COLREGs-based Situation Awareness for Marine Vessels - a Discrete Event Systems Approach

Hansen, Peter Nicholas; Papageorgiou, Dimitrios; Blanke, Mogens; Galeazzi, Roberto; Lützen, M.; Mogensen, J.; Bennedsen, M.; Hansen, D.

Published in: IFAC-PapersOnLine

Link to article, DOI: 10.1016/j.ifacol.2020.12.1453

Publication date: 2021

Document Version Peer reviewed version

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
COLREGs-based Situation Awareness for Marine Vessels - a Discrete Event Systems Approach

P. N. Hansen * D. Papageorgiou * M. Blanke * R. Galeazzi * M. Lützen ** J. Mogensen ** M. Bennedsen ** D. Hansen **

* Automation and Control Group, Department of Electrical Engineering, Technical University of Denmark, 2800 Lyngby, Denmark; (e-mail: pnha,dimpa,mb,rg@elektro.dtu.dk).
** Svendborg International Maritime Academy, 5700 Svendborg, Denmark; (e-mail: mal,jmo,mrb,doh@simac.dk).

Abstract: Autonomy at different levels is envisaged to provide decision support, to enable navigation with temporally unattended bridge or have the navigator placed remotely, being able to take command if required. For this purpose, methods for computer-based situation awareness are needed to avoid risks of collision. Correct interpretation of a situation is crucial, and all navigation decisions must be based on the COLREGs. This paper presents a discrete-event-systems-based framework that facilitates autonomous interpretation of the situation in which the own ship is. This can be used for COLREGs-compliant decision planning when all vessels navigate according to the rules. The proposed framework comprises a set of coupled finite-state deterministic automata and segregates situation understanding from anticipation. The suggested formalism is analysed with respect to avoidance of deadlocks and shows how synchronisation of vessel-specific automata modules is achieved. Simulations illustrate the concept using realistic scenarios.

Keywords: Autonomous vessels, situation assessment, autonomous situation awareness, discrete-event systems, finite-state automata, COLREGs representation, anticipation.

1. INTRODUCTION

In order to maintain safe navigation of marine vessels, it is vital that a correct situation assessment and interpretation is made. In case that another vessel is likely to come closer to own ship than a limit set for closest point of approach, the situation is said to poses a risk of collision and the International Regulations for Preventing Collisions at Sea (COLREGs) (IMO, 1972) rules apply.

Navigators rely primarily on Radar and Electronic Chart Display and Information System (ECDIS), supplemented by visual information. Their training and experience enables accurate assessment of the current situation, but experience shows that other duties on the bridge or navigation in heavily trafficked areas, have caused incidents. With the advent of highly automated vessels, where electro optical sensors are available and automated object detection and classification is done by computer algorithms, decision support could be made available to assess and suggest handling of immediate and future risks. The process of assessment includes to order all vessels that could pose a risk on an awareness list, which is sorted according to decreasing risk. Using this list, the navigator takes course of action in compliance to the COLREGs.

With the aim of achieving a possibility of temporarily unattended bridge, the navigational process needs be implemented in software, such that a computerized system can oversee the navigation. For such a system to be useful it would need to guarantee the same reliability as an experienced navigator, while also being COLREGs-compliant. Figure 1 illustrates how such a system could be realised; a vision system comprising an array of cameras

Fig. 1. Autonomous situation awareness module
performs the visual look-out and combines the information with radar readings and ECDIS data. This “perception” system is interfaced to an autonomous situation awareness module, which in turn, generates actionable information, i.e. information based on rules that can be acted upon. Automated aggregation of the perceived information and its processing into actionable information, would leave the navigator free to focus on higher level tasks, i.e. decision making, based on computer assisted situation awareness.

Situation awareness enhancement for safe navigation at sea, in the air or on ground has been addressed in several works in the past. A method for determining and visualizing information necessary for ship collision avoidance, taking into account weather conditions, was presented in (Szlapczynski and Krata, 2018). The Closest Point of Approach (CPA) between own ship and target vessels, as well as Distance to CPA (DCPA), were used as criteria for risk calculation in a simulator presented in (Hasegawa et al., 2012). The severity of the situation was assessed by examining only the vessel posing the largest collision risk. Threat assessment and integration of the COLREGs based on heading and speed estimation to general collision avoidance strategies was discussed in (Campbell et al., 2012). A multi-objective particle swarm optimization method and its hierarchical variation were presented in (Hu et al., 2017, 2019) for facilitating collision avoidance. The relevant COLREGs were interpreted as mathematical inequalities in the context of the optimisation problem. A review for detection and resolution of eminent trajectory conflicts of aircraft was provided in (Kuchar and Yang, 2000), with focus on state estimation and propagation for assessing the current situation. Situation awareness and COLREGs-based interpretation was embedded in the decision making process in many of the existing studies. The authors in (Johansen et al., 2016) proposed a Model Predictive Control (MPC) approach for collision avoidance for marine surface vehicles, where the COLREGs were accounted for in the form of constraints. Neural networks were used in (Puente et al., 1992) to define a supervisory logic that combines perceived information from the surroundings of a vessel to fuse basic behaviours that correspond to the COLREGs-described situations and produce collision avoidance actions. Discrete-Event Systems (DES) frameworks for decision making support have also been in focus in relation to collision avoidance for ground and aerial vehicles. Supervisory control was used in (Dallal et al., 2013) to ensure collision avoidance for controlled and uncontrolled vehicles. A similar direction but based on labelled Petri nets was taken in (Wan et al., 2018). Formation control of surface marine vehicles based on DES-logic with embedded collision avoidance features was pursued in (Moreno-Salinas et al., 2018). Parallel automata were found effective for supervision in real-time control in (Blanke et al., 1997), which also suggested implementation using metalevel principles and reflection (Lunau, 1997) and pointed to the widely recognized fact that correct software implementation is of particular importance when implementing supervision systems. Software architectures were focused on as being essential for supervision and control of robotic systems in (Coste-Maniere and Simmons, 2000) and metalevel methods were used to model control and supervision in (Perrone et al., 2006). Methods for implementation in safety critical applications were reported in (Cuer et al., 2018) for autonomous vehicles and (Rawlings et al., 2020) presented symbolic model checking of supervisory control of labelled transition systems, which presented an essential step toward safe and reliable implementation.

Although many of the previous studies present solutions that facilitate collision avoidance, their approaches rely on directly translating sensory information into manoeuvring actions, i.e. they do not explicitly address the understanding of current situation based on interpretation of perceived information. A multi-layered framework for autonomous situation awareness for navigation at sea based on the DES theory was presented in (Papageorgiou et al., 2019). This approach was able to interpret incoming sensor information and provide an understanding of single-ship encounter situations based on COLREGs. This paper builds on these earlier results and presents an extension that facilitates anticipation of the future evolution of the given situation and ability to provide actionable information to the navigator. The architecture argues for separation of situation awareness into three modules: (perception, understanding and anticipation), with a separate module to coordinate data flow. A parallel architecture allows for tracking and handling of a large number of objects and vessels, and is only limited by the computational resources of the hardware platform. Moreover, the modular design of the framework allows for flexibility for future expansion of the situation awareness component.

The remainder of the paper is structured as follows: Section 2 gives an overview of an autonomous sea-faring system for marine surface vessels and describes a typical situation-assessment/decision-making cycle. Section 3 details the DES-based framework for autonomous situation awareness. The applicability of the proposed approach is demonstrated in a simulation of a real-case scenario in Section 4, where comments are made on the results. Finally, conclusions are drawn in Section 5 and elements of future work are presented.

2. NAVIGATION PROCESS DESCRIPTION

The autonomous navigational process can be divided into two parts. The first part is the situation awareness (marked by the blue box in Figure 2), which relates to the gathering of information about the current state of the own vessel, environment, nearby objects, vessel, etc., and processing this into “actionable information”. The second part is the decision making (marked by the orange box in Figure 2), which relates to the decision made based on the actionable information.

Situation awareness comprises three elements: perception, understanding and anticipation (Endsley, 1995) as illustrated in Figure 2. Perception is the collection of sensory information, which for the navigation process consists of: radar data, ECDIS data, weather information, visual look out and own ship manoeuvrability (propulsion system state). This data is fused together to form a coherent and consistent image of the current situation. Understanding is the process of interpreting the fused information provided by the perception module, and based on this assess the situation at a given instance in time. Anticipation is the expected development of the current situation generated by the understanding module and the environment in
The design and properties of the individual automata are elaborated in the following subsection.

3.1 Coordinator automaton

The coordinator automaton is the main coordinating module of the framework and acts as an intermediate layer that connects the other three types of automata to each other. It receives sequences of events from the other automata and generates appropriate events that trigger transitions into different steps of the navigation process.

The sequences reported to the coordinator may concern the detection of an object or information regarding the type of object, its size, relative bearing etc. These specific type of reports can be sent by either the perception automaton or an understanding automaton, both of them being elaborated later in this section. In the first case the coordinator checks whether the detected object is already being tracked and if so, it updates its properties (type, size, associated collision risk etc.). This information comes from own ship’s sensory equipment and the perception module and is stored in a database, which can be accessed by the coordinator. If the object is detected for the first time, then the coordinator generates an instance of the understanding and the anticipation automaton, dedicated to evaluate the newly detected object and project the action of the own ship, respectively. In case the incoming report is sent by a understanding automaton, the coordinator updates the awareness list if necessary and generates an appropriate event that will trigger a transition in the corresponding anticipation automaton.

The coordinator automaton is defined as the five-tuple

\[G_c \triangleq (\mathcal{C}, E_c, \delta_c, \mathcal{F}_c, \mathcal{I}_c) \]

where the states \(C_i \in \mathcal{C} \) are listed below:

- \(C_1 \): Wait for new reports (initial and marked state).
- \(C_2 \): Check type of new report.
- \(C_3 \): Check if detected object already being tracked.
- \(C_4 \): Check if object type has changed.
- \(C_5 \): Update object type.
- \(C_6 \): Generate new pair of understanding and anticipation automata instances associated with the unique ID of the tracked object, and appends the object to the awareness list.
- \(C_7 \): Calculate and compare associated risk to highest recorded risk. Update awareness list.
- \(C_8 \): Assess the type of own ship.
- \(C_9 \): Generate triggering event for anticipation automaton.

The event set \(E_c \), i.e. the set of events that may trigger transitions between two modes of the coordinator is detailed in Appendix A. The state transition diagram of the coordinator automaton is shown in Figure 3 and it can completely define the extended state transition function \(\delta_c : \mathcal{C} \times E^* \rightarrow \mathcal{C} \). The languages generated and marked by \(G_c \) are defined as

\[L(G_c) \triangleq \{ s \in E^*_c : \delta_c(C_1, s) \text{ is defined} \} \]
\[L_m(G_c) \triangleq \{ s \in E^*_c : \delta_c(C_1, s) = C_i \} \]

where \(s \) is a string of events in the event set of the automaton.

The coordinator automaton \(G_c \) is non-blocking since from each mode \(C_i \) there exists a path in the transition diagram.
to \(C_1\), i.e all its states are coaccessible to \(C_1\). This can be easily confirmed by inspecting the reachability matrix of \(G_c\). It should be noted that state \(C_8\), although trivial, is needed for future extensions of the framework, where non power-driven vessels will also be considered as own ship type and therefore different COLREGs have to be considered.

3.2 Perception automaton

The perception automaton handles the information regarding detection and classification of objects and their properties and conveys it to the coordinator. This information is obtained from a database of detected objects, which is populated by the perception module (sensor fusion, detection and classification systems). The perception automaton is defined by the five-tuple

\[
G_p \triangleq (\mathcal{P}, E_p, f_p, P_1, P_1) .
\]

where the states \(P_i \in \mathcal{P}\) are listed below

- **P1**: Scan for objects (initial and marked state).
- **P2**: Report object detection to the coordinator.

Given the possible outcomes listed below, i.e. the different cases of the process described by \(G_p\),

- \(p_1\) : Object is detected.
- \(p_2\) : Object detection is reported to the coordinator.

the event set of \(G_p\) is defined by \(E_p \triangleq \{p_1, \neg p_1, p_2\}\). The transition diagram of \(G_p\) is illustrated in Figure 4. The languages generated and marked by \(G_p\) are defined as

\[
\begin{align*}
\mathcal{L}(G_p) & \triangleq \{s \in E_p^* : f_p(P_1, s) \text{ is defined}\} \\
\mathcal{L}_m(G_p) & \triangleq \{s \in \mathcal{L}(G_p) : f_p(P_1, s) = P_1\} .
\end{align*}
\]

It is easy to see from its state transition diagram that \(G_p\) is coaccessible and, therefore, non-blocking.

![Fig. 4. State transition diagram of the perception automaton.](image)

3.3 Understanding automaton

Several instances of the understanding automaton can be generated by the coordinator, each instance assessing the situation with respect to one specific detected object. If the object violates the predefined limits for CPA and Time for Closest Point of Approach (TCPA) \(d_{req}, t_{req}\), respectively, the object is close enough to potentially pose a collision risk, and then more detailed assessment has to be made. If the object is land or a buoy, then its shape, type and position need to be validated, whereby own vessel’s position and course can be validated. On the other hand, if the object is a vessel, then its type (sail boat or power driven vessel) and bearing relatively to the own ship (port, starboard, etc.) has to be checked along with the CPA and TCPA, so as to evaluate whether the own ship has to stand on or give way according to the COLREGs. If the CPA is smaller than a safety distance limit \(d_{act}\) and the TCPA is smaller than a predefined time action limit \(t_{act}\), then an action has to be taken. The discrete states are defined as

\[
U_i : \bigcup_{i=1}^{13} U_i \triangleq \mathcal{U} \text{ concerning the assessment of detected objects are listed below:}
\]

- **U1**: Compare CPA to \(d_{req}\) (initial and marked state).
- **U2**: Compare TCPA to \(t_{req}\).
- **U3**: Evaluate object type.
- **U4**: Calculate own ship bearing relatively to target vessel.
- **U5**: Assess target vessel type.
- **U6**: Compare TCPA to Time to Next Waypoint (TTW).
- **U7**: Check if next waypoint is towards target vessel.
- **U8**: Compare CPA to distance action limits \(d_{act}\).
- **U9**: Compare TCPA to time action limits \(t_{act}\).
- **U10**: Validate geometry of detected object using ECDIS.
- **U11**: Evaluate own ship position uncertainty.
- **U12**: Compare next waypoint to detected object’s position.
- **U13**: Report events sequence to coordinator (marked state).

The event set \(E_u\) associated to the discrete states set \(\mathcal{U}\) is presented in detail in Appendix A. The extended transition function \(f_u : \mathcal{U} \times E_u^* \to \mathcal{U}\) is fully described by the state transition diagram in Figure 5. Based on the foregoing description, the understanding automaton \(G_u\) is defined as the five-tuple

\[
G_u \triangleq (\mathcal{U}; E_u, f_u, U_1, \{U_1, U_{13}\}) .
\]

The set of marked states for \(G_u\) is chosen to contain only the states \(U_1, U_{13}\) because they signify the end of a full assessment cycle and the reporting to the coordinator, respectively. The languages generated and marked by \(G_u\) are defined as

\[
\begin{align*}
\mathcal{L}(G_u) & \triangleq \{s \in E_u^* : f_u(U_1, s) \text{ is defined}\} \\
\mathcal{L}_m(G_u) & \triangleq \{s \in \mathcal{L}(G_u) : f_u(U_1, s) \in \{U_1, U_{13}\}\} .
\end{align*}
\]

Similarly to the coordinator automaton, \(G_u\) is also non-blocking since from any mode \(U_i\) there exists a path in the transition diagram to \(U_1\) or \(U_{13}\).

Remark 1. The only possible events that can trigger the transition from \(U_4\) to \(U_5\) are; \(u_4, u_5, u_6, u_7\), which are mutually exclusive. Moreover, it is guaranteed that one, and only one, of the events will occur, e.g. \(u_4 \Rightarrow \neg u_5 \land \neg u_6 \land \neg u_7\).

Remark 2. Although the transition from state \(U_5\) to \(U_6\) does not depend on whether the target vessel is power...
driven or not, different COLREGs rules apply for non-power driven vessels, hence the need for the distinction between the two types.

3.4 Anticipation automaton

The anticipation automaton G_a is defined as the five-tuple

$$G_a \triangleq (A, E_a, f_a, A_1, A_1).$$

with the discrete states $A_1 : \bigcup_{i=1}^{2} \{A_i\} \triangleq A$ defined as:

- A_2: Vessel expected to stand on (initial & marked state).
- A_1: Vessel expected to give way.

The event set E_a governing the transitions between the modes A_i are defined as $E_a \triangleq \bigcup_{i=1}^{31} \{a_i\}$, where the events a_i are generated by the coordinator by concatenating the words received by the corresponding understanding automaton and those of the coordinator itself. For instance, the events a_1, a_3, a_7, a_8 are defined as

$\text{Report from Understanding automata}$

- $a_1 = u_1 u_2 u_3 u_7 u_8 \rightarrow \text{"Give Way"}$
- $a_7 = u_1 u_2 u_3 u_6 \rightarrow \text{"Give way"}$
- $a_8 = u_1 u_2 u_3 u_6 \rightarrow \text{"Give way"}$

Similarly to the previous automata, the extended transition function $f_a : A \times E_a^* \rightarrow A$ is fully described by the state transition diagram in Figure 6. The languages generated and marked by the anticipation automaton G_a are defined as

$$\mathcal{L}(G_a) \triangleq \{s \in E_a^* : f_a(A_1, s) \text{ is defined}\}$$

$$\mathcal{L}_m(G_a) \triangleq \{s \in \mathcal{L}(G_a) : f_a(A_1, s) = A_1\}.$$

The anticipation automaton G_a is non-blocking since both its states are coaccessible to A_1.

Remark 3. An instance of the anticipation automaton exists for each other vessel in the area of awareness. The automaton describes the rules that apply to own ship and the other vessel. The required behaviour of either vessel will be “stand on” or “give way” if there is a risk of collision. The set of anticipations will describe the expected evolution of the situation, taking both TCPAs and required behaviour into consideration.

The entire situation awareness framework can be represented by the parallel composition of the aforementioned automata. Since each of them is non-blocking and they do not have any common event, it follows that their parallel composition is also non-blocking. The architecture of the proposed framework is illustrated in Figure 7.

4. SIMULATION RESULTS

The proposed framework was implemented and tested in simulation environment using Python.

4.1 Simulation scenarios

The framework is tested against a simple scenario with three vessels. The purpose of the simulation is not to investigate the resolutions of possibly complex situations but to demonstrate the effectiveness of the framework in evaluating an encounter of more than two vessels and project a possible evolution of the situation. Given are the initial positions and speeds of own ship and target vessels and based on this information, the framework provides an assessment of the situation in the form of anticipated behaviour tables. The following assumptions are made:
Anticipation

Assumption 3. All vessels are within the detection range of the sensory system on-board Own Ship

Assumption 4. All vessels are power-driven which is detectable by the perception system.

Figure 8 illustrates the given scenario. The Own Ship (OS) is denoted by two homocentric circles, while the target vessels by the coloured circles. The gray disk around OS denotes the awareness zone (where $TCPA \leq t_{req}$).

For each of the scenarios, the different automata in the simulation will produce a set of strings, which are interpreted by the anticipation automata for each of the vessels. The reported set of strings w.r.t. TV1 during simulation r_1, r_2, r_3, are shown in Equations 5, 6 & 7.

\begin{align*}
 \text{At } t = t_0 : r_1 &= u_1 u_2 u_3 u_4 u_5 u_6 \neg u_7 u_8 u_9 u_{10} u_{11} u_{12} u_{13} u_{14} u_{15} c_1 c_2 c_3 c_4 c_5 c_6 \quad (5) \\
 \text{Object on the port side} & \quad \text{Own ship is power-driven} \\
 \text{Target is power-driven} & \quad \text{Report from a} \\
 \text{Understanding automata} \\
 \text{At } t = t_1 : r_2 &= u_1 u_2 u_3 u_4 u_5 u_6 \neg u_7 u_8 u_9 u_{10} u_{11} u_{12} c_3 c_4 c_5 c_6 \quad (6) \\
 \text{TCPA} > t_{req} & \quad \text{Object is head-on} \\
 \text{At } t = t_2 : r_3 &= \neg u_1 u_2 c_3 c_4 c_5 c_6 \quad (7) \\
 \text{TCPA} > t_{req} & \quad \text{TCPA} < t_{req}
\end{align*}

The reported set of strings w.r.t. TV2 during simulation r_4, r_5, r_6, are shown in Equations 8, 9 & 10.

\begin{align*}
 \text{At } t = t_0 : r_4 &= u_1 u_2 c_1 c_2 c_3 c_4 c_5 c_6 \quad (8) \\
 \text{TCPA} > t_{req} & \quad \text{TCPA} < t_{req} \\
 \text{At } t = t_1 : r_5 &= u_1 u_2 u_3 u_4 u_5 u_6 \neg u_7 \neg u_8 u_9 u_{10} u_{11} u_{12} c_3 c_4 c_5 c_6 \quad (9) \\
 \text{Object is head-on} & \quad \text{Object is head-on} \\
 \text{At } t = t_2 : r_6 &= \neg u_1 u_2 c_3 c_4 c_5 c_6 \quad (10) \\
 \text{TCPA} > t_{req} & \quad \text{TCPA} < t_{req}
\end{align*}

The situation and anticipated action of OS at each time instance of the simulation, are shown in Table 1.

<table>
<thead>
<tr>
<th>Situation</th>
<th>Action</th>
<th>Time</th>
<th>TV1</th>
<th>TV2</th>
<th>TV1</th>
<th>TV2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port cross</td>
<td>Stand On</td>
<td>$t = t_0$</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>On</td>
</tr>
<tr>
<td>Head on</td>
<td>Stand On</td>
<td>$t = t_1$</td>
<td>Stand On</td>
<td>Head on</td>
<td>Stand On</td>
<td>Give Way</td>
</tr>
<tr>
<td>-</td>
<td>Stand On</td>
<td>$t = t_2$</td>
<td>-</td>
<td>-</td>
<td>Stand On</td>
<td>Stand On</td>
</tr>
</tbody>
</table>

5. CONCLUSIONS AND FUTURE WORK

The paper proposed a framework for situation awareness using a distinct separation between understanding, anticipation and decision making. The framework consists of multiple automata connected through a coordinator automaton, which is responsible for communication between instances of underlying automata. The coordinator can generate new instances of automata, allowing the framework to handle multi-object scenarios. The usability of the framework was demonstrated by simulating scenarios with high risk of collision, where the anticipated COLREGs-compliant action of own ship changed over time. The paper demonstrated how autonomous situation awareness was achieved through appropriate monitoring of events and state representation in the anticipation automata.

Future extensions of the work will include scenarios with higher complexity, multi-vessel autonomous decision making and path planning. Validation of the reliability of the proposed assessment framework will be conducted for situations used in Master Mariner exams.

Appendix A. DESCRIPTION OF EVENT SETS

The coordinator event set is defined as $E_c \triangleq \{c_i, \neg c_i\}$ where

- c_1 : A new report is available.
- c_2 : Report been sent by perception automaton.
- c_3 : Report sent by understanding automaton.
- c_4 : Detected object currently tracked.
- c_5 : Different object type from that on awareness list.
c_0 : Objected type updated on awareness list.
c_7 : Relevant understanding automaton instances generated, object appended to awareness list.
c_8 : Object poses the highest collision risk.
c_9 : The own ship is a power-driven vessel.
c_{10} : Event associated to perception and understanding reports was sent to anticipation automaton.

The understanding automaton event set is defined as $E_u \triangleq \bigcup_{i=0}^{16} \{u_i, \neg u_i\}$ where

- u_1 : Object violates CPA awareness level ($\text{CPA} < d_{req}$).
- u_2 : Object violates TCPA awareness level ($\text{TCPA} < \tau_{req}$).
- u_3 : Detected object is a vessel.
- u_4 : Detected object overtaking.
- u_5 : Detected object head-on towards own ship.
- u_6 : Detected object is on port side.
- u_7 : Detected object is on starboard side.
- u_8 : Detected object is power-driven.
- u_9 : TCPA larger than TTW.
- u_{10} : Object geometry matches ECDIS description.
- u_{11} : Own ship position certainty factor above threshold.
- u_{12} : Conflict between route and land/buoy position.
- u_{13} : Next waypoint on the same side as object.
- u_{14} : CPA smaller than distance action limits d_{act}.
- u_{15} : TCPA smaller than time action limits t_{act}.
- u_{16} : Report sent to coordinator.

REFERENCES

