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Abstract 

Seasonal prey bursts are important for the lifecycles and energy budgets of many predators. Here 

we document the diet and, especially, the importance of the ephemeral occurrence of capelin as 

prey for Atlantic cod (Gadus morhua) in Godthaabsfjord, west Greenland, over an annual cycle. 

The cod showed clear differences in diet composition on the eleven sampling dates resulting in a 

spring-summer, late summer-autumn and winter cluster. Moreover, a single sampling date, May 

12th, was defined by cod gorge feeding on spawning capelin, which led to average stomach 

contents 4.3 times higher than the average for the remaining sampling dates. Changes in nitrogen 

stable isotope values from April 22nd to July 7th in cod liver and muscle tissue was used to calculate 

the consumption of capelin. Based on this, the consumption of capelin varied between 538-658 g 
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wet weight for a 1.3 kg cod. Using published consumption/biomass estimates and observed 

growth rates, the capelin intake corresponds to 10.1 – 33.3% of the annual food consumption and 

accounts for 28.1 – 34.5% of the annual growth of the cod. The present study documents the 

omnivorous feeding mode of Atlantic cod, but highlights the utilization and importance of 

ephemeral prey bursts for the annual energy budget of the cod. We hypothesize that access to 

capelin is critical for the post-spawning recovery of Godthaabsfjord cod.   

 

Keywords: Atlantic cod, diet, capelin, stable isotopes, consumption, Greenland  
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1. INTRODUCTION 

Diet studies are crucial in order to gain insight into the ecological role of fish in the ecosystem. 

They are important to assess the importance of different prey species for the energy accumulation 

and bioenergetics of the predator, and, to reveal predator-prey interactions defining population 

structures for both the predator, prey and other inter-dependant species in the ecosystem 

(Ahlbeck et al., 2012).  

 

Ephemeral or seasonal bursts of prey resources are a well-known ecological phenomenon (Polis et 

al., 1997; Naiman et al., 2002; Loreau and Holt, 2004; Willson and Womble, 2006; Yang et al., 

2008). These periodical food pulses can be an important factor in supporting and structuring an 

ecosystem (Yang et al., 2008; McMeans et al., 2015) and play important roles in predator lifecycles 

(Willson and Womble, 2006; Smith et al., 2007). For example, the Ambon damselfish Pomacentrus 

amboinensis (Bleeker 1868), have been shown to have a higher condition, Hepato-Somatic Index 

and produce offspring with a better condition following the yearly mass release of propagules by 

reef corals (McCormick, 2003). Similar, in Atlantic cod Gadus morhua (Linneaus 1758), these short 

bursts of intense feeding can be important for their reproductive success and condition, and may 

ensure that enough energy is stored to survive starvation periods (Smith et al., 2007; van Deurs et 

al., 2016). Periodical high intakes of prey have been shown to be important for a wide variety of 

fish species to the extent that they keep their metabolism higher than needed in periods of low 

prey densities to be able to sustain the high digestion rates needed when a big influx of prey 

appears (Armstrong and Schindler, 2011).  

 

Despite the occurrence and importance of ephemeral prey in a wide range of ecosystems, the 

documentation of feeding bursts on ephemeral prey are rare, likely due to the high sampling 

intensity needed to document these events. Smith et al. (2007) used a tri-monthly sampling 

scheme to document Atlantic cod gorge feeding on seasonally migrating pelagic fishes. During the 

events that lasted less than a month, stomach contents increased four to 10 times above the 
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average.  Similarly, van Deurs et al. (2016) documented the importance of the short autumn 

migration of Baltic herring through the Danish strait Øresund for the feeding, energy accumulation 

and ultimately recruitment of resident cod. Finally, anecdotal evidence suggest that cod feed 

intensively on capelin during their 1-2 month spawning run in West-Greenlandic fjords (Friis-Rødel 

and Kanneworff, 2002). 

 

Atlantic cod is an ecological keystone species distributed all over the North Atlantic Ocean ranging 

from the Barents Sea to Northeast America. Atlantic cod can have a pronounced effect on the 

coastal ecosystems (Frank et al., 2005) and be a major predator on prey of ecological and 

economical value such as capelin (Mallotus villosus) and northern shrimp (Pandalus borealis) (Friis-

Rødel and Kanneworff, 2002; Worm and Myers, 2003; Johannesen et al., 2012; Mullowney and 

Rose, 2014).  Even though cod are generalist feeders preying on both pelagic and benthic food 

items (Link et al., 2009) stomach content analysis have shown them to rely heavily on pelagic lipid 

rich forage fishes when present (Nielsen and Andersen, 2001; Smith et al., 2007). In some 

locations, it is been observed that cod exploit the same food resources for most of the year and 

drastically change their feeding pattern when energy rich prey is abundant (Smith et al., 2007). In 

prolonged periods without access to such prey, these populations suffer reduced condition and 

reproduction potentially leading to stock collapses (Krohn et al., 1997; Marshall et al., 1999; Rose 

and O'Driscoll, 2002; Rideout et al., 2005).  

 

The energy rich prey capelin found in the northern area of the cod distribution is often only 

seasonally available. However, the crash of some capelin populations have had pronounced 

effects on cod populations, subsequently showing slower growth, poorer condition and decreased 

breeding (Mullowney and Rose, 2014). Access to capelin is positively correlated with breeding 

success in Barents Sea cod (Kjesbu et al., 1998) and it has been shown that cod aggregate around 

and feed intensively on the dense schools of capelin during their summer feeding in the Barents 

Sea (Yaragina and Marshall, 2000; Bogetveit et al., 2008). The ephemeral intake of highly 
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abundant prey may also be important for overwinter survival. A high intake of capelin during a 

period in summer and the resulting lipid storage appear to be important for the cod inhabiting the 

southern Gulf of St. Lawrence as they are relying on stored energy to sustain the starvation period 

during winter (Schwalme and Chouinard, 1999). The importance of the lipid rich pelagic prey is 

supported by studies on the cod carbon isotope composition with individuals exhibiting a depleted 

δ13C signal indicative of pelagic diets showing superior condition compared to cod with a more 

enriched δ13C signal reflecting a benthic diet (Sherwood et al., 2007).  

 

In southwest Greenland, the Godthaabsfjord system (64 °N) harbors the largest inshore cod 

population in Greenland. One of the main spawning grounds of the Godthåbsfjord cod population 

is Kapissilit, where cod are found year round (Smidt, 1979; Swalethorp et al., 2016). This area is 

also a well-known spawning area for capelin during May and early June (Friis-Rødel and 

Kanneworff, 2002). 

 

The aim of the present study is to investigate the intra-annual variation in Godthåbsfjord cod diet 

and feeding intensity with special focus on the importance of capelin to the diet. We collected cod 

stomachs and muscle tissue samples on eleven cruises from January 18th 2010 to January 5th 2011, 

and estimate the consumption of capelin based on temporal changes in stable nitrogen and 

carbon isotope ratios (δ15N and δ13C) of the cod.  

 

 

2. MATERIALS AND METHODS 

Atlantic cod were sampled by the Greenland Institute of Natural Resources between January 18th 

2010 and July 9th 2011 at Kapisillit in the Godthåbsfjord, West Greenland, which is an important 

spawning ground for the Godthåbsfjord cod population (Figure 1). The inshore cod population in 

the Godthaabsfjord is stationary with few occurrences recorded outside the fjord (Therkildsen et 

al., 2013; Bonanomi et al., 2015), hence the diets reflect the local prey spectrum. Fish were 
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sampled approximately monthly using hand held jig lines fished at 10-50m depth. The sampled fish 

material was reduced by analysing only fish in the length interval 45-55 cm total length, which was 

the most common size group in the catches. This yielded 437 individuals for the stomach analysis. 

Sub-zero temperatures in October-March meant that fish in this period were frozen immediately 

after capture. In the remaining months, the fish were kept on ice to avoid stomach content 

degradation.  Upon capture the cod were brought to the laboratory, sexed, measured to the 

nearest cm below (Total length, LT) and weighed to the nearest g (total, WT and dressed, WD). A 

filet of ca 10 cm by 5 cm was taken from the tail 1/3 of each fish and frozen (-20 °C) in a ziplock 

bag. The stomach was removed from the esophagus to the pylorus sphincter. The cod were aged 

using saggital otoliths and age ranged from 3 to 7 years.  

 

2.1 Stomach content analysis. 

Before analysis, the stomachs were thawed but kept cold.  The content was sorted and identified 

to the lowest taxonomical level possible. The sorted contents were individually or pooled in 

groups of the same species assigned to pre-weighed crucibles. Highly digested contents that were 

impossible to group were assigned to the category “Unknown matter”. 

 

Following the protocol in (Tarpgaard et al., 2005), samples were dried in an oven at 60 °C for at 

least 48 hours, with larger samples given more drying time. Samples were then cooled in a 

desiccator and weighed for dry weight after which they burned in a muffle furnace at 550 °C for 

least 24 hours, cooled in a desiccator, and weighed to estimate the ash content, and the ash free 

dry weight (AFDW).  

 

2.2 Stable isotope analysis 

Stable nitrogen and carbon isotope ratios (δ15N & δ13C) in muscle, gonad and liver tissue were 

analysed in five male and five female cod from 22 April and 7 July 2010. These dates bracketed the 

historical spawning runs of capelin in Kapissilit. Muscle, gonad and liver tissues were dried at 60 °C 
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for approximately 5 days and control weighed to make sure all water was evaporated. The 

samples were then kept in a desiccator until they were cold and then weighed. Liver and gonad 

samples were lipid extracted with a 2:1 chloroform/methanol solution following Doucette et al. 

(2010). Gonad samples were treated with 2 ml solution for 24 hours in a closed tube. The solution 

was then removed with a pipette and the samples were rinsed with another 2 ml of solution 

before being left for 24 hours in the fume hood for the remaining solution to evaporate.  The liver 

samples were high in lipids so they received three treatments with 5 ml of solution each running 

24 hours before being rinsed and left to evaporate for 24 hours in the fume hood. After lipid 

extraction, the samples were dried at 60 °C for 24 hours and then stored in a desiccator to keep 

them free of moisture. Muscle tissues were not lipid extracted because cod muscle contain low 

and relatively stable amounts of lipid (Sherwood and Rose, 2005). 

 

Additionally, ten capelin and three euphausiids samples from May were collected from cod 

stomachs. These prey samples were dried for 5 days at 60 °C and then lipid extracted with 2 ml 2:1 

chloroform/methanol solution for 24 hours before being rinsed with solution and left in the fume 

hood for 24 hours to evaporate. After treatment, duplicates of all samples were powdered and 

packed in tin boats for stable isotope analysis.  

 

Duplicate samples of each individual and tissue were analyzed at the Center for Geomicrobiology, 

Aarhus University, Denmark using a Thermo Scientific elemental analyzer, Flash EA 1112 HT and 

Thermo Scientific IRMS, Delta plus V with a Thermo Scientific Conflo IV interface. The δ15N and δ13C 

values were normalized using regressions of analyses values from the standards acetanilide (δ15N: 

1.15 ‰), USG40 (δ15N: -4.5 ‰, δ13C: -26.39 ‰), and sucrose (δ13C: -10.45 ‰).  Moreover, for each 

10 samples, three control samples of a known in-house standard (Gelatine A) were included to 

correct for drift within and between rounds of analyses. The mean of the duplicate samples was 

used in the data analysis.  
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2.3 Data analysis  

A GLM on size-specific log transformed AFDW of total stomach content by sex and months were 

conducted using R (R Core Team, 2018). Stomachs labelled “empty” but containing heavily 

digested matter were also included in this dataset. In total, stomach content data from 430 of the 

437 cod were included. 

 

The data was also analyzed by cluster analysis using the program Primer version 5 (Primer-E Ltd.) 

producing a cluster plot based on Brey-Curtis similarities of untransformed prey AFDW. 

 

Shannon diversity indexes were calculated for each month using equation 1:  

 

𝐻𝐻 =  ∑ 𝑝𝑝𝑝𝑝 ∗ ln ( 1
𝑃𝑃𝑃𝑃

)𝑛𝑛
𝑖𝑖=1    equation 1 

where n is the number of prey groups and Pi is the proportion of prey group i in stomach based on 

AFDW for the particular sampling date.   

 

We used the change in stable nitrogen and carbon isotope values (δ15N and δ13C) in cod muscle, 

gonad and liver tissue to estimate the cod consumption (i.e. assimilation) of capelin during the 

spawning run.  The base of the model is the equation for isotopic change through growth and 

metabolic turnover by Fry and Arnold (1982): 

 

𝛿𝛿𝑡𝑡 = 𝛿𝛿𝑓𝑓 + (𝛿𝛿𝑖𝑖−𝛿𝛿𝑓𝑓)∗(𝑊𝑊𝑡𝑡/𝑊𝑊𝑖𝑖)𝑐𝑐  equation 2 

 

Where 𝛿𝛿𝑡𝑡 is the isotopic value at time t; Wi is the initial weight of the consumer and Wt is the 

weight at time t. 𝛿𝛿𝑖𝑖 is the initial isotopic value and 𝛿𝛿𝑓𝑓 is the isotopic value of the prey plus a given 

trophic enrichment. c is the relative contribution from metabolic turnover and growth to the 

isotopic change. Isotopic change only due to growth would correspond to a c value of -1, while 

lower c values indicates a higher contribution from metabolic turnover. Lambert and Dutil (2001) 
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reported food conversion efficiencies of ca 0.2 for cod of the same size range as the present. 

Assuming a 20% loss of ingested material as excretory products yields a net growth efficiency (NGE 

= Growth/Assimilated food) of 0.4. This NGE corresponds to a c of ca -2.6, which, as expected, is 

slightly higher than values estimated for smaller faster growing cod by Ankjærø et al. (2012).  

 

To estimate the amount of capelin assimilated during the May-June spawning run, we set δi to the 

isotope value of the cod tissue prior to feeding on capelin (22 April) and δt to the value recorded 

after feeding on capelin (7 July). δf was set to the equilibrium isotope value of cod feeding on a 

mixture of capelin (80%) and euphausiids (20%). This was calculated as the weighted isotopic value 

of capelin and euphausiids recovered from stomach plus 3.2‰ trophic enrichment for δ15N and 

1.5‰ for δ13C (Sweeting et al., 2007a; Sweeting et al., 2007b). 

 

Wi was set to an the average total weight of cod on April 22nd prior to feeding on capelin (1.3 ± 0.2 

(SD) kg, n=52). Equation 3 was then solved for Wt. Wi was subtracted from Wt to give the growth 

corresponding to the observed isotope shift. This growth was then divided by the gross 

conversions efficiency to yield the estimate of consumed prey in gram wet weight. Finally, the 

contribution of capelin was calculated as the 80% of the consumed prey following the observed 

weighted contribution of capelin and euphausiids. 

 

The capelin consumption estimated using this isotope based method was compared with 

estimates from published gut evacuation experiments and consumption/biomass (Q/B) ratios. The 

percentage contribution of capelin to the annual food intake was estimated by dividing estimated 

capelin intake with the estimated total consumption based on the Q/B ratios and a mean weight 

of the cod of 1.3 kg.  

 

The annual growth of the age-classes 3 to 6 years, which were the ages represented in the 

samples, was calculated using age-specific weight of these age classes obtained from samples 
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collected between April 22nd and July 7th (n= 284) and calculating growth between subsequent 

age-classes. The growth corresponding to the ingestion of capelin was calculated as 0.8*(Wt-1300 

g) to account for the 20% contribution of euphausiids to the diet during the period.  This estimate 

was then divided by the annual growth to estimate the relative contribution of growth fueled by 

the ingestion of capelin.   

 

 

3. RESULTS 

The 437 cod investigated consumed 31 prey species and higher taxonomic groups with a total prey 

biomass of 593.6 g AFDW (Table 1). Thirty-two percent of the stomachs were empty or contained 

only highly digested “Unknown material” in which case they were also referred to as empty. The 

percentage of empty stomachs varied between zero on January 18th 2010 to 100 on January 5th 

2011 and was generally higher during winter and early spring (Table 1). The high feeding incidence 

on January 18th 2010 was related to massive occurrence of squid from the order Teuthida in the 

diet. On January 5th 2011, the sampled cod only contained unknown material.  

 

The percentage of females in the samples was low (14-37%) between April and June, whereas they 

represented approximately 50% of the sample in the remaining months (Figure 2a). Prey diversity 

as indicated by the Shannon index calculated on biomass proportions ranged from 0.29 on May 

12th, where the cod primarily fed on capelin, to 1.83 on August 23rd (Figure 2b). The highest prey 

diversity was recorded in summer and autumn and the diversity index was above one on all 

sampling occasions except May 12th and June 7th. Overall, 69% of the identified prey AFDW was 

from pelagic prey species or groups (see Table 1 for identification of pelagic prey). There was an 

inverse relationship between prey diversity and the proportion of pelagic prey, seen as a low prey 

species diversity when the cod were feeding on pelagic prey. The highest proportion of pelagic 

prey was found in winter and spring (0.8-0.97) with exception of April 22nd (0.44), whereas the 
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proportion varied between 0.07 and 0.47 during July to November. Summed over the year 69% of 

the diet AFDW consisted of pelagic prey. 

 

The average stomach content varied considerably between sexes and across the year (Figure 2c). 

The average (±SE) stomach content of females was 1.44±0.22 g AFDW/kg dressed weight and 

0.99±0.14 g AFDW/kg dressed weight for males. A two-way GLM (logit link) of stomach content 

with sex and sampling date showed that males on average had less food in the stomachs (t=3.0, 

P=0.003). There were also significant differences between sampling occasions. Fish from May 12th 

had more food and fish from January 5th on average had less food in their stomachs than at the 

other sampling occasions (May 12th: t=3.2, P=0.001; January 5th: t=5.5, p<0.001). The stomach 

contents on May 12th, which primarily contained capelin, was 4.3 times higher than the average 

for the remaining sampling dates; and made up 30% of the summed stomach contents over the 

year for females and 26% for males. The average stomach content on this date. The three most 

abundant prey groups: capelin, the euphausiid Thysanoessa raschii and the squids (Teuthida) 

contributed 189.8, 104.2 and 60.7 g AFDW to diet, which combined corresponds to 60% of the diet 

biomass over the year. 

 

There were clear seasonal patterns in the diet composition. The hierarchical cluster analysis based 

on Bray-Curtis similarities of untransformed AFDW showed distinct groupings of the sampling 

dates. The May 12th diet was dominated by capelin and was distinct from three other clusters 

comprised of the spring-summer dates (April to July), the late summer-autumn dates (August-

November) and finally the winter dates (December and January)(Figure 3). Bivalves and the 

Gammaridae contributed to the diet primarily in the late summer and autumn cluster and the 

squids were important in winter. There were also prey groups that contributed throughout the 

year. Polychaetes of the family Nerididae and the T. raschii contributed to the diet on all sampling 

occasions expect January 5th. The Nerididae were especially important during the autumn, 
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whereas T. raschii was most important during spring and summer. Similarly important throughout 

the year were the Echinodermata, especially the holothurians P. calcigera and C. laevis.    

 

We analysed the change in cod tissue isotope values from April 22nd to July 7th to estimate the 

consumption of capelin during their spawning run. The mean nitrogen and carbon isotopic values 

of capelin recovered from the stomachs of the cod were 13.9±0.2‰ (SE) and -19.0±0.1‰ (SE) ‰ 

for δ15N and δ13C and 12.2±0.1‰ (SE) and -19.4±0.1‰ (SE) for euphausiids. This yielded 

equilibrium values (δf) of 16.8‰ δ15N for and -17.8‰ for δ13C. The overall mean isotope values of 

the cod tissues on 22 April prior to feeding on capelin was 14.7‰ for δ15N and -19.3‰ for δ13C. On 

the 7 July, these values had increased to 15.1‰ and –19.2‰ (Table 2). Unfortunately, the 

equilibrium value of δ13C was too close to the initial carbon isotope value of the cod tissues to 

yield robust estimates of isotopic change in the carbon isotope values needed to calculate 

consumption.  

 

The sex and tissue specific increase in δ15N varied between 0.3 and 1.2‰, which led to estimates 

of Wt ranging from 1434.5 to 1629.8 g, equivalent to a weight increase of 134.5 to 329.8 g per cod 

over the period Table 2). For the female gonad, there was a decrease in δ15N of 0.9‰ rendering 

calculations using this tissue impossible. The estimates of capelin consumption were very 

consistent between muscle and liver tissue and ranged from 538.0 to 658.9 g WW for a 1.3 kg cod. 

In contrast, the male gonad based estimate was 1319.5 g WW. 

 

Consumption biomass ratios (Q/B) for cod from the literature vary between 1.41-4.55 (Palomares 

and Pauly, 1989; Pauly, 1989) although values up to 10.7 has been reported for juvenile cod 

(Hawkins et al., 1985). The former range of Q/B suggest that the 1.3 kg cod would consume 

between 1.8 – 5.9 kg food per year, in which case the capelin would contribute between 10.1 – 

33.3% of the annual food consumption using an average value of 598.5 g capelin consumed.  
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The modelled growth (Table 2) from April 22nd to July 7th obtained using equation 2 was between 

134.5-164.9 g (Wt-1300 g). With capelin contributing 80% of the intake during that period, this 

corresponds to 107.6-131.9 g growth that can be attributed to capelin ingestion.  In comparison, 

the average annual growth of the cod in was 382.2 g between age 3 and 6, which suggest that the 

capelin-fuelled growth from late April to early July accounts for ca 28.1 – 34.5% of the annual 

growth.  
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4. DISCUSSION 

The present study documents the generalist feeding mode of Atlantic cod, and highlights the 

utilization and importance of ephemeral prey bursts for the annual energy budget of the cod.  

 

4.1 Atlantic cod diet 

Based on the large body on literature on Atlantic cod feeding there appear to be three major 

determinants of cod diet composition; 1) ontogeny and size, 2) coastal versus offshore occupancy 

and 3) season.  We expect that these three determinants also influence the diet composition of 

the cod in Godthaabsfjord over an annual cycle. 

 

The fish in the present study are representative of medium sized, coastal cod and our data cover 

their diet through a whole year. Our data from Godthaabsfjord confirms the generalist and 

omnivorous feeding mode of cod observed in numerous earlier studies (see review by Link et al. 

(2009)). Overall, the diet resembles what is found in similar coastal arcto-boreal ecosystems where 

the cod diet consists of a mixture of benthic and pelagic prey (e.g. Faroe Bank: Magnussen (2011); 

Newfoundland: Knickle and Rose (2014); Norway: Enoksen and Reiss (2018); Sweden: Mattson 

(1990); Greenland: Nielsen and Andersen (2001). The proportion of fish with both prey types in 

the diet varied between 4 and 28%. Hence, the mixture of pelagic and benthic prey observed at 

each sampling time was primarily the result of individual fish focusing on either pelagic or benthic 

prey and indicates that individuals tend to focus feeding in one specific habitat even in these 

relatively shallow coastal areas. 

 

The summed proportion of pelagic prey was 69% illustrating the importance of these prey groups 

even in a coastal and shallow (<100 m) fjord section. The pelagic prey was dominated by only 

three groups, with the euphausiid T. raschii, occurring in the diet year round, but especially 

important in spring and early summer; while occurrence of capelin and squids were restricted to 

the spring and winter period, respectively. Together they constituted 97% of the pelagic prey of 
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cod.  The importance of euphausiids is well documented in offshore, coastal and fjord systems and 

across a broad range of cod sizes (Dalpadado and Bogstad, 2004; Pálsson and Björnsson, 2011; 

Knickle and Rose, 2014; Hedeholm et al., 2017; Enoksen and Reiss, 2018). The inclusion of this 

group throughout the year indicates that feeding on euphausiids is not only due to lack of larger, 

more suitable prey items, but likely also reflects their high abundance, which compensate for their 

small size relative to other prey. Moreover, the ingestion of euphausiids may be underestimated 

due to the rapid digestion of small prey items compared to e.g. fish and larger crustaceans 

(Knutsen and Salvanes, 1999). In line with the observations in cod, Grønkjær et al (2019) found 

that euphausiids contributed more than 95% of the prey biomass of capelin in spring (May) in 

Godthaabsfjord further pointing to the keystone role of euphausiids in arcto-boreal marine 

ecosystems.  

 

The benthic prey consisted of a diverse mixture of species of bivalves, gastropods, polychaets, 

crustaceans and echinoderms. The group was dominated by polychaetes of the family nereididae, 

and the two holothurians Pentamera calcigera and Chiridota laevis, which together made up 66% 

of the benthic prey biomass. While polychaetes are commonly found in the diets of cod (e.g. 

Magnussen (2011); Enoksen and Reiss (2018)), they seldom make up substantial proportions of 

the diet, even when they are found in high abundances in co-occurring species such as Greenland 

cod (Gadus ogac) (Knickle and Rose, 2014). An important exception is the study of Mattson (1990) 

who found that polychaetes contributed 22% of the cod diet mass in a soft bottom Swedish fjord. 

The high occurrence of polychaetes in the diet of cod is likely dependent on the presence of soft 

bottom sediment. Furthermore, the occurrence and importance of the polychaetes is prone to 

underestimation due to the rapid digestion of prey without hard tissue (Sheffield et al., 2001).  

 

The high proportion of holothurians (10%) in the diet of the cod is uncommon, but also observed 

by Nielsen and Andersen (2001) in the same area. Enoksen and Reiss (2018) found holothurians to 

contribute 9.4% of the diet mass at one sampling site in the Norwegian Saltfjord - Skjerstadfjord 
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fjord system. Smith et al. (2007) also found holothurians to contribute significantly to the diet of 

cod in a nearshore region of Cape cod. However, the contribution was highly variable over time 

and primarily important in the autumn and winter period. Whether holothurians are absent from 

the many other studies of cod diet or included as rare prey item in an “Other” group is not clear, 

but they appear to be important in some nearshore areas.  

 

While the mix of benthic and pelagic prey in the cod diet can be driven by different feeding 

habitats and the availability of the different prey groups there may also be a physiological driver. 

van Deurs et al. (2016) found that while gorge feeding on migrating herring provided cod with 

large lipid reserves, the herring were lacking important fatty acids (e.g. arachidonic acid) for cod 

reproduction (Røjbek et al., 2014), which were provided by benthic crustaceans. Røjbek et al. 

(2012) also found lower levels of arachidonic acid and astaxanthin levels in herring and sprat than 

in the benthic isopod Saduria entomon and suggested that lack of S. entomon in the diet may 

affect the reproduction of Baltic cod. The extent to which this mixture of benthic and pelagic prey 

is key to a diet containing the necessary components for enhanced growth and reproduction 

should be investigated as an additional determinant of prey selection in wild fishes. 

 

 

4.2 Temporal variation in diets 

The monthly composition of prey items revealed well-defined seasonal clusters consisting of a 

spring-summer, an autumn and a winter cluster. Separated from these was the May 12th sampling 

where capelin dominated the diet.  

 

The spring-summer cluster was characterised by a low prey biomass in the stomachs dominated 

by euphausiids supplemented with a high diversity of other minor prey items. Due to the 

importance of euphausiids, the Shannon-diversity was lower than during the autumn and the 

proportion of pelagic prey was higher than in most other months. Temporally, the spring-summer 
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cluster covers the period when the cod prepare for spawning that occurs in late April through May 

(Swalethorp et al., 2016). The pelagic spawning behaviour may be implicated in the more pelagic 

feeding and the generally lower diet biomass, although several studies (Michalsen et al., 2008; 

Krumsick and Rose, 2012) and the May 12th sampling show that cod are feeding during spawning. 

The influence of spawning on diet composition is further supported by the finding that the first 

post-spawning sampling in July is a transition to the autumn cluster and shows increasing prey 

diversity and an increasing proportion of benthic prey.  

 

The autumn cluster is almost entirely defined by benthic prey items (86-93%) and a high diversity 

of prey items where especially polychaetes and holothurians contribute to the biomass. The high 

contribution of short-lived invertebrates is likely linked to their population dynamics and the 

increased production fuelled by detritus from the spring-summer phytoplankton blooms leading to 

increased biomasses of the benthic invertebrate fauna (Blicher et al., 2010; Kuklinski et al., 2013; 

Swalethorp et al., 2014; Juul-Pedersen et al., 2015).   

 

The winter cluster was made up of the January 2010 and December 2010 samples, i.e. samples 

separated by eleven months. January 2011 samples could not be included in the analysis as they 

were entirely composed of undeterminable digested matter. This cluster was characterized by the 

importance of squids (Teuthida) in the diet. The only other sampling dates with squids were April 

7th and August 23rd, but these contributed less than 4% of the summed mass of squids. Magnussen 

(2011) also documented the importance of squids (Loligo forbesi) for the Faroe Bank cod, and 

stressed that the occurrence of these varied considerable among years. The importance of the 

squid in the winter diet suggests that they appear in very large quantities. While the digested 

squid could not be determined to species, the most like candidate is Gonatus fabricii based on 

trawl catches in the area (Frandsen and Wieland, 2004) and the estimated size of the ingested 

squid. The ingested squid are small juveniles ca 10-60 mm and based on estimated growth rates of 

4-8 mm/month suggesting that they could be the result of hatching occurring in autumn as 
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reported for the Disko Bay area north of Godthaabsfjord (Kristensen, 1977). That squids are 

basically limited to the winter diets is intriguing as 10-40 mm juvenile G. fabricii have been 

observed in large quantities on the shelf outside Godthaabsfjord in August and in November 

(Piatkowski and Wieland, 1993). One explanation could be that juvenile squid migrate from the 

shelf to the fjord in winter. However the finding of a few larger (ca 60 mm) squids in the diet in 

April and August suggest that they are present in the fjord throughout the year. The lack of a more 

pronounced inclusion in the diet could thus also be due to lack of overlap in the vertical 

distribution if larger squid primarily are occupying the deeper areas of the fjord (Bjørke, 2001), or 

alternatively that they are less preferred than other prey items and only included when these 

other items are scarce. Further knowledge of biology of the squids in the Greenlandic coastal and 

fjord area is much need to evaluate their trophic importance. 

 

 

4.3 The ephemeral consumption of capelin 

In May capelin was the all dominant prey and their availability increased the diet biomass four-fold 

over the average of the other sampling dates. The importance of capelin for cod diet and energy 

budget is well established in both coastal and offshore migrating populations (Bogetveit et al., 

2008; Link et al., 2009). Capelin was only found in 40% of the cod on May 12th, the remainder were 

primarily feeding on euphausiids. Females feeding on capelin had, on average, smaller gonads 

(108±17 g WW, SE) than females not feeding on capelin (160±37 g ww, SE) suggesting that cod 

females closer to spawning eat less capelin. The same pattern was not evident for male cod. It is 

interesting that capelin diets were restricted to the sampling in May and a single occurrence on 

April 7th. The timing coincides with the peak capelin spawning in the nearshore spawning locations 

in Kapisillit (Friis-Rødel and Kanneworff, 2002; Hedeholm et al., 2010). However, the capelin are 

typically found in the vicinity of the spawning areas over a longer period in preparation for 

spawning, with a size and sex related differences in the temporal occurrence at the spawning sites 
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(Vandeperre and Methven, 2007; Maxner et al., 2016), hence, it is surprising that capelin were 

absent from the diet in late April and early June.  

 

While stomach content analysis provides a good overview of the species composition in the diet 

on a given sampling date, it is not useful for obtaining estimates of ingestion rates and hence the 

importance of the different prey species.  To estimate the ingestion of capelin during their 

spawning run in May-June, we therefore analysed the change in nitrogen and carbon isotopic 

values of the cod tissues brought about by the pronounced change in diet, and modelled the 

ingestion of capelin needed to incur this isotopic change. For this method to yield robust estimates 

of ingestion, the isotope values of the new diet must be so different from the consumers’ isotope 

value that it induces a significant change in these values. It was not possible to obtain robust 

estimates from the carbon isotope analysis because the δ13C equilibrium value of cod feeding on 

capelin was similar to the starting value of the cod tissue δ13C, i.e. the switch to a capelin based 

diet would not incur a change in the cod tissue δ13C values. δ13C values of consumers in coastal 

marine systems are primarily controlled by whether the carbon in the food web supporting the 

consumer is derived from benthic or pelagic primary producers (Newsome et al., 2007). The 

importance of pelagic prey outside the period where cod fed on capelin therefore meant that the 

cod tissues did not undergo a change in the δ13C values in response to capelin feeding. In contrast, 

δ15N is related to the trophic level of the consumer and increases with ca 3.2‰ from the diet to 

the consumer (Sweeting et al., 2007a). Hence, the changes in δ13C and δ15N following a diet shift 

are not necessarily parallel.      

 

For nitrogen, the approach yielded remarkably similar results (ingestion: 538.8 – 658.8 g WW 

capelin), when applied to female and male muscle and liver tissues. When applied to the gonad 

tissues, the ingestion estimate was ca two times higher for males, whereas a decreased isotopic 

value for female gonads made the calculation impossible. We speculate that the rapid change in 
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the size and composition of the male and female gonads from pre- to post-spawning conditions 

influenced the nitrogen isotopic values of the gonads and rendered the calculations unreliable.  

 

The estimated capelin consumption compares favourably with estimates of ingestion of prey from 

other studies. The equation by Waiwood et al. (1991) which is based on cod feeding on shrimp 

(Pandalus montagui) yields a daily prey intake of  11.3 and 16.0 g WW in a 1.3 kg cod at 1 and 4 °C, 

respectively. The gut evacuation model by Temming and Herrmann (2003) with capelin specific 

parameter settings yielded daily intake of capelin of 10.4 g WW assuming a temperature of 2.5 °C 

and an average stomach content of 24.3 g WW capelin calculated as average AFDW of capelin 

divided by an AFDW to WW ratio of 0.15. This calculation of daily capelin ingestion suggests that 

the cod are feeding on capelin at this level for approximately two months (total ingestion / daily 

ingestion: 538.8 g / 10.4 g d-1 = 52 days; 658.8 g / 10.4 g d-1 = 63 days) which is comparable with 

the observed time span of capelin occurrence near the spawning areas in Godthaabsfjord. 

However, we only observed substantial capelin in the diet on 12th May and a small contribution on 

7th April. We propose that the feeding on capelin in a small area such as Kapisillit may be a very 

dynamic process with day-to-day variations in the intake driven by the small-scale migration 

behaviour and hence availability of the capelin.  

 

The contribution of capelin to the annual prey consumption was between 10.1 and 33.3%, when 

estimated based on published Q/B values (range 1.41-4.55). The average consumption estimate 

based on Q/B values is slightly lower than the estimate of the relative contribution of capelin to 

cod growth. The latter values were obtained by comparing annual growth with the estimate of 

capelin fuelled growth from equation 2 (0.8*(Wt-1300 g)). This calculation suggests that capelin 

contributed between 28.1 – 34.5% of the annual growth of the cod compared to the 10.1 – 33.3% 

contribution to annual food consumption. The annual growth of age classes 3 to 6 years was 382.2 

g. This is higher than the growth of the same age classes in the nearby East and West Greenland 

(167 g), Labrador/Grand Bank (350 g) and Northern Gulf of St. Lawrence (220 g) populations living 
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at comparable temperatures (Brander, 1995). Therefore, the higher relative contribution of 

capelin to growth is likely not due to an underestimation of annual growth in the Godthaabsfjord 

cod. Given the positive relation between temperature and Q/B (Palomares and Pauly, 1989) and 

the fact that the lowest Q/B value in Pauly (1989) was from cod in Northern Norway living at 5 °C, 

it is likely that the contribution of capelin to annual prey consumption is at the higher range of 

10.1 - 33.3% and therefore close to the estimates for the contribution to annual growth.  

 

Despite a potential 30% contribution to annual consumption and growth, this is still considerably 

lower than the 60% contribution to consumption estimated by Bundy et al. (2000) using a mass-

balance model for cod on the Newfoundland-Labrador shelf. However, our consumption estimates 

could potentially be underestimated. Any diet study based on active fishing, e.g. jigging as in the 

present study, may select for individuals with a certain behaviour. It is reasonable to assume that 

hungry individuals are more likely to be caught than satiated fishes (Løkkeborg et al., 2014). This 

would tend to bias the stomach prey biomass downwards and during gorge feeding on capelin the 

active fishing technique may actually miss the cod that have the most capelin in the stomach. 

 

The isotope based approach to estimate ingestion is based on three main assumptions. First, we 

use a trophic enrichment of 3.2‰ (Sweeting et al., 2007a), which is known to vary with e.g. prey 

type and predator growth rate (Vanderklift and Ponsard, 2003; Trueman et al., 2005; Barnes et al., 

2007). We therefore tested the sensitivity of the calculations to variation in this. Trophic 

enrichments of 2.9‰ and 3.5‰ changed the estimated consumption based on male muscle 

isotope values from the original 658.8 g to 877.0 g and 525.6 g, respectively. Similarly, we use a 

net growth efficiency of 0.4 in our calculations of c. Changing the net growth efficiency to 0.3 and 

0.5 yields consumption estimates of 854.0 g and 476.0 g. Although the model show variation in 

response to the uncertainty in these two important parameters, a realistic range of trophic 

enrichments and net growth efficiencies do not alter the conclusions from the modelling 

substantially. A third point is that the model is based only on capelin and euphausiids ignoring 
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other prey consumed during this period. However, these two prey groups contribute 94.8% of the 

consumption in May and June, thus it is not likely that the inclusion of the minor prey groups will 

affect the results significantly. 

 

There is a wealth of evidence for the importance of capelin for cod growth, reproduction and 

population dynamics and the collapses of capelin populations have been implicated in the collapse 

and lack of rebuilding of major cod populations (Marshall et al., 1999; Gjøsæter et al., 2009; 

Mullowney and Rose, 2014; Rose and Rowe, 2015). The present study adds yet another population 

to the list of cod populations for which capelin is a crucial food source.  

Despite the large size of the Godthaabsfjord, the small fjord arm of Kapissilt is by far the largest 

spawning area for Godthaabsfjord cod and has been so over at least the last century (Smidt, 1979; 

Swalethorp et al., 2016). We speculate that the tight spatial and temporal overlap between 

spawning cod and capelin might be key to the success of the Kapissilit spawning area. The overlap 

enables cod to increase energy intake around spawning time to assure quality of the eggs and 

increase reproductive output (Rideout et al., 2005; Røjbek et al., 2012) or replenish energy stores 

immediately after reproduction (Link and Burnett, 2001; Smith et al., 2007). This rapid 

replenishment may counteract increased mortality observed in response to poor condition 

following spawning (Dutil and Lambert, 2000; Lambert and Dutil, 2000). Consequently, the 

importance of capelin may extend beyond their contribution to the overall energy budget and be 

more related to the timing of the consumption, that allows enhanced reproduction and 

subsequent improved survival of the Godthaabsfjord cod. 
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Significance statement 

Seasonal prey bursts are important for the lifecycles and energy budgets of many predators. Here 

we use stomach content analysis and stable isotopes to estimate the importance of the ephemeral 

occurrence of spawning capelin as prey for Atlantic cod (Gadus morhua) in Godthaabsfjord, west 

Greenland.  We estimate that capelin intake during May corresponds to 10.1 – 33.3% of the 

annual food consumption and hypothesize that capelin is critical for the post-spawning recovery of 

Godthaabsfjord cod.   
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Figure legends 

 

Figure 1: Sampling location. Map of southern Greenland with insert showing the sampling location 

at Kapissilit in the Godthaabsfjord system. 

 

Figure 2: The Godthaabsfjord cod (Gadus morhua) diet. Figure 2a shows the proportion of females 

in the sample at each sampling date. Figure 2b is the proportion (by AFDW) of pelagic prey in the 

diet (full line) and the Shannon diversity index (stippled line) at each date. These indexes could not 

be calculated for 5th January 2011 as these only contained highly digested matter. Figure 2b shows 

the sex specific AFDW (g) of the stomach content normalised to a fish of 1 kg dressed weight. 

 

Figure 3: Clustering of sampling dates. Clustering of sampling dates based on Brey-Curtis 

similarities of untransformed AFDW of stomach content. All groups from Table 1 except “Unknown 

material” are included in the analysis. 
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Table I: The ash free dry weight (AFDW, g) of the different prey groups at each sampling date. *Empty is defined as only 

containing unknown highly digested material. Species names followed by # indicates pelagic prey. 

Prey group 18 Jan 7 Apr 22 Apr 
12 

May 07 Jun 07 Jul 23 Aug 29 Sep 03 Nov 01 Dec 05 Jan Total 

Algae - - - 1.79 - - - 0.41 0.07 - - 2.27 

Actiniaria 0.45 - - - - - - 0.89 - - - 1.35 

Mollusca                         

 Polyplacophora - - 0.11 - - 0.09 0.21 - 0.26 0.05 - 0.72 

 Teuthida
#
 43.12 0.37 - - - - 1.74 - - 15.45 - 60.68 

 Gastropoda - - - - - - - 0.01 - - - 0.01 

  Mya truncata - - - - - 1.31 2.21 2.99 1.63 0.10 - 8.23 

  Mytilus edulis - - - - - - 0.05 - - - - 0.05 

  Other bivalvia - - - - - 0.26 0.25 0.03 0.08 0.00 - 0.63 

Polychaetae                         

 Arenicolidae - - - - - - 3.06 - - - - 3.06 

 Nerididae 0.05 0.07 0.20 0.06 1.24 2.63 2.23 25.20 11.78 6.53 - 50.00 

 Pectinariidae - - - - 0.02 - - - 0.72 0.30 - 1.04 

 Other polychaetaes 1.33 - - - 0.06 - - - - - - 1.39 

Crustacea                         

 Gammaridae 4.86 - - - - - 1.11 0.01 0.01 0.81 - 6.80 

Caridea - - - - 0.07 0.48 - - - 0.48 - 1.03 
 

- - - - - - 0.02 0.07 0.00 - - 0.09 

 Paguroidea - - - - - 0.89 - - - 0.26 - 1.16 

  Thysanoessa raschii
#
 7.27 16.53 4.52 46.42 18.15 7.25 0.37 2.05 0.93 0.69 - 104.18 

  Crangon spp 
septemspinosa 

- - 0.01 - - - 0.06 - 0.53 - - 0.60 

  Hyas araneus 0.72 - 0.12 - 0.08 0.14 - - 0.10 0.06 - 1.22 

  Zoea spp.
#
 - - - - - 2.90 - - - - - 2.90 

  Unknown crustacean - - - - - - - 0.11 - - - 0.11 

Echinodermata                         

 Ophiuroidea 0.04   1.35   2.38 1.70 1.17 0.73 0.73 0.30 - 8.39 

 Echinoidea - - - - - 0.02 - - - - - 0.02 

  Pentamera calcigera - 0.62 0.10 1.30 - 1.79 3.23 9.36 3.02 1.05 - 20.47 

  Chiridota laevis 2.43 - 2.73 1.10 0.56 - 6.38 5.92 12.19 4.04 - 35.36 

Teleostei                         

 Gadidae - - - - - - - 6.00 - - - 6.00 

  Gadus morhua - - - - - - - - 2.02 - - 2.02 

  Mallotus villosus
#
 - 11.22 - 178.59 - - - - - - - 189.81 

  Mallotus villosus egg 
eggs 

- - - 1.57 - - - - - - - 1.57 

  Pholis spp. - 0.99 1.19 - - 2.06 - 6.01 5.40 - - 15.65 

  Ammodytes dubius - - - - - - 0.08 - - - - 0.08 

  Other teleostei 1.30 15.84 - - - - 1.08 - - - - 18.22 

Unknown material - 3.44 6.80 1.23 3.60 2.34 8.06 9.34 5.55 4.89 3.22 48.47 

Total mass (g) 61.57 49.07 17.13 232.06 26.16 23.86 31.34 69.13 45.02 35.01 3.22 593.56 
N 28 54 41 49 36 33 35 45 45 44 27   

N empty* 0 24 21 7 15 5 8 3 4 20 27   

Mean Dressed WD (kg) 1.01 1.04 1.07 1.17 1.21 1.07 1.09 1.11 1.13 1.06 1.12 
 Mean length (cm) 48.6 49.6 50.5 52.0 51.4 49.1 49.8 48.4 49.0 50.6 51.4 
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Table II: The tissue and sex specific stable nitrogen isotopic values on 22nd April (δi) and 7th July (δt). Wt is 

the weight corresponding to the observed change in isotope values from 22nd April and 7th July 

estimated by equation 2.  

 

 

 

 

 

 

 

 

 

 

 

 Tissue δi±SD δt±SD Estimated Wt 
(g WW) 

Estimated capelin 
consumption (g WW) 

Male      
 Muscle 15.3±0.48 15.7±0.46 1464.7 658.8 
 Gonad 14.1±0.64 15.3±0.52 1629.8 1319.2 
 Liver 14.3±0.51 14.9±0.48 1444.7 578.8 
Female      
 Muscle 14.8±0.49 15.3±0.42 1452.1 608.4 
 Gonad 15.8±0.41 14.9±0.48 n.a. n.a. 
 Liver 13.7±0.31 14.4±0.76 1434.5 538.0 
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