated programs.

Our interface depicted in Figure 4. allows for parallel modi-
fication of both sound perception and volume intensity. The
ball can move horizontally, to alter brightness perception
and soft gain, i.e., the frequency response in mid- and high
frequencies. Navigating vertically allows the user to atten-
uate ambient sounds, i.e., removing noise while still pre-
serving sounds with voice-like characteristics. Moving the
ball from the center towards the periphery increases or de-
creases the volume intensity. Several users found it difficult
to simultaneously modify both the gain and program. This
may be due to the mapping from higher granularity of the
haptic interface, to the more coarsely controlled volume
gain in the visual interface. Only 6 out of 10 found the visual
volume adjustment easy or very easy.

Translating auditory scenes into intents
An added outcome when observing user preferences in
real life listening situations, is to learn the preferences in
a given context. Established hearing aid paradigms, e.g.,
as proposed by Stuart Gatehouse [1], would assume that
noise reduction should be increased as the signal-to-noise
ratio deteriorates, to enhance speech intelligibility. How-
ever, given the ability to explore an auditory space, our pilot
study indicates that most of the subjects rather prefer the
omnidirectional "lively" program without attenuation of am-
bient sounds, to improve speech intelligibility. All of the 10
subjects indicated they prefer the "lively" (7) or "crisp" (3), il-
lustrated in Figure 5. These programs offer little or no noise
reduction in order to enhance speech intelligibility. Whereas
they select programs like "focused" or "natural" to attenuate
ambient sounds in noisy environments. Our visual interface,
thus seem to spatially reflect the user intents for either in-
creasing brightness along the horizontal plane, or vertically
to reduce background noise.

The subjects also showcase the importance of considering



intents in relation to preferences. One says: ’When I’m in
meetings with 4-5 people I prefer to use the "lively" program
to better understand speech. When I’m attending a presen-
tation in a larger hall with more people, I prefer to attenu-
ate noise, especially behind me. I also use the "focused"
program in the cinema to minimize annoying background
noise’. Several subjects reported: ’The program I select to
enhance speech intelligibility depends on the people I’m fo-
cusing on. Female voices or small kids have higher pitched
voices, and the "bright" program becomes too shrill’. The
translation from auditory scene to user intents is illustrated
in Figure 6. The user is subjected to the demands of an
acoustic scene marked in red. Through interaction with the
hearing aid, marked in green, the user changes the settings
to modify the perception of the auditory scene. The modi-
fied auditory percept should contextually reflect the desired
outcome of the user intents, marked in pointy neon green.
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Figure 5: User preferences for
attenuation (grey) and speech
intelligibility (orange). Sum of
program as "most preferred" and
"preferred" for each condition.

Future work
Designing next generation interfaces, reflecting the chang-
ing demographics of an aging population, may provide
novel opportunities for the HCI community to redefine voice
interaction in a broader sense as augmented hearing. How-
ever, the interaction models would need to be redefined, in
order to facilitate personalized hearing care by empowering
users to adapt settings along audiological parameters.

Figure 6: An acoustical
environment (red). The hearing aid
signal processing compensates for
the hearing loss based on the
program and volume interaction
(green). The modified auditory
percept should contextually reflect
the desired outcome supporting
the user intents (neon).

We found the usage of visual metaphors and spatial explo-
ration empowers hearing aid users. The users intuitively un-
derstood the two-dimensional mapping of audiology param-
eters. Providing markers such as color, labels, and a ball
to indicate current position, helps the user navigate in an
auditory space. However, compensating for the perceived
loudness of contrasting settings requires further work. We
furthermore see a potential in empowering users to become
an active part in compensating their hearing loss at any

age, in order to explore the potential of augmenting hearing.
In our pilot study the users were equally capable of modi-
fying hearing aid settings regardless of their biological age.
Their preferences might rather reflect how they cognitively
process auditory percepts differently. It is therefor crucial to
provide added means of personalization, rather than pro-
viding "one size fits all" settings based on age. It might not
be feasible for all elderly users to engage with their hear-
ing aids to the extent outlined above. Although even if only
some users would engage actively, it might still facilitate a
crowdsourcing of user generated data, making it possible
to learn behavioral patterns as a foundation for designing
next generation augmented hearing interfaces that adapt
to "users like me in soundscapes like this" as outlined by
Korzepa et al. [9].

We propose the following points to consider when design-
ing such auditory interfaces: 1) using a map as a metaphor
to visualize audiological parameters such as brightness
perception and attenuation, 2) applying visual metaphors
together with associative text labels may help turn auditory
preferences into actionable interface parameters, 3) suppor
the user navigation by using markers, based on contrast-
ing colors, spatial layout and position, 4) incorporating the
perceived intents of the user whenever aiming to learn con-
textual preferences.
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ABSTRACT
Despite the technological advancement of modern hearing
aids (HA), many users abandon their devices due to lack of
personalization. This is caused by the limited hearing health
care resources resulting in users getting only a default ’one
size fits all’ setting. However, the emergence of smartphone-
connected HA enables the devices to learn behavioral patterns
inferred from user interactions and corresponding soundscape.
Such data could enable adaptation of settings to individual
user needs dependent on the acoustic environments. In our
pilot study, we look into how two test subjects adjust their
HA settings, and identify main behavioral patterns that help
to explain their needs and preferences in different auditory
conditions. Subsequently, we sketch out possibilities and
challenges of learning contextual preferences of HA users.
Finally, we consider how to encompass these aspects in the
design of intelligent interfaces enabling smartphone-connected
HA to continuously adapt their settings to context-dependent
user needs.

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation (e.g. HCI): User
Interfaces—User-centered design; K.8.m Personal Computing:
Miscellaneous

Author Keywords
personalization; augmented hearing; intelligent interfaces

INTRODUCTION
Even though hearing loss is one of the leading lifestyle causes
of dementia [11], up to one quarter of users fitted with hearing
aids (HA) have been reported not to use them [5]. One of

©2018. Copyright for the individual papers remains with the authors.
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the reasons behind the prevalence of non-use of fitted HA is
identified by McCormack et al. [12] as users feeling that they
do not get sufficient benefits of HA. However, in the light of
technological advancement of HA as well as the abundance of
research indicating clear benefits of HA usage, we rather seek
the source of the problem in the lack of personalization in the
current clinical approach. The increasing number of hearing-
impaired people [6] and lack of hearing health care resources
often results in users getting a ’one size fits all’ setting and
thus not exploiting the full potential of modern HA.

Furthermore, the current clinical approach to measure hearing
loss is based on pure tone audiogram (PTA). PTA captures the
audible hearing thresholds in frequency bands usually from
250 Hz to 10 kHz. However, PTA does not fully explain a hear-
ing loss. Killion et al. showed that the ability to understand
speech in noise may vary by up to 15 dB difference in Signal-
to-Noise ratio (SNR) for users with a similar hearing loss [8].
Likewise, users differ in terms of how they perceive loudness.
Le Goff showed that speech at 50dB can be interpreted either
as moderately soft or slightly loud [9]. This means that some
users may perceive soft sounds as noise which they would
rather attenuate than amplify. These aspects are rarely taken
into account in current clinical workflows.

Earlier research by Dillon et al. [3] indicated potential benefits
of customization both within and outside the clinic including
fewer visits to clinics, a greater choice of acoustic features
for fitting and end users’ feeling of ownership. Previous stud-
ies that focused on customizing the settings of devices based
on perceptual user feedback [13] or using interactive table-
tops in the fitting session [2] indicate that users prefer such
customization. Aldaz et al. [1] used reinforcement learning
to personalize HA settings based on auditory and geospatial
context by prompting users to perform momentary A/B lis-
tening tests. However, only with the recent introduction of
smartphone connected HA like the Oticon Opn [15], it has be-
come possible to go beyond ecological momentary assessment
by continuously tracking the users’ interactions with the HA
and thereby learn individual coping strategies from data [7].
Such inferred behavioral patterns may provide a foundation for



correlating user preferences with the corresponding auditory
environment and potentially enable continuous adaptation of
HA settings to the context.

When interpreting user preferences, one needs to consider how
the brain interprets speech. Auditory streams are bottom-up
processes fused into auditory objects, based on spatial cues
related to binaural intensity and time difference [4, 10, 14, 16].
However, separating competing voices is a top-down process,
applying selective attention to amplify one talker and atten-
uate others. HA may mimic this top-down process by either
1) increasing the brightness to enhance spatial cues facilitat-
ing focusing on specific sounds or 2) improve the signal to
noise ratio by attenuating ambient sounds to facilitate better
separation of voices. Incorporating these aspects into our ex-
perimental design, we hypothesize we could learn top-down
preferences for brightness or noise reduction based on HA
program and volume adjustments combined with bottom-up
sampling of how HA perceive the auditory environment in
terms of sound pressure level, modulation and signal to noise
ratio. This allows us to assess in which listening scenarios the
user relies on enhanced spatial cues provided by omnidirec-
tionality with more high frequency gain to separate sounds and
in which environments the user instead reduces background
noise to selectively allocate attention to specific sounds.

In our pilot study, we give two subjects HA programmed with
four contrasting programs in terms of brightness and noise
reduction, and register how they interact with programs and
volume over a period of 6-7 weeks. The purpose of this work
is to:

• show how the subjects interact with HA settings in real
environments without any intervention,
• discover basic contextual preferences for the subjects,
• identify possibilities and challenges of learning contextual

preferences of HA users,
• suggest application of intelligent user interfaces that would

continuously support users in optimizing their HA not only
by learning and adjusting to individual preferences but also
exploiting crowd-sourced patterns.

METHOD
Participants
Two male participants (from a screened population provided
by Eriksholm Research Centre) volunteered for the study (Ta-
ble 1). The participants suffer from a symmetrical hearing
loss, ranging from moderate to moderate-severe as described
by the WHO[17]. All test subject signed an informed consent
before the beginning of the experiment.

Subject Age group Hearing loss Experience with Opn Occupation

1 65 Moderate Yes Retired
2 76 Moderate-severe No Working

Table 1: Demographic information related to the subjects.
Apparatus
The subjects were fitted with a pair of research prototype HA
EVOTION extending Oticon Opn. The subjects used Android
6.0 or iOS 10, connected via Bluetooth. Data was logged
using the nRF connect app and shared via Google Drive.

Subject Program Mode Brightness Soft Gain

1 P1 omnidirectional +1 0
P2 omnidirectional 0 0
P3 low noise reduction +2 +2
P4 high noise reduction -2 -2

2 P1 omnidirectional +2 +2
P2 low noise reduction +1 +1
P3 medium noise reduction 0 0
P4 high noise reduction -2 -2

Table 2: Program settings for subject 1 and 2, with modified
brightness {−2 . . .2} and soft gain for low sounds {−2 . . .2}
where 0 corresponds to the default level.

Procedure
Based on the individual hearing loss, the subjects were fitted
with 4 programs as shown in Table 2. For all programs, HA
volume could be adjusted to one of the levels from −8 · · ·+4,
where 0 is the default volume. The subjects were instructed
to explore different settings using HA buttons over a period
of 6-7 weeks. In the experimental setup, the HA always start
up in the default program and volume. The default program
for subject 1 was P2 in the first five weeks which was then
switched to P1 for the last two weeks at the subject’s request.
Subject 2 used P2 as the default program.

Soundscape data
To create an interpretable representation of the auditory fea-
tures defining the context, we applied k-means clustering to the
acoustic context data collected from HA. The values comprise
auditory features defining how the HA perceive the acoustic
environment:

sound pressure level measure of estimated loudness,
noise floor tracking the lower bound of the signal,
modulation envelope tracking the peaks in the signal,
modulation index estimated as difference between modula-

tion envelope and noise floor,
signal to noise ratio estimated as difference between sound

pressure level and noise floor.

The above parameters are captured as a snapshot across mul-
tiple frequency bands once per minute. Additionally, the HA
perform a rough classification of the auditory environment and
represent it as a categorical variable with one of the follow-
ing values: ’quiet’, ’noise’, ’speech in quiet’, and ’speech in
noise’. These labels are used as ground truth for evaluating the
performance of the clustering by means of normalized mutual
information (NMI) score. The optimal number of clusters K
was estimated to be 4 with NMI = 0.35.

C4

C3

C2

C1
QUIET

SPEECH IN QUIET

SPEECH IN NOISE

NOISE

Figure 1: Applying k-means algorithm to the soundscape data
captured from the HA results in four clusters which estimate
the acoustic context as C1 ’quiet’, C2 ’speech in noise’, C3
’clear speech’ or C4 ’normal speech’.
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Figure 2: Time series data combining the contextual soundscape data captured from the HA (green gradient) with the corresponding
interactions related to the user selected programs (yellow-red gradient) for subject 1 (top) and 2 (bottom).

The resulting four soundscape clusters were labeled accord-
ing to the proportion of samples with different ground-truth
labels within each cluster ( Figure 1) while ambiguities were
solved by examination of the cluster centroids. The first clus-
ter mainly captured the ’quiet’ class which is also validated by
the cluster centroid having very low values of sound pressure
level and noise floor. Thus, the environments assigned to this
cluster will be represented as ’quiet’. The second cluster cap-
tured both ’speech in noise’ and ’noise’ classes which suggests
that the numerical representations of these environments are
similar. For simplicity, we label them as ’speech in noise’. The
third and fourth cluster both captured mainly ’speech in quiet’
with a small addition of other classes. As the third cluster
captured samples with much higher sound pressure level and
signal to noise ratio, it will be labeled as ’clear speech’, while
the fourth cluster with attributes of the samples closer to mean
will be represented as ’normal speech’.

RESULTS
We refer to the user’s selected volume and program choice
as user preferences, and to the corresponding auditory envi-
ronment as the context. Juxtaposing user preferences and the
context allows us to learn which HA settings are selected in
specific listening scenarios. To facilitate interpretation we
assign each cluster a color from white to green gradient, in
which increasing darkness correspond to increased noise in
the context (quiet→ clean speech→ normal speech→ speech
in noise). Likewise, we assign each program a color from
yellow to red gradient. Lighter colors define programs with
an omnidirectional focus and added brightness. Darker colors
indicate increasing attenuation of noise. This coloring scheme
will apply throughout the paper.

Contextual user preferences
Figure 2 shows the user preference and context changes for
both subjects, plotted across the hours of the day over the
weeks constituting the full experimental period. Subject 1
most frequently selects programs which provide an omnidi-
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Figure 3: Average HA usage time per hour (grey trace, right
axis) and relative program usage over day (left axis) for subject
1 (top) and 2 (bottom).

rectional focus with added brightness (the default program
was changed from P2 to P1 after week 43). However, the
default program is occasionally complemented with programs
suppressing noise. This suggests that the user benefits from
changing programs dependent on the context.

Subject 2 mainly selects two programs; P1 offering an om-
nidirectional focus with added soft gain and brightness, and
P2 (default) providing slight attenuation of ambient sounds.
Compared to subject 1, this user spends more time in ’quiet’
context. Comparing weekdays to weekends, the latter seem to
contain a larger contribution of ’normal speech’ and ’speech
in noise’ auditory environments.

Figure 3, illustrates subjects’ average usage of their HA and
which programs are used most throughout the day. Days
without any HA usage are excluded from the average. The
HA usage for subject 1 steadily increases in the morning and
early afternoon and peaks at around 4pm. P1 and P2 are the
most used programs throughout the day. Interestingly, in the
evening, P3 is used more frequently reaching similar usage
level as P1 and P2 between 11pm and midnight. P4 is used
very rarely yet consistently throughout the day. The HA usage
of test subject 2 is shifted towards the morning with peak
activity around 2pm. The default P2 is the most commonly
used program throughout the whole day. However, during
afternoon, P1 seems to be chosen more often.

Figure 4 shows which contexts the subjects use their HA
at different times of the day. The HA usage for subject 1 is
dominated by speech-related contexts most of the day. Only
after 5pm, the context has more ’quiet’ and ’clear speech’ and
less ’speech in noise’ contribution. From 9pm, the ’quiet’ con-
text rapidly overtakes context containing speech. Subject 2
appears to be exposed to different contextual patterns. Normal
and noisy speech contexts seem to be dominated by ’quiet’
soundscapes in the morning. Subsequently, their contribu-
tions increase and peak around 7pm. Afterwards, the ’quiet’
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Figure 4: Relative time spent in different contexts over day for
subject 1 (top) and 2 (bottom).

Subject 1 Subject 2
P1 P2 P3 P4 P1 P2 P3 P4

C
on

te
xt

QUIET 1 1 3 0 3 3 0 0
CLEAN SPEECH 3 2 1 0 1 0 0 1
NORMAL SPEECH 10 3 3 3 5 6 0 2
SPEECH IN NOISE 6 5 4 7 17 5 1 2

Table 3: Counts of changes to a given program in different
contexts for both subjects.

context gradually increases. Both subjects seem exposed to
more ’speech in noise’ around midday which is likely due to
lunchtime activities.

Behavioral patterns
We quantify the relationship between program/volume inter-
action and context by assuming that the settings are preferred
in the corresponding context only at the time when they are
being selected. Under this assumption, we count how often
programs are selected in different contexts. Table 3 shows the
counts of program changes for both subjects. The total num-
ber of changes was 52 and 46 for subject 1 and 2 respectively.
Considering the small number of changes, we outline only the
most apparent behavioral patterns.

Subject 1 switches to P4 mainly in ’speech in noise’ context
(twice as often as in ’normal speech’). The fact that ’speech
in noise’ is a less common environment than ’normal speech’
strengthens this behavioral pattern. This suggests that subject
1 seems to cope by suppressing noise in challenging listening
scenarios. Examples of this behavioral pattern are illustrated
in Figure 5. Likewise, a clear behavioral pattern can be seen
for subject 2. P1 is the preferred program in ’speech in noise’
environments. Considering that P1 offers maximum bright-
ness and omnidirectionality with reduced attenuation and noise
reduction, this behavioral pattern suggests the user compen-
sates by enhancing high frequency gain as a coping strategy
in complex auditory environments (examples in Figure 6).

Table 4 shows the number of volume changes for subject
2 (subject 1 rarely changes volume). All increases beyond
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Figure 5: Details of behavioral patterns for subject 1, indicat-
ing preferences for reduced gain and suppression of unwanted
background noise (P4) in challenging ’speech in noise’ envi-
ronments (dark green).
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Figure 6: Details of behavioral patterns for subject 2, indi-
cating how omnidirectionality coupled with additional high
frequency gain (P1) may enhance spatial cues to separate
sounds in challenging ’speech in noise’ listening scenarios
(dark green).

the default volume level (0) were made in ’speech in noise’
context. On the other hand, changes to the default volume
were evenly distributed across all contexts. This suggests that
increasing the volume is another coping strategy for subject 2
in more challenging listening scenarios.

Subject 2
0 +1 +2

C
on

te
xt

QUIET 2 0 0
CLEAN SPEECH 2 0 0
NORMAL SPEECH 2 0 0
SPEECH IN NOISE 2 12 1

Table 4: Counts of changes to a given volume in different
contexts for Subject 2.

Figure 7 shows a behavioral pattern that might be more dif-
ficult to interpret based on the auditory context alone. Occa-
sionally, subject 1 selects P3 in a ’quiet’ environment late in
the evening. The test subject subsequently reported that these
situations occur when going out for a walk and wanting to
be immersed in subtle sounds such as rustling leaves or the
surf of the ocean. The preference for P3 thus implies both
increasing the intensity of soft sounds as well as the perceived
brightness.

DISCUSSION

Inferring user needs from interaction data
Empowering users to switch between alternative settings on
internet connected HA’s, while simultaneously capturing their
auditory context allows us to infer how users cope in real life
listening scenarios. To the best of our knowledge, this has not
been reported before.

15:00 18:00 21:00 00:00

04 Nov

15:00 18:00 21:00 00:00

06 Nov

Figure 7: Details of behavioral patterns for subject 1, indicat-
ing preferences for additional soft gain and brightness (P3) in
’silent’ (white) environments, in order to enhance the perceived
intensity of the auditory scene.

Learning the mapping between preferences and context is a
non-trivial task, as the chosen settings might not be the optimal
ones in the context they appear in. For example, looking into
the soundscape data, it is clear that the environment sound-
scape frequently changes without the user responding with
an adjustment of the settings. Conversely, the auditory envi-
ronment may remain stable whereas the user changes settings.
We need to take into consideration not only the auditory en-
vironment but also the user’s cognitive state due to fatigue or
intents related to a specific task. Essentially, the user cannot
be expected to exhibit clear preferences or consistent coping
strategies at all times. We hypothesize that many reasons could
explain why the user does not select an alternative program
although the context changes:

• being too busy to search for the optimal settings,
• too high effort is required to change programs manually,
• accepting the current program as sufficient for the task at

hand,
• cognitive fatigue caused by constantly adapting to different

programs.

Similarly, we observe situations in which user changes settings
even though the auditory environment remain stable, which
could be caused by:

• the user trying out the benefits of different settings,
• cognitive fatigue due to prolonged exposure to challenging

soundscapes
• the auditory environment not being classified correctly

In our pilot study, the context classification was limited to the
auditory features which are used for HA signal processing.
However, smartphone connectivity offers almost unlimited
possibilities of acquisition of contextual data. Applying ma-
chine learning methods such as deep learning might facilitate
higher level classification of auditory environments. Different
types of listening scenarios might be classified as ’speech in
noise’ when limited to parameters such as signal to noise ratio
or modulation index. In fact, these could encompass very
different listening scenarios such as an office or a party where
the user’s intents would presumably not be the same. Here
the acoustic scene classification could be supported by motion
data, geotagging or activities inferred from the user’s calendar
to provide a more accurate understanding of needs and intents.

Nevertheless, in some situations as illustrated in Figure 6, the
behavioral patterns seem very consistent; the user preferences
appear to change simultaneously with the context, remain un-
changed as long as the context remains stable, and change
back when the context changes again. Identifying such be-
haviors could allow to reliably detect user preferences with



limited amount of user interaction data. Furthermore, time as
a parameter also highlights patterns as illustrated in Figure 6
related to activities around lunch time, or late in the evening
( Figure 7), as well as the contrasting behavior in weekends
versus specific weekdays.

Even though our study was limited to only two users, we iden-
tified evident differences in the HA usage patterns. Subject 1
tends to use the HA mostly in environments involving speech,
whereas subject 2 spends substantial amount of time in quiet
non-speech environments. This might translate into differ-
ent expectations among HA users. Furthermore, our analysis
suggests that users apply unique coping strategies in different
listening scenarios, particularly for complex ’speech in noise’
environments. Subject 1 relies on suppression of background
noise to increase the signal to noise ratio in challenging sce-
narios. Subject 2 responds to speech in noise in a completely
different way - he chooses maximum omnidirectionality with
added brightness and increased volume to enhance spatial cues
to separate sounds. These preferences are not limited to chal-
lenging environments but extends to the ambience and overall
quality of sound, as subject 1 reported that he enhances bright-
ness and amplification of quiet sounds to feel immersed in the
subtle sounds of nature. We find this of particular importance
as it indicates that users expect their HA not only to improve
speech intelligibility, but in a broader sense to provide aspects
of augmented hearing which might even go beyond what is
experienced by normal hearing people.

Translating user needs into augmented hearing interfaces
We propose that learning and addressing user needs could be
conceptualized as an adaptive augmented hearing interface
that incorporates a simplified model reflecting the bottom-up
and top-down processes in the auditory system. We believe
that such an intelligent auditory interface should:

• continuously learn and adapt to user preferences,
• relieve users of manually adjusting the settings by taking

over control whenever possible,
• recommend coping strategies inferred from the preferences

of other users,
• actively assist users in finding the optimal settings based on

crowdsourced data,
• engage the user to be an active part in their hearing care.

Such an interface would infer top-down preferences based on
the bottom-up defined context and continuously adapt the HA
settings accordingly. This would offer immense value to users
by providing the optimal settings at the right time, dependent
on the dynamically changing context. However, the system
should not be limited to passively inferring intents, but rather
incorporate a feedback loop providing user input. We see a
tremendous potential in conversational audio interfaces as HAs
resemble miniature wearable smartspeakers which would al-
low the user to directly interact with the device, e.g. by means
of a chatbot or voice AI. First of all, such an interface might
resolve ambiguities in order to interpret behavioral patterns.
In a situation when user manually changes the settings in a
way that is not recognized by the learned model, the system
could ask for a reason in order to update its beliefs. Ideally,
questions would be formulated in a way allowing the system

to directly learn and update the underlying parameters. This
could be accomplished by validating specific hypotheses that
refer to the momentary context as well as the characteristics
captured in the HA user model, incorporating needs, behavior
and intents; e.g.’Did you choose this program because the
environment got noisy / you are tired / you are in a train?

Secondly, a voice interface could recommend new settings
based on collaborative filtering methods. Users typically stick
to their preferences and may be reluctant to explore available
alternatives although they might provide additional value. Sim-
ilarly, in the case of HA users, preferred settings might not
necessarily be the optimal ones. Applying clustering analysis
based on behavioral patterns, we could encourage users to
explore the available settings space by proposing preferences
inferred on the basis of ’users like me, in soundscapes like
this’. For instance, the inteface could say: ’Many users which
share your preferences seem to benefit from these settings in a
similar context - would you like to try them out?’ This would
encourage users to continuously exploit the potential of their
HA to the fullest. Additionally, behavioral patterns shared
among users, related to demographics (e.g. age, gender) and
audiology (e.g. audiogram) data, could alleviate the cold start
problem in this recommender system, thus enabling personali-
sation to kick in earlier even when little or even no HA usage
data is available.

Lastly, users should be able to communicate their intents,
as the preferences inferred by the system might differ from
the actual ones. In such scenarios, users could express their
intents along certain rules easily interpreted by the system
(e.g. ’I need more brightness.’) or indicate the problem in the
given situation (e.g. ’The wind noise bothers me.’). Naturally,
translating the user’s descriptive feedback into new settings
is more challenging, but could potentially offer huge value
by relieving users of the need to understand how multiple
underlying audiological parameters influence the perceived
outcome.

Combining learned preferences and soundscapes into in-
telligent augmented hearing interfaces would be a radical
paradigm shift in hearing health care. Instead of a single
default setting, users may navigate a multidimensional contin-
uum of settings. The system could be optimized in real-time
by combining learned preferences with crowdsourced behav-
ioral patterns. With growing numbers of people suffering from
hearing loss we need to make users an active part of hear-
ing health care. Conversational augmented hearing interfaces
may not only provide a scalable sustainable solution but also
actively engage users and thereby improve their quality of life.
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ABSTRACT
The global number of people living with hearing loss continues to grow, while the clinical resources
are limited. To address this we describe a scalable goal oriented system. We outline a method on
creating an audiological vocabulary, which can be mapped to intents. We create a shared audiological
parameter space, with inspiration from clinical workflows. Matching of the intents and the audiological
space, results in hearing aid fitting parameters, which then receive feedback from the user. We discuss
how to train embedding and recurrent neural network models implementing attention mechanisms, to
predict the optimal settings based on learned sequences of dialogue states and device fitting outcomes.
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INTRODUCTION
Computational interaction is an emerging research field spanning from optimizing input and in-
teraction techniques using control theory and Hidden Markov Models. An emerging field within
computational interaction is goal oriented interaction. An example of this is conversational interfaces.
Notably the Google Duplex AI system capable of carrying out natural phone conversation to reserve
a table at a restaurant, or make an appointment with a hairdresser [5]. The primary challenges of
conversational interfaces are; the interface lacks understandable boundaries, the interaction mimics
human behavior and is expected to act accordingly, the interface needs to have a robust speech-to-text
engine, and the interfaces needs attention or memory to stay focused on the dialogue. Often, one
or more of these challenges are not addressed, and triggers a mismatch between user expectations
and interface performance. State of the art conversational systems overcome these challenges by
thoroughly mapping out design boundaries, rather than attempting to encompass a full conversational
dialogue. As an example, humans are capable of adapting dynamically to a changing context, and still
revert back to the initial topic. We are able to do this through memory and attention mechanisms,
and we understand the unvoiced boundaries of the conversation.
In the present paper we discuss how to enable interactions in an audiological design space, by embed-
ding and training recurrent neural network models with simple attention and memory components.
The goal is to predict the optimal hearing aid settings in real life listening scenarios.

AUDIOLOGICAL DESIGN SPACE
We focus on the use case of conversational agents within hearing health care, and on hearing aid fitting
and optimization. The current clinical work flow is sequential, relies on calendars, and experienced
hearing care professionals. The main challenge is lack of scalability. This is evident in emerging
markets such as China and in low income countries, where the later has less than 1 audiologist per
million citizen [13]. General health and medical care are facing similar challenges, where the number
of patients are growing faster than the number of health care practitioners. Combining mobile internet
connectivity with conversational interfaces may enable us to provide scalable healthcare solutions.

Voice enabled digital assistants, implementing artificial intelligence, are rapidly changing how we
interact with internet of things devices including car dashboards and smartphone connected hearing
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aids. The most successful goal-oriented dialogue systems, model conversations as partially observable
Markov decision process (POMPDS) [15]. However, these goal-oriented application requires a lot
of domain-specific handcrafting of features, which restrict their usage to specific domains. This
hinders scalability and transfer learning to new domains [1]. The lack of annotated vocabulary for
the audiological design space limits the use of POMPDS. It requires extensive effort to collect and
annotate dialogues related to audiological trouble shooting. However, know-how of clinical practices
can help establish a framework and context for dialogues. We draw inspiration from several studies
where hearing care professionals map utterances into hearing aid fitting parameters [2, 11]. These
parameters are related to frequency specific gain, loudness perception, and thresholds for attenuation
and noise reduction. Based on the clinical practices, we outline an audiological design space.

bag of 
utterances

context 
vector

intent 
extractor

parameter 
tuning A/B test

long term memory

attention

Figure 1: The proposed conversational agent uses both contextual and user input. It then probabilistic
proposes a A/B program pair. The user picks a preference, and the memory network is updated.

We propose an interactive conversational agent, based on attention mechanisms mimicking human
memory. The agent uses a context matrix and a utterance matrix as input, which is then fed through
an intent extractor. The model includes both an attention unit for short term memory, using the
current inputs to update parameters, and an attention network utilizing previous learned weights.
Intents are not only inferred from semantics but also include comparison of four contrasting programs
representing audiological parameters. The user is presented with an A/B program pair to select the
preferred hearing aid setting. The memory is continuously updated based on a recurrent neural
network model. An overview of the conversational agent is presented in Figure 1
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MODELING UTTERANCES AS INTENTS
Word embeddings have been demonstrated to be an effective procedure in natural language under-
standing, as demonstrated by Mikolov et al.[6, 7]. The concept of skip-grams can be applied to longer
sequences such as sentencens, or on documents, to create sequence embeddings [9].
We use the same principles of word embeddings to train a natural language understanding part of
our model. We start by creating a vocabulary based on user utterances. Due to the model flexibility,
we can create a new vocabulary from scratch. As an example, ’There is too much noise’ and ’I can’t
hear because there are too many people’, have embedding vectors more similar than either ’Turn down
the volume’ or ’It’s too quiet’, this is illustrated in Figure 2.
The model infers the most likely labels of new utterances, based on their cosine similarity to

previously learned word vector representations. The feature and intents vectors have the same
dimensionality, allowing the model to be trained by simply maximizing the cosine similarity between
utterances and fitting label embeddings. A cosine similarity matrix of a selection of utterances are
illustrated in Figure 3

Too loud I can’t hear

[0 0 2 3 0 1] [1 0 2 2 0 1]

….

….

Bag of Utterances

Figure 2: Using utterances to create a bag
of utterances, a vocalbury. Our model use
cosine similarity between utterances. The
similarity is later used for audiological pa-
rameters.

We use a similar approach to embed intents from utterances. For example, ’I cannot hear the speaker
in front of me’, can relate to intents of focusing on the person, reducing surrounding noise, increasing
volume output, or a combination of these. We cast the embeddings of utterances and intents into
a shared low dimensional space using a supervised learning approach similar to StarSpace [14],
implemented as a TensorFlow embedding model in Rasa [8, 10].

FROM INTENTS TO FITTING PARAMETERS
The first part of our model infers intents based on utterances from the user. The second part of the
model search for optimal fitting parameters. The model fitting is based on empirical evidence on
troubleshooting work-flows from hearing care professionals. A challenge within hearing care is the
lack of one to one mapping between utterances and audiological solutions [2]. Meaning, a hearing care
professional has to deduct a suitable hearing aid setting, by interpreting the challenges associated
with the listening scenario the user has experienced. The fitting parameter labels thus resemble a flow
chart of potential interventions [11].This requires the audiologist to interpretate utterances like "it
is very noisy" which dependents on the listening scenario, the hearing loss compensation, and the
cognitive state of the user. The audiologist has to estimate what the optimal audiological solution
would be in a specific context. These solutions could involve highly different fitting parameters related
to beamforming, noise reduction, loudness sensitivity or gain adjustments

To model such a clinical workflow, our goal oriented dialogue system needs to learn sequences of
perceived intents, fitting actions and estimate the updated settings. Similar to the previous mapping
of utterance to intents, we apply a supervised learning approach to train an embedding model. We
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then use a Recurrent Neural Network (RNN) to create sequential embeddings of perceived intents
and fitting actions. This generates a memory state from previous dialogues and outcomes. Embedding
dialogue states and fitting actions in the same vector space allows for comparing a new dialogue input
against the system long term memory. Subsequently predicting the most likely audiological solution
based on its cosine similarity to previously learned outcomes. Target labels or fitting actions can be
represented as a bag of multiple features. Attention mechanisms enables the model to infer which
intents and system actions contributed the most to previous outcomes, as shown by Vlasov et al. [12].
That is, separate user and system attention probabilities are inferred from the embeddings of past user
inputs and fitting actions in order to adjust the weights determining the next hearing aid adjustment.

Figure 3: Confusionmatrix of user descrip-
tions of challenging listening scenarios
based on semantic similarity generated
by Universal Sentence Encoder; pairwise
groups along the diagonal reflect how ut-
terances are oftenmapped by audiologists
to parameters of frequency specific gain,
beamforming, occlusion and loudness.

SIMULATING FITTING OUTCOMES BASED ON DIALOGUE STATES
Rather than relying solely on utterances for intent classification, we are able to generate contrasting
hearing aid settings, which similar to AB testing enables the user to compare fitting parameters in
real life listening scenarios [3]. Configuring four contrasting hearing aid settings, reflecting the fitting
parameters that hearing care professionals commonly associate with utterances, enables users to
indirectly accept or decline the suggested fitting parameters in a given context. Thus extending the
underlying supervised learning of the goal oriented dialogue system with an additional reinforcement
learning framework, to facilitate prediction of the preferred hearing aid settings. Defining the design
space, according to the hearing aid adjustment parameters identified in previous studies [1, 11], we
train an embedding model, in order to map utterances into intents related to adjustment of: maximum
power output, frequency specific gain, beamforming, noise reduction thresholds, and loudness recruit-
ment. We train the model based on multiple sequences of utterances, intents, hearing aid adjustments
and final outcome. As exemplified in this simulated fitting dialogue we simply sequentially map
utterances to intents:

utterance: “can’t understand what is being said”
intent: enhance speech
action: increase B high frequency and soft gain
reply: “maybe try setting B ?”
utterance: “what does B do ?”
intent: explain B
reply: “it adds brightness to better separate sounds, do you prefer setting B ?”
utterance: “its very noisy in here”
intent: noise reduction
action: adjust B beamformer, attenuation and noise reduction thresholds
reply: “try setting B, do you prefer B ?”
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utterance: “its better”
intent: confirm
reply: “great i’ll remember you like setting B in this listening environment”

The embedding model is trained with multiple utterances for each of the intents to infer the most
likely fitting parameters. These are used as dialogue flow inputs to train a RNN model, in order
to predict fitting outcomes. As can be seen in the above simulated dialogue, utterances like "can’t
understand what is being said" might initially be mapped to the intent of enhancing speech based on
gain fitting parameters. The subsequent utterance "its very noisy in here" shifts the intent towards
adjusting beamformer, attenuation and and noise reduction thresholds.
Training on multiple dialogues, the TensorFlow RNN model applies attention mechanisms to learn
which intents in a sequence contributed the most in order to predict to the final fitting outcome.
These fitting parameters can furthermore be contextualized as the goal oriented dialogue system has
access to continuous time series data describing the corresponding listening environment data [4].
Meaning, that the reinforcement learning of intents based on dialogues and fitting outcome, can be
complemented with soundscape data, in order to automatically adjust hearing aid settings in real life
listening scenarios.

FUTURE OUTLOOK
We suggest the following to be considered when designing flexible computational interfaces based
on natural language understanding. 1) embeddings are useful for both understanding language, and
for projecting other parameters into embeddings. This creates a shared embedding space, where
different entities can be compared. 2) using attention mechanisms facilitates limiting the solution
space. Learning from previous dialogue states and actions, helps the model to generate repsonses
and predict the most likely next action. 3) our approach shows how to translate observed clinical
workflows into parameter settings. This could be extended to general healthcare while supporting
healthcare staff in the decision making process. 4) utilizing flexible and dynamic frameworks, such as
the one we propose, continuously learn from interactions. This type of model can initially be trained on
a small labeled data set, and continue to learn in a semi-supervised manner through user interactions.
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