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Preface

The present thesis is a result of a three year Industrial PhD project submitted
in candidacy for a Danish PhD degree from the Civil Engineering PhD School at
the Technical University of Denmark. The work was conducted from June 2016
till May 2019 with the Technical University of Denmark as the primary workplace
and NIRAS A/S as the primary, supplementary working place. Besides this, two
scientific visits took place during the study. The first research stay was a two
weeks research stay with Professor Kim Rasmussen at the Faculty of Engineering
and Information Technologies at the University of Sydney in Australia in late 2017.
The second stay was a two months visit at the Department of Civil Engineering at
the Technical University of Lisbon in Portugal under the supervision of Assistant
Professor Ricardo Vieira. The stay took place from February till April 2018.

The thesis at hand begins with an introduction to thin-walled steel structures,
followed by the research objectives and theoretical approach to the work carried
out. A general discussion of the results and the conclusions is performed with focus
on an assessment of the mechanical behaviour of steel frames, which is the core of
this thesis. The content is written as a synopsis based on four papers appended
to this thesis. These are referred to by a roman numeral. Paper I reviews the
development of theories assessing thin-walled beams and joints and states how a
displacement-based mode assessment may contribute to a detailed understanding
of a global frame behaviour. A new thin-walled beam theory is presented and
discussed in Paper II and III, while Paper IV presents and assesses a novel mode-

based joint formulation.

The thesis was submitted 31 May 2019 and was defended at a public defence
at the Technical University of Denmark 16 September 2019. Minor corrections
have been made to this version of the PhD thesis based on comments given by the
assessment committee at the defence.

Ak B fe.

Anders Bau Hansen
Kgs. Lyngby, September 2019
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Summary

Structural systems of thin-walled steel members have gained increasing attention
during the last decades. This increased attention is mainly due to an efficient
material utilisation. However, the methods for structural analysis existing today
concern primarily single member analysis that does not include the actual inter-
action between members. Despite that, the modelling of the beams, columns, and
especially the connections between them is essential for the assessment of the overall

structural performance and for the ability to provide more economical design.

This thesis presents a generic methodology to perform a first-order linear elastic
analysis of thin-walled frame structures based on a modal decomposition of beam
displacement modes. For this purpose, an advanced beam element and a detailed
three-dimensional joint element model is developed. The main novelty is the abil-
ity to transform the degrees of freedom at the interface between a beam and a
joint into a reduced number of beam displacement mode-related degrees of free-
dom. Accordingly, the efficiency of this procedure is achieved by having a limited
number of degrees of freedom. However, detailed information is available due to
decomposition into displacement modes.

The beam element that is developed throughout the study enables an analysis of
thin-walled prismatic members with either open or closed cross-sections and covers
cross-sectional displacements related to distortion, Poisson effects, and shear. The
formulation of the beam element is based on semi-analytic displacement solution
modes, which are deduced by a new procedure that results in fundamental and
distortional beam modes, with polynomial and exponential variations along the
beam axis. Due to the kinematic assumptions, local shear transmission between
non-aligned wall elements is accounted for, which is not typically seen in thin-walled
beam formulations or shell models. Nonetheless, this is confirmed by a finite element
analysis with solid elements. An overall good agreement is seen when comparing
the obtained results with a commercial finite element software (Abaqus, 2016).

In conclusion, the obtained results show that the methodology is attractive and
well-suited for further development and practical use as it enables an enhanced
structural analysis with advanced beam elements and joint models that allows the
transfer of torsional and distortional displacement modes. Furthermore, a detailed
analysis of various steel frames with a reasonable number of degrees of freedom can
be carried out. The formulation is general and thereby suited for implementation in

other approaches, which use displacement modes for analysing structural systems.



Resumé

I lgbet af de sidste artier har der veeret et gget fokus pa beerende konstruktioner
bestaende af tyndvaeggede stalelementer. Denne ggede opmeerksomhed skyldes hov-
edsageligt en effektiv udnyttelse af materialet. De nuvaerende metoder til analyse
af konstruktioner vedrgrer dog primaert de enkelte elementer, hvorfor interaktionen
imellem disse ikke medtages. Trods dette er modelleringen af bjeelker, sgjler og iseer
samlingerne imellem disse af afggrende betydning for den overordnede bestemmelse

af en konstruktions baereevne, samt mulighed for et bedre gkonomisk design.

Denne afhandling praesenterer en generisk metodik til at udfgre en fgrste ordens
linezer elastisk analyse af tyndveeggede rammekonstruktioner, der er baseret pa
en modal opdeling i bjalke-deformationsformer. Til dette formal er der blevet
udviklet et avanceret bjselkeelement og en detaljeret model for et tredimensionelt
samlingselement. Den primeere nyhed er muligheden for at frihedsgraderne pa
graeensefladen mellem en bjaelke og en samling transformeres om til et reduceret
antal frihedsgrader, der relaterer sig til bjelkedeformationsformer. Herved opnas
en gget effektivitet ved at have et begraenset antal frihedsgrader. Dog er detaljerede
oplysninger fortsat tilgeengelige pa grund af opdelingen i flytningsformer.

Bjeelkeelementet, som er udviklet, muligggr en analyse af tyndvaeggede prismat-
iske elementer med enten abne eller lukkede tveersnit og deekker tvaersnitsdeform-
ationer, der relaterer sig til tveersnitseendringer, Poisson-effekter og forskydning.
Formuleringen af bjeelkeelementet er baseret pa semi-analytiske lgsninger beskrevet
ved flytningsformer, som udledes af en ny procedure, der resulterer i fundamentale
bjeelkeformer og bjeelkeformer med tveersnitseendringer, hvis aksiale variation kan
beskrives ved enten et polynomium eller en eksponentiel funktion. Pa grund af de
kinematiske antagelser medtages lokal forskydning mellem ikke-parallelle vaegele-
menter, hvilket typisk ikke ses i tyndvaeggede bjaclketeorier eller skalmodeller. Tkke
desto mindre bekraeftes dette ved en finit element analyse med solide elementer.
Samlet set er der opnaet en overordnet god overensstemmelse ved at sammenligne

resultater med et kommercielt finit element software (Abaqus, 2016).

Ud fra de opnaede resultater konkluderes det, at metoden er attraktiv og velegnet
til videreudvikling og praktisk anvendelse, da den muligggr en forbedret analyse af
konstruktioner ved brug af avancerede bjaelke- og samlingselementer, der muligggr
en overfgrsel af torsions- og tveersnitsmaessige deformationsformer. Desuden kan en
detaljeret analyse af forskellige stalrammer med et rimeligt antal frihedsgrader ud-
fores. Formuleringen er generel og derfor egnet til implementering i andre metoder,

som anvender deformationsformer til analyse af baerende konstruktioner.
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1 Introduction

Steel frames commonly consists of beams and columns joined together by bolts and
welds. To optimise the efficiency of these structures, the beams and the columns are
often designed with a thin-walled cross-section to reduce the self-weight. In building
structures, this could, for example, be a beam with either an I-shaped cross-section
or a hollow square cross-section instead of a solid square cross-section, see Figure
1.1. However, many different designs for different purposes are commonly seen and
it is possible to tailor any cross-sectional shape based on relevant requirements and

demands.

A frame made of thin-walled elements is normally used where there is a need
for a light but stiff structures. Examples of such structures are factories, sport
facilities, power plants, and offshore structures. Here, the high stiffness-to-weight
and strength-to-width ratios, which is associated with the thin-walled structures,

are beneficial.

The deformation of a frame includes, but is not limited to, bending and torsion
of beams and columns, as well as internal rotations at the connections. Nonethe-
less, the current best practise for assessment of frames is in most cases based on
simplified assumptions. An example of this is the rigidity of connections, which
often is associated with rough assumptions of the rotational stiffness. This is at
the expense of missing essential knowledge of true behaviour of the connections
in the frame analysis. Therefore, to improve a frame analysis, it is necessary to
understand beam, column, as well as connection mechanics and their interactions.
In the following, both beams and columns will be referred to as beam elements or

simply beams.

The overarching aim of this thesis is to contribute to the mechanical understand-

L
A

Figure 1.1: A solid and two thin-walled cross-sections sharing the same height

and width but with different cross-sectional areas and properties



1.1. Thin-walled beam theories 4

ing of thin-walled steel frames. First, a general introduction to the development
of thin-walled beam theories will be given. Next, an overview of the develop-
ment of methods to assess connections in frames is presented. In both parts, a
displacement-based mode formulation is developed to form the basis for analysis
of both beam elements as well as joint elements, which is the main focus of this
thesis.

1.1 Thin-walled beam theories

The use of thin-walled steel members in building structures became increasingly
common throughout the twentieth century. A reason for this was a general strive
for lighter and more optimised structural systems. This development was not
limited to the construction industry, as the fields of mechanical, maritime and
aerospace engineering also shared the interest. A common feature of all thin-
walled components is that they are made of thin plates joined along their edges
and that the plate thickness is small compared to the other dimensions (Murray,
1986). As a rule of thumb, a structural element may be categorised as thin-walled
if the wall thickness is less or equal to one-tenth of the characteristic cross-sectional
dimension (width or height), and again, this characteristic dimension is less or equal
to one-tenth of the beam length (Vlasov, 1961). Hence, cold-formed elements with
a thickness from 0.378 mm to 6.35mm can often be considered thin-walled (Yu and
LaBoube, 2010), as well as the standardised hot rolled profiles with wall thicknesses
in the range of 5mm up to 40 mm (Plum et al., 2009). Even in offshore structures,
where the wall thickness of the superstructures can be 10 mm to 40 mm thick, or
even up to 150 mm, the elements may be categorised as thin-walled. However,
special attention should be given considering elements of these extreme dimension.
The wide use of thin-walled components is due to these elements utilising the
material in a very efficient way, as the location of the material is optimised based
on strength and stiffness requirements. In the construction industry thin-walled
members are for example used as folded steel decks, in bridge girders, and frame
structures. Examples of structural thin plate components are illustrated in Figure
1.2.

1.1.1 Background for the classic beam theories

Beam theories are continuously being developed and refined to optimise and utilise
the material in the best possible way. Galilei conducted the very first investiga-
tions on beam mechanics in the sixteenth century, and Hooke made the essential
formulation of the theory of elasticity in 1660 (Timoshenko, 1953). Since then,
the classic beam theories have been developed continuously. The first consistent
theory presented was the Euler-Bernoulli beam theory (in 1744) valid for members
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) Beam and deck members b) Box-girders

Figure 1.2: Examples of thin-walled structural components represented by its
middle surface lines, letting the actual thickness vanish

in pure bending with the absence of shear (Love, 1944). This theory was deduced
by Euler on the hypothesis expressed by Bernoulli that plane sections remain plane
and perpendicular to the deflection curve (Timoshenko and Goodier, 1970). Addi-
tionally, in 1826 Navier reformulated the Euler-Bernoulli theory into the one we
know today by introducing the term: moment of inertia. Extensions were given by
Saint-Venant (1855) adding homogeneous (free) torsion and by Timoshenko (1921)
who derived a beam theory that includes shear flexibility.

In these theories, it is common practice to separate a deformation into a sum of
well-known displacement modes such as axial extension, flexure, and torsion. Each
mode may then be factorised into an in-plane and out-of-plane cross-sectional dis-
placement field that is multiplied by an axial amplitude function. This amplitude
function describes the axial variation of the cross-sectional displacement fields along
the beam member. Based on the kinematic assumptions in the classic beam the-
ories, it is possible to formulate a set of twelve fundamental beam displacement
modes. These consist of six rigid beam displacement modes, and six beam dis-
placement modes with a polynomial amplitude function. At first, the six rigid
modes are three translational movements and three rotational movements. Com-
mon to these six rigid modes is that they do not produce any strain energy, i.e.
no deformation of the body being displaced. The remaining six fundamental beam
modes are as follows: a linear axial extension mode, a free torsion mode with linear
variation, two bending modes with the absence of shear described by a quadratic
polynomial amplitude, and two bending modes with constant shear having cubic
polynomial amplitude functions. Examples are given in Figure 1.3 illustrating the
twelve fundamental beam modes presented by the use of a hollow box section.

1.1.2 Elastic plate theories

Thin-walled beam theories are closely related to plate theories as thin-walled sec-

tions are made of thin plates. This section briefly introduces some of the key
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Rigid modes

Strain modes

=P P =

Figure 1.3: Tllustration of the twelve fundamental beam displacement modes

investigations made on elastic plate theory. The development of plate theories
has followed the theoretical development of beam theories. The first to publish
investigations on the theory of plates was Euler in 1766. He studied vibration
of perfectly flexible membranes. The flexure theory was investigated further by
Bernoulli in 1789 and by Navier in 1823 (Timoshenko, 1953). Kirchhoff (1850)
included proper boundary conditions and gave the first convincing plate theory.
Then, in 1877 Kirchhoff developed a theory of plates combining membrane action
and flexural effects. St. Venant introduced similar developments in 1883. To this
end, the theory of plates was governed by the Kirchhoff hypothesis being: normals
to the middle surface remain normals during deformation (Jonsson, 1995). Later,
Reissner (1945) and Mindlin (1951) relaxed this hypothesis to include influences
from shear, which is relevant as the plate thickness increases. Hence, the Kirch-
hoff plate theory is typically referred to as the "thin plate theory", whereas the
Mindlin-Reissner plate theory is the "thick plate theory".

1.1.3 The classic thin-walled formulations

Until now, only the homogeneous torsion, which was deduced by St. Venant (Saint-
Venant, 1855), has been a part of the classic beam theories. This introduces a
constant rate of twist along the beam, and all cross-sections experience the same
amount of warping (see Figure 1.3 mode 8). To clarify, here and throughout this
thesis warping is defined as an out-of-plane distortional deformation of the cross-
section in the beam axis direction as illustrated in Figure 1.4a.

With the increased use of thin-walled members, it was realised that St. Venant’s
theory became inadequate when examining members exposed to torsion. This was
because the torsional deformations of the thin walls resulted in axial stresses and
additional shear stresses within the cross-section. This additional contribution was
neglected in St. Venant’s formulation, which only takes the shear stresses occuring

from warping deformations induced by homogeneous torsion into account. Non-
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(a) out-of-plane distortional warping (b) in-plane distortion

Figure 1.4: Examples of deformations occurring in thin-walled beams with open
and closed cross-sections

etheless, more suitable methods were not deduced until Timoshenko (1910) solved
a general problem of mixed torsion for beams with an I-shaped cross-section. This
was performed by introducing the phenomenon of non-homogeneous (warping) tor-
sion in combination with homogeneous torsion (the St. Venant torsion). The warp-
ing torsion is characterised by a non-linear variation of the rate of twist moving
along the beam axis. Indeed, thin-walled members do not comply with the as-
sumption that plane sections remain plane since they are prone to warp (Figure
1.4a)(Kollbrunner and Basler, 1969).

One of the main founders of thin-walled beam theories was Vlasov. He succeeded
in formulating a consistent beam theory for thin-walled open sections, where he
incorporated the free torsion, deduced by St. Venant, and the warping torsion for
arbitrary shaped thin-walled members (Vlasov, 1961). This was done by formu-
lating the Vlasov hypothesis requiring null shear strain at the middle surface of
open sections. With this hypothesis, it was possible for Vlasov to formulate an
expression describing the cross-sectional warping, i.e. out-of-plane deformations.
This expression is a function of the changes in the transverse cross-sectional ro-
tation combined with an introduced parameter — the novel sectorial coordinate.
From the warping deformation and axial stresses, Vlasov introduced a new fourth
generalised force denoted the bimoment. This being a generalised balanced force
system that is statically equivalent to zero. In fact, with this new generalised
force, it became possible to handle torque as the bimoment is related to addi-
tional torsional moment contributions. Consequently, it was possible to describe
the behaviour of the cross-section in terms of seven generalised displacements. This
was adopted in finite element analysis, and a beam element was developed, which
takes the cross-sectional warping deformations into account. This element may be
referred to as the "Vlasov element" and fulfils Vlasov’s thin-walled beam theory.
Such a beam element differed in the sense of having seven degrees of freedom at
its nodes instead of only six, which is used in traditional beam elements. Thus,

the six standard degrees of freedom are incorporated as well as the extra seventh
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degree of freedom representing the torsional deformation coupled to the bimoment
and warping deformations. Examples of the use of this Vlasov element were given
by Krajcinovic (1969) who investigated the stability and dynamics of thin-walled
beams or by Barsoum and Gallagher (1970) who investigated torsion and lateral
stability for thin-walled beams.

Besides the well-formulated thin-walled beam theory of members having open
cross-sections, Vlasov formulated a theory for closed thin-walled sections as well.
This theory is based on a frame analogy with movements at the cross-section corners
multiplied by simple linear interpolation functions. Hence, with this analogy Vlasov
was able to present a thin-walled theory for closed sections (single and multi cells)
that includes cross-sectional warping deformations as well as in-plane "torsion and
deformation of the contour" (Vlasov, 1961, p. 235), i.e. distortion. To explain,
distortion is a non-rigid deformation of the cross-section occurring in the cross-

sectional plane only. See e.g. Figure 1.4b.

A general feature of the Vlasov formulation is the potential of uncoupling the
beam deformation into the usual axial extension mode as well as major/minor
bending modes but also a torsion mode. Torsion is here uncoupled from bending
by use of the shear centre, which can be defined as a point where shear forces result
in bending without torsion. The shear centre was at first introduced by Maillart
and Eggenschwyler in 1921, however, not knowing each others work (Kollbrunner
and Basler, 1969).

Another pioneer within the field of thin-walled members was Timoshenko. Among
others, he presented a detailed summary of the theory of open thin-walled beams
(Timoshenko, 1945a,b,c). Also worth mentioning are Fliigge and Marguerre (1950)
who developed their thin-walled beam theory, where the use of exponential solu-
tion functions solved the equilibrium equation in the axial direction. With this
approach, it was possible for Fligge and Marguerre to obtain an exponential de-
cay effect of the cross-sectional deformation along the beam axis similar to the
effect from non-homogeneous torsion. Another comprehensive work was conduc-
ted by Kollbrunner and Hajdin (1972), who assessed thin-walled beams with the
assumption of undeformable cross-sections. Later, they extended their theory to
assess thin-walled beams having deformable cross-sections as well (Kollbrunner
and Hajdin, 1975). This theory was valid for members with both open and closed
cross-sections. Their approach was based on a summation of independent cross-
sectional displacement fields with associated geometrical functions describing the
axial variation of each displacement field.
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1.1.4 Advanced semi-analytic theories

Despite the well established thin-walled beam theories, it seems challenging to de-
rive a proper expression for the in-plane distortional phenomena. As a consequence,
more advanced thin-walled beam theories have been developed. A typical line adop-
ted in many advanced thin-walled beam theories is the use of displacement modes.
In this context, a mode is perceived as:

A cross-sectional displacement field that is subdivided into a part re-
garding displacements occurring in the cross-sectional plane and a part
being displacements perpendicular to the cross-sectional plane. This dis-
placement field is then associated with an axial amplitude function that
describes the variation of the cross-sectional displacement field along

the beam axis.

An example of a thin-walled beam theory that adopted this idea was one given by
Jonsson (1998, 1999a,b). He gave a proposal based on a generalisation of the clas-
sical Vlasov beam theory, where he extended the formulation to include a single
general distortional displacement mode for both open and closed cross-sections.
This was conducted through an analytical solution of a differential equation sys-
tem. However, the coupled torsional and distortional displacements were not eas-
ily uncoupled in the solutions, which were found through an eigenvalue problem.
From this theory, Jonsson deduced a distortional displacement field and a warping
displacement field in addition to the classical cross-sectional displacement fields,
which are associated with the regular axial extension and flexural beam modes.
Nevertheless, additional general beam theories have been developed including a
larger number of distortional modes. In the following, some of these theories are
presented.

Generalised Beam Theory (GBT)

The Generalised Beam Theory is a one-dimensional beam theory first presented
by Schardt (1966). His inspiration to this theory was found in the theory of pris-
matic folded structures as well as some general principles found in the work of
Vlasov (Wlassow, 1958)!. Schardt saw his own approach as a direct and natural
continuation of Vlasov’s Thin- Walled Elastic Beams (Vlasov, 1961; Schardt, 1989).

The Generalised Beam Theory is established based on a set of orthogonal cross-
sectional displacement fields with associated axial amplitude functions. Depending
on load and boundary conditions, the displacement modes are added together res-
ulting in the final deformation pattern. A cross-section is discretised into straight

wall segments, see Figure 1.5a. Then, the set of orthogonal cross-sectional displace-

!Please notice that Wlassow is the German spelling of Vlasov
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(a) GBT (b) FSM (c) FEM

Figure 1.5: Examples of different kinds of discretisation; (a) GBT discretises
the cross-section and assembles the beam elements in the axial direction; (b)
FSM separates the beam into narrow strips running the entire length; (c¢) FEM
discretises the entire beam element into finite shell elements, either squared or
triangular, respectively

ment fields are written as individual out-of-plane nodal unit displacements, where
the nodes are examined one at the time. Based on kinematic assumptions and the
out-of-plane displacement fields, transverse displacement fields are deduced as well.
Next, solving specific eigenvalue problems related to the beam equilibrium equa-
tion system, regular cross-sectional displacement fields are computed. Here, the
in-plane transverse displacements are interpolated using cubic polynomial inter-
polation functions whereas the cross-sectional warping displacements are linearly
interpolated. In modern presentations of the theory, the axial variation of the
beam member is interpolated using standard finite element Hermite interpolation
functions that requires an axial assembling of several beam elements to analyse a

single beam member.

In many years, the theory was known inside German-speaking academic societies
only. Here, it was known as the: Verallgemeinerte Technische Biegetheorie (VIB)
and was described in a book by Schardt (1989). It was not until a group of Brit-
ish researchers presented their research on cold-formed members that the theory
became internationally known (Davies and Leach, 1994; Davies et al., 1994). The
same year, Schardt presented his first papers in English (Schardt, 1994a,b). With
the internationalisation of the theory it became known under the acronym: GBT,
being an abbreviation for Generalised Beam Theory. Since then, the theory has
been spread worldwide, e.g. in Slovakia by Balaz (Balaz, 1999; Rendek and Balaz,
2004), in Portugal by da Silva (Silva et al., 2000; Simao and da Silva, 2004), in
Australia by Ranzi (Ranzi and Luongo, 2011; Piccardo et al., 2014), and in Italy
by Miranda (Miranda et al., 2013, 2014), just to mention some of the places where
GBT has been evolved. Nevertheless, the most intensive investigations regarding
GBT has been conducted at the Technical University of Lisbon by the group of
researchers around Professor Camotim. Their first contribution was the formu-
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lation of first- and second-order analysis of members having orthotropic material
properties (Silvestre and Camotim, 2002a,b). Then, research on various topics
followed such as metallic non-linearities (Silvestre and Camotim, 2003; Abambres
et al., 2014), aluminium and stainless steel (Gongalves and Camotim, 2004), frames
and connections (Basaglia et al., 2008, 2009), dynamics (Bebiano et al., 2013), and
shear (Silvestre et al., 2011; Silvestre and Camotim, 2013). The effect of shear
was incorporated by a set of extra displacement modes established from kinematic
constraints. Among others, the two state-of-the-art papers (Camotim et al., 2010;
Camotim and Basaglia, 2013) presents a fine summary on some of their main de-

velopments.

An essential feature of the GBT is the ability to separate a deformation into
a sum of predefined displacement modes, i.e. a so-called mode decomposition. To
rephrase it, a deformation is described as a sum of well-known displacement modes.
This includes the classic beam modes as well as local and global distortional beam
modes. The advantage of this feature is that through a post-analysis procedure it
is possible to identify specific deformation patterns that the beam is susceptible to
attend. This enriches the engineer with a high possibility to optimise and reinforce
the structural design. Nonetheless, the efficiency of a mode-based formulation
comes into its own when pronounced modes are used to reduce the number of
numerical calculations. This can be done by carefully choosing modes that have
an estimated high impact on the deformation. To explain, a set of judiciously
chosen modes are used to perform a base change of the beam element’s degrees of
freedom. An example of this has been given by Abambres et al. (2014), where a
reduced number of GBT-beam element modes were selected and consequently, a
need of only 25% of the degrees of freedom compared to standard commercial finite

element software was needed to analyse a beam.

Finite Strip Method (FSM)

An alternative to the GBT is the method named: Finite Strip Method (FSM).
Wittrick (1968) derived the first attempt of this theory, and later it was reformu-

lated by Przemieniecki (1973). However, the FSM in the form known today was
presented by Cheung (1976).

The FSM is a semi-analytical beam theory to be used for analysis of thin-walled
beams. A thin-walled beam member is subdivided into longitudinal strips running
the full length of the beam, see Figure 1.5b. These strips, or elements, are rigidly
joined to one another along the junction lines, and the ends are assumed simply
supported. Furthermore, the kinematic assumptions originate in the Kirchhoff
hypothesis. Then, stiffness matrices of each strip are set up. These are based on
an assumed displacement field in the transverse direction by polynomial functions,

whereas a series of geometrical functions are used in the axial direction.
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Researchers who investigated buckling problems of folded plates saw this as a
powerful tool and adopted this theory. As an example, Hancock (1985) used the
FSM to deduce buckling curves for thin sections, i.e. so-called signature curves.
This theory, however, is limited to regular geometries with simple loading and or-
dinary boundary conditions. Consequently, improvements were implemented by
Adény and Schafer (2006b,a) who introduced the ability to do a displacement-
based mode decomposition. Their work led to the modified version of the FSM,
the so-called: constrained Finite Strip Method (cFSM). With specific constraints in-
troduced at the strain formulations, it is possible to subdivide an arbitrary buckling
mode into a set of conventional displacement modes. These modes are categorised
as global, distortional, and local modes, respectively (Adény and Schafer, 2008).
Hence, the mode decomposition, as well as the mode identification, results in a
better understanding of the beam behaviour compared to the conventional FSM.
Li et al. (2014) gave a favourable review of the ¢cFSM. Other improvements to
the Finite Strip Method have followed as well, e.g. the semi-analytical Finite Strip
Method limited to simply supported boundary conditions and longitudinal loads
(Cheung and Tham, 1976), or the spline Finite Strip Method, which replaces the
axial series function with splines (van Erp and Menken, 1990).

Advanced theories with a more strict mathematical approach

Common for the theories included in this paragraph is an overall procedure of
deducing the cross-sectional displacement fields directly from solving the correct
eigenvalue problem related to the equilibrium equations. To explain the method-
ology, an arbitrary shaped thin-walled cross-section is discretised into generic wall
elements, as illustrated in Figure 1.6. Each wall element is assumed straight, and
its deformation is governed by nodal degrees of freedom and standard beam inter-
polation functions. The degrees of freedom included are two in-plane translational
displacements, a single out-of-plane translation, and an in-plane rotational degree
of freedom at each node. Consequently, even with a low number of wall elements

global and local buckling displacement fields are obtained. Then, cross-sectional
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Figure 1.6: The cross-section of a thin-walled beam is discretised by wall ele-
ments. Furthermore, a wall element is shown with its nodal degrees of freedom,
where vy, va, v3, v4, v5 and vg relates to in-plane deformations and Q4 and €5
relates to out-of-plane deformations. This configuration have been used, e.g. by
Jonsson and Andreassen (2011) and Vieira et al. (2014)
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stiffness matrices can be formulated using an elastic strain energy formulation with
kinematic assumptions originating in the Kirchhoff plate theory. The strain energy
is used to determine a system of coupled homogeneous beam differential equations,
which are solved with a strong approach resulting in homogeneous beam equilib-
rium equations that are rewritten into a polynomial eigenvalue problem. The result
is a set of eigenvectors and their corresponding eigenvalues. Each eigenvector rep-
resents a cross-sectional displacement field where the eigenvalue directly relates to
the axial amplitude function. If the eigenvalue is zero, the axial amplitude function
will be represented as a polynomial function. On the other hand, if the eigenvalue
is non-zero, the axial amplitude function will take an exponential variation, which
is a direct consequence stemming from the solution of the differential equation sys-
tem. As a result, displacement modes are already divided into fundamental modes
and distortional modes. Here, the distortional modes are those having an exponen-
tial attenuation of the axial amplitude and relates to global and local wall bending
modes. Hence, a series of higher order deformation modes is obtained.

As an example of this approach the work conducted by Jonsson and Andreassen
(2011) could be mentioned. They presented a linear elastic, homogeneous beam
theory to assess thin-walled components. Improvements were introduced by formu-
lating a non-homogeneous beam element that takes body forces into account and a
column buckling analysis was included as well (Andreassen and Jénsson, 2012a,b).
An adequate elaboration is given in (Andreassen, 2012). To highlight some of their
considerations, the simplification of letting the constitutive relations uncouple the
strains by neglecting the Poisson effect should be mentioned. Moreover, through a
constraint equation, the shear is uncoupled from the normal stresses. In the end,
a fourth-ordered beam differential equation system is deduced and based on a pro-
cedure to reduce the differential order, the equilibrium equation system is solved

as a generalised eigenvalue problem (Hanf, 1989; Tisseur and Meerbergen, 2001).

Another example is the approach presented by Vieira et al. (2013, 2014). At
first glans, this formulation seems more general as it includes the Poisson effect in
the constitutive relations and it contains different amplitude functions in the three
principal directions regarding the deformation formulations. However, the Poisson
effect is neglected in the examples from the papers, and identical expressions are
used for the three amplitude functions. This makes it questionable whether these
effects are fully incorporated or not. Nevertheless, Vieira and co-workers presen-
ted a procedure to deduce and identify the twelve fundamental beam modes from
the classic beam theory. These were limited to an axial polynomial variation of
maximum third-order, see e.g. Figure 1.3, where similar variation functions are
illustrated. Vieira (2010) used a refined procedure inspired by the Jordan Chain
algorithm to identify the twelve modes depending on their polynomial order. This
approach was also used by e.g. Morandini et al. (2010). Now, continuing to the
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higher order thin-walled beam modes, a number of distortional beam modes were
included as well. Exponential amplitude functions described these to simulate the
attenuation of the cross-sectional displacement field.

Method comparison

A comprehensive comparison between the GBT and the cFSM have been conducted
by Adany et al. (2009). The conclusion was that the results correlate very well,
but minor deviations were observed stemming from differences in the formulation
of the constitutive relations. Another point distinguishing the two approaches is
the fact that the cFSM only allows for simply supported boundary conditions,
whereas the GBT is more general in this regard. A comparison at a kinematic
level between the two theories was carried out by Silvestre et al. (2011). Among
others, they concluded that the formulation of stiffness matrices is different in the
two approaches. The GBT is based on cross-sectional stiffness matrices whereas
the cFSM formulates stiffness matrices of the entire beam element.

An advantage of the mathematical approaches compared to the GBT is the
determination of the cross-sectional displacement fields. Here, the approach used
in the GBT is not as familiar or intuitive as the rigorous formulation developed in
the mathematical approaches, where the modes are deduced automatically when
solving the equilibrium equations. The similarities may be associated with a finite
element frame analogy. Furthermore, with the mathematical approaches, not only
the cross-sectional displacement fields are automatically determined but also their
exact axial amplitudes and thus, no approximations are needed concerning the

axial variation of the beam element.

Having reviewed only a few of the thin-walled beam theories, which have been
presented through time, the following section introduces a numerical approach to
analyse and assess structural components based on polynomial interpolations.

1.2 Finite Element Method

The Finite Element Method, shortly FEM, is a very versatile method being used in
many different contexts. Around 1942, Courant proposed the version used today.
Courant used the principle of stationary energy and piecewise polynomial inter-
polation. However, the method was not applied in practice until the growth of
the aerospace industry in the 1950s developed a need, which was supported by the
increased computer power, which gradually became available through the 1960s
(Cook et al., 1989; Zienkiewics et al., 1977). Since then, the method has been used
in a broad range of fields as it, in its simplest form, is suitable to solve any differ-
ential equation system. In general, the idea of FEM is that a domain is partitioned
into a finite number of minor parts, namely the so-called finite elements. Then,
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the accuracy of the solution depends on how well the variation of the unknown
variables is approximated within each element. The purest form used in structural
analysis is obtained by having a linear elastic material behaviour in combination
with the hypothesis of small displacements. With this set-up, a system of linear
equations is obtained.

In line with the increased use of the method, the number of different elements
has been expanding. With regards to structural analysis, not only one-dimensional
beam elements exist but also shell elements, which are commonly used in a refined
analysis of thin-walled beams, see Figure 1.5¢c. Here, both triangular and squared
shell elements have been developed that comply with the Kirchhoff hypothesis
as well as shell elements that fulfil the Mindlin plate theory. With these shell
elements, it is possible to discretise even complex geometries by use of the finite
element method.

Recently, an improved shell element has been developed. The element was
presented by Adany (2016) in a so-called: constrained Finite Element Method
(cFEM). This method was derived from the semi-analytical FSM. The transverse
interpolation of the element’s displacements was maintained, but the longitudinal
interpolation was changed to classical polynomials as used in the classic FEM for-
mulation. Furthermore, constraints were added to the kinematic formulations as
done in the cFSM. Hence, the constraints were added to the strain formulations
by requiring the transverse displacement derivatives to be equal to zero. Further
improvements have been given, e.g. in (Adany, 2017, 2018; Adény et al., 2018).

The FEM is probably the most popular method compared to the different ap-
proaches listed in Section 1.1.4. In structural analysis, it is a powerful tool due to
its versatile use. One of the main achievements is the flexibility related to beam
geometry. It becomes more accessible to, e.g. model internal holes or other non-
continuous features. However, the main drawback is the high amount of degrees
of freedom needed. This may limit the use of the method due to a low calcula-
tion speed in more extensive assessments. Furthermore, in the case of structural
elements with simple geometry and boundary conditions, the group of advanced
one-dimensional beam theories, e.g. GBT, seems entirely sufficient. Besides, these
theories yield a high level of accuracy with a reduced number of degrees of free-
dom. Moreover, the advanced one-dimensional methods enable the powerful mode
decomposition, which is not supported by the FEM. Indeed, this mode decompos-
ition results in a high level of information regarding the beam deformations.

The FEM has not only been used for beam analysis. Throughout the following
section, it turns out that FEM has been used for assessing the joint behaviour in
steel frameworks as well. Hence, the next section focuses on the assembling of non-

aligned beam elements and the joint mechanical behaviours in steel frameworks,
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where FEM among others have been used.

1.3 Frame analysis and joint mechanics

In line with the increased use of thin-walled structural components, the transmis-
sion of warping and distortional effects, which occur in these thin-walled members,
becomes a topic of interest when analysing frames and especially its connections.
However, to be able to include these effects, a detailed analysis of the joint is
needed. Simplifications may be introduced by focusing on the global frame be-
haviour and neglecting these higher order effects. A primary focus is the rigidity
of the connection. The joint rigidity describes the joints susceptibility to deform
due to internal rotations. In fact, a connection is commonly categorised in one
of the three following categories: (a) ideally pinned, (b) fully rigid or (c) semi-
rigid (see Figure 1.7). The ideally pinned connection permits free rotation between
the connected members and therefore only normal, and shear forces can be trans-
ferred. On the other hand, a fully rigid connection prevents all internal rotations
and thus, bending moments will be fully transmitted. Between these two types
of connections, the semi-rigid connections are found. A semi-rigid connection is
characterised by allowing relative rotations to occur when bending moments are
transferred between adjacent components. Therefore, since connections seldom
fulfil the criteria of being neither ideally pinned nor fully rigid, the semi-rigid be-

haviour should be considered in most cases of frame analysis (Cunningham, 1990).

(a) Pinned connection (b) Rigid connection (¢) Semi-rigid connection

Figure 1.7: Different joint behaviours that depends on the configuration. In the
figure, ¢ indicates the angular rotation between the beam and the column

1.3.1 Semi-rigid connections and the Component Method

Certainly, the analysis of steel connections in frame and truss structures is a topic
that has received considerable attention in the previous decades. Wilson and Moore
(1917) conducted some of the earliest investigations on the rigidity of connections.

They presented some experimental results carried out on riveted connections. Since
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then, the amount of research on connections has increased continuously. Around
the mid-1930s the Steel Structures Research Committee (1937) published several
reports on the topic of steel frame analysis. Their focus was on the global behaviour
of a frame structure depending on the rigidity of connections. The rigidity of the
joint itself was also assessed. This was performed by measuring the relationship
between the moment and rotation occurring at specific joints. Chen and Kishi
(1989) developed a database collecting experimental test data from semi-rigid steel
beam-to-column connections. The data were used to give the moment-rotation
characteristics of different joint configurations. A procedure that is still used to
describe the joint rigidity today, e.g. see Figure 1.8. Furthermore, investigations
have reported that savings in the range of 7% —26% could be achieved by analysing
frames with semi-rigid connections instead of assuming pinned or rigid behaviours
only (Jones et al., 1983; Sarma and Adeli, 2000; Diaz et al., 2012).

In a review given by Diaz et al. (2011), the topic of semi-rigid connections was
discussed. Different approaches and methods to determine the joint behaviour
were considered. In general, Diaz et al. commented on five models to assess the
mechanical behaviour of a joint. These models are: empirical, analytical, mech-
anical, numerical and informational. Especially the mechanical model, known as
the Component Method, has gained ground in recent years and was adopted in the
European standard for connection design, i.e. Eurocode 3 part 1-8 (EN1993-1-8,
2007). Furthermore, an essential part of such a model is the formulation of the
moment-rotation curve. Diaz et al. concluded that an experimental approach yields
the most correct results; however, a procedure which is not suitable for daily en-
gineering practise. Therefore, in for example the mechanical models a multi-linear
approximation is often used, which is either based on tests and empirical curve

fitting or more basic assumptions of the material behaviour.
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Figure 1.8: Schematic presentation of moment-rotation relationships for different
joint configurations (illustration from Paper I)
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o g

(a) Joint configuration of a beam-to-column (b) Idealised spring model of the end-plate con-

end-plate connection between I-sections nection, with the two upper bolt-rows in tension

Figure 1.9: Example of a beam-to-column end-plate connection, which is idealised
for analysis by use of the Component Method

The Component Method is, in general, a tool to determine a rotational spring
stiffness of arbitrary steel joints. This spring stiffness is then to be used in a
global frame analysis as an artificial stiffness added to the ordinary beam stiffness
matrices. The spring stiffness may influence the beam/column bending deforma-
tions as well as the global frame sway deflections. The procedure to compute this
rotational spring stiffness is as follows: The joint is subdivided into so-called basis
components. Each component is represented by a strength and a stiffness. This
could, for example, be a bolt in tension or a column web panel in shear (Jaspart,
2000). Then, the joint is represented in an idealised form by use of rigid links and
linear springs, each representing a component. An example of this subdivision of a
connection using the Component Method is shown in Figure 1.9. Based on experi-
ments and empirical expressions the stiffness of each component can be computed
(Zoetemeijer, 1990) and in the end, the total stiffness of the spring model can be
determined (Weynand et al., 1996; Jaspart and Weynand, 2016). This method,
however, is limited to transmission of bending moments only, since the normal
force of a connected member must not exceed 5 % of the axial design resistance
(EN1993-1-8, 2007, §6.2.3(3)).

In recent years, improvements to the Component Method have been presen-
ted. Instead of using a linear spring to represent a component, Silva et al. (2000)
proposed a bi-linear spring model. Here, a component was represented by a bi-
linear spring models where the first part represented the linear elastic behaviour
and the second part represented the plastic strain hardening effect. This idea was
extended by Zhu et al. (2019) including a multi-linear spring model to represent a
post-yielding effect as well.

To overcome some of the iteration steps needed in the Component Method,

Bayo et al. (2006, 2017) came up with an idea of letting a joint element represent
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the connection. The advantage of such a joint element is that eccentricities, which
may be related to the connection, are directly incorporated in this approach. Then,
the stiffness of this joint element is to be determined based on springs as in the
Component Method. However, this approach is limited to joints in two-dimensional
frames and at the beam interfaces, only translation and rotation can be transferred.
In a recent article, Bayo and Gracia (2019) introduced a procedure to estimate the
stiffness of the joint element by use of mode shapes. This was introduced through
a "metamodel based on mode shapes'. Hence, from a number of detailed finite
element analyses of joints, the idea was to predict the stiffness of joints with sim-
ilar properties but varying dimensions. This was conducted through a surrogate
modelling procedure. To explain, a number of connections were modelled in a de-
tailed finite element environment to generate a basis for the metamodelling. From
the finite element analysis, the stiffness matrix of a joint was condensed to a sys-
tem with only three degrees of freedom at each beam-to-joint interface for the
two-dimensional case. These were two translation degrees of freedom and one ro-
tational degree of freedom. Then, through solving an eigenvalue problem, a set of
deformation modes (eigenvectors) with associated stiffness intensities (eigenvalues)
were computed. The deformation modes became the governing part of the sub-
sequent prediction of the joint stiffness matrix. The modes were assumed to be the
same for similar joints, and thus, only the stiffness intensities for scaling the modes
had to be predicted in a surrogate modelling procedure. Therefore, computing the
newly predicted stiffness intensities and knowing the deformation modes, it was
possible to compute a stiffness matrix of the joint without doing a detailed finite

element analysis.

To this end, the accuracy of a global frame analysis may be highly improved by
taking advantage of the semi-rigid joint design. However, only the global bending
effects will be covered by these approaches. In case of frames with thin sections,
it is essential to take warping into account as well (Bernuzzi et al., 2014). For this
reason, the following section elaborates on the inclusion of warping and distortion
in the analysis of joints.

1.3.2 The transmission of warping and distortion

In line with the increased use of constructional elements having a thin-walled cross-
section, it became clear that torsion and indeed warping deformations were essen-
tial (Vlasov, 1961). In the following, an introduction to some of the key aspects
concerning an investigation of the effect of warping of non-aligned thin-walled con-

nections is presented.

One of the very first assessments of warping transmission were conducted by
Vacharajittiphan and Trahair (1974). They investigated connections of non-aligned
double symmetric I-sections with web continuity and different inclinations between
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the beam and the column. They examined four different stiffness configurations.
These are illustrated in Figure 1.10, being: (a) unstiffened, (b) partly stiffened with
a diagonal stiffening plate, (c) box stiffened, and (d) fully stiffened by a combination
of the diagonal and box stiffeners. Vacharajittiphan and Trahair concluded that
warping and distortion were interdependent. In addition to this, it was concluded
that the stiffening effect highly depends on the exact joint configuration. This was
based on the argument that the stiffening plates prevent distortion of the flanges

and thus, increase the resistance towards warping.

With the introduction of Vlasov’s thin-walled beam theory and the following use
of the Vlasov beam element with the extra warping degree of freedom, it became
possible to include warping in a global frame analysis. However, it was realised
that special attention should be given when handling the problem of restrained
warping (Ettouney and Kirby, 1981; Yang and McGuire, 1984). Therefore, they
introduced a warping restraint factor, and a warping indicator, which depended on
the joint configuration and by such, the amount of warping being transmitted can
be regulated. Nonetheless, these approaches are limited to either approximated
calculations of specific cross-sectional shapes or simply an engineering judgement
of the restrained effect.

An alternative joint configuration compared to those presented in Figure 1.10
was presented by Baigent and Hancock (1982). It was a method to connect open
thin-walled channel sections so that the warping transmission was avoided. This
was performed by connecting the elements with a flat plate so that the beam
ends were free to warp. However, more conventional joint configurations were
investigated by Sharman (1985). Based on an assumption of the rate of twist
being equal at the two connected beam ends, Sharman incorporated the warping
effect into the standard stiffness matrix for a uniform beam. Examples of both I
and open channel sections were reported and compared to test results.

Krenk (1990) and especially Krenk and Damkilde (1991) presented a procedure
to determine warping parameters suitable for buckling analysis using classical thin-

Jdd @

) Unstiffened b) Diagonal stiffened ) Box stiffened d) Fully stiffened

Figure 1.10: I-sections assembled at orthogonal frame corners with web continu-
ity and different stiffness configurations
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walled beam theory. They conducted both analytical computations and thin-walled
beam finite element calculations and their derivations were based on kinematic
relations at the beam interfaces. The procedure was deduced for arbitrary oriented
thin-walled I-beams (with web continuity) similar to the configurations examined
by Vacharajittiphan and Trahair (presented in Figure 1.10). A special feature
was that in-plane cross-sectional distortion was incorporated as an in-plane spring
stiffness. Similar investigations were carried out by Tong et al. (2005) regarding
the diagonal stiffened case only.

Morrel et al. (1996) studied the influence of providing stiffeners to a connec-
tion between thin-walled elements when transmitting torsion from one member to
another through an orthogonal joint between open plane channel members. More
arbitrary stiffening arrangements were examined for thin-walled portal frames by
use of finite shell elements, Masarira (2002). The influence of stiffeners on the
stability was investigated and in conclusion, it was pointed out that the joint con-
figuration influences the frame stability.

Shayan and Rasmussen (2014) used the idea of letting a joint element repres-
ent a connection in a structural framework. They formulated a joint element that
takes partial warping continuity through the joint into account. The joint ele-
ment is to be used in combination with finite beam elements (Vlasov elements)
in a linear elastic buckling analysis. They succeeded in formulating an approach
that does not require changes in the beam element stiffness matrices but instead
uses linear springs and linear constraint equations to represent the joint stiffness.
Consequently, this approach can be implemented directly in a finite element envir-
onment. However, before the analysis, a shell finite element analysis of the joint is
required to determine the correct warping stiffness parameters. This results in the
ability to include joints, which are not limited to a specific number of adjoining
elements or geometry and thus, complex two- and three-dimensional thin-walled

steel frames can be assessed.

The significance of the reviewed methods presented in this section is the ability
to include warping effects. However, distortional effects have only been considered
peripherally and as a consequence of warping. Furthermore, the contributions
mentioned earlier aim for adoption in either an analytical analysis of thin-walled
components or as a restrained warping stiffness to be included in a thin-walled
beam finite element assessment. Due to the development of more refined beam
theories, such as the GBT, it is meaningful to include higher order beam modes as
well. For this purpose, a method has been developed within the framework of the
GBT. The work was initiated by investigations on different support conditions for
the GBT-beam element (Basaglia et al., 2006; Camotim et al., 2008). Then, the
first fully implemented attempt of analysing frames using the GBT was presented
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by Basaglia et al. (2008). With this paper, Basaglia and co-workers introduced
the idea of a joint element connecting non-aligned GBT-beam elements. One of
the significant difficulties of this approach, was the handling of GBT-beam modes
since these are not directly compatible with standard degrees of freedom. To over-
come this hurdle, it was considered to constrain the end cross-section and by such
transform the beam end displacements into the classic seven degrees of freedom.
With this transformation, it was possible for Basaglia et al. (2008) to analyse the
global buckling behaviour of plane and space frames constructed by open thin-
walled members. By use of kinematic relations, it was possible to transmit section
forces from one beam end to another. However, only the global beam behaviours
were considered, i.e. no distortional effects. Later, local buckling and distortional
effects were implemented by adding constraint equations to ensure compatibility
between the beam elements (Basaglia et al., 2009). By adding extra elastic stiffness
to the beam element stiffness matrices, bracing systems and in-span supports were
implemented as well (Basaglia et al., 2010). In recent years, the approach has been
extended to include beam members with circular hollow cross-sections as well as
dynamic analysis for open sections (Basaglia et al., 2015, 2018). The essence of
this approach is that instead of describing a deformation in terms of generalised
displacements or standard nodal degrees of freedom, it uses a set of structurally
meaningful displacement modes. The formulation requires a transformation from
beam modes at the beam end into a set of seven generalised displacements rep-
resenting the motions of the joint element. In addition, some constraint equations
can be added to take distortional effects into account as well. However, a mode
decomposition and thus a detailed mode assessment of the joint element itself is
not supported within this formulation. Consequently, the designer cannot subtract

the essential knowledge of the joint deformations from the analysis.

Several approaches have been referenced to analyse and assess thin-walled beams
and frames. A methodology that has indicated great potential is the mode-based
approach. Despite a great effort given by Abambres et al. (2014); Bayo and Gracia
(2019); Camotim and Basaglia (2013), a full displacement-based mode analysis of
an entire frame or truss structure has not yet been successfully developed.



2 Objectives

Since no sufficient assessment of steel frame structures fully exploit the potential
of the efficient mode-based analysis method, this present work aims to improve the
formulation that is based on displacement modes, and thereby contribute to the
general knowledge of steel frames. This will be done by adopting a linear elastic
analysis of beams and connections, which is described throughout the following

papers, which are appended.

Paper |
Aims:
1. To give an overview of thin-walled beam theories as well as methods to imple-
ment a semi-rigid connection behaviour and warping effects in frame analysis.
2. To present a brief overall presentation of the idea of establishing a mode-based

frame analysis.

Paper Il
Aims:
1. To determine a linear elastic thin-walled beam theory that includes cross-
sectional, detailed shear, and Poisson effect deformations.
2. To deduce cross-sectional displacement fields and their axial amplitude func-
tions.

3. To identify fundamental and distortional beam displacement modes.

Paper Il
Aim:
1. To formulate an advanced thin-walled beam element with a deformable cross-

section and extended shear kinematics.

Paper IV

Aims:
1. To present a joint element transformation from standard degrees of freedom
into beam cross-sectional displacement-based mode degrees of freedom.
2. To give explicit illustrations of the displacement-based mode decomposition

of a frame structure.
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3 Theoretical approach

The Papers II and III include the full description of the advanced thin-walled beam
element, which is used in the mode-based frame analysis. Paper IV describes the
joint element and the assembling of the beam elements and joint elements in a
mode-based formulation. In the following, the theoretical approaches used in this
PhD work will be discussed, and comments on considerations relevant to these

choices will be given.

In general, the entire work is based on a linear elastic material assumption with
isotropic properties. Furthermore, the kinematics are described by adapting the
small displacement hypothesis. This, in addition to the linear elastic material
behaviour, is chosen to keep the formulation in its purest form.

The developed theory has been implemented in the numerical software MATLAB
(2016). This software includes a wide range of built-in routines using the function
library: LAPACK (Linear Algebra PACKage). Besides, the analytical software Maple
(2016) has been used as well.

3.1 Novel semi-analytic beam element

The kinematic formulation extends the number of nodal degrees of freedom com-
pared to the methods presented by Jonsson and Andreassen (2011) and Vieira et al.
(2014). Hence, a Mindlin formulation has been used through the wall thickness in
the axial direction and thereby the Kirchhoff hypothesis is relaxed. Besides, ad-
ditional axial deformations are taken into account by adding rotational degrees of
freedom. This has been chosen to get a versatile formulation of the nodal degrees
of freedom at the cross-section, which returns nodes with six standard degrees of
freedom. This, however, increases the total number of nodal degrees of freedom
and thereby the number of equilibrium equations. Nonetheless, with this general
formulation of nodal degrees of freedom, it is an easy task to assemble the end

cross-section to finite elements.

The developed theory adopts a semi-analytical procedure to solve beam equi-
librium equations. These beam equilibrium equations are deduced using the vari-
ational principle on the strain energy functional, which is an efficient tool to set
up finite element equations for arbitrary systems. This equation system is solved
numerically. The solution is a set of cross-sectional displacement fields with as-
sociated axial amplitude functions. Thus, the beam element is formulated using
an analytical approach with a direct formulation based on known axial variations
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as the solution functions of the beam differential equilibrium equations. This is
performed by adopting the axial amplitude functions as interpolation functions

between beam end cross-sections.

The semi-analytic beam model is chosen because it results in a detailed mode
decomposition with a limited amount of degrees of freedom. However, a straight
extrusion of the cross-sectional shape is required, and thus, discontinuities such as
holes are not easily included as it might be using the FEM.

3.2 Joint element

A joint element is based on a finite element discretisation of an arbitrary three-
dimensional connection geometry by using standard finite elements, e.g. triangular
plane shell elements as used in this study. This element is based on the Kirchhoff
hypothesis and includes six degrees of freedom at each node, which is located at
each of the three corners. However, the drilling degree of freedom, which induces in-
plane deformations, requires special attention (Cook et al., 1989). Hence, artificial
stiffnesses have been added to these particular degrees of freedom. Consequently,
this may result in displacement discontinuities when assembling a beam element
and a joint element, but this inconsistency is assumed to have a little influence on
the global response.

3.3 Mode-based formulation

The essence of the mode-based formulation is a base change from a set of standard
finite element degrees of freedom into a set of modal degrees of freedom. Hence,
the cross-sectional displacement solution modes from the beam element have been
chosen as the new set of degrees of freedom at the beam-to-joint interfaces. The
hypothesis is that the beam modes govern the displacement of an interface. This has
been chosen since these modes relate to structural meaningful deformations. With
this formulation it is possible to judiciously select modes that shall be represented
at an interface. However, this also introduces the risk of not including enough
modes and thus, erroneous results may be obtained.

It is important to consider the normalisation of the cross-sectional displacement
fields, which are used as the new modal degrees of freedom. This is especially im-
portant with regards to the post-analysing mode decomposition when assessing the
deformed structure. Therefore, the magnitude of the largest absolute translational
degree of freedom in each mode is normalised to unity. This gives a comparable
basis to differentiate and identify modes of either high or vanishing influence. The
reason why rotational degrees of freedom are not considered is that these might

lead to a misleading visualisation of the mode intensities.



4 Results and general discussion

The results of the study is presented in detail in the four appended papers. Accord-
ingly, a summary and a discussion of the main findings will be given throughout
this chapter.

4.1 The idea of a mode-based frame analysis

The first part of Paper I concentrates on different approaches used to analyse thin-
walled frame structures. This being individual members, connections, as well as
global behaviours. Hence, through a background overview, some of the essential
improvements in methods used to model connections and advanced beam elements
in thin-walled structures are discussed. In conclusion, the properties of an entire
methodology that uses displacement modes as degrees of freedom is identified as
an approach with an unexploited potential. Accordingly, an idea is presented in
the second part of Paper I that enriches the assessment of thin-walled frames by
a detailed insight into the mechanical behaviours of beams and connections. The
principal that provides the designer with a superior level of information is the
newly developed approach based on beam displacement modes. The essence of
this methodology is a base change with respect to the degrees of freedom. Hence,
the nodal degrees of freedom at an interface between a beam and a joint element
are transformed into a mode-based expression governed by few carefully chosen
beam displacement modes. Thereby, a set of beam cross-sectional displacement
fields can be used as novel degrees of freedom. Furthermore, this formulation al-
lows the deformation of each member to be decomposed into structural meaningful

displacement modes, which reveal the amount of extension, rotation, twist, etc.

The use of beam displacement modes as degrees of freedom has been used among
others by Abambres et al. (2014) on GBT-beam elements. However, an extension
to include connections in the mode-based formulation within the theoretical frame-
work of GBT has not been fully developed yet. This despite the work conducted by
Basaglia et al. (2008, 2009, 2015), who presented an approach comparable to the
idea presented in Paper I. Nonetheless, several divergent points can be identified
when comparing the two approaches. A fundamental difference is found in the way
the joints are included in the analysis. The idea outlined in Paper I achieves a
fully mode-based formulation by the inclusion of three-dimensional joint elements,
whereas the GBT handles the joints by a single node with seven standard degrees

of freedom and a set of constraint equations, which is not directly compatible with
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the mode formulation used in GBT. Consequently, the GBT mode formulation fails
to be extended directly to joint elements. Besides, prior knowledge of the mech-
anical behaviours of a joint element is required to set up the constraint equations,
which are needed to ensure compatibility including higher order cross-sectional dis-
placements. In contrast, the novel idea from Paper I uses a three-dimensional joint
element that can be expressed in terms of displacement modes governed by the
beam-to-joint interfaces and thereby allows the joint element to be expressed in
terms of displacement modes as well. Furthermore, the general formulation of the
joint element makes it valid for any geometry, i.e. not limited to open or circular
cross-sections, which is the case in GBT.

Indeed, with the present methodology, it seems possible to analyse entire frame
structures with a low level of degrees of freedom due to the use of displacement

modes as degrees of freedom.

4.2 The advanced thin-walled beam element

In combination, Paper IT and III presents the essential theory needed to formulate
an advanced thin-walled beam element. This element shall be used in a mode-
based analysis of frames. In general, Paper II concentrates on the derivation of
beam displacement modes, including identification of fundamental and distortional
beam modes, whereas Paper III focus on the formulation of the beam element.

4.2.1 Paperll

Thin-walled beams with both open and closed cross-sections — even multi-cell sec-
tions with branched parts, can be assessed with the approach presented in Paper II.
Here, beam displacement modes are obtained for linear beam analysis. Hence, the
beam displacement modes were deduced as solutions to a polynomial eigenvalue
problem, which relates to the second-order beam differential equation system. The
beam modes consist of a cross-sectional displacement field and an associated axial
variation of the cross-sectional displacement field. The cross-sectional displace-
ment fields are computed as the eigenvectors, and the associated axial variation of
each displacement field is found based on the eigenvalues. Consequently, the beam
displacement modes are determined directly from the methodology itself. Further-
more, the procedure is organised such that the displacement modes are grouped
depending on their eigenvalues and accordingly the displacement modes are sub-
divided into two categories — the fundamental beam modes having a polynomial
axial variation, and distortional beam modes having an exponential axial variation,
as discussed in Section 1.1.4 as part of the subsection Advanced theories with a more

strict mathematical approach.

To this end, effects such as warping from torsion, cross-sectional distortion with
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related warping, and Poisson effects with transverse displacements due to normal
stresses have been identified as part of the fundamental beam modes. Thereby,
it can be concluded that the fundamental modes are not simple solutions based
on constrained assumptions, which is typically seen in other similar approaches
(Silvestre and Camotim, 2002a; Jonsson and Andreassen, 2011). At the same time,
the distortional beam modes relate to global and local distortional deformations of
the cross-section. Thus, local plate distortional behaviours and effects that relate
to shear lag, as an example, are included in the solutions. Through a comparison of
the distortional modes, which are deduced using the procedure described in Paper
I, with other mode-based thin-walled beam theories, such as GBT and cFSM,
resonable compliance is seen. To exemplify, Figure 4.1 shows the first number of
global and local in-plane distortional cross-sectional displacement fields deduced
from the approach given in Paper II as well as modes presented by Adany et al.
(2009). To highlight some of the similarities, the first two shapes in all three
approaches are similar. Moreover, the modes 33-34, 8 and vii indicates also the

same displacement pattern. Remembering that the ordering of the modes are

method depended and the number of degrees of freedom deviate. The web height

(a) Modes deduced according to the present theory in Paper II (regarding modes 15-18,
19-22, and 35-38, only the real part of the displacement fields are illustrated)

(b) Global and local distortional in-plane modes deduced using the GBT. The modes
are interpreted from Adény et al. (2009), Figure 6 and 7

(¢) Global and local cross-sectional modes deduced by the ¢cFSM. Modes v and v are

two distortional length-independent orthogonal modes, and vi to xii are the first seven
local length-independent orthogonal modes. The modes are interpreted from Adény
et al. (2009), Figure 11 and 12

Figure 4.1: In-plane cross-sectional displacement fields
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of the cross-section being examined is 100 mm, the flange width is 60 mm, the
lip height is 10 mm, and the plate thickness is 2 mm. The elastic constants are:
E =210 GPa, and v = 0.3, respectively. Moreover, the discretisation of the cross-
section is as follows: a single element at each lip, two elements at each flange, and
four elements at the web panel.

4.2.2 Paper lll

Paper 111 presents the formulation of an advanced beam element, which can account
for cross-sectional distortion and warping. The result is a beam element that can be
used to analyse prismatic thin-walled beams where the beam deformation is found
as a linear combination of pre-established beam displacement modes, i.e. those
deduced in Paper II. In particular, it is found that the post-analysing assessment of
a beam element provides the user with an in-depth understanding of its behaviour
due to the ability to decompose a deformation into structural meaningful beam
displacement modes. Not only the identification of activated modes is given, but
also the intensities of each mode. In addition to this, the axial decay related to a
distortional mode can be calculated from its eigenvalue, which represents the mode

length scale parameter as discussed by Jonsson (1999a).

Validation of the theory is obtained by comparing obtained results with those
computed using a commercial finite element software (Abaqus, 2016). Various ex-
amples are used to highlight special features that are covered by the advanced
beam element and the results found are in general consistent with those obtained
from Abaqus. However, due to the kinematic formulation, a refined distribution of
shear stresses is obtained. This distribution deviated from a finite element analysis
using shell elements, which complies the Kirchhoff hypothesis. Especially when
re-distributing the shear stresses between non-aligned wall elements, deviations are
seen. Consequently, the deviation in shear stresses leads to an in-depth analysis of
the shear transmission between non-aligned wall elements. Thus, a finite element
model with solid elements is used to assess the shear stress transmission. In con-
clusion, the finite element model verifies that the re-distribution of shear stresses
is an actual effect localised close to corners and it is an effect that is neglected in
other beam theories as well as finite element analysis with shell elements, which

complies with the Kirchhoff hypothesis.

4.3 A joint element in mode-space

The primary objective of the work conducted in Paper IV is to present the theor-
etical interpretation of the methodology based on displacement modes to analyse
thin-walled frames in accordance with the idea outlined in Paper I. This formu-
lation contributes to an in-depth understanding of frame behaviours through an
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assessment of each element within the frame, i.e. beam and joint elements. The
mode-based formulation allows for a decomposition of the deformations calculated
for each element into structural displacement modes, which leads to a better un-
derstanding of the structural behaviour of both the entire frame structure as well
as every single element. It is found that with the mode-based approach and proper
joint design, it is possible to reduce the number of degrees of freedom substantially,

without a notable change in the global deformations.

This study finds that a reduced number of modes may provide satisfactory
results, and in-depth knowledge can be extracted from the mode decomposition.
Thereby, it supports the use of a mode-based approach for assessing larger thin-
walled frame structures due to the efficient use of degrees of freedom as displace-
ment modes reducing the amount of equations needed in an analysis, and thus
saving computational time. The combination of these techniques contribute to the
interpretation of the work conducted during the PhD study. Especially, the find-
ings of unique transformation modes strengthen the procedure to be general for
other mode-based beam theories as well.

Finally, a comparison of the present method with a finite element analysis, which
discretises the entire frame with finite shell elements, is conducted. The conclusion

of this comparison gives two primary points.

o The number of degrees of freedom deviates markedly. Two reasons have been
identified in explaining this difference. Firstly, the present method uses ad-
vanced beam elements with exact axial interpolation functions and thus, de-
grees of freedom between beam end cross-sections becomes superfluous. The
FEM, on the other hand, needs more finite elements in the beam axial direc-
tion due to the approximated polynomial interpolation functions. Secondly,
the use of interface modes as degrees of freedom reduces the number of degrees
of freedom further.

e The information that can be gained from a post-analysing assessment of the
structure is different between the two methods. The procedure in Paper IV
supports a displacement mode decomposition, and therefore knowledge can
be extracted that can increase the mechanical understanding of a structural
system or a single component. This can lead to a better understanding of
how to design and optimise connections and frames efficiently. A similar
assessment is not easily performed by the FEM, as it does not directly support
decomposition of deformation into structural meaningful displacement modes
(Adany et al., 2010; Li et al., 2013).



5 Conclusions and perspectives

A novel methodology for first-order linear elastic analysis of three-dimensional thin-
walled steel frame structures has been presented. The methodology uses an ad-
vanced beam element theory, which has been developed as a part of the study,
and a joint element is introduced to describe the complexity that occurs when as-
sembling beams and columns in global frame analysis. The result is a method to
perform frame analysis based on displacement modes which includes a detailed dis-
placement pattern of each frame member, i.e. beam elements and joint elements, as
well as three-dimensional stress distributions in each member. Hence, the analysis
enables an informative evaluation of the overall behaviour of the frame structure

and information regarding the local member as well.

The advanced beam element is based on beam displacement modes that in-
clude cross-sectional displacements from distortion, Poisson effects, and shear.
This method results in a more realistic transmission of shear stresses between non-
aligned wall panels within a thin-walled cross-section, which is not typically seen
in thin-walled beam formulations or shell models. The beam displacement modes
are deduced from a systematic procedure by first solving a homogeneous beam
differential equation system as a generalised eigenvalue problem. The modes are
then categorised as fundamental or distortional beam modes depending on the axial
amplitude function being polynomial or exponential, respectively. These beam dis-
placement modes are then used to formulate the beam element stiffness matrix that
is the core of the advanced thin-walled beam element, which includes cross-sectional
deformations and extended shear kinematics. The joint element is modelled by the
use of standard shell finite elements. These finite elements are used to discretise
the geometry of the connection and thereby to assemble an entire joint element
stiffness matrix. In combination, the beam elements and the joint elements can be
used in a global frame analysis governed by cross-sectional displacement modes at
the interfaces between the elements instead of the standard degrees of freedom. The
findings suggest that a reduced number of cross-sectional displacement modes can
be used to increase efficiency through a reduction of the number of mode-related
degrees of freedom. Follow-up studies could be designed to extend the theory to
include elasto-plastic analysis by including yielding of the material, which possibly
could be performed by adding a bi-linear behaviour of the displacement modes.

Aside from using the present method for first-order frame analysis, the method-
ology could also be used for buckling analysis by adding geometrical stiffness terms.
This could strengthen the methodology since the risk of failure due to instability
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is essential for thin-walled members.

Finally, the shell finite element discretisation of a joint element used in this
study, could be combined with other kinds of finite elements. For example, to

include effects from bolts within the joint mechanics.

In conclusion, the work on thin-walled beams and joints has indicated and proved
the potential of an efficient approach to analyse thin-walled steel frame structures,
e.g. power plants or other industrial buildings. The analysis results in a detailed
assessment of critical displacement modes and presents the intensities of all the
interface modes that occur at a connected face. Furthermore, such analysis can
be conducted by use of a reasonable number of degrees of freedom due to the use
of displacement mode-related degrees of freedom and advanced beam elements.
In comparison, a finite element analysis that discretises the entire structure by
finite shell elements would usually result in a larger number of degrees of freedom
being several orders of magnitude higher than the proposed methodology. The
methodology has the potential to contribute to future analyses of thin-walled frames
by enabling an enhanced structural analysis with advanced beam elements and joint
elements that, among several effects, include distortion. This general formulation
using displacement modes at interfaces as degrees of freedom can be suitable for
implementation in other approaches, which use displacement modes for analysis of

structural systems.
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Abstract

For decades, engineers have assessed and analysed steel frames using simple joints between beams and columns. These
joints are often based on oversimplified assumptions using hinges or a direct transfer of beam displacements without any
relative displacements. More seldom is the use of spring models that allow relative beam and column displacements at the
joints. This despite the standardised component method approach, which can be used to determine the rotational spring
stiffness of the relative rotation in a joint. This paper gives a background overview of essential developments in joint
modelling and generalised thin-walled beam modelling, including torsional, distortional and related warping effects. For
particular situations, some recent proposals for joint models can be applied to joints between thin-walled beams. On this
basis, this paper presents a novel idea and a generic methodology that allows the interface between an extended number
of generalised beam displacement modes and joints that are modelled using shell elements. The main novelty is the
idea to transform from standard degrees of freedom of the interface into a reduced number of beam displacement mode
related degrees of freedom. Thus, the number of degrees of freedom of the joint can be reduced to the corresponding total
sum of beam modes that have been chosen for the modelling of each of the connected beam elements. The total number
of degrees of freedom used for modelling the complete framework will depend on the selected number of modes in each
beam element and on the number of extra internal modes chosen in the joint models. For enhanced structural analysis
with advanced beam elements and joints that allow relevant distortions and built-in refined connection components, it is
believed that this methodology will enable the full detailed analysis of large steel frameworks with a reasonable number
of degrees of freedom.

Keywords: Steel frames, beam theories, joint analysis, mode-based formulation

joints to be either ideally pinned or fully rigid. This prac-
tice happens despite that design codes, such as Eurocode
3 [1], allows engineers to consider a semi-rigid behaviour
of steel joints through the 'Component Method’ and also
despite that studies have indicated savings in the range
of 7% — 26 % considering semi-rigid behaviours [2, 3, 4].
The simplified approach is often chosen to keep the anal-
ysis as simple as possible even though connections seldom
fulfil such behaviours [5]. Usually a joint should be cate-
gorised as semi-rigid, reflecting a behaviour where relative
rotations occur when transmitting bending moments be-
tween adjacent members. Furthermore, considering such
a simplified approach, valuable knowledge regarding joint
behaviour is lost. Especially in thin-walled structures in
which effects such as warping becomes an essential issue
[6].

Consequently, the structural designer is left with the
choice to perform quite costly experimental investigations
or numerical investigations by consulting sophisticated fi-
nite element computer software, which requires a time-
consuming process of data input and result interpreta-

1. Introduction

Steel frameworks have been used for decades in a broad
range of engineering fields; maritime, aerospace, offshore,
civil and mechanical engineering. In the construction in-
dustry, steel is commonly used in larger frame and truss
structures such as sports arenas, power plants, cranes,
high rise buildings and bridges. This paper focus on the
analysis of steel frameworks using advanced generalised
thin-walled beams with an expanded number of displace-
ment modes and the interface to shell joint models. Thus,
achieving a more detailed assessment of the steel frame-
work with a much-improved beam and joint modelling. In
fact, this paper presents the general idea of a novel generic
methodology to model joints interfacing between beams
and columns. The proposed methodology extends the us-
ability of mode-based beam elements to model frames.

The daily practice in the design of structural steel frame-
works is to use the simplified approach of assuming the
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tion. Furthermore, such finite element assessment is pro-
hibited for routine applications in frame analysis. Thus,
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dedicated methods for frame analysis with enhanced thin-
walled beam modelling and enhanced joint modelling are
in demand. It has been shown in [7] that advanced anal-
ysis of thin-walled beam members can be achieved with
a reduced number of degrees of freedom by considering
a displacement-based mode formulation where judiciously
chosen deformation modes are selected and thereby only
25 % of the degrees of freedom are needed compared to
commercial finite element software using shell elements.
However, by using only one advanced thin-walled beam
element between joints in linear analysis, this reduction is
believed to be even higher depending on the number of
beam modes taken into account.

The following subsections give a background overview
of some of the crucial developments in joint modelling and
generalised thin-walled beam modelling.

1.1. Semi-rigid connections

The very first reported investigations on the rigidity of
joints in steel structures was assessed by Wilson & Moore
in 1917 [8] regarding experiments on riveted connections.
Later, around the mid-1930s, a more general elaboration
on the rigidity of joints was given considering the relation-
ship between the moment and rotation occurring at the
joint as well as the overall influence on the global struc-
ture, see e.g. [9]. Modifications have been implemented in
theories, such as rotational springs between beam-ends to
reflect the joint stiffness [10]. In such cases, the joint is
represented by a finite stiffness, and improved structural
response is achieved. However, the task of establishing an
adequate spring stiffness is difficult. In a review given by
Diaz et al. [11] referring 180 papers a broad range of mod-
els and procedures are given on how to implement and take
advantage of the semi-rigid joint design. It is concluded
that the most accurate prediction is through experiments
yielding a true non-linear behaviour between moment and
rotation as shown in Figure 1, which illustrates the ide-
alised moment-rotation curves of different joint configura-
tions. Furthermore, Diaz et al. states that one of the most
used methods is the mechanical model also adopted in the
Eurocode 3 [1, 12] namely the ’Component Method’.

The Component Method is an idealisation of a joint
into a mechanical model including linear springs and rigid
links. As an example of mechanical modelling see the sim-
ple beam-to-column connection in Figure 2. This connec-
tion is exposed to a bending moment M that will cause
a relative rotation ¢ that will induce tension, compres-
sion and shear within the connection. Hence, the Compo-
nent Method represents these effects through mechanical
components. For this purpose, the joint is divided into
components each represented by a spring stiffness. In the
simplified case illustrated in Figure 2 these are: k; column
web panel in shear, ko column web in transverse compres-
sion, and k3 column web in transverse tension. The linear
spring stiffness/behaviour of each component is derived
depending on the geometrical joint configurations. This

derivation is to a great extent based on empirical equa-
tions, e.g. [13]. The method is, however, limited to asses
joints exposed to bending moments and not able to take
shear and normal forces into account [1]. Recently, modi-
fications have been presented by Bayo et al. [14, 15]. They
use a ’joint element’ to which beams and columns are at-
tached. The stiffness of this joint element is then found
using the same component stiffness’s as in the Component
Method, but with this method, eccentricities are incorpo-
rated right away while several iterations are avoided com-
pared to the classic Component Method. Another vari-
ation in the Component Method is given by Silva et al.
[16] presenting a bi-linear spring model to achieve more
accurate results covering the plastification of the joint. A
special spring model is developed and gives an idealised
bi-linear behaviour of each component. Hence, each com-
ponent may be represented by a linear elastic part followed
by a linear plastic strain hardening zone (see Figure 2c3).
A ’Generalized Component Method’ was presented by Zhu
et al. [17] adopting Silva’s approach. Zhu and co-workers
consider a tri-linear model to include both elastic, plastic
and post yielding behaviours. See Figure 2cs.

1.2. Torsional effects in thin-walled beams

In the second half of the twentieth century, the interest
in using thin-walled steel components increased heavily.
This increase was highly due to its excellent stiffness-to-
weight ratio and its strength-to-width ratio with the main
purpose of lightening engineering structures by saving ma-
terials. Some of the pronounced pioneers with respect
to thin-walled structures were Timoshenko [18, 19, 20],
Fligge & Marguerre [21], Vlasov [22], and Kollbrunner
& Hajdin [23]. They realised that non-negligible normal
stresses were developed leading to warping deformations
not included in the beam theories at that time. Therefore
a demand for new theories was born. Accordingly, theo-
ries, such as Vlasov’s 'Thin-Walled Elastic Beams’, were
implemented considering an extra seventh degree of free-
dom representing the warping effect based on torsion and
the sectorial coordinate also introduced by Vlasov.

T-stub

End-plate

Top & seat angle

Moment Mj

Header plate
Double web angle

Single web angle
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Figure 1: Idealised moment-rotation curves
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Figure 2: The Component Method: a) A welded beam-to-column connection consisting of two I-beams exposed to a
bending moment M, b) idealisation of the connection (ki, k2, k3 being spring stiffness’s and ¢ the relative rotation),
and c) spring behaviours of different approaches; c1) the classic Component Method [1], c2) proposed by Silva et al. [16]
having a bi-linear behaviour, and c3) used by Zhu et al. [17] with a tri-linear behaviour

Examples on approaches adopting the seventh degree of
freedom are Krajcinovic [24] and Barsoum & Gallagher
[25] who investigated stability and dynamics, and torsion
and lateral stability of thin-walled beams, respectively.
They introduced finite beam elements with the seventh
degree of freedom reflecting Vlasov’s theory. With the pro-
posed finite beam elements it is possible to analyse frames
more accurately by taking warping into account. However,
depending on the joint configuration, the amount of warp-
ing being transmitted is restrained and a Vlasov beam
element yield erroneous results due to inadequate warp-
ing restraint and transmission. Thus, with the recognition
of warping’s presence, the transmission of local warping,
as well as rotation and warping from torsion occurring at
beam-ends, became the main task to include when con-
necting non-aligned beams, for example at frame corners.
However, a proposal to avoid this was given by Baigent &
Hancock [26] connecting non-aligned open channel profiles
with flat plates. More regular joint configurations were
assessed by Vacharajittiphan & Trahair [27] investigating
the warping restraint stiffness in non-aligned doubly sym-
metric I-sections in four different joint configurations be-
ing: unstiffened, partially stiffened with a single diagonal
stiffener, box stiffened, and fully stiffened with three stiff-
ening plates, see Figure 3a; to 3d;. Similar investigations
on warping transmission through joints were carried out
by Morrell et al. [28] considering the relationship between
end section torsional rotations in orthogonal plain open
channel section members, or Sharman [29] and Krenk &
Damkilde [30] who dealt with warping transmission of ar-
bitrarily oriented members both assessing I-sections and
open channel sections. Different joint configurations were
assessed where the member webs were laying in the same
plane. Lastly, Masarira [31] deduced coefficients approxi-
mating the joint effect on lateral torsional buckling load of
steel frames based on a shell finite element analysis con-
cluding that the warping effect profoundly influences the
stability.

To this end, it seems that warping torsion is a significant

effect and should be incorporated in the analysis of the
structural response assessing open thin-walled members.
However, methods taking this into account in frame analy-
sis often fail. Yang & McGuire proposed a 'warping indica-
tor’ adjusting the restriction of warping at each beam-end
[32] (a warping spring to characterise warping). Another
approach was given by Tong et al. [33] presenting a warp-
ing transmission model for beam-to-column rigid joints
with diagonal stiffeners. A third approach to be mentioned
modelling joints in thin-walled frames have been given by
Shayan & Rasmussen [34] introducing a ’joint element’ in
a beam finite element environment. Here, beam-ends are
connected by the use of springs and linear constraint equa-
tions, which are derived beforehand based on a shell finite
element discretisation and assessment of the joint element.
Nevertheless, the mentioned approaches are all limited to
seven degrees of freedom not considering detailed cross-
section investigations able to include distortional effects.

1.8. Distortional effects in thin-walled beams

The cross-sections of thin-walled beams do not keep
their shape during deformation — they distort. A small
infinitesimal cut-out of a wall element has to be in equi-
librium and to establish this equilibrium the cross-section
deforms. Furthermore, instability effects will also induce
local and distortional buckling. Thus, beams and columns
with thin-walled cross-sections are prone to non-rigid in-
plane deformations.

A well-known beam theory that handles this effect is
the one Schardt introduced in 1966. Namely, the ’Gener-
alised Beam Theory’, (GBT). He introduced it in Germany
as 'Verallgemeinerte Technische Biegetheorie’ (VIB) as-
sessing open thin-walled cross-sections, [35, 36]. Later, he
modified it to include closed cross-sections as well. The
theory is essentially based on a folded plate theory and
the idea of expanding the displacements as a sum of dis-
placement modes. To explain, this theory is a mode-based
beam theory relying on orthogonal cross-section displace-
ment fields with associated axial variations. All modes
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Figure 3: Frame corners with different stiffness configurations connecting two in-plane I-beams or two open channel
sections, respectively. a) to d) having web continuity and a) unstiffened, b) diagonal stiffened, ¢) box stiffened, d) box
and diagonal stiffened, whereas e) unstiffened with flange continuity

are linearly combined with varying intensities yielding the
final deformation response. That is, a deformation is de-
composed into a number of known displacement modes.
Another proposal to a thin-walled beam theory taking dis-
tortion into account was given by Kollbrunner & Hajdin.
They extended their thin-walled theory to include distor-
tional in-plane deformations as well, even considering both
open and closed cross-sections [37]. British investigators
on cold-formed steel members adopted the Generalised
Beam Theory and published several papers, [38, 39], lead-
ing to an internationalisation of the theory and whereby it
became known by the acronym 'GBT". Subsequently, GBT
was extended to handle orthotropic materials such as fi-
bre reinforced polymers (FRP) by Silvestre and Camotim
[40, 41]. In the latest decades inclusion of non-linearities
[42], plasticity [7], and a more general shear strain formu-
lation [43, 44] have been incorporated, besides the already
implemented first-order, buckling and post-buckling anal-
ysis as well as dynamic assessments. See also [45, 46].

Simultaneously with the development of GBT, the 'Fi-
nite Strip Method’ (FSM) has been further developed.
Based on the work of Wittrick [47] and Przemieniecki [48],
Cheung [49] formulated the FSM as we know it today. The
essentials of this theory are: the discretisation of the beam
element into narrow strips running the entire beam length
being rigidly joint together, the cross-sectional deforma-
tions being interpolated by polynomial functions assuming
a Kirchhoff plate bending behaviour, and the axial varia-
tion found as sinusoidal functions. Among others, Hancock
used this theory to deduce buckling curves or so-called sig-
nature curves for thin-walled members, [50]. However, the
main lack in this theory is the missing decomposition of de-
formations into known displacement modes. Accordingly,
Adany & Schafer introduced this to the FSM, [51, 52]
leading to the theory named ’constrained FSM’ (cFSM)

enabling mode decomposition and identification, [53, 54].
Silvestre et al. [55] compare the derivations of the cross-
sectional displacement fields in the GBT and FSM being
on same mechanical properties. Furthermore, Adény et
al. [56] compares the results obtained using the two ap-
proaches concluding nearly similar results. However, GBT
and cFSM differ in the determination of the axial variation
functions. Where, GBT formulates finite beam elements
with a variation between end cross-sections as interpola-
tions by use of Hermite cubic standard finite beam element
functions, the cFSM uses a geometrical approach having
sinusoidal amplitude functions.

As a matter of fact, the displacement mode decomposi-
tion has been seen as an efficient tool by many. Hence, oth-
ers who adopted the idea of separating the beam deforma-
tion responses into orthogonal displacement modes were,
for example Jonsson [57] who deduces the extra warping
and distortional mode for thin-walled beams, or Jonsson
& Andreassen [58, 59, 60], and Vieira et al. [61, 62] who
determined cross-sectional displacement fields based on a
generalised eigenvalue problem. This also reveals the axial
amplitude functions as polynomial and exponential func-
tions without limiting the beam element to have a finite
length, which for example is the case in GBT. Garcea et
al. [63] deduce cross-sectional displacement fields as gen-
eralised eigenvectors (GE) as well. The obtained results
are compared with the GBT nearly being coincidental.

A new development is also the ’constrained finite el-
ement method’ (cFEM) by Adény [64, 65, 66, 67], in
which a special purpose finite element is formulated and
constrained to adhere to certain displacement mode con-
straints. A common point of the theories mentioned above
is the inclusion of cross-sectional distortion effects. Often
the displacement modes are also ordered in local, distor-
tional and global modes.



Although very detailed beam theories have been devel-
oped, it is difficult to use these for analysis of frame struc-
tures. The main reason is the lack of methods that sat-
isfyingly allow an interface between connected members
at a joint. The most successful proposals have been im-
plemented in the framework of GBT by Basaglia et al.
(68, 69, 70, 71, 72, 73, 74, 75]. The primary focus has been
on joint configurations as illustrated in Figure 3. With
their approach, they introduced a ’joint element’ between
non-aligned finite GBT beam elements. However, diffi-
culties have been met due to the modal nature of GBT
(being a GBT-method with non-standard nodal degrees of
freedom for cross-sectional displacements), which was not
able to be transferred to the joint element formulation. In
their formulation, the joint element is represented by the
seven generalised displacements known from the Vlasov
theory allowing a warping transmission from non-uniform
torsion. Additionally, a number of constraint equations
have been added to fulfil displacement continuity between
adjacent members (i.e. to include local and distortional
effects). The constraint equations highly depend on the
joint geometry. This method requires prior knowledge of
the joint to establish the correct constraint prerequisites
before performing a proper frame analysis.

2. Proposal of a new methodology

Although Basaglia and co-workers have presented pro-
cedures for assessing frames of thin-walled members in-
cluding torsional and distortional effects, the methods are
limited to specific types of cross-sections and joints. It
is believed that a more generic and general methodology
needs to be developed so that joints between advanced
thin-walled beams can be established and modelled by use
of more conventional finite element modelling, which can
be performed by engineering offices.

2.1. The idea

In general, the idea is to model beam and column mem-
bers using an advanced beam element formulation that is
based on displacement modes, which includes warping and
distortional deformations. On the other hand, the connec-
tions between advanced beam elements shall be modelled
by use of more traditional finite elements, e.g. finite shell
elements. Both the advanced beam elements and the joint
elements are modelled such that all nodes within a discre-
tised interface have six degrees of freedom each.

The mode-based formulation is performed by letting an
advanced beam element be expressed by beam displace-
ment modes instead of traditional nodal degrees of free-
dom. Each beam displacement mode is formulated as a
combination of cross-sectional displacement fields, which
contains transverse as well as warping displacements, and
an amplitude function that describes the variation of the
cross-sectional displacement field along the beam mem-
ber. Hence, instead of standard finite element degrees

of freedom at the interfaces between beam elements and
joint elements the connected faces will be governed by the
cross-sectional beam displacement fields that will be used
as novel modal degrees of freedom. Accordingly, the con-
nected faces at a joint element must likewise be trans-
formed into this modal-based formulation, which is gov-
erned by the beam displacement modes. Furthermore and
of utmost importance, with a modal formulation of the
thin-walled beam elements, it is possible to reduce the
number of modes to the most relevant, judiciously selected
modes, and thereby reduce the number of modal degrees of
freedom at the interfaces both regards to the beam mem-
ber and the joint element. This reduction is done by trans-
forming the conventional displacement degrees of freedom
of the cross-section interface between a beam element and
a joint element into the chosen modal displacements of
the beam, and then use these modal displacements as the
degrees of freedom at the interfaces. Hence, the nodal de-
grees of freedom at the connected faces are transformed
into the chosen beam modal degrees of freedom. The uns-
elected (irrelevant) modal degrees of freedom are assumed
to be non-existing (zero). As a result, the frame behaviour
is expressed in a displacement-based modal language yield-
ing the opportunity of regulating the number of included
modal degrees of freedom.

It is reasonable to assume that the same beam and joint
configurations are represented several times within a frame
structure. This may be utilised during the programming of
the stiffness formulations and during back substitution of
displacements, stresses and strains in members and joints.

To give the best possible grasp of the idea presented,
a two-dimensional example will be referred to through-
out the following subsections. For simplicity this illus-
trative example only includes in-plane degrees of freedom
even though the presented idea is valid for a full three-
dimensional analysis. The example includes three ad-
vanced beam elements and a single joint element, which
for example could represent a beam-to-column connection
in a larger frame structure as illustrated in Figure 4.

2.2. Beam elements

In-between connections, beam members and column
members will be modelled using a beam element based
on an advanced beam theory with torsional and distor-
tional effects including the related cross-sectional warping
deformations. To be able to describe the cross-sectional
displacements, the cross-section is discretised into wall seg-
ments between nodes that have six displacement degrees
of freedom each. Thus, the ends of a beam have several
wall elements and several nodes, see also Figure 5. This
results in an interface to which joints modelled using finite
(shell) elements with conventional translational and rota-
tional degrees of freedom at the nodes can be connected to.
To derive the conventional linear elastic stiffness equation
that governs the advanced beam element problem, a set of
orthogonal cross-sectional displacement modes is used and
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hence: The beam cross-section analysis results in a set of beam
B B B 8 uf solution modes containing orthogonal cross-sectional dis-
K" u” =f" where u” = uB (1) placement fields, which we assemble as columns in the ma-
2 trix V. In Figure 4 the cross-sectional displacement fields

in which K® is the beam element stiffness matrix, f8isa
load vector, and uP is the displacement vector that con-
tains u? and u§ holding the standard nodal finite element
degrees of freedom with regards to the two beam ends,
respectively.

Thus, we achieve an accurate beam element governed
by its degrees of freedom in all the nodes at the two end
cross-sections. Furthermore, these degrees of freedom cor-
respond to those in the joint element formulation sharing
the same interface. Therefore, it is possible to assemble a
beam element with a joint element having the same dis-
cretisation at the interfaces.

concerning the ’Advanced beam element 1’ are shown on
the left hand side of the beam end.

Using conventional finite element methods, it is possi-
ble to find a transformation between the three-dimensional
beam modes and all the nodal degrees of freedom at the
end cross-sections.

The degrees of freedom at each beam end cross-section
(u® and u§ according to Equation (1)) are transformed
into orthogonal modal degrees of freedom with the follow-
ing transformation:

uf = V2B fori=1,2 (2)



Figure 5: Beam element: a) Wall element and its local degrees of freedom, b) Beam element with discretised end
cross-sections, ¢) Nodal degrees of freedom, and d) Wall cut-out with the local coordinate system

where the column vector ¢ contains the modal degrees of
freedom at the one end of the beam. In fact, these modal
degrees of freedom correspond to intensities of the cross-
sectional displacement fields given as the columns in VE.
Then, the entire transformation of a beam element can be
performed using the transformation matrix T®:

B B
B =TP P withT®=| ' |, o®=]| "L
V2 902

(3)

where a single dot [ -] represents a suitable zero-matrix.

The matrices V? and V2B contain the exact same modes
and number of modes as we operate on a single beam el-
ement. The column vector B contains the beam modal
degrees of freedom, which is separated into ¢ and 5
representing each of the beam end cross-sections, respec-
tively.

Now, using the transformations in Equation (3) and ap-
plying the laws of transformation on the equation system
in Equation (1) we have:

RB SOB _ fB (4)

where K& is the beam element modal stiffness matrix de-
fines as:

KB = TB'K® TB (5)
However, please note that, since solution modes formulate
the beam element we may judiciously choose a relevant
number of these modes in VB and perform a transforma-
tion of the end nodal degrees of freedom into a reduced
number of modal degrees of freedom and hence, the equa-
tion system does not necessarily contain all modal degrees
of freedom, but instead represents a reduced equation sys-
tem.

2.8. Joint elements

The complexity met in connecting beam members and
column members are accommodated by introducing a

‘joint element’. This joint element is in itself an assembly of
standard (shell) finite elements used to discretise the often
complex plated joint geometry. The joint element is mod-
elled so that the interfaces to the connected beams have the
same nodes and nodal degrees of freedom. Hence, many
‘joint element’ geometries even including other types of
special purpose finite elements can be incorporated in the
joint model. Consequently, a single joint element allows a
detailed assessment of displacements and stresses due to
the finite element formulation, but the main drawback is
the inclusion of a high number of degrees of freedom. The
assembly of finite elements results in the following equa-
tion system:

J
u;

J J

K u' = whereu = | ul (6)

Here, K? is the stiffness matrix, f’ is the load vector, and
u’ is the displacement vector, which is grouped into dis-
placement vectors that contain the displacement degrees
of freedom at each of the connected faces indicated by the
index. If any secondary degrees of freedom exist within
the joint element these may be condensed.

Since it is the idea to let the joint element interfaces
be governed by the displacement fields of the connected
beam elements then the nodal degrees of freedom at these
connected faces are transformed into modal degrees of free-
dom governed by the related beam transformations from
Equation (2). Hence, the nodal degrees of freedom at an
interface are transformed into modal degrees of freedom
using:

u! = V5! fori=12.n (7)

where index 7 indicates an interface and mj is the total
number of connected faces for a single joint element. With
respect to the example in Figure 4 this corresponds to

ny = 3. In Equation (7), V? is the exact same matrix



used for the beam transformation in Equation (3) at the
exact same interface and therefore index j is a reference
to which of the beam ends that is located at the interface,
being either j = 1 or j = 2. Since the interfaces at a joint
element not necessary contain the same number of nodes,
the matrices V? may not be of the same size. Accordingly
for the entire joint element in Figure 4 the transformation
matrix will be:

VBl

2

wW=T'¢ withT'=| . V2 . (8)
\4s

Then, applying the transformations from Equation (8) to
the equation system in Equation (6) the mode-based equa-
tion system for the joint element will be:

Pl
K o' = where ¢’ = | ¢} (9)
v3
where K is the joint element stiffness matrix transformed
into modal space, ¢’ is the modal displacement degrees of
freedom, and f) is the load vector in modal space. Explic-

itly we define the joint element stiffness matrix and the
modal displacement degree of freedom vector as:

K=T"k'T and #=1"¢ (10)

Note that the degrees of freedom at the interfaces are
transformed into modal beam type displacements of the
individually connected beam and thus, a judiciously cho-
sen reduction in the number of degrees of freedom in the
joint interfaces can be performed.

2.4. Mode-based formulation

Thus as mentioned, to increase efficiency, this method-
ology allows us to utilise the modal formulation of the
beam elements to decreases the number of degrees of free-
dom. This is achieved by transforming the beam degrees
of freedom in the interface section into a mode-based de-
gree of freedom space, i.e. a mode space containing a few
numbers of relevant and unique cross-section displacement
fields. The joint elements are likewise transformed into a
displacement-based mode formulation. Here, the nodal de-
grees of freedom at the interfaces are transformed into few
beam modal degrees of freedom and the remaining inter-
nal degrees of freedom can be eliminated for example by
condensation. This allows a mode-based assembly of the
structural framework by assembly of the different element
contributions from Equation (4) and (9). Hence, we end
up with an equation system for the entire frame structure
being in a modal format:

Rsys ‘PSYS — fsys (11)
This is achieved by using conventional assembly and trans-

formation procedures as in the finite element method (see
for example Cook et al. [76]).

3. Illustration of key aspects

The purpose of this section is to illustrate and highlight
some of the key aspects of the idea. To do so, we ex-
amine a rectangular portal frame corner connecting two
thin-walled lipped channel sections by a diagonally stiff-
ened joint element. Furthermore, to ease the implementa-
tion, there are two minor joint elements incorporated at
the beam and column ends, respectively. These are imple-
mented as a continuation of the beam/column element to
simplify the application of load and boundary conditions.
The general configurations and dimensions concerning this
example are illustrated in Figure 6. The modulus of elas-
ticity used is given as: E = 210 GPa and the Poisson ra-
tio is: ¥ = 0.3. The boundary conditions are as follows:
at point A and C the mid point of the web is restrained
against any translation, and at point B the translation
out of the frame-plane is restrained. Moreover, the cross-
section in A is loaded by a vertical unit displacement §
applied at the upper flange on top of the lip. The por-
tal frame corner is assessed by a first-order linear elastic
analysis.

3.1. The beam element

The advanced beam theory used to model the beam and
column members is an advanced theory, which includes
cross-sectional deformations and allows for a mode-based
formulation, resently developed by the authors [77, 78].
This theory is based on the small displacement hypothe-
sis as well as a linear elastic analysis of the beam cross-
section. Using this theory, the cross-section is discretised
by wall elements as illustrated in Figure 5 having six de-
grees of freedom at cross-section nodes. This new thin-
walled beam theory embraces a shear variation through a
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Figure 6: Frame set-up with load and support conditions.
Dimensions in millimetre [mm] and the plate thickness is equal
to 3 mm
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Figure 7: Interface modes 1-6 (the six rigid displacement fields). The upper row illustrates the translational part of the
modes whereas the lower row represents the corresponding out-of-plane displacements (plotted in a local beam coordinate
system)
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Figure 8: Interface modes 7-12 (first six distortional modes). The upper row illustrates the translational part of
the modes whereas the lower row represents the corresponding out-of-plane displacements (plotted in a local beam
coordinate system). The ’ratio’ indicates the scaling between the largest in-plane displacement and the largest out-of-
plane displacement
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Figure 9: Joint deformation modes related to the first twelve modal degrees of freedom at the beam-to-joint interface

Timoshenko like beam behaviour and a Mindlin-Reissner
like wall plate behaviour. Such a formulation is hardly
found in other advanced beam theories despite the ap-
proach given by Miranda et al. [44, 79] who formulated a
beam element in the framework of GBT, which probably
also could have been used here.

The cross-section analysis results in a set of beam
displacement modes that can be subdivided into cross-
sectional displacement fields and their associated axial am-
plitude functions, which describes the axial variation of
the cross-sectional displacement field along the beam axis.
These amplitude functions are either polynomials of maxi-
mum third-order (reflecting the twelve fundamental beam
modes) or having exponential functions with varying de-
cay (reflecting beam displacement modes of higher order).
Each higher order mode has an exponential amplitude that
decays away from one of the beam ends. This decay is con-
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trolled by a length scale parameter. The lower the length
scale parameter, the longer the decay is. It is common
practise to sort the modes based on their length scale since
this often also reflect their influence.

In this example the cross-section is discretised into
twenty-four wall elements; eight in the web panel and four
in each of the other panels. This corresponds to 150 de-
grees of freedom, and in our case, this results in 150 unique
interface modes (cross-sectional displacement fields) to be
used for transforming both the beam and the column el-
ements as well as the joint elements into the mode-based
formulation. In fact, the transformation matrices V& in
Equation (2) and (7) contains 150 columns representing
the interface modes. These interface modes are deduced
in the beam element cross-section analysis and are sorted
with regards to decay length (this being related to the ax-
ial variation of the beam modes). To exemplify, the first



twelve interface modes are illustrated in Figure 7 and 8. In
fact, Figure 7 shows the six rigid cross-sectional interface
modes and Figure 8 shows the next six modes, which are
the first six distortional cross-sectional interface modes.

3.2. The joint element

The joint elements are discretised by use of triangular
shell finite elements having six degrees of freedom at each
node, see for example Cook et al. [76]. To be able to
assemble beam and column members to a joint element,
the joint element mesh is chosen in such a way that the
nodes at the interfaces are in the exact same locations as
the nodes of the adjacent beam and column cross-sections.

Based on the interface modes that are deduced dur-
ing the beam element analysis and contained in VB, each
joint element is transformed into the mode-based formula-
tion using the transformation in Equation (7). Hence, the
displacement of a joint element may now be expressed in
terms of modal degrees of freedom instead of conventional
nodal degrees of freedom. To give a visual understanding
of this modal degree of freedom formulation Figure 9 il-
lustrates the effect of activating a single modal degree of
freedom at a time. This has been done for the first twelve
modal degrees of freedom at the beam-to-joint interface.
Explicitly we have for Mode 1: ¢’ [1,0,0,---]T, for
Mode 2: ¢? =1[0,1,0,0,---]T and so on for the remaining
ten modes illustrated. In fact, the twelve modal degrees of
freedom that are activated in Figure 9 corresponds to the
twelve interface modes shown in Figure 7 and 8.

3.8. Assessment

After the portal frame corner has been analysed by solv-
ing Equation (11) and according to the conditions given
in Figure 6, we draw the deformed shape in Figure 10. To
be observed is the ability to include the distortional defor-
mations of the beam element due to the advanced beam
element formulation. Furthermore, it is seen how the joint
configuration is able to transmit both torsional and distor-
tional deformation from the beam through the joint and
into the column.

The frame corner has also been analysed using the com-
mercial finite element program Abaqus [80]. Here, trian-
gular finite shell elements (S3 in Abaqus nomenclature)
with a maximum side length of 10 mm has been used to
discretise the entire model. A brief comparison is given
next.

The horizontal displacement at the upper left corner in
cross-section A has been compared to the finite element
model and a relative deviation of —2.89% is found. At the
same corner, Von Mises stresses are compared and shows
a relative deviation of —0.22 %. Furthermore, the entire
Von Mises stress distribution of both models are shown in
Figure 11. A close-up of the corner is shown in Figure 12.
The colours represent the surface stress at the mid-point
of each element(Note that the two colour scales are not
identical within the scale from 0 to 80MPa).
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Figure 10: Full deformation pattern of the frame structure
(the deformation is scaled 30 times)

8.4. Displacement mode identification

The main idea of this methodology is to identify those
displacement modes that have an important influence on
the structure and to reduce the number of included modes
within the analysis. The joint element that connects the
beam and the column is assessed in order to identify which
modes that are activated at its interfaces. This assessment
is shown in Figure 13. In Figure 13a the deformation of
the joint element is drawn based on the present method-
ology. Furthermore, the deformations of the interfaces are
shown as well. For comparison Figure 13b shows the de-
formation of the corner from the Abaqus analysis. The
intensities of the modal degrees of freedom at the two in-
terfaces are determined directly as ¢*° when solving the
frame equation in Equation (11). These intensities are also
illustrated in Figure 13c and 13d. Besides the deformation
patterns, it should be observed that the activated interface
modes are limited to the first number of modes. The pri-
mary modes are 1, 2, 4, 7, and 8; and 1, 2, 4, 7 and 8 for
the beam-to-joint interface and the column-to-joint inter-
face, respectively. Common to these modes is that they
are either part of the polynomial modes or belong to the
distortional modes that have a long decay length. This il-
lustrates that a reduced set of modes related to the longer
length scales of the modes of the connected beam elements
may be chosen and that the influence of the modes hav-
ing a short length scale may be neglected. This is one
of the essential reasons for formulating this theory with a
mode-based interface approach. This has been tested at
the frame corner by performing an analysis including the
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Figure 11: Three-dimensional illustration of the Von Mises surface stress in the frame. a) Present method; b) Abaqus

model

first twenty modes at each interface only. If we then com-
pare the displacements and Von Mises stresses at the upper
left corner in cross-section A to the results obtained with
the same methodology but with all 150 interface modes
we get a relative deviation of —2.1% for the displacements
and 0.65 % for the stresses.

4. Discussion

The motivation for this paper originates in several stud-
ies reporting that savings can be obtained by applying
proper semi-rigid joint modelling. One of the popular
methods is the mechanical one, namely the Component
Method, which is adopted in the Eurocode 3 as well [1].
However, only global deformations are considered, and
the method is limited to the transmission of bending mo-
ments. Other approaches exist, however, these are limited
to the transmission of the seven generalised displacements
of Vlasov beams. As a consequence, no cross-sectional
distortion effects are taken into account at joints between
non-aligned members despite the increasing amount of ad-
vanced beam theories, such as GBT and cFSM. These
beam theories include this cross-sectional distortion ef-
fects, but the proper methodology to assemble these for
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global frame analysis with a reduced distortional and lo-
cal mode space is lacking.

It is believed that the idea being presented in this paper
enriches the analysis of connected non-aligned thin-walled
beam members with a totally new mode-based interface
approach that gives an in-depth insight into the mechan-
ics of beam and joint behaviour. This new methodology
may be used for optimising the joint design or may lead
to better utilisation of materials within the entire frame
structure. The methodology is mainly based on the use
of beam-end displacement modes, formulated by standard
nodal displacement parameters. The beam element used
in this paper is based on an advanced beam theory devel-
oped by the authors [77, 78]. The formulation allows a
displacement-based mode decomposition. Concerning the
joint element, it is discretised by (shell) finite elements
and therefore able to adopt complex geometries, for exam-
ple including plate stiffeners. The technique presented has
some similarity with that reported by Wu & Mohareb [81]
and Sahraei & Mohareb [82], which models frame joints
using shell elements and the structural members by con-
ventional finite element beam elements. However, unlike
the work in [81, 82], the present study captures distortional
modes.

The beam and joint elements are transformed from a
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Figure 12: Three-dimensional illustration of the Von Mises surface stress in the frame corner. a) present method; b)

Abaqus model

standard degree of freedom space into a formulation gov-
erned by a few selected interface modes, which relates to
the cross-section interface between beam elements and a
joint. Hence, instead of having standard nodal degrees of
freedom, a set of beam-end cross-sectional displacement
fields are used as modal degrees of freedom. Such a mode
could, for example, be a rigid translation of the cross-
section or a distortional deformation (see Figure 7 and
8).

Due to the use of an advanced beam theory as well as a
detailed (shell) finite element discretisation of the joints,
frame analysis can include very sophisticated deformation
patterns. Comparing to the proposals based on Vlasov el-
ements together with more overall joint formulations, such
as the procedure presented by Shayan & Rasmussen [34],
shows that these approaches only include the warping ef-
fects and not the in-plane distortional effects.

Comparing this novel approach to full finite element
analysis using shell elements, the amount of degrees of free-
dom required is orders of magnitude less, which results in
much faster execution times for linear analysis with only
a minor risk of decreasing accuracy. Moreover, the illus-
trative example indicates a reasonable agreement of the
obtained displacements as well as Von Mises stresses when
comparing the present approach to a commercial finite el-
ement model.

The presented methodology is more general than the
approach given by Basaglia et al. within the framework of
GBT [69, 70]. Both methods are based on a mode-based
displacement formulation using advanced beam elements
that includes higher order effects. However, the GBT ap-
proach includes advanced beam elements, but the joint
element formulation supports only the seven generalised
displacements. Furthermore, in-depth prior knowledge of
the joint mechanics is needed to establish constraint equa-
tions to ensure compatibility if including higher order dis-
placement modes. In contrast, the joint element presented
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here includes the mechanical properties as well as being
compatible at connected faces without prior assessment or
constraint equations. In fact, due to the general formu-
lation of the joint, it is believed that most displacement-
based beam theories can adopt the presented methodology.
The only requirement present is the need of a set of cross-
sectional displacement fields to be used for transforming
the standard degrees of freedom at the cross-section inter-
faces into the chosen mode-based interface governed degree
of freedom space. In this paper, the new methodology is
illustrated by a single example that highlights some of the
key aspects of this novel idea. The example clearly illus-
trates that only a limited number of interface modes are
activated. Therefore, a reduction of degrees of freedom
modes is a possibility (this, however, will vary depending
on the corner and frame geometry).

Despite that this simple example does not include any
connection components, such as bolts, it is known that
such components can be implemented as springs or other
elements as a part of the joint formulation. The stiffness
of such components could perhaps also be adopted from
the Component Method. Other possibilities and improve-
ments that can be considered is the introduction of a bi-
or multi-linear behaviour. In other words, the approach
could be extended to have a set of rigid plastic displace-
ment modes. This feature is essential because the regions
near a connection are highly exposed to plastic behaviour.
This type of response is often simplified in frame analysis
using spring stiffness’s [83, 84]. Furthermore, research is
needed to include both buckling and multi-linear elastic-
plastic analysis in this mode-based formulation.
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Abstract

A novel one dimensional beam model for analysis of prismatic thin-walled beams with deformable cross sections is intro-
duced and a novel cross section mode determination procedure, which leads to the three dimensional beam displacement
modes, is derived. The first order beam model for linear analysis includes: shear deformations related to both Timo-
shenko and Mindlin-Reissner type shear deformations, the warping effects of torsion, cross section distortion with related
warping effects, as well as the Poisson effect with transverse displacements due to normal stress. The generality of the
model allows it to handle open, closed and multi-cell cross sections with branched walls. The cross section analysis
procedure leads to two types of beam displacement modes referred to as distortional beam modes and fundamental
beam modes, with exponential and polynomial variations along the beam axis, respectively. It turns out that each of
the beam deformation modes consists of a sum of one to four cross section displacement fields each with an individual
axial variation. The displacement modes can facilitate the formulation of an advanced thin-walled beam element. The

beam displacement modes will be illustrated for an open and a closed cross section.

Keywords: Thin-walled beams, Beam eigenvalue problem, Warping, Distortion, Shear deformations, Fundamental

beam modes, Beam theory

1. Introduction

Through centuries, beam models have been developed
and especially in the twentieth century the development of
thin-walled models increased due to the emerging ship and
aircraft industries. It was realized that theories, such as
the Euler-Bernoulli and the Timoshenko theories were not
sufficient for assessing thin-walled structures even when
unconstrained uniform St. Venant torsion was included.
A reason was the missing cross sectional warping effect,
thus, new theories had to be derived. The best known
consistent theory is the torsional thin-walled beam theory
presented by Vlasov [1]. This theory includes the warp-
ing phenomenon by introducing the sectorial coordinate.
With this new "coordinate", the axial displacement field of
the cross section is defined as a warping function. With
this warping function, a decoupling of the displacement
field into the classic extension and flexural modes is still
possible, similar to earlier classic beam theories. However,
Vlasov’s theory of torsion does not include distortion of the
cross section, since the cross section is assumed to main-
tain its shape. A generalization of Vlasov’s thin-walled
beam theory for open cross sections including distortion
was given by Schardt [2]. Later, Schardt extended the
theory to include closed cross sections as well, [3]. To do
this he relaxed the Vlasov hypothesis of negligible shear
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strain adopting "Bredt’s shear flow" in closed cells. At first,
Schardt’s theory was named: "Verallgemeinerte Technishe
Biegetheorie" (VIB), but with its international spread,
due to the work done by Davies and co-workers [4, 5],
it is now known as GBT, i.e. Generalized Beam Theory,
in the international academic society.

An expansion of Vlasovs thin-walled beam theory to in-
clude a single distortional deformation mode, which is di-
rectly applicable to both open and closed cross sections,
was given by Jonsson in [6]. This reference illustrates the
coupling of the differential equations, which are not easily
uncoupled even in this relatively simple theory.

In recent years Silvestre and Camotim contributed heav-
ily to the development and refinement of GBT and they
also include orthotropic material behaviour [7, 8].

The general idea of modern GBT is to use a cross sec-
tion discretization to determine orthogonal cross section
displacement modes, i.e. displacement fields of a cross
section. These modes are then interpolated using cubic
Hermite functions in the axial direction. The cross sec-
tion displacement modes are found from solving special
eigenvalue problems related to equilibrium equations of the
cross section using frame analogy. This approach, deriving
displacement modes based on a discretized cross section,
has become popular among researchers, since only a rel-
atively small number of unknowns are needed. Modern
GBT establishes a thin-walled beam model through ratio-
nalized and automated cross section analysis procedures
and numerical analysis, see for example Bebiano et al. [9]
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and recently GBT has been extended to curved members
by Peres et al. [10].

The "Finite Strip Method" (FSM) is another very pop-
ular method used to model the behaviour of thin-walled
beams with deformable cross sections. With the refined
"constrained Finite Strip Method" (¢cFSM) developed by
Adény and Schafer [11], it is possible to group the modes
into categories; local modes, distortional mode, and beam
modes as already done using GBT. A comparison of these
two methods can be found in Adény et al. [12].

The "constrained Finite Element Method" (CFEM) in
which shell finite elements are used to model thin-walled
beams by constraining displacements may also be used to
create approximate beam models. The accuracy of these
models depend on the underlying discretization in both
transverse and longitudinal directions as well as on the
constraints adapted. The constraints reduce the number
of degrees of freedom and lead to advanced thin-walled
beam elements, see for example Adany [13].

Other generalized beam models based on discretization
of the cross section adapt a more strict mathematical ap-
proach by formulating and solving the coupled equilibrium
equations, i.e. they adapt the strong solution form. See for
example the appoaches by Jonsson and Andreassen [14],
Morandini et al. [15] and Vieira et al. [16]. All of these
authors solve eigenvalue problems as part of a standard
procedure for finding the solution to the coupled homoge-
neous beam differential equations for arbitrary cross sec-
tions. As opposed to GBT, these approaches lead to eigen-
vectors being the cross section displacement fields multi-
plied by the exponential eigenfunction determined by the
eigenvalues. The polynomial modes (related to the clas-
sic beam modes) are derived from a detailed evaluation
of the null-eigenvalue modes, hence, two sets of solutions
are obtained. Morandini et al. find twelve fundamental
beam solutions for solid cross sections using a special pro-
cedure based on the Jordan chain method. Furthermore,
they find the eigenvalues of the exponential solutions and
relate these to length scales as well as the St. Venant prin-
ciple. Vieira et al. also uses a Jordan chain method to
establish the polynomial solution modes, which are identi-
fied as fundamental beam modes, e.g. extension, flexure,
etc. Furthermore, they use isospectral transformations of
exponential modes to define generalized solution modes.

The prismatic thin-walled beam model presented in the
following also adheres to the more strict mathematical ap-
proach of solving the coupled equilibrium equations. Some
of the kinematic assumptions are made in order to facili-
tate the secondary goal of being able to connect to joints,
which are modeled using conventional finite shell elements
with three translational and three rotational degrees of
freedom at each node. Furthermore it has also been the
goal to achieve a formulation including shear deformations
and the Poisson effect as opposed to the theoretical model
presented in Jonsson and Andreassen [14], which does not
include these effects. As opposed to Morandini et al. and
Vieira et al. the present work retains the complex eigen-

values and exponential solution modes of the quadratic
eigenvalue problem and therefore the solutions do not di-
agonalize all matrices of the original coupled differential
equilibrium equations of the beam, since this is unneces-
sary as the modes span the solution space.

In this paper, the exact solution modes of the coupled
differential beam equations are found through cross section
discretization and separation of variables into cross section
displacement fields and attenuation functions. The solu-
tions to the differential equations leads to solutions consist-
ing of fundamental polynomial beam solutions modes and
exponential distortional solution modes (decaying from
each beam end). The solution modes involve from one
to four cross section displacement fields combined into a
single three-dimensional solution mode being either poly-
nomial or exponential. The advantage of this beam model
is that the full solution is obtained between beam-ends and
not as in GBT in which a beam must be discretized into
several GBT finite elements with Hermitian interpolation
along the axis of the beam.

2. The thin-walled beam model

The prismatic one dimensional thin-walled beam model
is introduced in the following subsections. It is assumed
that the beam displacements can be subdivided into a sum
of separate beam displacement modes, which all obey the
equilibrium equations. In the first subsection the kinemat-
ics and strains of one displacement mode is introduced and
illustrated. Then, in the second subsection we introduce
the strain energy function using the introduced displace-
ment assumptions. Hereafter in the third subsection the
cross section is discretized into straight wall elements and
interpolation functions and related degrees of freedom are
introduced and chosen. The fourth subsection introduces
the discretization into the strain energy, which leads to
the definition of wall element stiffness matrices, which in
turn assemble into the stiffness matrices of the cross sec-
tion. In the last and fifth subsection the variation of the
discretized strain energy leads to the strong formulation of
displacement mode equilibrium as a set of coupled second
order differential equations expressed by the cross sectional
stiffness matrices.

2.1. Kinematics

The prismatic thin-walled beam member is located in a
global rectangular, right-handed Cartesian coordinate sys-
tem (X,Y, Z). The Z-axis is pointing in the longitudinal
direction of the member and the cross section is located in
the X, Y-plane. To navigate through the cross section a lo-
cal coordinate system is introduced in the walls as (n, s, 2)
following the right-hand convention and where z is parallel
to the global Z-axis. The s-coordinate is a curve parame-
ter running along the center line of the cross section and
n indicates the normal to the s, z-plane. In figure 1 both
local (n, s, z) and global (X,Y, Z) coordinate systems are



illustrated. The notation used in the following for deriva-
tives with respect to the cross section wall coordinates will
be a subscript comma followed by the local coordinate, e.g.
as: ()., = d(-)/dn or (-)ss = d*(-)/ds?; however, deriva-
tives with respect to the axial coordinate will be denoted
by a prime, ie. (-) =d(-)/dz.

Figure 1: Illustration of local and global coordinate systems

Beam displacement modes are introduced by separation
of variables through the sum of products between displace-
ment variables dependent on the cross section coordinates
(n,s) and amplitude functions dependent on the axial co-
ordinate z. The cross section displacements are given in
the local coordinate directions as functions of the local co-
ordinates (n, s) and the axial coordinate z. The displace-
ments of one displacement mode thus consists of transverse
displacements (u,,us) and (axial) warping displacements
u,. The kinematic displacement parameters are illustrated
in figure 2.

Let us start by introducing the transverse displacements
(un,us) of one displacement mode as:

un($> Z) - wn(s)w(z) (1)
y(ny5,2) = [ wy(s) = mano(s) |6(2) 2)

in which w, (s) and w,(s) are the center line displacements
in local directions factorized by a function of the axial
coordinate, ¥(z), referred to as an axial amplitude func-
tion. This displacement formulation corresponds to that
of thin-plate theory or Kirchhoff theory in the transverse
s-direction. This assumption will in a later subsection al-
low us to use beam like wall elements with a traditional
beam type interpolation.

Then, let us introduce the axial warping displacements
u, of the displacement mode as:

uz(n,s,z) = [ Q(s) + na(s) ]n(z) (3)

where €(s) is the axial displacement of the wall center
line, a(s) is the additional inclination through the thick-
ness, and 7(z) is the related amplitude function, see fig-
ure 2. This formulation corresponds to a Timoshenko
like shear formulation in the planes of each wall element
(s, z-plane) and a Mindlin-Reisner like shear formulation
through the wall element thickness in the axial z-direction

(n, z-plane). This warping displacement formulation has
been chosen to allow a strict local warping compatibility
at the corners under the hypothesis that this would allow
an enhanced modeling of shear, see for example the re-
lated GBT type assumptions and illustrations in Miranda
et al. [17] and [18]. In a later subsection these assumptions
also allow the introduction of six degrees of freedom per
node in the cross section interpolation. Furthermore, the
kinematic displacement assumptions also allow torsional
shear flow around closed cells as considered by Jonsson
and Andreassen [14].

In the elastic first order model, the linear strain defi-
nitions are applicable and they can be expressed by the
introduced displacement description as follows:

Eos = Us.s = (Ws,s — NWp,s5) P

€20 = U, = (2+na)ny

VYos = Uy +Uzs = (Ws — NWy ) Y’ (4)
+(Qs +nas)n

Yon =Up + Uz = wpt) +am

where €55 are the transverse distortional strains, ¢,, are
axial normal strains, 7, are the membrane shear strains of
the wall, and ~,,, are the through-wall axial shear strains.
It follows that €,, = 0 and 75, = 0. It is seen that,
due to the displacement formulations, we achieve non-null
Yen-strains. It is also seen that the kinematics presented
here includes transverse extension along the cross section
mid-line as well as membrane shear strain, which both are
neglected in the Vlasov theory (the Vlasov hypothesis).

In the following, vectors and matrices will be denoted
by non-slanted, boldfaced, roman letters.

2.2. Discretization and interpolation of strain energy

The constitutive relations between stresses and strains
are not as simple as in conventional beam theories, since
the theory not only includes axial stresses o,, but also
transverse stresses oss, membrane wall shear stresses 7.,
as well as transverse wall shear stresses 7,,. As in plate
theory we base the constitutive relation of the wall on the
assumption of zero out of plane normal stress, i.e. o, = 0.
The axial and transverse in-plane normal stresses are cou-
pled through the Poisson ratio, v, and enables the Poisson
effect, which induces changes in the geometry of the cross
section. Using Young’s modulus of elasticity E, we intro-
duce the shear modulus G = E/(2(1 + v)) and the plate
elasticity modulus £, = E/(1 — v?). Hence, the linear
constitutive relations are:

Oss E, vE;, 0 O €ss
0. | | vEs Es 0 0 €as
Tex | 0 0 G 0 Ysz (5)
Thz 0 0 0 G Ynz
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Figure 2: Deformations with respect to the cross section in different orientations

With the introduced constitutive relations, the linear elas-
tic strain energy can be written as follows:

1
U =5 / {E, + Ese2, 4+ 2vE e55e..
\%4

+ G2, + Gy }av

Let us introduce the strains, equation (4), expressed by
the displacement parameters into the strain energy. Then,
let us perform the volume integration by subdividing the
cross section into a sum of integrals over each straight wall
element and let us perform the integration through the
thickness. Thus, the middle-surface of a thin-walled cross
section is assembled by straight wall elements as illustrated
in figure 3. In the current formulation a wall element is
characterized by a constant plate thickness t.; and an ele-
ment length of b,;. The strain energy equation (6) for one

displacement mode of a beam of length ¢ becomes:

U :% /e Z/bgl {Es (tel (w.s,.sw)2 + itil (meSdJ)Q)
o T Jo 12

. (v ()7 + gyt (o))

1
+ 2vE; (tel (ws,stn/) — Etglwn,sslbom/)

+ G (tel (ws¢/)2 + Qtelwswlﬂ,sn + 1712752[ ("11'rL,37/)/)2

1 1
_QEtglwn,S¢/a,377 + e (Q’SU)Q + Etgl (Oé,s"?)2>

+ G (tel (wnl//)Q 4+ ter (an)2 + 2telwnw'an> }ds dz

(7)

An example of the overall discretization of a cross sec-
tion is illustrated in figure 3a and the configuration of
a discrete wall element is shown in figure 3b illustrating
its degrees of freedom. The wall element displacements
are derived from approximated linear Lagrange and cubic
Hermite functions. The degrees of freedom are split into
two — those regarding displacements in the cross sectional
plane given a w-subscript are transverse displacements,
and those regarding displacements out of the cross sec-
tional plane denoted by an €2 are in general being referred
to as warping displacements. Thus, the wall element de-
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(a) Cross section discretized into minor wall elements

(b) A wall element with its twelve degrees of freedom and local
coordinate system

Figure 3: A discretized thin-walled cross section and a wall element

grees of freedom are collected in two vectors being:

Vel — [1}

el el el el el el ]T
w

wl Vw2 U3 Upa Vys Ve

el_[el

T
vl = el el el el :I

!
UO1 Vg2 Uas Vas Va5 Ve
The introduced cross section displacement parameters are
interpolated within the cross section using standard inter-
polation functions as follows (for clarity we have kept the
related amplitude functions):

w31/J:NSVif1/), Oén:Nanle

wy, ¥ =N, vl (0 (9)

Qn:Ngvgn

in which the interpolation vectors are given in table 1.
Furthermore, N, and N, are linear whereas N,, and N
are cubic, see [19].

Table 1: Interpolation vectors

N,=[N; 0 0 N, 0 0]

N,=[0 —Ny —Ny 0 —Ns —Ng
No=[-N, 0 0 —N; 0 0
No=[0 —-N; No 0 —Ng N

2.8. Cross section stiffness matrices

If the displacement interpolation functions, from equa-
tion (9), are substituted into equation (7), local wall ele-
ment stiffness matrices given in table 2 may be found by
integration over the element wall length. Regarding the
superscripts, these indicate whether a stiffness matrix re-
lates to transverse, normal or shearing stiffness, denoted:
s, o or , respectively. The coupling terms between ax-
ial and transverse normal strain are given by ki, and its
transpose, which becomes kg’ .

Table 2: Local stiffness matrices

s be .
Kiw=Jy" (ta BNLN. + §HEND N, ) ds

T~

. be t3
ho=J)" (ta BsSNGNg + T;ESNZNQ) ds
so be 3
ka:fO l (telVEsNI,SNQ — %LVESNI,SSNQ) ds
3
gs :fobel (tdyEsNgNs,s - %VESN(IN”,SS) ds
be 3
K= (telGNLNa + taGNJ, N, + %GN;SNQ,S)ds
3
K [ (telGNan + 1t GNTN, + %GNLSNn,S) ds
be t3
K = [ (telGNan + LGN, N, — 1—QIGN;SNM) ds
3
k;Q:fobfl (te,GNINQ +taGNINq s — %GNLSNQ,S) ds

Formulating the assembled cross section stiffness matri-
ces and vectors containing all degrees of freedom it is con-
venient to express the local degrees in terms of a global
reference frame. Thus, using a formal standard trans-
formation matrix, the local degrees are written in global
coordinates (v¢! = Tv). Therefore, the local stiffness
matrices can be assembled using a common assembling
procedure yielding global cross sectional stiffness matrices
(see e.g. [20]). Following this procedure, the strain energy
from equation (7) takes the form:

T
Vu w Kfuw ’ ’ ZJUQ Vuw 7/}
1 [ van Ko Ko varn
U:§ , v v , dz (10)
0 Vw’lb Kwﬂ wa wa
van' Ow - Koollvan'

using global stiffness matrices. Here and in the following
a dot ’-’ represents a suitable size null-matrix.

2.4. Displacement mode equilibrium

The differential equations for the displacement modes
are derived using variational principles on the strain en-



ergy functional. The delta symbols, §, in front of the dis-
placement vectors are introduced to represent the varia-
tional terms. Integration by parts is performed on the
variational terms, which are differentiated with respect to
the axial coordinate. Thereby we eliminate axial deriva-
tives (the primes) of the variational terms §(v,,%’) and
d(van') and the first variation of the strain energy takes
the form:

o= [ (7 e [on]
0 van : —Koa van
:ZJG-Q_KZ)Q:| [ Vuth ]/

.
{ng - K%, van

S 0 ) Tt
Pl T ) o]
e )]

0

In this equation the last bracketed terms, i.e. [-- -]é, rep-
resent boundary terms, that ensure equilibrium with the
boundary loads, which we have not introduced at this
stage.

It follows from calculus of variations that, the first varia-
tion of the energy must vanish in order to have minimum
energy. Therefore, the dU should vanish, i.e. U = 0,
for arbitrary variations in §(v,1)) and 0(ven), satisfying
kinematic boundary conditions. This requirement is the
condition of stationarity, which leads to the following set
of equilibrium equations.

- "
_Kz)w : wa
L Koo van
K u’’
- /
i : wo — Kig| | Vot
Kow — Koy, : var) (12)
— ——
K1 u’
[K* . Vu 0
. -Ko van 0
—_— ——
Ko u

Please note that to achieve symmetry in the matrix for-
mulation the lower block-row-equation is multiplied by —1.
Furthermore, we have, in the above equation, introduced
the matrices Ky, K; and K as well as the vector of dis-
placements u. This has been done in order to obtain the
following more compact formulation of these differential

equilibrium equations:
Kzu// —+ Klu’ —+ Kou =0 (13)

Consequently, we have achieved a set of second order dis-
placement mode differential equations and not as in other
higher order beam theories, such as GBT, a fourth order
differential equation system. The reason why a second-
order beam differential equation system is derived here, is
the use of warping fields Qn and an, which until otherwise
stated are independent of 1.

3. Cross section mode determination procedure

The cross section mode determination procedure reflects
the solution of the displacement mode differential equa-
tions using the approach of assuming exponential solutions
and finding these through the solution of the characteris-
tic equations being a quadratic eigenvalue problem. How-
ever, hereby we have not found the complete homogeneous
solution, since there will be n, = 12 null eigenvalues cor-
responding to the classic polynomial solutions including
constant strain modes and rigid body motions also re-
ferred to as fundamental modes. The polynomial solutions
are found by seeking a set of n, third order polynomial
solutions. Since there are a multitude of possible combi-
nations of these modes an engineering based procedure,
which enables the direct relation to classic beam theory, is
described. This task, however, is not as straight forward
as expected.

3.1. Ezxponential modes

Let us start out seeking exponential solutions. In the
previous section separation of variables was used to for-
mulate displacements as product terms of cross sectional
displacements and the amplitude functions. Thus, we need
to find solutions to the differential equations (13) with the
displacement vector:

(14)

u(z) _ [ wa(z) ‘|

van(z)

in which the vectors v,, and vy contains cross sectional
degrees of freedom with respect to transverse and warp-
ing displacements, respectively. It is clear that two related
amplitude functions 1 (z) and 7(z) have been introduced.
This, however, has been done in order to keep the relation
to conventional formulations of beam theories. Nonethe-
less, to solve the coupled differential equations we now
assume that 1 = 1. This enables us to write the displace-
ment using a single amplitude function as:

u(z) =v¥(z) ¢ (15)

in which the cross section displacement mode vector is

given by:
v,
v = [ ! 1 (16)
Vo



The complex constant to be determined by boundary con-
ditions, ¢, € C has been introduced in equation (15) to
scale the whole solution mode.

A general solution of the beam differential equations
(13) is sought by assuming an exponential amplitude func-
tion: ¢ = e**, whereby the assumed solution vector from
equation (15) becomes:

U = v e e, (17)
Here, we have introduced the subscript e to distinguish an
exponential solution mode from a polynomial one. Insert-
ing this assumed solution into the differential equations
(13) and simplifying by dividing by e**c, the following
algebraic system of equations is found.

(PKz + AK; 4+ Kg)ve=0 withAeC  (18)

This algebraic system of equations is a quadratic matrix
eigenvalue problem with \ as the eigenvalue variable and
v, being the eigenvector representing an associated defor-
mation mode. Solution modes can be derived by reducing
the differential order of equation (13) to an equivalent sys-
tem of first order differential equations introducing a state
vector as proposed by Tisseur and Meerbergen [21] lead-
ing to a generalized eigenvalue problem but also doubling
the number of solution modes, or directly by solving the
quadratic eigenvalue problem by use of the built-in func-
tion polyeig in MATLAB [22]. It is worth noting that it
is the state vectors that become orthogonal (with respect
to the total strain energy).

The eigenvectors associated with non-null eigenvalues
are the cross section displacement vectors related to the
exponential modes. The eigenvalues can be viewed as in-
verse length scale parameters and the importance of each
mode depends on the length scale. The larger the scale,
the more important is the related displacement mode in
relation to the beam model. Thus, we will sort the modes
hierarchically such that modes with low eigenvalues are
those of higher importance and comes first. The more lo-
calized and detailed behaviour that has to be assessed by
the beam model, the more short scale modes will have to
be included. The sum of all exponential modes may be
written as:

u. =V, ¥, c, (19)

where V, contains all the sorted eigenvectors of the associ-
ated non-null eigenvalues \; as its columns, ¥, is a diago-
nal amplitude matrix and c. is a column vector containing
a constant to each mode. In other words, the components
in equation (19) are given as follows:

V.= [ Ve, Vey oor Ve, ] ,
wel Cel
’(/}62 CEQ (20)
‘I’e = . 9 Ce = :
%M Cen,

in which the ith exponential diagonal amplitude function
is given as 1., = €% and where n. is the number of
exponential modes being n, = 2n — n,, where n is six
times the number of nodes in the discretized cross section.

Not considering the null-eigenvalues the solution of
the quadratic eigenvalue problem contains pairs of real
eigenvalues {A\,—A} as well as complex quadruples
{\, =\, A, =\}. The quadruples have a real part repre-
senting the axial decay effect accompanied by an oscilla-
tory amplitude related to the imaginary part. In case of
complex eigenvalues the eigenvectors also become complex.

To be able to present and discuss unique eigenmodes,
all the distortional vectors in V. have been normalized
by multiplication by a complex constant. This constant is
determined in such a way that the largest absolute value of
all components in each transverse displacement vector v,
is one and that this component is real. This has to be done
in order to make them unique since complex eigenvectors
are determined by the eigenvalue problem except for an
arbitrary complex constant given in c..

The eigenvectors related to the n, = 12 null-eigenvalues
are coupled, since many of them are related to rigid body
displacements and constant strain displacement fields,
which have polynomial amplitude functions. The following
subsection derives these fundamental modes.

3.2. Fundamental modes

Eigenvectors associated with null-eigenvalues of the
quadratic eigenvalue problem in equation (18) are assumed
to be fundamental beam modes having a polynomial am-
plitude function along the beam axis without any expo-
nential components. These represent the classical beam
mode solutions as those illustrated in figure 4. From clas-
sic beam theory, we know that the rigid body displace-
ments corresponds to constant and linear amplitude func-
tions, that pure extension and unrestrained torsion corre-
sponds to constant strain and linear displacements, where
as constant bending strain corresponds to quadratic dis-
placements. Moreover, constant shear strain does not exist
alone but corresponds to a mode that also has linear vary-
ing bending strains and therefore has a cubic variation
of the transverse displacements. It is important to note
that the deformation shapes are not known beforehand as
in ordinary beam theory, since shear deformation and the
Poisson expansion of the cross section are now included in
the theory. With this in mind, we assume a third order
polynomial function to embrace the fundamental modes.
Thus, let us seek n, solutions of the form:

23 22
u, = (3' vs + ETE +2vy + V0> (21)

where {vs, va, v1, vo} is a set of cross section deforma-
tion vectors altogether representing one polynomial dis-
placement mode factored by the constant c,. Each vector
contains both the in-plane and out-of-plan components as



in equation (16). Now, substituting this assumed polyno-
mial solution function and its derivatives into the beam
differential equations from equation (13) results in the fol-
lowing set of equations that must be fulfilled in order to
maintain equilibrium:

(éZB(K()Vg) —+ %2’2(K1V3 —+ KOV2)
—|—Z(K2V3 + K1V2 —|— K()Vl) (22)

—|—(K2V2 + Kivy + K0v0)>cp =0

By assembling the polynomial terms in a vector and as-
sembling the deformation mode vectors in a vector as well,
the equilibrium equations may be expressed by an assem-
bled matrix notation as follows:

T

%Zgln KO . . . V3
%22171 Kl KO . . Vo o —0 (23)
21, K, Ki K, - vi | 7

I, - Ko Ki Ko [ vo

In which we have introduced the unit matrix I,,, where n
is a reference to the number of degrees of freedom in each
block.

Mode space of the fundamental modes

The non-trivial solutions to these equilibrium equations
(22), i.e. with ¢, # 0 for all values of z, can be found as
the null space of K being:

V =N(K) (24)

where N is the null space algebraic operation and the solu-
tion satisfies KV = 0 where K is given in equation (25) by
the block matrices defined in equation (12) and V may be
separated into equivalent blocks also illustrated in equa-
tion (25). The subscripts on the block matrices Vy, in
V refers to their position in the polynomial solution from
equation (21) — the coefficient numbers & reflects the asso-
ciated polynomial order of z, i.e. a column in Vi will be
linked to %zk

K, - . ) Vs
K, K . . A%

K=|_ ' ° and V=|_72 | (25
K2 K1 KO . Vl
K, K; Ky Vo

Computing the null space, in equation (24), yields twelve
solutions given as the columns in V. This corresponds ex-
actly to the number of null-eigenvalues associated with the
quadratic eigenvalue problem in equation (18). Moreover,
this also corresponds to the number of classic solutions,
e.g. the elementary solutions considered by Morandini et
al. [15] determined using a slightly different procedure con-
sidering a Jordan chain formulation. However, the modes
found as solutions to the null space of K are coupled in the

sense that they represent a mix of the classic beam modes.
These modes may be used in the continued beam analysis,
however, they would not give a clear engineering connec-
tion to classic beam theory. Hence, a mode identification
procedure is required in order to decouple classic solution
modes, which are representative.

From an engineering perspective, we know that the
twelve fundamental solution modes can be subdivided into
six rigid body deformation modes; and six strain modes
corresponding to pure extension, (unconstrained) free tor-
sion, pure bending and constant shear strain with linear
varying normal strains; as illustrated in figure 4. From
the displacement fields, illustrated in the figure, it can
be deduced that the individual solution modes may have
contributions from up to four cross section displacement
vectors vz, vo, vi and vy with the corresponding poly-
nomial amplitude functions {$2z%, 122, 2,1} according to
equation (21). Note that each of these four cross section
displacement vectors v have a transverse part vi, and
a warping part viq as indicated in equation (16). Table
3 gives an overview of the twelve fundamental modes in
relation to cross section displacement vectors and their re-
lated polynomial terms as seen from an engineering point
of view. The intent of the fourth line in the table is to give
a reference to the principal axis of displacement, rotation
or bending as 1 or 2 diThe fundamental modes shown in
figure 13 and 14 of the results section 4 may clarify the
principle. However, the displacement vectors need to be
found and identified. Furthermore, from table 3 it can be
seen that this subdivision of fundamental modes leads to
a logical separation based on polynomial order related to
these modes. Thus, the polynomial order may be used
in a mode identification procedure, which follows in next
section.

Identification of modes dependent on polynomial order
The procedure adopted to identify the cubic, quadratic,
linear and constant amplitude function modes is similar to
the procedure described by Vieira [23]. The ordering and
the orthogonalization procedure, which we apply is new.
The orthogonalization procedure is based on strain energy
for strain modes and on inertial energy for rigid modes.
In the following, four superscripts are introduced — one
for each polynomial "family". The four superscripts used
for sub-columns of V are: C, L, B and S assigned to con-
stant modes of zero order, linear modes of first order, bend-
ing modes of second order, and shear modes of third order,
respectively. Having found the null space in equation (24),
the columns in the block vector V3 contains the displace-
ment content of third order. From our engineering view-
point only two modes with constant shear and linear bend-
ing should be identified with this particular order. There-
fore the columns in V must be decoupled using V3. To
do this and in order to identify displacement modes with
a cubic content, a singular value decomposition (SVD) is
applied to V3. The SVD results in a decomposition of V3
in a null part "-" and a non-null part Vg. However, the
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Figure 4: Hlustration of fundamental displacement modes

Table 3: Amplitude functions of cross section displacement vectors related to the fundamental displacement modes.
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decomposition is applied not only to V3 but to the whole
mode space matrix V, such that it is subdivided into a
remaining mode space V' of lower order and a third order
mode space VS, which we relate to shear. Hence, the null
space of K takes the form V = [V", VS], which may also
be written as:

\%
AVASI Vs

v=| ? 2 (26)
Vi Vi
\I%

Next, the modes of second order, i.e. bending modes, are
identified by performing a SVD on the remaining block ma-
trix V5. This similarly leads to a decoupling into new re-
maining modes V™" and second order bending modes VE.
The null space of K now has the form V = [V"", VB V5],
Finally, the last step is to decouple linear and constant
terms through a SVD on the remaining sub-matrix Vi"
whereafter those modes related to the non-null singular
values receive a superscript L where as the remaining part
a superscript C. The number of modes having a given or-
der complies with the numbers expected from table 3. Fur-
thermore, the result of this successive procedure is that we
have decomposed the polynomial displacement modes ac-
cording to polynomial order and the matrix V now takes
the form:

)

V3
. . V2B Vg

V= (27)
Vi VPoVY

Vi Vi Vi Vg

Even though the modes have been identified and sorted ac-
cording to their polynomial order, the linear modes are not
separated into a rigid part and a strain part. Furthermore,
the modes are not pure and for example the third order
modes V5 may be contaminated by parts of the lower or-
der modes VB, VI and V€ and so forth. It would also
be convenient that the strain modes are orthogonal with
respect to strain energy, for example that they represents
the principal axis bending modes.

To achieve all this, a procedure following the steps listed
here, will be executed on the modes in equation (27).

a) Split linear modes into rigid modes and orthogonal
strain modes.

b) Remove lower order strain modes from higher order
strain modes.

¢) Find principal bending modes from the second order
modes.

d) Find shear modes following the principal axis of bend-
ing.

e) Transform rigid modes according to principal direc-
tions.

/) Remove lower order rigid modes from higher order
modes.

The following subsections will describe the individual pro-
cedural steps.

a) Split linear modes into rigid modes and strain modes

To identify the classic beam modes we need to intro-
duce and relate to the strain energy formulated with re-
spect to the polynomial cross section displacement modes.
In this regard, consider the strain energy from equation
(10), where the integration over the beam length is not
of interest since we investigate cross section behaviours at
an arbitrary point along the beam, however, the energy
depends on the product of the amplitude functions. Thus,
we consider the strain energy in a cross section or rather
the strain energy density per beam length, which takes the
form:

vor ] [Khw - o KR [Vet

,_ 1] ven - Koo Koy - varn (28)
2 vyt : KZ;Q K, - V!
vor' aow - Kaollvaen

As stated previously, we assume the functions ¢ and 7 to
be polynomials of third order multiplied by a set of coef-
ficient vectors introduced as displacement vectors. As a
result, the mode vectors in equation (28) may be formu-
lated, for a single mode, as:

_ 1 3 1 2
Vo) = §V3wz® + 5Vowz® + Viwz + Vou

1 3,1 2 (29)
von = §V3nZ® + 5Ve02” + Vigz + Voo
and its first derivatives as:
/1 2
V) = 5V3w2” + Vauwz + Vig
(30)

r__ 1 2
Vol = 3V302° + Vaqz + Vig

Based on our engineering intuition and mathematics we
foresee the following:

o Inserting the zero order rigid modes VE will all result
in zero energy density, hence, all being rigid motions.

o For the first order modes V" corresponding to rota-
tional rigid body modes, extension and torsion will
result in four modes with some constant energy den-
sity, since the modes are not pure.

o The second order modes VB corresponding to bending
will result in two modes with constant energy density.

« The third order modes V5 will result in a constant
energy density term corresponding to pure shear and a
quadratic energy term corresponding to linear varying
bending moments.

Consequently, it is convenient to introduce an inner prod-
uct based on the strain energy density to be able to com-



bine mode vectors. This inner product we formulate as:

Ek-ﬁ-l) , V€l+1> E

Viw 1 K sl Ve | ey
o V?@Q K;Y)Q ng V?Q
V%k:Jrl)w K;Q KZ}w v?l-}-l)w
Viernod Koy Koo v{lJrl)Q

If V' and V7 represent columns ¢ and j, the inner prod-
uct computes a number (representing the work and related
stiffness of the two modes). On the other hand if V* and
V7 each represent a number of columns (for example a
mode family) the inner product computes a subspace (stiff-
ness) matrix related to these modes. Thus, the subscripts
k and [ refer to the coefficient numbers related to the poly-
nomial degree (see equation (25)) whereas ¢ and j refers to
the solution family or a column number. Note that the +1
in subscripts (k + 1) and (I 4 1) stem from differentiated
terms in equation (30); when for example gathering energy
terms of constant or quadratic dependency on z.

In order to separate the rigid modes and strain modes
all having a linear amplitude, we use the inner product
in equation (31) and substitute V* and V7 with V*. As
highlighted, modes of first order have either zero strain or
constant strain. Consequently, we use the cross section
displacement vectors v, Voo, View and vig in the inner
product (i.e. k =1 =0). Hence, let us analyze this strain
energy density of the four first order modes resulting in a
4 x 4 matrix K" as follows:

<=(lu] ),

From the four dimensional subspace K" we can now ex-
tract eigenvalues and eigenvectors in order to identify and
separate the rigid modes VL% from the strain modes V2Z.
As a bonus the extensional and torsional modes are sep-
arated into individual principal eigenmodes as well. The
rigid body motions have zero eigenvalues whereas exten-
sion and torsion modes have separate eigenvalues related
to axial stiffness and torsional stiffness. The full polyno-
mial vector space takes the following form:

(32)

V3
vy V3
V = (33)
Vit ViR Ve VY
v§ vie | vEkE vEB V3

Rigid modes  Strain modes

b) Remove lower order strain modes from higher order
strain modes

Since the higher order strain modes are contaminated by
parts of lower order strain modes the next step is to remove
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this contamination. For this purpose, we will use a ma-
trix projection procedure with an adequate inner product
related to the energy. Since both the linear strain modes
and the second order bending strain modes correspond to
constant strain and constant strain energy density we will
use the inner product defined in equation (31). Further-
more, we will use dots below a matrix symbol to indicate
the updated matrix, however, in the following subsections
with independent operations we will discard the dots of
previous subsections. Thus, subtracting the linear strain
modes from the bending modes can be done as shown here:

yB — VB _ VLE ,PEEB

(34)
in which ’PI];E B is given by:
-1

Lg Lg Le B
e ([ B, (),
1 1 B 1 1 E

The inner strain products in the angular brackets were
defined in equation (31).

Similar, linear strain and second order bending are re-
moved from the third order modes using:

VS = VS (VLE PLES 4 B P%S) (36)
where
s vie] ViR T/ [vEe] VS
P = Le |’ |x/Le Le |’ |v/S (37)
Vi ] _V1 E Vi A& E
and
Bl T[~/B1\ ! B S
pBS _ Vo Yo Yo \& (38)
S\ VBT VB vEl VS
Pt Le 1 E ol 1 E

Now we have made sure that the strain modes are pure,
however, bending and shear modes are not in principal
directions and the modes may also be contaminated by
rigid modes.

¢) Find principal bending modes from the second order
modes

At the present stage we have sorted the modes into rigid
modes and strain modes according to order. Pure exten-
sion and restrained torsion have been found. However,
the bending modes and shear modes do not reflect bend-
ing about principal axes. Let us therefore extract a 2 x 2
stiffness matrix: K® from a bending subspace using the
inner strain product in terms of equation (31) and the two
second order modes in VB7 ie.

o= (l-bal),

From this two dimensional subspace, we now extract eigen-
vectors identifying the principal bending modes. Thereby
we can find the bending modes related to the principal axes
of classic theory. Eigenvalues are related to the bending
stiffness’s.

(39)



Table 4: Pseudo mass matrices of cross section elements

el __
mww -

mgl, = fobel (telNgzNQ + TlgtgleNa>dS

bet
Jy (1NTNG + taNTN, + L3N N, ) ds

d) Find shear modes following the principal azis of bending
The shear modes correspond to the third order modes,
which have constant shear strain and linear varying bend-
ing shear. Thus, the bending terms are related to the
quadratic energy terms (z2-terms). Let us therefore ex-
tract a 2 x 2 stiffness matrix: K of the bending part
of the third order (shear) subspace again using the inner
strain product and the two third order modes as follows:

<= ()b,

Notice that the inner product uses: k =1 =1 in equation
(31).

From the two dimensional stiffness subspace related to
the linearly varying part of the shear modes we can extract
eigenvectors that identify the principal bending modes and
thus transform the third order shear modes in accordance
with the principal directions of the bending modes of clas-
sic beam theory.

(40)

e) Transform rigid modes according to principal directions
The principal directions are now given by the transla-
tions of the quadratic variation of the bending modes V5
or rather Vsz, (since V];’Q can be disregarded due to its
diminishing magnitude). Hence, through a matrix projec-
tion procedure, it is possible to rearrange the two linear
rigid modes to follow the principal axes. As we are op-
erating on a geometric basis, we formulate the projection
through a geometric inner product anticipating that the
displacements correspond to velocities of a pseudo inertial
energy density with unit mass density being found as:

Ur

N|=

i,J i, i,J
/ upul 4+ uwiul + uiul dA
A

M

where the pseudo mass matrices M,,,, and Mqq are found
by assembly of the cross section element mass matrices
m¢, and mg, given in table 4.

A geometric inner product, "similar" to the one related
to strains in equation (31), is formulated based on the in-
ertial energy Uy substituting the displacement modes from

equation (29). Then, a geometric inner product is formu-

lated as:
T .
- Mggq vig

viwt), - |

J
van

N|=

[ Vi

Vb?’]

| @

i
Viw

7
ViQ
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where ¢ and j indicates a polynomial family and k£ and [
represents a coefficient number.

Using principles from matrix projection we transform
the linear modes using a subspace spanned by the second
order parts of the bending modes. The linear modes fol-
lowing principal directions are then found through:
vhe = vieppnB

(43)
where

-1
Pyt = (Vin Vi) (ViR VE) ()
In a similar manner, it is possible to transform the rigid
constant modes into principal directions. As a matter of
fact, the four directions are already represented in the so-
lution space being the first order part of the linear mode
family. Thus, through a matrix projection the constant
modes are projected onto the directions given in VIf. So,
V© =voper

(45)
where .
P?L - <Vg’vg>1 <Vg’VIf>1

With the above transformation the rigid modes are now
directed according to the principal directions.

(46)

f) Remove lower order rigid modes from higher order
modes

The last modification step missing is to make sure that
no higher order modes contain any constant or linear rigid
motions.

While the rigid body modes have zero strains we cannot
use the procedure from step b) and the strain energy den-
sity. As a consequence, we need to introduce a separate
inner product to remove the contamination in the higher
order modes. Hence we use the geometric inner product
from equation (42).

First, let us clean the linear rigid modes, i.e. let us re-
move the contamination with constant rigid modes from
the linear rigid modes by:
vie — yLlr _yC 'P?LR

(47)
with .
it = (VE.VS), (Vi)

Secondly, let us clean the linear strain modes, i.e. let us
remove the constant rigid modes from the linear strain
modes:

(48)

YLE _ VLE o VC P?LE (49)

with .
e — (i), (Vv

Then, we clean the second order modes:

(50)

vB=vB_

(VOPP® 4 v Pt) (51



with .
PYB = <V§’,VOC>I_ <VOC’YOB>I (52)

and )
Pyt = (VinvEe) (ViR YE)  (69)
Finally, we clean the third order modes through:

V=Vi- (VOPE 4 v Ps) ()
with .
PoS = <V§,V€>; <V§,y§>1 (55)

and 1
Pt =(vinvin), (vinvD), 69

Displacement formulation of polynomial modes

Having completed the steps a) through f) we can assem-
ble the fundamental polynomial solutions into a practical
displacement formulation. For us a practical displacement
formulation allows the use of the Hadarmard product in
which the amplitude functions are in the form of a diagonal
matrix. Let us therefore introduce a polynomial displace-
ment vector V,, consisting of the four block matrices of V
in a row of blocks:

V,=[Vs Vy Vi V] (57)

Furthermore, let us introduce I, as a n, x n, = 12 x 12
diagonal unit matrix. This allows us to write the displace-
ment formulation of the fundamental polynomial modes as
follows:

T
V3 %ZSIP ) 2 Ip
| Ve N L |
P VvV, . . 2I, - I, p
Vo . . L L
=V, ¥, T, ¢, (58)

where we have taken the liberty to introduce the diagonal
matrix ¥, that contains all polynomial amplitude func-
tions and a polynomial transformation matrix T,. The
column vector ¢, holds the n, = 12 constants belonging
to each fundamental displacement mode. These constants
are the constants belonging to each of the (mode) solutions
to the differential equations and are to be determined by
the use of boundary conditions.

3.8. Full displacement formulation

Finally, the full displacement solution encompassing
both exponential and fundamental polynomial modes can
be found. The exponential modes found in equation (19)
may also be written as:

u. =V, ¥, I c (59)

Channel
cross section

Rectangular
cross section

Properties
100 mm
40 mm
25 mm
3.0 mm
210 GPa
0.3

node

OR I™T o o>

Figure 5: Geometrical and material properties of the rectan-
gular cross section and the lipped channel cross section.

where I, is just a "dummy" unit matrix of size n. X n.that
allows us to write the full displacement solution as:

Tl
- I, Ce

In which we have introduced V as the full mode matrix,
W as the full diagonal amplitude matrix and T, as a con-
stant transformation matrix containing T, and I.. This
concludes the cross section mode determination procedure.
Note that since each fundamental mode is a combination
of four cross section displacement fields v¢ to v} the num-
ber of columns in V is: 4n,.+(2n—n,) = 4n,+n,., where n
is the number of degrees of freedom in the cross section, n,
is the number of fundamental modes, and n. the number
of exponential modes. However, the number of constants
cis2n =n, + ne.

u=u,+u.=VW¥T.c

=V, Ve][\lfp \I;e

4. Results of the mode determination procedure

Using the approach just presented within this paper, it is
possible to identify all eigenmodes of a thin-walled beam
with an arbitrary shaped cross section, based on simple
elastic constitutive relations and an appropriate discriti-
zation of the cross section. In the following, results from
the mode determination procedure will be presented for
a rectangular cross section and a channel cross section.
The cross section discretization and geometrical as well as
material properties are shown in figure 5 for both cross
sections. In the rectangular cross section analysed, there
are 24 nodes with six degrees of freedom each giving a total
of 2 - 144 modes of which 12 are the fundamental modes.
In the channel cross section analysed, there are 25 nodes
with six degrees of freedom resulting in a total of 2 - 150
deformation modes.



Table 5: First twenty-two non-null eigenvalues, i.e. A # 0

Rectangular cross section Channel cross section
13 0.0065 + 0.0060i 0.0011
14 0.0065 — 0.0060i —0.0011
15 —0.0065 + 0.0060i 0.0058 + 0.0046i
16 —0.0065 — 0.0060i 0.0058 — 0.0046i | |
17 0.0363 + 0.0144i —0.0058 + 0.0046i - -
18 0.0363 — 0.0144i —0.0058 — 0.0046i 0.1 + o
19 | —0.0363 + 0.0144i 0.0079 + 0.0067i o -
20 —0.0363 — 0.0144i 0.0079 + 0.00674 gt Tt e
21 0.0366 + 0.0136i —0.0079 + 0.0067i —~ et e T
22| 0.0366 - 0.0136/ —0.0079 — 0.0067i S 00p %@%@@Eﬁ%ﬁ +
23 —0.0366 + 0.0136i 0.0373 = + T T
24 | —0.0366 — 0.0136i —0.0373 pE v Ay
25 0.0374 + 0.0186i 0.0388 + +
26 0.0374 — 0.0186i —0.0388 —0.1 + +
27 —0.0374 + 0.0186i 0.0374 4+ 0.0170i N N
28 —0.0374 — 0.0186i 0.0374 + 0.0170i ‘ ‘ ‘ ‘ ‘
29 0.0401 + 0.0193i —0.0374 + 0.0170i —0.6 —0.4 —0.2 0.0 02 04 06
30 0.0401 — 0.0193i —0.0374 — 0.0170i Re())
31 —0.0401 + 0.0193i 0.0394 + 0.01644
32 —0.0401 — 0.0193: 0.0394 + 0.0164+ Figure 6: Plot of eigenvalues for the rectangular cross section
33 0.0616 0.0394 + 0.0164i
34 —0.0616 0.0394 + 0.0164i

4.1. Ezponential modes

To find the exponential modes we solve the quadratic
eigenvalue problem in equation (18) using the state vector
approach. This results in a pool of eigenvalues of which
twelve are null, some are real pairs and others are complex
quadruples. The first twenty-two non-null eigenvalues are
listed in table 5 for both cross sections. These eigenval- 0.2

ues may be presented in the complex plane as shown in * +

figure 6 for the rectangular cross section and in figure 7

for the channel cross section. From these figures, it is seen 0.1F T+ +* .
how the pairs of real eigenvalues {\, —A} lay on the hor- + %

izontal axis with Im(\)=0, whereas the complex quadru- T I A

ple eigenvalues, i.e. pairs of complex conjugated eigenval- h F, +

=R

ues, {\, A, =\, —\}, are those points which are distributed
double-symmetrically in the complex plane. The eigenval- +¥;%
ues can be seen as an inverse length scale related to the

attenuation for the real part and to the period of the har- —0.1 1 L+ +4 N
monic variations for the imaginary part. The first three
sets of related amplitude functions are shown in figure 8 + +

for the rectangular cross section and figure 9 for the chan- —0.2 ‘ :

: . -1.0 0.0 1.0
nel cross section. Each row in these figures corresponds
to either a couple or quadruple set of eigenvalues in which Re())
we use: f(z) = e* for eigenvalues with a negative real
part and: f(z) = e**79 for eigenvalues with a positive
real part, where £ is the beam length. These functions are
also used in the amplitude matrix to limit the numerical
magnitude of the exponential function. It can be seen how
the imaginary parts yield positive or negative oscillation
along the beam axis.

5
%
-
At

Figure 7: Plot of eigenvalues for the channel cross section
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Figure 8: Amplitude functions for rectangular cross section eigenmodes (with a beam length of £ = 750mm)
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Figure 9: Amplitude functions for channel cross section eigenmodes (with a beam length of £ = 750mm)
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Figures 10 and 11 illustrates the first 22 exponential dis-
placement modes of the two cross sections. The displace-
ment modes are separated into transverse displacements
and warping displacements and the modes are ordered ac-
cording to their attenuation length in an increasing or-
der. As mentioned the modes are normalized in such a
way that the real, largest displacement in either the X-
or Y-direction is set to unity for the transverse displace-
ments. To be able to see the imaginary part of a mode it is
scaled by a factor "scale" given below the illustration. The
magnitude of the warping part of a mode depends on the
normalization of the transverse displacement. We there-
fore need to scale the warping modes by the ratio between
maximum transverse displacement and maximum warping
displacement to be able to plot them corresponding to a
unit out of plane deformation. Hence, the "ratio" is given
in the figure below the real part of the warping mode. We
also need to separately "scale" the imaginary parts of the
warping displacements — also given as a "scale".

For the channel cross section it is worth noting that
the first mode with the longest attenuation length is the
classic exponential part of restrained torsion, i.e. with
rotation and warping of the cross section (giving normal
stresses). Furthermore, it is notable that the rectangular
cross section does not have this kind of mode and there-
fore restrained torsion of the rectangular cross section will
involve distortion of the cross section as well.

The quadruple complex exponential modes can be trans-
formed into four coupled real modes with a procedure pre-
sented by Jonsson and Andreassen [14]. To illustrate this
two of these four modes with attenuation towards the other
end are shown in figures 12a and 12b for the rectangular
cross section mode 13 through 14 and in figures 12c¢ and
12d for the channel cross section modes 19 through 20. In
both cases a beam length of £ = 750 mm has been used
for the illustration.

It can be seen that the eigenvalues that come in pairs
are associated displacement modes, which have one cross
section displacement field which attenuates in one or the
other axial direction. Furthermore, the quadruple eigen-
values correspond to complex displacement modes which
consist of one real cross section displacement field plus
or minus one imaginary cross section displacement field,
which may be combined corresponding to two different
types of attenuations, one in each direction. Thus, the
modes of the quadruple complex eigenvalues correspond
to two cross section deformation fields, which are com-
bined with the amplitude functions into four different spa-
tial beam displacement modes.

4.2. Fundamental modes

The fundamental modes are found as the null space of K
being the set of equilibrium equations to be fulfilled by the
polynomial displacement modes up to third order. In the
null space we then find modes of different polynomial order
using SVD on the block related to a given order. Then we
follow the procedure a) through f) to separate rigid body
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modes and strain modes and to identify the different fun-
damental modes illustrated in figure 4. The figures 13
and 14 illustrates these modes by only showing the rele-
vant, either transverse displacement field or the warping
displacement field depending on which is largest. In our
case one of these always diminishes by a factor of about
1073 or less. Furthermore we do not show displacements
which are numerically so small that they are irrelevant,
i.e. in our case a factor of 1072 lower than the relevant
part of the mode (dependent on machine precision). All
displacement plots have been scaled to a maximum unit
displacement. Therefore, for example in the illustration
of a pure bending mode 9 in figure 13 or 14, the magni-
tude of the constant transverse displacements v{ related
to the Poisson effect is in reality much smaller than shown
compared to the quadratic transverse displacements v?.

It is very interesting, from an engineering point of view,
to take a closer look at these cross section displacement
fields. It can be seen that there are twelve fundamen-
tal modes combining twelve independent cross section dis-
placement fields. The independent cross section displace-
ment fields are identified in the bottom line of the figures
corresponding to V. Thus, with the theory of this pa-
per the fundamental polynomial displacements of a thin-
walled beam is described by twelve cross section displace-
ment fields and not the conventional six or seven cross
section displacement fields of three dimensional beam the-
ory or three dimensional Vlasov beam theory, respectively.
The six cross section displacement fields of classic beam
theory are the 3 warping modes i.e. axial extension + two
flexural and 3 transverse modes corresponding to pure ax-
ial extension and two flexural

5. Conclusion

The theory behind the novel prismatic thin-walled beam
model including deformable cross sections, shear deforma-
tions and the Poisson effect has been introduced. Further-
more, a new mode determination procedure for determina-
tion of both exponential distortional displacement modes
and the fundamental beam displacement modes has been
presented and the modes have been illustrated in the re-
sults section. The new developments are especially related
to the procedure used in determining and separating the
fundamental modes mathematically and numerically. The
novelty of the procedure lies in the use of both strain en-
ergy and the geometric based products relating to the or-
der of the polynomial terms within each of the fundamen-
tal modes. Furthermore, the exponential modes presented
do not decouple the original coupled quadratic differential
equations, but they represent the full solution space, and
decouple a related set of first order differential equations,
as in Jonsson and Andreassen [14]. However, the shear
and Poisson effects are now included in all modes of the
present formulation and the fundamental modes are not
simple solutions based on additional constraint assump-
tions.
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(b) Warping displacements

Figure 10: Exponential modes — Rectangular cross section

All the classic beam deformation modes have been found
by the procedure and it is interesting and worth noting
that restrained torsion is represented among the exponen-
tial solutions as a pure twist of open cross sections (such as
the channel cross section) with the same warping function
shape as the fundamental solution of unrestrained torsion.
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Specially noteworthy is it that for closed cross sections,
this is not the case.

It is also noteworthy, by observation of figures 13 and
14, that it seems that the twelve fundamental solutions
being combinations of one to four different cross section
displacement fields are simple combinations of twelve cross
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(b) Warping displacements

Figure 11: Exponential modes — Channel cross section

section displacement fields.

It is interesting that the defined internal strain energy
products also can be used to find the principal direction of
bending thereby giving a direct link to classic beam theory
and perhaps also to the cross section properties. This link
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and the relation of the boundary conditions to the classic
section forces of beam theory is the focus of the continued
research. With the determination of all the displacement
modes it is now possible to continue the research and for-
mulate an advanced beam element based on exact axial
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the channel section

Figure 12: Quadruple complex distortional eigenmodes illustrated as real coupled modes

shape functions and the possibility of just choosing a re-
duced number of displacement modes.
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Abstract

Using energy principles, a thin-walled beam element is introduced for the analysis of beams with deformable cross-
sections that are prone to distortion. The beam element is based on previously attained semi-analytical displacement
solution modes of an advanced thin-walled beam model. The first-order beam element for linear analysis handles shear
deformations related to both Timoshenko and Mindlin-Reissner type deformations, warping effects of torsion, cross-
section distortion including associated warping effects, as well as the transverse displacement effect from normal stress.
The formulation can handle both open and closed cross-sections without special attention. The formulation of the
displacement solution modes and the stiffness integration of the products of the advanced displacement modes using the
Hadamard product are described. The paper also presents the transformations between modal degrees of freedom and
element displacement degrees of freedom. Four examples show the beam element capabilities and good agreement with
results obtained using the shell and solid elements of a commercial finite element program. The kinematic assumptions
that the thin-walled beam model accommodates leads to local shear stress transfer at corners. This transfer of shear
stresses is not normally seen in thin-walled beam formulations or shell models. However, the shear transfer is verified

through examination of a finite element model using solid elements.

Keywords: Thin-walled beams, beam element, distortional beam theory, shear deformations, corner shear

1. Introduction

Since the industrialisation of steel production in the
late nineteenth-century thin-walled metal members have
been utilised in structures such as bridges, buildings, aero-
planes and ships, see [1]. The main reason for this is the
high stiffness-to-weight ratio of the thin-walled members.
This led to the development of theories enabling analysis
and the assessment of such members since it was realised
that during flexure and torsion, the beams generated non-
negligible normal stresses due to warping displacements
of the cross-section. Vlasov introduced the well-known
one-dimensional thin-walled beam theory, [2]. With this
theory, the torsional warping effects of open thin-walled
beams were included. Kollbrunner & Hajdin [3] expanded
the theory to include cross-sections with closed cells. In
line with the development of the finite element method,
thin-walled beam elements were introduced having a total
of 14 degrees of freedom, see for example [4, 5]. The inclu-
sion of extra degrees of freedom was to handle the torque
and bimoment acting upon the member. However, such fi-
nite beam elements do not include the distortional effects
of the cross-section. Consequently, a thin-walled beam
formulation incorporating cross-sectional distortion is the
Generalised Beam Theory (GBT), which was introduced
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by Schardt in 1966 under the name "Verallgemeinerte
Technische Biegetheorie" (VTB) [6, 7]. Kollbrunner and
Hajdin describe a similar approach to the introduction of
a consistent distortional beam theory in [8]. Nonetheless,
with the research performed by Davies and co-workers,
GBT was spread outside the German-speaking academic
society [9, 10]. Since then, different academic groups have
contributed to its development — e.g. Simao & da Silva
[11], the group around Camotim [12, 13, 14, 15, 16, 17], or
by Ranzi and his colleges [18, 19] just to mention some of
the many contributors. The general idea of GBT is to rep-
resent and discretise the cross-section along the wall cen-
tre line to find distortional transverse displacement modes
that have orthogonal warping modes. The approximate
displacement modes are achieved solving specific eigen-
value problems related to the beam equilibrium equations.
Besides, each mode is affiliated to an axial amplitude func-
tion. Therefore, considering standard beam finite element
formulations, the axial variations affiliated to each cross-
sectional displacement field is assumed to be Hermite cubic
polynomials.

Alongside the development of GBT, other thin-walled
beam analysis methods were developed too. One of these
methods is the Finite Strip Method (FSM), Cheung [20].
Several versions of the original FSM formulation have been
presented, for example the constrained Finite Strip Method
(cFSM), by Adény & Schafer [21, 22, 23]. The constraints
introduced, enables a subdivision of the displacements into
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specific displacement modes, which allows a modal decom-
position as in GBT. Both Adény et al. [24] and Silvestre
et al. [15] give detailed comparisons of cFSM and GBT.
The approach to Generalised Eigenvectors (GE), presented
by Genoese and co-workers [25, 26], was recently com-
pared to the GBT method by Garcea et al. [27]. The
GE method is very versatile due to the discretisation of
the cross-section using finite shell elements. On the other
hand, this discretisation increases the number of elements
compared to the method presented in this paper as well
as the GBT method. Besides, the GE method is oriented
towards anisotropic members, whereas the present theory
concerns isotropic material behaviour.

In the last decade, semi-analytical methods, which are
closely related to GBT, have been presented. In these
methods, the cross-section is discretised into wall elements
with local displacement interpolation. The beam solution
modes are found through an analytic solution of the equi-
librium equations related to the cross-sections. Among
others, this has been done by Jonsson & Andreassen [28],
and Vieira et al. [29, 30] who adapt the strong analyt-
ical approach of solving the beam differential equations.
Solutions to the coupled beam equilibrium equations are
deduced through the solution of a related quadratic eigen-
value problem. Both Jénsson & Andreassen [28] and Vieira
et al. [29, 30] introduce a wall element with nodal degrees
of freedom and displacements being interpolated by use of
standard "beam" type shape functions when they discre-
tise the cross-section. Hence, the cross-sectional displace-
ment fields are directly found as eigenvectors. Vieira et
al. [29, 30] use a spectral transformation to transform the
complex eigenvectors, whereas Jonsson & Andreassen [28]
as well as the method presented in this paper, directly use
the complex solution vectors with the associated complex
attenuation functions as beam displacement modes.

The present paper presents a novel formulation of a
beam element based on the semi-analytical thin-walled
beam theory introduced by the authors in [31]. The fun-
damental modes deduced in this paper are not identical,
but similar to the semi-analytical beam modes presented
by Vieira [32], they are, however, derived using a differ-
ent orthogonalisation approach. Using the theory pro-
posed by the authors, a coupled system of beam differen-
tial equilibrium equations is derived by taking variations
in the strain energy. The theory approximates the cross-
sectional displacement field by use of discrete wall elements
and uses exact analytical solution functions to express the
axial variation along the beam, which are deduced from
the related differential equilibrium equations. The so-
lution of the differential equations involves a decoupling
that leads to cross-sectional displacement fields with asso-
ciated solution functions that correspond to the amplitude
functions. The essential idea of this beam model is that
the formulation is based on approximated cross-sectional
displacement fields that have associated axial amplitude
functions, which are the exact analytical solutions of the
homogeneous beam differential equations. While knowing

the cross-sectional displacement fields and their associated
amplitude functions, it is possible to formulate a beam ele-
ment adopting these exact solution modes as interpolation
functions. In fact, with a linear combination of these pre-
established displacement modes, it is possible to develop a
beam element. The main and very important feature of the
presented method, when compared to GBT, is that GBT
uses Hermite polynomial functions to describe the axial
variation, whereas the present theory uses the exact solu-
tion functions and therefore a further discretisation with
multiple elements along the beam axis is not necessary.
Another essential feature of the beam model presented
here, is the use of generic wall elements having six de-
grees of freedom at each node. Consequently, it is pos-
sible to connect the beam end cross-section to other fi-
nite elements, e.g. finite shell elements. Accordingly, the
wall elements used to discretise the cross-section are dis-
crete straight wall elements. Both displacement degrees
of freedom, as well as rotational degrees of freedom, are
taken into account. Therefore, even with a coarse mesh
both global and local distortional modes become a part
of the solution space — a space containing cross-sectional
displacement fields that are found as solutions to the equi-
librium equations. These solutions are found through
the solution of the related polynomial eigenvalue problem.
From the eigenvalue problem, eigenvectors are extracted
as cross-sectional displacement fields with associated exact
axial amplitude functions depending on the eigenvalues. In
combination, a displacement field and an axial amplitude
function describe a beam displacement mode. The modes
are grouped into two families: those having eigenvalues
equal zero, and those having eigenvalues different from
zero. The former include global modes with polynomial
amplitudes of maximum third-order reflecting the twelve
fundamental beam displacement fields. In the latter case,
beam displacement modes with amplitudes having expo-
nential decays are considered. In these cases, the eigenval-
ues represent an inverse length scale parameter related to
the St. Venant principle through an axial decay effect.

2. The beam model

An arbitrary thin-walled beam element is located in a
global Cartesian coordinate system spanned by the axes
(X,Y,Z). The beam axis is assumed to be straight and
parallel to the Z-axis with the cross-sectional plane being
orthogonal to this, as illustrated in Figure 1. Furthermore,
a local, right-handed orthogonal coordinate system is in-
troduced in the cross-section with (n, s, z) as the normal,
tangential and axial directions.

2.1. Kinematics

The displacement of a material point within a beam el-
ement is given as a sum of cross-sectional displacement
fields multiplied by amplitude functions, which vary along
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Figure 1: Global and local Cartesian coordinate systems re-
garding a thin-walled beam

the longitudinal beam axis. The intensities of the ampli-
tude functions are determined by the constants of inte-
gration, which become the modal degrees of freedom of
the beam model. In other words, the displacements are
formulated in the three local coordinate directions u,,, g
and u, as a sum of m displacement fields where each dis-
placement field is referred to by index i. Hence, the three
displacements are given as:

M-

Un (S, 2) )2 w;(s) Vi (2) ¢
us(n, s, z) = zm: { wé(s) —-n wfm(s) ]1/%(2) ¢ (1)
i=1
uz(n,s,z) = i [ Qi (s) +na'(s) }ni(z) ¢

N
Il
-

where w! (s), wi(s), Q%(s) and a’(s) are displacement
components of the interpolated cross-section displacement
mode ¢ with reference to the mid-line of the wall elements.
The displacement formulation at hand uses a Kirchhoff
like displacement behaviour in the n, s-plane, a Mindlin-
Reissner like shear behaviour through the wall-thickness in
the n, z-plane combined with a Timoshenko like shear be-
haviour in the s, z-plane. For illustration purpose, Figure 2
illustrates the meaning of the different displacement com-
ponents. Derivatives with respect to n- and s-coordinates
are given as subscripts following a comma whereas axial
derivatives are denoted by a prime. The axial amplitude
functions that describe the axial variation of a given cross-
section displacement field are denoted ;(z) and 7;(z).
The transverse displacements of a cross-section are asso-
ciated with the amplitude function 1 (z), whereas the am-
plitude function 7n(z) is related to the warping displace-
ments, which are displacements that are orthogonal to the
cross-sectional plane. This distinction between amplitude
functions has been chosen in order to keep a clearer rela-
tion of the kinematics in Equation (1) to the kinematics

of conventional beam theories. Therefore, the two inde-
pendent amplitude functions are used. Nonetheless, later,
during the solution of the differential equilibrium equa-
tions, the assumption: ;(z) = 7;(z) from [31] is adopted.
A comment to the deformation formulations in Equation
(1) is that the intensity of each mode i is controlled by
the constant ¢;. These constants correspond to the modal
degrees of freedom and reflect the intensities of the am-
plitude functions belonging to each displacement mode in
the summation of modal displacements in Equation (1).

In order to determine natural cross-sectional displace-
ment fields, this theory discretises the cross-section into
straight wall elements. Each wall element has two nodes
with three translational degrees of freedom and three ro-
tational degrees of freedom. Accordingly, the twelve nodal
degrees of freedom related to a wall element are collected

. i i . o
in the column vectors v¢!" and vfll , respectively, with six

degrees of freedom in v¢' related to translational defor-
mations whereas the remaining six degrees of freedom are
collected in vfl” since they are related to warping deforma-
tions. Here and in the following, vectors and matrices will
be denoted by non-slanted, boldfaced, letters. The wall
element deformations are determined by use of linear in-
terpolation functions given in the row interpolation vectors
N,(s) and N,(s), and also cubic interpolation functions
given in the row vectors N,,(s) and Nq(s) (see also [33]).
Now, considering a cross-sectional displacement field i, the
displacement vector components of a wall element may be
written in terms of interpolation vectors and nodal degrees
of freedom vectors as follows:

wi(s) = Nq(s) vet! , o/(s) = Nu.(s) V?zli

S w

(2)

w!, (s) = N, (s) vel! . Qs) = Na(s) vf{i

n w

Due to the mode formulation, it is convenient to introduce
two wall element deformation vectors u®(z) and uf(z) as
the sum of all m displacement modes including the nodal
degrees of freedom vectors, the axial amplitude functions,
and the constants controlling the mode intensities. Hence,
the deformation vectors of a single wall element are com-

puted as the sum of m displacement modes as follows:
m .
3
ug(z) =Y vi dilz) e
i=1

i(2) ¢

m )
uf(z) = _vi
=1

The interpolation vectors in Equation (2) are independent
of the specific displacement fields. Therefore, the inter-
polation vectors are the same for all modes with respect
to the same wall element. Consequently, for a single wall
element, the displacements in Equation (1) may be inter-
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(a) n,s-plane having a Kirchhoff like be-

haviour like behaviour

(b) n,z-plane having a Mindlin-Reissner

(¢) s, z-plane having a Timoshenko like be-
haVIOur

Figure 2: Allowable deformation patterns regarding a beam element plate for a single mode

polated as:
Un(s,2) = Np(s) us(z)

us(nys,2) = [ No(s) = Nus(s) [ uilz) ()

ws(n, s, 2) = [ No(s) + 1 Na(s) ] ug(z)

¢l and udl are column vectors containing the
nodal deformations related to a single wall element as il-
lustrated in Figure 3. To ease the notation, we will in the
following omit the function handle (z) that shows the ex-
plicit dependency on the beam axis coordinate, except a
few places where there is a specific need for it.

As in [31] the strains are based on the linear small dis-
placement hypothesis and the deformation formulations
from Equation (1). This renders the following strain for-
mulations where the normal strain becomes zero (€, = 0),
but the transverse distortional normal strain and the axial
normal strain are given as:

in which u¢

/
€ss = Uss and e,, =u, (5)
The non-null engineering shear strains are found as:

and  Yp. =ul, + Uy (6)

/
Vsz = Ug + Uz,s

Uy

Figure 3: Wall element, which is used to discretise the cross-
sectlon also illustrating the deformation components from uel
and ug, ! respectively

whilst v,s = 0.

2.2. Strain energy and cross-sectional stiffness matrices

Since a linear elastic first-order analysis is considered,
the constitutive equations follow from the assumption of
zero normal stress o, = 0 as given in the following Equa-
tion (7). Here, the stresses are directly found from the
strains. The material properties are assumed to be elas-
tic and isotropic with a modulus of elasticity E, a shear
modulus: G = E/(2(1 4+ v)), and a plate elasticity mod-
ulus: E, = E/(1 — v?) in which v is the Poisson ratio.
The non-null stresses are then found using the linear con-
stitutive relations including coupling terms between axial
and transverse stresses related to deformations within the
cross-sectional plane due to the Poisson effect. Hence,

Oss E;, vE, 0 0 €ss
Ozz | _ vE, E; 0 O Eas (7)
Tss 0 0 G 0 Yoz
Tnaz 0 0 0 G Ynz

The stresses 045, 0., and 75, depend on all three local co-
ordinates (n, s, z) whereas 7, only depends on the (s, z)
coordinates, since it is constant through the plate thick-
ness (well-knowing the true variation is parabolic). Figure
4 illustrates the included stresses and their distribution
through the thickness. Due to the difference between shear
formulations in the two plate directions of a wall element
and due to the very limited influence of plate shear, a

Figure 4: Allowable stress variations at the wall cut-out from
Figure 1, with oy =0 and s =0



specific shear correction factor has not been implemented.
This is done even though Timoshenko [34] already in 1921
introduced a correction factor to adjust the influence of
shear. Through time, several considerations have been
made on this correction, see for example Cowper [35] or
finite element textbooks [36]. However, well-knowing the
shear variation through a wall is incorrect, its influence is
assumed to be small and a correction would be out of the
scope of this paper.

The linear elastic strain energy is formulated by inte-
grating the strain energy density over the full continuum
and by substituting stress terms using Equation (7). Ac-
cordingly, the linear elastic strain energy becomes:

1
U= 5/ (Esggs + By, + 2Fseq56..v
v (8)

+ G2+ G ) dv

The strain energy is partly integrated by performing inte-
gration over the cross-section area. The total strain energy
expression is found by adding up the cross-sectional inte-
grations of each wall element, i.e. integrating over both
wall width and wall thickness and assembling the cross-
sectional wall elements into the strain energy using stan-
dard finite element methods.

The strain energy is formulated by use of cross-sectional
stiffness matrices. Table 1 presents local wall element stiff-
ness matrices deduced by substitution of the strains from
Equation (5) and (6) as well as the displacements from
Equation (4) into the energy in Equation (8). Accord-
ingly, by considering standard transformations and assem-
bling procedures, global cross-sectional stiffness matrices
are derived, see also Cook et al. [36]. The assembling pro-
cedure leads to the following strain energy formulation:

T

S Eles
Uy wa ' ! wQ || Bw
4 v vy
2 u K K . w |
0 w w ww w
A o8 [ea !
Ug Quw aadlUq

Hence, the cross-sectional deformation vectors u,, and ug
contain all wall element deformation vectors from Equa-
tion (3) as a result of the assembling procedure. Addition-
ally, in Equation (9) and throughout the paper a dot [ -]
represents a suitable null matrix. The superscripts s, o
and v indicate terms related to transverse, axial or shear
stresses and strains, respectively.

It is convenient in the following to introduce a com-
mon deformation vector containing both translational and
warping deformations:

(10)

u(z) = [ U (2) ]

un(2)

At the same time, the cross-sectional stiffness matrices are

Table 1: Local wall element stiffness matrices

3
kfﬂw:f()bd (telEsN-sr,st,s + %Ele,san,ss> ds

fio=J" (1B NENa + G ENING ) ds

gs :fob” (te,yEsNgNs,s - %LVESNZNn,ss) ds
Ko = [0 (telGNlNa +1aGNG Nos + %GNZ,sNavs)ds
IS (telgNan + tee GNIN, + %GNI,SNW) ds
kg, = [ (telGNan +taGNG N — %GNE,SNM) ds
K= [0 (telGNlNa +taGNINg,; — %GNI,sNa’s) ds

grouped in blocks as follows:

K3, : e
Kaa - ~ 9 Kab - ~ 3
KQQ KQw '
(11)
K’Y
Ky, = K/, and Ky, = e
: KQQ

in which each block matrix is n xn, where n is six times the
number of nodes used to discretise the cross-section. Thus,
with this block notation, the strain energy from Equation
(9) is written as:

T
1 ¢ Kaa Ka
U=- / h B B T
2y | W Kio Kpp| | v
2.8. Modal displacement field and solution space

From the strain energy, in Equation (12), beam equi-
librium equations are deduced using variational principles,
i.e. virtual work principle and partial integration as in [31].
This leads to:

KQUH + Klu’ + Koll =0 (13)

where the stiffness matrices Ky, K; and K4 are defined as
blocks of cross-sectional stiffness matrices as follows:

[ K,
0= ’
I Ko
_ i}‘f e
Ki=| oo g " ] (14)
L Quw — Quw
_K” .
K, — ww U
L 00

The full homogeneous solution space of the second-order
differential equation, i.e. Equation (13), contains two parts
— one related to fundamental modes having a polynomial



amplitude function, and the second one related to modes
with exponential amplitude functions. Hence, the two so-
lution spaces are found as:

e a set of twelve fundamental displacement modes
with polynomial amplitude variations collected in u,,.
Hence, u, contains n, = 12 modes.

« a set of displacement modes having exponential ampli-
tude functions collected in u.. The number of modes
in u, depends on the discretisation of the cross-section
such that u, contains n, = 2n — n, modes. Fur-
thermore, these modes might include pairs of complex
conjugated modes.

Let us detail the formulation of these modes in the follow-
ing.

2.3.1. Fundamental modes

The twelve solutions that are categorised as fundamental
modes having a polynomial amplitude function are explic-
itly written as:

up(z) =V, W,(2) Ty cp (15)

where the cross-sectional nodal degrees of freedom vec-
tors are collected as columns in four block matrices in
V, = [ V3 V32V, Vg]. The blocks act as coefficients
to the polynomial functions 23, 22, z, and 1, respectively.
However, the derivation of these cross-sectional nodal de-
grees of freedom vectors will not be shown here but can
be found in the paper [31]. The amplitude matrix, the
constant-transformation matrix, and the column vector
with the intensity-constants of each mode (modal con-
stants) have the following format:

3

%Ip Ip Cl)l
2
=1 I Cp2
\I'p: 2r ; Tp= Ip y Cp=1| . (16)
21, Ip
I, P Cpo.,

in which I, is an identity matrix of size n, x n, that is
12 x 12 reflecting the number of fundamental modes.
Now, seeking the first derivative of u,(z) in Equa-
tion (15) is traditionally performed by differentiating the
amplitude matrix ¥,(z), which is dependent on the z-
variable. However, in this (polynomial) case a state-space
vector formulation will be used as in the coming exponen-
tial solution formulation. Therefore, it is realised that by
keeping the amplitude matrix as it is and instead shifting
the nodal degree of freedom block vectors in V,, one place
to the right the first derivative of the displacement vector

u),(z) can be written as: uj,(2)=u,(z), where the state-

P
space formulation of the displacement-vector-derivative is
given as:

u,(2) = Vp ¥,(2) Ty cp (17)

In which V, = [ 0 V3 V5 V] is the result of the differen-
tiation operation of u,(z). Thus, we have introduced the

notation 1, in this special formulation of the derivative.
With this refinement, the polynomial solution and its first
derivative, Equation (15) and (17), is conveniently written
in state-space vector format as:

] [v]
. = - ¥, (2) Ty cp (18)

Up Vy

where differentiation of the amplitude functions has been
avoided by just shifting the mode vectors and keeping the
amplitude matrix ¥,

2.8.2. Ezxponential modes

In performing the task of solving the second-order differ-
ential equation system, it is common to rewrite the equa-
tions into a first-order equation system by introducing a
state-vector using a special notation for the derivative of
a vector, see for example Tisseur and Meerbergen in [37].
However, this correctly and as mathematically expected
expands the number of solutions and the size of the prob-
lem and ruins the conventional notion of orthogonal solu-
tion modes. Nonetheless, the variable u1 defined as the first
derivative of the displacement field is introduced. Hence,

u(z) = u'(2) (19)

Following the procedure outlined by Tisseur and Meer-
bergen [37] by substituting u(z) into Equation (13) for
the first derivatives, the second-order differential equation
system can be equivalently written as:

"o
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using the state-vector notation. This first-ordered differ-
ential equation system is solved as a generalised eigen-
value problem by assuming exponential solutions where
each eigenvector corresponds to a vector with the nodal
degrees of freedom and its derivative for a single mode, and
the corresponding eigenvalue gives the exponential ampli-
tude. Consequently, the exponential solution space u, and
its first derivative U, can be written as:

u, V.
[ ] 1:[ . ]\Ile(z)ce (21)

U, V.

in which the nodal degrees of freedom vectors are the eigen-
vectors given as:

V. A )
[.]_lfl v Yf] (22)
V. Vi Vi ... Vp

e

The amplitude matrix and mode intensity constant vector
(modal degrees of freedom) in Equation (21) are:
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Here, A\ represents the non-null eigenvalue of each mode,
which may be complex.

2.3.3. Homogeneous solution space

The polynomial and exponential solutions are given as
Equations (18) and (21), respectively. Thus, the full ho-
mogeneous solution can be written as follows:

[ u ‘| | up ue ‘|
=t
u | Up Ue
vy Ve e, )T, c,
B Vp Ve - W, I. C.
=| . |®T.c (24)
v

where V is the full mode matrix, ¥ is a common amplitude
diagonal matrix containing ¥, and ¥, from Equation (16)
and (23), respectively; and T is a constant-transformation
matrix containing T, from Equation (16) and an identity
matrix, I, of size n. X n.. Furthermore c¢ is a column
vector containing all the mode intensity constants c, and
c. (being modal degrees of freedom).

3. Beam element formulation

Having found the displacement modes of the thin-walled
beam element in the previous section, based on the chosen
discretisation of the cross-section, this section formulates
the beam element using these exact displacement modes
as axial interpolation functions between beam end cross-
sections.

The theory developed here takes only nodal forces at
boundaries into account, as well as nodal deformations.
This has been chosen in order to keep a simple formu-
lation. Nevertheless, distributed loads acting along the
beam member axis can be implemented using a similar
method as the one reported by Andreassen & Jonsson [38].

To derive the beam element formulation, the potential
energy is formulated as the sum of the strain energy and
the potential from applied loads:

V=U+I (25)

The strain energy U is given in Equation (12) and the
potential IT of external nodal forces at each end of the
beam element is given as:

-
u(0 f
do [T o)
ll(f) fg
where fy and f; are load vectors. Each load vector refers to
one of the two beam ends as indicated by the subscripts.

Furthermore, a single load vector contains a load parame-
ter for each nodal degree of freedom in the cross-section.

3.1. Modal beam stiffness matriz

To formulate a beam element, we must derive its stiff-
ness matrix. To do so, we consider the strain energy from
Equation (12).

As interpolation functions, the natural beam displace-
ment modes found as solutions in the previous section,
i.e. Equation (24), will be used. Thus, considering the
full homogeneous solution space, a formulation of a modal
beam stiffness matrix is presented letting the vectors of
constants be perceived as the temporary modal degree of
freedom vectors. Later, these temporary modal degrees
of freedom vectors are transformed into a nodal degree
of freedom space containing the classic deformations and
rotations at each node. Consequently, we have a beam
element with a number of displacement modes that re-
flect the exact deformation modes derived for this specific
beam element. Thus, substituting the homogeneous solu-
tion space and its first derivatives from Equation (24) into
the elastic strain energy in Equation (12) we have:

-
1 ¢ A\ Kaa Ka \%
sz/cTTprT . "N ® T, cdz
2 Jo Vi | Kee Kup||V
and in integrated form it follows as:
U=1c"Ke (28)

The modal stiffness matrix K is found by computing the
matrix multiplications and performing the integration.
However, in order to substantially ease and reduce the
number of computations, a reformulation is introduced.
The fact that only the (diagonal) matrix ¥ depends on z is
utilised and therefore, only these matrices have to be inte-
grated. We rearange the order of the terms in K to isolate
the W-matrices within the integration. This is achieved
by introducing the mathematical Hadamard product: o,
which allows us to separate the matrices ¥ in the inte-
gration from the rest of the expression. Furthermore, to
utilise the fact that ¥ contains values in its diagonal only,
the Kronecker product: ® is introduced. Hence, a combi-
nation of the Kronecker product and a re-formulation of ¥
into a column vector containing the diagonal components
only, denoted ¥, (see also [31]), the modal stiffness matrix

is written as:
T
A\ Kaa Kab A\
A4 K], K A4

L
o /xilT@ \ildz)Tc
0

With this formulation of K, the integration is easily per-
formed analytically due to the fairly simple amplitude
functions by first computing the indefinite integral, and
then using the fundamental theorem of calculus.

K=1T'"

C

(29)



As stated previously, the energy formulation in Equation
(28) considers the vector of modal constants as variables
or temporary modal degree of freedom vectors. In the
next subsection, a transformation is introduced where the
temporary modal degrees of freedom vectors are written in
terms of nodal beam element degrees of freedom vectors
at the boundaries, i.e. at each end of the beam.

3.2. Beam element formulation

This subsection formulates the beam element by consid-
ering the potential energy from Equation (25), the load
contributions from Equation (26), and the strain energy
written in modal form in Equation (28). At first, the strain
energy shall be written in terms of beam element bound-
ary degrees of freedom instead of the temporary modal
degrees of freedom. Then, substituting into the potential
energy, taking variation and by requiring the first varia-
tion of the energy to be stationary, we achieve the beam
element formulation.

3.2.1. Beam element degrees of freedom

The beam element degrees of freedom are directly linked
to the cross-sectional degrees of freedom at the boundaries.
Therefore, considering the deformation vector u(z) and
letting the position variable z adopt the boundary values
of the beam element, i.e. z = 0 and z = ¢, where ¢ is the
beam length, the deformations at the boundaries in the
beam element degree of freedom vector u, are expressed

as:
u(0)

= 30

w [ u(f) ] (30)

Substituting: u(z) = V¥(z)T.c, a part of Equation (24),

we may write Equation (30) as:

. [u(O)][V\IJ(O)TC

venT. |© (81)

From this equation it can be seen that there is a relation
between the deformations at the boundaries in u, and the
temporary modal degrees of freedom in c. This relation
was in fact used in Equation (28). Consequently, a trans-
formation matrix A is introduced and Equation (31) is
re-written into:

V ¥(0) T,

V U(0) T, (32)

uy=Ac whereA:l

With this formulation, A is defined as a squared, positive
definite and invertible matrix that allows ¢ to be written
as:

c=A""u, (33)

3.2.2. Beam element stiffness matrix
If Equation (33) is substituted into the modal strain
energy formulation in Equation (28) we are able to express

the beam element strain energy in terms of displacements
at the boundaries. This is:

U=1iu/[A7"] KA ',

= =

u] K u, (34)

in which the beam element stiffness matriz K is introduced
as:
K=[A'] KA (35)

3.2.3. The beam element

Substituting the strain energy from Equation (34) into
the potential energy Equation (25) and the potential from
the applied load in Equation (26) the full potential energy
takes the form:

V =U+1 = %ugKub—ube

Then, taking the first variation in the displacement field,
duy, the potential energy becomes:

8V = ou] Ku, —ou] f (36)

and by requiring stationarity of the energy, it must equal
zero for all variations (6V = 0 where du] # 0) whereby
the well-known linear elastic beam formulation is derived:

Ku,=f (37)

With the formulation in Equation (37) a linear relation
between the boundary loads f, and the boundary defor-
mations uy is given — the beam element formulation.

The trivial solution procedure of the equation system in
Equation (37) will not be expressed here, but reference is
made to literature, such as Cook et al. [36]. In this liter-
ature, it is also described how aligned beam elements can
be assembled. However, bear in mind that the presented
formulation relies on exact longitudinal amplitude (shape)
functions whereas traditional finite element formulations
rely on approximations between end nodes through inter-
polation functions. Therefore, the presented beam element
can adopt any length without further approximation.

3.3. Boundary conditions

The boundary conditions of a beam element are defined
by the use of standard methods and operate on the de-
formation vector u,. In this deformation vector each de-
gree of freedom within the two beam end cross-sections
are represented. Therefore, it is possible to add bound-
ary conditions related to each degree of freedom within an
end cross-section. Furthermore, this allows the modelling
of many kinds of supports, e.g. simple support conditions
and clamped support conditions. However, support and
load conditions should, if possible, be distributed to several
nodes avoiding singularities and local stress concentration.

Advanced boundary conditions such as partially re-
strained cross-sections will not be described here, but spe-
cial cross-section restraints can be added at the cross-
section level, which however, is beyond the scope of this

paper.



4. Element deformations, strains and stresses

Having solved Equation (37), this section describes how
to find displacements, deformation derivatives, strains,
and stresses in an arbitrary point within a wall element
of any cross-section within the thin-walled beam element.

4.1. Deformation field

The deformations at the beam boundaries are given by
the beam element deformation vector u, corresponding to
the cross-sectional degrees of freedom at the beam element
ends. Knowing these, the modal content can be deter-
mined using Equation (33). This enables us to determine
the deformation vector and the axial derivative of the de-
formation vector of a cross-section at a given axial position
z using Equation (24). Thus, the cross-section deforma-
tion vector at the axial position z can be found as:

U@V o) T At (38)
. - V c b

From these cross-section deformation vectors the local wall
element degrees of freedom ug and uf as well as the cor-
responding axial derivatives 1% and ug can be extracted.

The local deformations in any point (n, s) of a wall ele-
ment in the cross-section at the axial position z may now
be found using Equation (4).

4.2. Strain field

Using the element wall deformations and axial deforma-
tion derivatives of a cross-section at the axial position z,
the local strains at any point of a wall element is found as
follows:

el

efl(n,s,2) = [Ni,—nN, ] ul

e (n,s,2) = [N+ nN,]ud

Yih(s,2) = Npuf + Nyug (39)
vel(n,s,2) = [Ny —nN, Juf

+[No,s + nNa ] ufy

in which only the element wall deformation vectors u¢ and
u¥ and their axial derivative 1 and ug are dependent on
the axial position coordinate z.

4.8. Stress field

Knowing the cross-sectional strain field for a given z-
value, the corresponding stresses can be computed using
the linear elastic constitutive relations for isotropic materi-
als presented in Equation (7). Substituting the strains into
the constitutive relations gives us the stresses in each wall

element as a function of the local coordinates as follows:

G:i(nv 5, Z) = E; ( [Ns,s ful

+ v[Nq +nNy]ug )

—nN,, 5] u

otl(n,s,z) = E; ( [Ng +nNg]ug

+v[Noo = nNpoJug ) (40)
=G (Nyud + Nyugd )
é(n,s,2) = G ( [Ny —nN, ;] u

+ [Ng, +nN, ] ug )

Distinguishing between membrane and bending stresses is
common. However, this will not be incorporated directly,
but could easily be achieved from Equation (40) by sep-
arating into terms that are dependent or independent of
the n-coordinate.

4.4. Ezxponential decay

A characteristic of those modes having an exponential
amplitude function is that they are either derived as real
couples or complex quadruples. A real couple represents
a displacement mode with an increasing amplitude along
the beam axis peaking at the one end, and a mode with a
decaying amplitude peaking at the other end. In case of
a complex set of eigenvalues, there will be a real and an
imaginary cross-section mode vector with an increasing or
decreasing harmonic oscillation. This corresponds to two
mode shapes with a decaying amplitude function and two
modes with an increasing amplitude function, respectively.

Due to this characteristic feature related to the exponen-
tial modes and their axial decay behaviour, it becomes in-
teresting to assess their attenuation length. The real part
of the eigenvalue determines the attenuation length. The
higher the eigenvalue, the shorter the attenuation length
is. Hence, an attenuation length can be defined as:

€

e = TRe]

(41)

in which € defines a lower level of interest where the decay
has lead to a diminished displacement, which could be
taken as 5% of the peak value. This results in e being
around three. Jonsson [39] introduces a value of € = 7
giving a lower level of: e™™ ~ 4%. Giavotto et al. [40] use
a value of € = 3, which results in: e™3 = 5% as the lower
level. The use of € = 7 is relevant due to the equivalence
to half the harmonic wavelength or a buckling length.

Depending on the attenuation length, the displacement
modes found in Equation (21) can be characterised as
global distortional modes or local distortional plate modes.
The latter has an attenuation length typically less than the
main cross-section dimension, whereas the former often
has an attenuation length being several times the cross-
section dimension.



5. Examples

In this section, four examples are used to illustrate and
assess the results of the presented thin-walled beam el-
ement formulation. Both the geometry and the type of
load vary in the four examples:

1. A cantilever having a hollow rectangular box section
loaded in shear. This example illustrates the deforma-
tion behaviour, the normal stresses and shear stresses,
as well as the shear stress transition at cross-section
corners.

2. An open channel section with a non-symmetric trans-
verse load, which induces torsional deformations, tor-
sional warping stresses and bending stresses.

A short simply supported box section loaded in bend-
ing and exhibiting shear lag with non-linear normal
stresses in the flanges.

The final example is a longitudinal assembly of three
similar channel elements with a distortional load.
The attenuation length related to exponential modes,
mode intensities, and transverse bending stresses are
assessed.

For each example, both stresses and nodal displacements
will be compared to results obtained with the commercial
finite element program Abaqus [41]. The finite element
analysis is performed on a model with isotropic material
and four node shell elements (S4-shell element in Abaqus
syntax) using full integration. Furthermore, the linear
elastic finite element calculations are based on a structured
rectangular mesh with a side length of 5 mm.

5.1. FEx. 1 — Tip loaded cantilever box section

The first example considers a cantilevered beam with a
closed rectangular cross-section as shown in Figure 5, in
which the parameters of the example also are listed. The
load at the tip is applied as evenly distributed line loads
along the two webs of the end cross-section in Abaqus and
as nodal loads in the theory presented here. Solving the
beam element formulation from Equation (37) and then
determining the deformation using Equation (38) renders
a deformation as illustrated to the left in Figure 6 mainly
having flexural bending deformation. In Table 2 nodal dis-
placements are listed, which are extracted from the present
theory and from the analysis using the commercial finite
element program. Furthermore, a comparison between the
nodal displacements and their relative deviation is given
in Table 2. The values are extracted from the nodes at
the free end (Z = ¢) in the upper and lower right corners
of the cross-section. In the vertical direction, a relative
derivation of 0.10 % is seen. If the horizontal displace-
ments in u, are compared, given in the table, a relatively
high deviation is seen but at the same time the displace-
ments are small, and therefore this deviation corresponds
to 0.1 - 1073 mm which is equal to three millions of the
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Figure 5: Ex. 1 — discretisation and geometrical properties of
the cantilever beam with a closed box section including local
set-up and general load/support configurations

width only. The wu,-deformations represent a contraction
of the top flange and a widening of the lower flange. This
is a result of the Poisson effect since the top flange is ex-
posed to axial tension and the bottom flange is in axial
compression.

The stresses will be analysed next and for this purpose,
the cross-section at mid-span (Z = ¢/2) is assessed in order
to alleviate the local effects that may occur near loaded
or supported nodes. To the right in Figure 6, a three-
dimensional illustration of the normal stresses is shown
and in Figure 7, the values found at mid-span are seen.
The axial stresses are obtained along the centre line of
the cross-sectional wall elements. A good agreement is
seen between the two models with a maximum relative
deviation of —0.54 % found at the corners.

To be assessed next are the shear stresses. Due to the
kinematics and the constitutive relations in Equation (7),
we have 7,,-stresses as well as 7,,,-stresses. On the other
hand, the shell model in Abaqus considers 75,-stresses only.
Comparing the 7,,-stresses yields overall, good similari-
ties and the relative deviation of the largest 75,-stresses is

400
300
200
100

0 L
~100 |

-200

~300

400
[MPa]

AN

Figure 6: Ex. 1 — Deformation and o .-stresses. Deformations
are scale by a factor 20



Table 2: Ex. 1 — Nodal deformations at the upper and lower
right corners comparing the two models. Measurements in

[mm]
(3,£%,0) | Present Abaqus  Relative
(n=0) theory deviation
Uy +0.0013 +0.0012 —8.33%
Uy —1.9060 —1.9080 0.10 %
Uy +0.2711  +0.2712  —0.04 %

around 0.15 % depending on the mesh density. Figure 8
illustrates the shear stresses at Z = £/2 and for n = Omm,
i.e. the middle surface of the wall. The different mesh
densities illustrated in Figure 8 have been considered to
investigate the local shear effects near the corners. Thus,
in the upper flange, two, four, six and eight elements are
used as shown from the left to the right in the figure. Es-
pecially the 7,.-plots indicate that the stresses are locally
peaking near the corners. Additionally, if comparing the
Tsz-Stresses obtained to those from Abaqus, deviations are
significant at corners. However, with an increased mesh
density this effect becomes more isolated near the corners.
This local effect has inspired us to perform a detailed inves-
tigation of the stress transmission around corners. There-
fore, a solid finite element model is created in Abaqus as
well. In this model, an eight-node linear brick element
(C3D8 in Abaqus syntax) has been used to discretise the
beam in a structured mesh. A section cut-out of the upper
right corner at mid-span is illustrated in Figure 9 and the
stress variations along the middle of the walls are likewise
shown here. From Figure 9, it can be seen how the stress
variations follows the same pattern as the one obtained
considering the present theory (Figure 8). However, Fig-
ure 9 also indicates that the decay of the 7,,,-stresses is less
than two times the wall thickness. Therefore, the results
from this solid finite element model indicate exactly what

115.3 115.3
(7
Abaqus
A
-115.3 —-115.3

Figure 7: Ex. 1 — Axial stresses, 0., in [MPa] at Z = £/2
and n = 0 mm. To the left stresses found from the theory
presented here, to the right stresses extracted from Abaqus
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was seen in the stress distributions in Figure 8. This result
supports that small elements near the corners should be
considered when adapting the present theory in combina-
tion with this type of wall element. An example of this is
illustrated in Figure 10 showing the results of an analysis
with an element mesh having small wall elements at the
corners only.
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Figure 8: Ex. 1 — Shear stresses at n = 0 mm and Z = ¢/2 with an increasing mesh density. Also including stresses
subtracted from the finite element analysis in Abaqus. Stresses given in [MPa]. The 7,.-stresses marked with an asterisk

indicates the highest stress value obtained in the wall element closest to the corner either in the web or flange (the stress
is computed at teen points along each wall element)
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Figure 9: Ex. 1 — Results from the Abaqus model using solid elements
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7, at middle web: —20.430 MPa
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Figure 10: Ex. 1 — Shear stresses using a special mesh with
small elements near corners. Stresses in [MPa] at Z = ¢/2
and n = 0 mm

5.2. Ex. 2 — Shear loaded cantilevered channel section

This example examines a mono-symmetric cantilever
channel section exposed to a load which induces flexural
and torsional displacements. The load configurations, as
well as the geometrical properties, are shown in Figure 11.
In the present implementation, the end cross-section load
is applied as point loads distributed to each node in the
web and in the finite element program Abaqus as a line
load acting on the web. The clamped boundary condition
is modelled by restraining all degrees of freedom within the
end cross-section. Due to the load configuration, the beam
element deforms partly in bending and partly in torsion as
illustrated in Figure 12.

This example is chosen such that it includes the added
effects of classic flexure, torsion and torsional warping.
The channel section is loaded along the web and thus, the
beam is expected to flexure about the strong principle axis
and twists about the shear centre. Furthermore, since the
beam is cantilevered with a completely clamped bound-
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Figure 11: Ex. 2 — Geometric properties, discretisation, and
load properties of the shear loaded channel section

Figure 12: Ex. 2 — Three-dimensional deformation of the can-
tilever drawn with a scaling factor equal 20

ary condition at one end, the beam will exhibit torsional
warping. Therefore, it is chosen to compare the resulting
displacements at the free end and the stresses close to the
clamped end of the beam with those found using finite
shell elements.

Let us first compare the displacement of the beam end
at the central node point A in the web to an Abaqus shell
model. The points A, B and C are shown in Figure 11.
First of all, the displacements in u, and u, of point A van-
ish in both models. The present theory results in a vertical
displacement of u, = —1.8392 mm and Abaqus results in
uy = —1.8473mm giving a relative deviation of the present
theory compared to Abaqus of 0.44%. The influence of tor-
sion and the related warping can be illustrated by simply
comparing the nodal displacements of the outer most free
edge point of the lip, i.e. at point B. In Table 3, the three
displacements of the upper lip are given. It can be seen
that the maximum relative deviation of the displacements
at this nodal point B is 0.87 % and it is related to the ax-
ial warping displacements of warping and flexure. Similar
displacements are of course found at point C in the lower
lip, however, u, and u, change signs.

Next, the normal stress and shear stresses of the model
are compared to those found using an Abaqus shell model.

Table 3: Ex. 2 — The nodal displacements in [mm] of the free
end of the upper lip at point B, i.e. at Z = 500 mm.

Present  Abaqus Relative

theory deviation
Uy 1.1055 1.1107 047 %
u, | —2.9155 —2.9324  0.58 %
Uy —0.1488 —0.1501  0.87%
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Figure 13: Ex. 2 — A comparison of normal stresses, 0., in
[MPa], measured 10mm from the fixed end, i.e. at Z = 10mm,
and n = 0 mm
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Figure 14: Ex. 2 — The shear stresses are shown in [MPa]
at a cross-section 10 mm from the support, i.e. Z = 10 mm,
moreover, n = 0 mm

Since the modelling of displacements and therefore also
shear stresses are quite different at section corners and
therefore difficult to compare, especially at the fixed end,
we have chosen to compare stresses that occur quite close
to the fixed end, having Z = 10mm. The mid surface nor-
mal stresses measured 10mm from the fixed end are shown
in Figure 13 and the stress values are given at the cross-
section corners, at the lip end, at the web quarter point,
and at the centre of the flange. This clearly shows that
there are torsional warping stresses and bending stresses
of the beam. Comparing the stresses obtained using Equa-
tion (40) and those from Abaqus it is seen that there is
some difference, which is maximised at the upper right
corner with a relative deviation of —17.4 %.

The shear stresses that occur 10 mm from the fixed end
are shown in Figure 14. In general, the 7.-stresses have a
similar distribution in both models.

Overall, the results obtained using the two different
models agree. This despite the fact that the theory pre-
sented includes 564 degrees of freedom only, whereas the
shell finite element model in Abaqus includes 28482 de-
grees of freedom. Indeed, this is due to the use of exact
axial beam interpolation functions since the discretisation
of the cross-section in the two models coincide.
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5.3. Ex. 3 — Box section exposed to shear lag

This example assesses the effect of shear lag, which, for
example, can be seen in relatively short thin-walled mem-
bers with relative wide flanges. Consequently, this exam-
ple examines a simply supported closed box beam with
wide flanges.

The effect of shear lag is typically seen in box bridge
sections with wide flanges and short spans. The shear lag
effect is often of importance near supports (for example for
uniformly loaded multi span members) and also near other
large local transverse loads. This is because the shear with
the associated shear deformation (warping) has to "trans-
fer" the effects of the shear force (local transverse load) out
into the flanges in order to build up the normal stresses
needed for equilibrium. This effect is not included in clas-
sic theories of torsional beam theories, but it is included
in the present model.

In this example, the beam is exposed to bending about
the weak axis by a central transverse load. The load is ap-
plied on the central cross-section as line loads acting along
the webs as shown in Figure 15. The figure also illustrates
the cross-section and gives the necessary parametric val-
ues.

The boundary conditions are introduced as a restriction
of the in-plane translations at the two end cross-sections,
and as an axial restraint to a single node within the cross-
section at Z = 0 mm. The rotational degrees of freedom
are not restrained, and the load is distributed and applied
as concentrated nodal loads in both models.

The vertical displacement of the lower left corner node at
mid-span of the present model is compared to the results
of an Abaqus shell model. Using the presented model a

A b A
Properties
h 40 mm o node
b 100 mm D 50 N/mm
t 0.5 mm E 210 GPa
J4 200 mm v 0.3

Rigid connection
between beams
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Figure 15: Ex. 3 — General configurations used in this example
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Figure 16: Ex. 3 — Normal stresses in [MPa] measured 10 mm
from the middle of the beam, i.e. at Z = 190 mm

vertical displacement of u,, = 0.7325mm is found and using
Abaqus a vertical displacement of u, = 0.7408 mm is found
with a relative deviation of 1.12 %.

The normal stress variation in a cross-section situated
10 mm from the centre of the beam is used to assess
whether the present theory will cover shear lag. Hence,
the stress variations in Figure 16 shows that the present
theory covers shear lag. A relative reduction in the nor-
mal stresses between the flange middle and the corner is
32.3%. If the results are compared to those obtained from
the commercial finite element software Abaqus the maxi-
mum relative deviation is found to be 1.28% at the corners.
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5.4. Ex. 4 — Open lipped channel section

This final example considers a simply supported beam
with an open channel section. The beam is assembled by
three similar beam elements each of length /. The beam
is loaded at: Z = 2¢ with a point load at the end of each
lip. The cross-section parameters, cross-section discretisa-
tion, and load set-up are shown in Figure 17. The support
conditions are achieved by prohibiting any transverse de-
formations at each end. Furthermore, at the one end, a
single node is restricted to have no axial deformation. The
rotational degrees of freedom at the two ends are kept as
free variables.

The overall deformation is illustrated in Figure 18. It
corresponds to a global bending behaviour combined with
a local deformation close to the loaded nodes. A cut-out
side-view near the loaded nodes is illustrated in Figure
19. This figure shows clearly how a global bending and
local deformations influence the deformed shape. Besides,
the figure highlights how local deformations decay over a
certain distance.

Let us in the following look into the behaviour of the cen-
tral beam element. First of all, the constants computed by
Equation (33) are found. They determine how the cross-
sectional displacement modes are linearly combined based
on the intensities given by the components of ¢. The con-
stants are illustrated in Figure 20 where the absolute real
values are given above the horizontal axis, and the abso-
lute imaginary parts are given below the horizontal axis,

b
A h 7
Properties
h 100 mm o node
b 40 mm P 1 kN
c 25 mm FE 210 GPa
t 3.0 mm v 0.3
¢ 500 mm

Rigid connection
between beams
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Figure 17: Ex. 4 — Open profile with simple supports, prop-
erties and overall static system
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Figure 18: Ex. 4 — Three-dimensional visualisation of the de-
formation corresponding to the simply supported beam with
two single loads attached to its lips. The deformation is scaled
by a factor of 20
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Figure 19: Ex. 4 — Decay length seen in the Y, Z-plane
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Z=1000mm

respectively. The first twelve constants correspond to the
fundamental modes and should always be considered. In
Table 4, the most pronounced constants are listed with
respect to the exponential modes.

To assess those modes contributing to the deflected
shape, focus will be on the cross-section where the loads
are applied (Z = 1000 mm). In addition, only the trans-
verse displacement part of the modes will be considered.
The total transverse deformation of the cross-section is
given in Figure 21a, which is found computing: u(z)
VW (z)T.c. Figure 21b and 21c illustrates the contribu-
tions from the polynomial and exponential modes, respec-
tively. Hence, the polynomial modes contribute with a
rigid vertical deformation whereas the exponential modes
gives the distortional deformations.

From the graph in Figure 20, it was indicated that not
all modes were activated and Table 4 listed the eight most
pronounced exponential modes. If these eight modes are

Table 4: Ex. 4 — The eight highest constants with respect to
the exponential modes regarding beam segment two (written
in a decreasing order)

mode % ci L, [mm]
23 0.655 84.28
15 0.214 + 0.267¢ 540.90
16 0.214 — 0.267¢ 540.90
45 —0.173 4+ 0.109: 38.13
46 —0.173 — 0.109: 38.13
31 0.141 — 0.0572 79.75
32 0.141 + 0.057: 79.75
53 0.123 31.52
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added together the shape shown in Figure 21d is achieved
and it is very close to the one including all 288 exponential
modes in Figure 21c. Now, a further assessment of these
eight exponential modes are illustrated in Figure 22a to
22e. In these figures the light grey deformed cross-section
represents the combined shape from Figure 21d. The de-
formation in Figure 22f is a combination of all remain-
ing exponential modes showing a very small contribution.
This confirms that the primary exponential deformation is
a result of the eight selected modes. Figure 22b, 22c¢ and
22d are contributions from three pairs of complex modes,
which becomes real when they are added together in pairs.

For each of the exponential modes, an axial attenua-
tion length may be found considering Equation (41) let-
ting € = m. These attenuation lengths are listed in Table 4.
Hence, mode 23 has an attenuation length: L, = 84.28mm
that corresponds very well with the observed deformation
pattern seen in Figure 19. The modes 15 and 16 are those
having the largest decay length, which harmonise well with
the cross-sectional deformation seen in Figure 22b.

Next, let us perform a comparison between the obtained
stresses using Equation (40) and those obtained from the
shell model in Abaqus. To avoid effects from singularities,
a cross-section located 50 mm from the loaded nodes is
analysed, which is at Z = 950mm. The axial stresses along
the cross-sectional wall centre lines are shown in Figure 23.
A maximum relative deviation of 0.30% is found at the up-
per right corner whereas the relative deviation at the web
middle is only —0.08 %. Due to the load configurations,
transverse bending stresses will occur. Figure 24 illus-
trates the distribution of these obtained at the outer sur-
face. Since the transverse stresses are interpolated linearly
within each element, the found stress distribution is dis-
continuous between elements. The stresses obtained from
Abaqus are extrapolated averaged nodal stresses, which
therefore are continuous. Nonetheless, the overall shapes
are similar, and the stresses deduced from the two models
coincide with a relative deviation between —0.37 % and
—4.66 %.

6. Discussion

The formulation of an advanced thin-walled beam ele-
ment has been presented. The beam element facilitates not
only classic displacement patterns with rigid cross-section
movements but also in-plane displacements related to the
Poisson effect as well as distortional deformations with as-
sociated warping modes.

One of the main advantages obtained with this thin-
walled beam theory is the use of exact beam interpolation
functions in the axial direction. This allows the beam el-
ement to be used for any lengths. Consequently, a beam
element is not limited to a finite length, which is the case
in GBT since polynomial shape functions govern the axial
variation.

Thus, the presented beam theory only has nodes and
degrees of freedom at its end cross-sections and therefore,
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Figure 20: Ex. 4 — The absolute values of the real and imaginary part of the constants in ¢, respectively

a) All modes b) All polynomial modes

c) All exponential modes d) Selected exponential modes

Figure 21: Ex. 4 — The transverse cross-sectional deformation at the point where the loads are acting (this is at

Z = 1000 mm). The deformations are scaled 20 times

a) Mode 23

¢) Mode 45+46

d) Mode 31432

e) Mode 53

f) Remaining modes

Figure 22: Ex. 4 — Transverse exponential displacement modes at Z = 1000 mm. The light grey cross-section is the one
from Figure 21d. The displacement modes are scaled by a factor of 20

only include a limited number of degrees of freedom com-
pared to, for example, a similar analysis using finite shell
elements in the framework of the finite element method.
Again, this is a result of the exact beam interpolation func-
tions. Hence, the derivation of these axial interpolation
functions is a result of the procedure deducing the beam
element stiffness matrix, which is based on the novel semi-
analytic cross-section analysis presented by the authors in
[31]. Straight wall elements is used to discretise the thin-
walled cross-section centre line, and with a strain energy
formulation, a system of cross-sectional equilibrium equa-
tions is deduced. This formulation is purely based on linear
elastic constitutive relations and isotropic material prop-
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erties. The system of equilibrium equations is solved as
a polynomial eigenvalue problem, and cross-sectional dis-
placement fields are computed as eigenvectors with the as-
sociated eigenvalues being related to axial amplitude func-
tions. The derivation of beam displacement modes is de-
composed into two parts. One is related to fundamental
beam modes and the other to distortional beam modes.
The former part of the modes is belonging to the zero
eigenvalues, which is found through a systematic decom-
position and combination of the related eigenvectors. This
is a procedure which is used by Morandini et al. [42] and
Genoese et al. [25, 26]. The latter part of the modes is
based on the non-zero eigensolutions.
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Figure 28: Ex. 4 — Axial stresses, 0, in [MPa] at Z = 950mm

and n = 0 mm
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Figure 24: Ex. 4 — Transverse bending stresses, oss, in [MPa]
at Z = 950 mm and n = t/2. The star indicates to which
element or node a given stress corresponds

Through examples, usability of the beam element is il-
lustrated and reasonable agreement with results obtained
with a commercial finite element program is achieved.
However, near corners, in the cross-section, local shear ef-
fects occur due to the transmission of shear stresses around
corners. This leads to a shear stress distribution that devi-
ates from those shear stresses obtained in more classic shell
models obeying the Kirchhoff plate hypothesis. Nonethe-
less, considering detailed solid finite element models, a sim-
ilar transmission of shear stresses is seen confirming the re-
sults obtained in this theory. As a consequence, this theory
results in a detailed assessment of shear stress transmis-
sion between non-aligned wall elements. However, a fine
discretisation with wall elements is to be preferred close to
these regions to get improved results. This is due to the
attenuation of the shear stresses being no more than twice
the wall thickness.

It has been shown in one of the examples how deforma-
tion of a cross-section can be decomposed into displace-
ment modes. This mode decomposition is directly found
from the solutions as the displacement mode intensity fac-
tors, which indicates the influence of each mode. Thus, in-
depth knowledge of the beam deformation can be obtained
right away and is an integrated part of the solution. This

is one of the main advantages of this theory in comparison
with for example cF'SM where constraint equations are to
be added to the kinematic equations to obtain a similar
mode decomposition.

During a mode decomposition, the attenuation of the
exponential distortion modes can be found since this is di-
rectly related to the eigenvalues, which were deduced com-
puting the cross-sectional beam displacement modes. This
is exemplified and verified in one of the examples. Fur-
thermore, this mode decomposition may be utilised in fu-
ture formulations of efficient beam elements with a reduced
number of modal degrees of freedom based on a subset of
modes. Besides, the identification of displacement modes
becomes essential extending the theory to include buckling
and post-buckling analysis of the beam members as well.
Indeed, higher-order exponential displacement modes play
a crucial role here, which is also highlighted in [27].
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Abstract

A generic methodology to perform a first-order linear elastic analysis of thin-walled steel frames based on an advanced
beam model and a specific joint finite element model capable of transmitting deformation modes between beam elements.
The advanced beam model has been previously developed by the authors and relies on a set of displacement modes of the
cross-section so as to accurately reproduce the structural behaviour of a thin-walled element. The joint model consists
in a mesh of finite elements properly discretised to represent the joint geometry and to allow the connection between
advanced beam elements. The main novelty within the present paper is the expression of interfaces between beam
elements and joint elements by a number of generalised cross-sectional beam displacement modes. Hence, standard
degrees of freedom at connected faces are transformed into a reduced number of cross-sectional beam displacement
mode-related degrees of freedom — in general a base change in the degree of freedom formulation. Consequently, this
methodology enables the effects of local cross-sectional distortion to be accounted for as well as transmitted through
joints. This transmission is possible due to the inclusion of joint elements, which couples advanced beam elements that
include higher order deformation effects. Therefore, with this methodology, it is possible to perform structural analyses
of large frameworks with advanced beam elements and joints that allow for distortional effects to be included with only
a reasonable number of degrees of freedom due to the novel mode-based approach. Two illustrative examples have been
included to highlight the usability of the approach. In conclusion, the mode-based methodology analysing steel frames
has indicated promising results, and the generic formulation allows it to be used in the context of any mode-based beam
element formulation.

Keywords: Connections, steel frames, mode-based formulation, thin-walled structures

two non-aligned beam elements is taken care of by intro-
ducing a three-dimensional joint element. This joint el-
ement is modelled as an assembly of finite elements and
therefore it can be adapted to complex geometries. More-
over, this also ensures that the joint element include nec-
essary mechanical properties.

1. Introduction

The analysis of steel frame structures through beam
elements is common practice. The connections between
elements (joints) are modelled based on simplifying hy-
potheses concerning the rigidity. Commonly, hinges or di-
rect transfer of beam displacements without any relative
displacements are considered. This, however, might be
erroneous when analysing beams with thin-walled cross-
sections since local distortional effects are prone to oc-
cur. Effects such as cross-sectional distortion are not in-
cluded in traditional beam element theories. Furthermore,
the assumed joint behaviour may also lead to poor non-
economical and over-sized designs.

With this paper and based on a background overview
given by the authors in a companion paper [1] the authors
propose an approach in which local cross-section effects
are taken into account by using an advanced thin-walled
beam theory, which was recently developed by the authors
as well [2, 3]. In addition to this beam element formu-

The main advantage of this methodology is the use of
beam displacement modes because this allows a the use
of a reduced number of degrees of freedom. The mode-
based formulation is seen as a powerful tool for analyses
of thin-walled beam members. Among others, the Gen-
eralised Beam Theory (GBT) could be mentioned as an
approach to utilise the efficiency related to mode-based
formulations. An example could be Abambres et al. [4].
It follows that within the framework of GBT an approach
to analysing entire frame structures has been developed
by Basaglia et al. [5, 6]. Nonetheless, this methodology
has some difficulty in formulating a fully mode-based for-
mulation because the implementation of joint elements is
not compatible with the mode-based GBT formulation.

lation, the complexity that might occur when assembling
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Thus, beam ends are transformed from the mode formula-
tion into the seven generalised beam displacements, which
was introduced in line with the Vlasov thin-walled beam
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theory [7]. Consequently, the advantages from the mode-
based GBT formulation are lost concerning the joint ele-
ments. Moreover, to include local effects, such as distor-
tion, constraint equations need to be identified based on a
previous finite element assessment and then added to the
seven generalised degrees of freedom, [8].

The methodology presented here includes arbitrary joint
configurations in a global frame analysis. For simplicity,
the formulation considers only direct connections, not in-
cluding components such as bolts, but reflects welded con-
nections. The frame is subdivided into beam and joint
elements in a global Cartesian reference system.

The analysis of frames presented in this paper is per-
formed as a first-order linear elastic analysis assuming
isotropic material behaviour and small displacements with-
out second-order effects. Furthermore, the methodology
gives the ability to decompose an arbitrary deformation
into well-known displacement modes. In extension, the
substructuring technique may be utilised as well as dupli-
cating identical elements within the frame.

2. Mode-based methodology

The generic methodology, which is presented, is based
on a formulation where beam displacement modes govern
the connections between beam elements. Let us outline the
methodology. A beam element is formulated based on a set
of beam displacement modes where each mode consists of
a cross-sectional displacement field consist of an in-plane
part and an out-of-plane part. An amplitude function is
used to describe the variation of the cross-sectional dis-
placement field along the beam element. Hence, instead of
conventional finite element degrees of freedom at the beam
end, the cross-sectional beam displacement fields are used
as novel set of modal degrees of freedom. Consequently,
the connected faces at a joint element must likewise be
transformed into this modal degree of freedom space gov-
erned by the beam elements.

2.1. General beam element formulation

In general, the formulation uses advanced beam ele-
ments which relies on the definition of uncoupled cross-
sectional displacmenet fields , such as GBT [9, 10] or the
approach presented by the authors in [2, 3]. The advanced
beam uses a set of orthogonal cross-sectional displacement
modes, to derive a standard linear elastic stiffness equation
that governs the problem.

KB uf =° (1)

where the superscript B is introduced to specify terms re-
lated to beam elements. In the following, the index may
be followed by a number that refers to a specific beam el-
ement number. The components in Equation (1) are the
beam stiffness matrix KB, the displacement and load vec-
tors, uf and ° respectively. Regarding the displacement

vector, it shall be organised such that the degrees of free-
dom at each beam end are grouped separately in such a
way that the displacement vector explicitly will be written

as: UB
3

B
u,

in which uf and uf relates to the displacements at each
end cross-section, respectively. Similar separation follows
for the load vector 2. To clarify this notation a simple
two-dimensional example is illustrated in Figure la. Here,
only in-plane degrees of freedom are considered.

2.2. General formulation of a joint element

Besides the general formulations of a beam element in
previous subsection, the methodology introduces a novel
joint element. This element is a three-dimensional super-
element that is a result of a discretisation of the joint ge-
ometry by finite elements, e.g. shell elements. Based on
the standard finite element method, a linear elastic equa-
tion system for a joint element is derived by numerical
integrations:

K u = (3)

where the superscript J refers to joint elements. Similar to
the beam element notation, the index may be followed by
a number referring to a global joint element number. The
components in Equation (3) are the joint stiffness matrix
KJ, the displacement vector u’, and the load vector fJ7
respectively. Based on the degrees of freedom in Equa-
tion (3), the system is organised such that the degrees
of freedom in each beam-to-joint interface are clustered.
Therefore, the displacement vector can be written as:

J
w,,
--7-
U,

where u’ without an index contains all degrees of freedom
related to a single joint element whereas each vector u}
relates to an interface, for ¢ = 1,..,n; and ny is the num-
ber of interfaces, i.e. number of adjacent beam elements.
The vector ul holds the remaining degrees of freedom,
which are internal degrees of freedom, degrees of freedom
with a boundary conditions or a load. The categorisation
in Equation (4) is also illustrated in the simplified two-

dimensional example in Figure la for a joint element.

2.3. Transformation and base change

One of the main requirements with this approach is that
the interfaces between beam elements and joint elements
share the same number as well as location of nodes (and
consequently also degrees of freedom).
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Figure 1: Illustration of the subdivision and categorisation of degrees of freedom with respect to individual elements.
The assembly of beam elements and joint elements illustrates the interfaces that are located at element boundaries

The idea is that the degrees of freedom at the inter-
faces shall be expressed in terms of uncoupled displace-
ment modes. To do so, a base change is introduced from
standard degrees of freedom into cross-sectional beam dis-
placement mode-related degrees of freedom. Thus, each
set of degrees of freedom in the element at a specific inter-
face is transformed according to:

u = VI up (5)

where the displacement vector u can either be uf or u

from Equation (2), or one of the vectors u; from Equa-
tion (4) containing standard degrees of freedom, and the
subscript I is introduced to identify interface terms. Ac-
cordingly, the columns in the transformation matrix Vi
contains orthogonal cross-sectional displacement modes.
These modes will be referred to as interface modes. One of
the key stones in this methodology is that the number of
interface modes in V1 can be reduced such that the number
of modal degrees of freedom will be less than the number
of conventional degrees of freedom. Note that the modes
chosen are governed by the beam element connected to the
interface. Furthermore, up is the column vector containing
the intensities of the interface modes — This being the new
set of modal degrees of freedom.

At each interface the transformation in Equation (5)
shall be executed, meaning that a beam element, which has
two interfaces, has two identical transformations related to
the two interfaces — one at each beam end — and thus the
entire beam element transformation and transformation
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Figure 2: Visualisation of interface modes at the right end of
Beam element 1 in Figure la

matrix can be written as:

veE .
u® = T'I3 uF with T? = [ 10 B] (6)
A 47

in which V?O and VE are sets of cross-sectional displace-
ment modes chosen to represent the possible displacement
field of the particular interface at each of the beam ends,
respectively. An example of the beam element transfor-
mation matrix and its two matrices containing the inter-
face modes are shown in Figure 1b. Moreover, Figure 2
presents the idea of interface modes, i.e. cross-sectional
beam displacement fields, with respect to Beam element 1
from Figure 1. The interface modes are contained in VE},
which occur at Interface 2 according to Figure 1b

With respect to a joint element the number of interfaces,
and thereby the size of the transformation matrix needed,
depends on the number of adjacent beam elements. In
accordance with Equation (4) and (5) the transformation
and the transformation matrix with respect to a joint ele-



ment will be:

Vi

u! = Tf uj with Tf =

Here, I, is an identity matrix of size equal to the number
of degrees of freedom of the joint element that are not lo-
cated at an interface, that is the size of u?, in the case of
not having all the internal degrees of freedom eliminated.
FEach set of cross-sectional displacement modes contained
in the matrices Vy; for ¢« = 1,..,n; may differ in size de-
pending on the number of nodes at the specific interface
as well as the number of interface modes to be included.
However, two elements sharing the same interface must use
the same interface modes for the transformations. Thus,
the matrix V& or V& from Equation (6) must equal the
same interface mode matrix in Ty for the same interface.
For clarity, see also Figure 1b, where it has been illustrated
how the different transformation matrices are composed.
Note that nodes may not be shared between interfaces.

Applying the transformation laws with the transforma-
tion matrices in Equation (6) and (7), respectively, on both
the beam element equation system in Equation (1) and
the joint element equation system in Equation (3) these
systems of equations can be expressed in terms of cross-
sectional beam displacement modes.

To this end, the methodology is presented, illustrating
how a beam element and a joint element can be trans-
formed into a mode-based formulation. Finally, an entire
equilibrium equation system for an entire frame structure
can be assembled according to standard assembly proce-
dures, e.g. described by Cook et al. [11]. Hence, this as-
sembly results in:

KSYS usYs — fs (8)
In which the system degrees of freedom u®* are the modal
interface degrees of freedom describing the displacement
mode intensities at the interface. Throughout the next
two sections, the specific joint element and beam element

formulation and modelling used in the present work, will
be deduced.

3. Joint modelling

This section introduces a procedure to formulate a joint
element that is compatible with the methodology previ-
ously outlined.

For simplicity, it has been chosen to use plane triangular
shell elements with three nodes and six degrees of freedom
at each node (see also Figure 3), which is the simplest ele-
ment allowing the modelling of complex geometries. This
shell element is a combination of the following plane con-
stant strain triangular element and plane flexural element.

Figure 3: Triangular finite shell element and its degrees of
freedom. Degrees of freedom related to in-plane deformations
are denoted with a w-subscript and degrees of freedom re-
lated to out-of-plane deformations are denoted with an Q-
subscription. Element normal indicated by i

o A Constant Strain Triangle-element (CST-element)
with an extra drilling degree of freedom parallel to the
plate normal. The stiffness of this rotational degree
of freedom is applied as an artificial stiffness being de-
fined as a fraction of the largest value in the element
stiffness matrix diagonal. Furthermore, this element
includes degrees of freedom related to membrane ac-
tions only and are denoted with a w-subscript (the
in-plane displacements). See also Cook et al. [11] for
more detailed elaboration.

o A Specht-element presented by Specht [12]. This el-
ement covers the flexural displacements and can de-
form out of the element plane. Its degrees of freedom
are denoted with an (2-subscript.

The derivation of stiffness matrices of these two subele-
ments are not included here, nor is the combination of
these, which yields an element stiffness matrix of size
18 x 18. Depending on the joint discretisation, an en-
tire joint element stiffness matrix K’ with corresponding
boundary and load vectors, u’ and £, respectively, is de-
rived and leads to the linear equation system in Equation
(3). The joint element standard finite nodal degrees of
freedom given in u’ will be divided into three categories:

u; Degrees of freedom that overlap with beam degrees
of freedom at the interface between connected faces.

Hence, according to Equation (4) we have: ujT =
JT T
[111 s TN unI ]

us Joint element degrees of freedom selected for bound-
ary or load properties since these effects must be in-
cluded in the joint element as a consequence of the
methodology. These, we keep as standard finite ele-



ment degrees of freedom throughout the entire formu-
lation.

u; Internal degrees of freedom. These represent all the
remaining degrees of freedom. Due to speed optimi-
sation these may be eliminated by condensation.

The remaining degrees of freedom u? from Equation (4)
is separated into the two parts uf and u;. Having rear-
ranged the system from Equation (3), based on the three
categories of degrees of freedom listed above, we may write
the equilibrium equations more explicitly:

Kj Kjf ; Kji llj fj
KfJ Kf : Kf| Us = ff (9)
Ky Ki' K| [w ] [fi

The internal degrees of freedom located in the vector u;
can be eliminated such that:

ui:{Ki}1<fi—[Kij Kit | [EJ{D (10)

and thus, the equation system is rewritten as:
K'a' =#f (11)

where the stiffness matrix is computed according to Equa-
tion (12) and the boundary and load vectors follow in
Equation (13).

kJ:lzj ';J: _lz {Kir[KU Kif} (12)
ﬁJ:[Zi] and fJ:[:Jf] 2: |:Ki:|_1fi (13)

After the elimination of internal degrees of freedom, the
remaining ones are listed such that we have the degrees
of freedom at beam interfaces followed by those degrees of
freedom at the boundaries and the loaded ones. Hence, the
non-condensed degrees of freedom are explicitly written as:

uj,

u; .
W= " (14)

uJ ni

L ur |

where a vector u;, having an index is a subset of u;. Each
subset contains all the conventional degrees of freedom at
the beam-to-joint interface i. The total number of inter-
faces at a specific joint element is denoted n;. For illus-
tration purpose, Figure 4 represents the two-dimensional
joint element from Figure 1la in terms of the notation in-
troduced through Equation (14).

Joint element interface 1
N |1 PR
l\—'-_— ° [ o —

fl\—-é-o °

.
% 0\—— ° L] [ ] (]

Joint element interface 2

Figure 4: Joint element with degrees of freedom according to
Equation (14) being uj; and uj, at the interfaces and us at
the upper right corner where a support is introduced. The
internal degrees of freedom u; are condensed

4. Beam modelling

Any displacement mode-based beam theory may be
adopted here. The main requirement, which must be ful-
filled is that the beam element shall be able to be expressed
in terms of displacement modes and deduce a set of orthog-
onal cross-sectional displacement fields that occur at the
beam ends. This could, for example, be beam elements
formulated by the GBT where beam displacement modes
are deduced based on orthogonal cross-sectional displace-
ment fields. Nonetheless, it has been chosen to adopt the
advanced beam theory presented by the authors in [2, 3],
which is briefly summarised in Appendix A as well. Hence,
the beam element formulation in Equation (1) is valid ac-
cording to Equation (A.20).

The cross-section displacement modes to be used in the
mode transformation are deduced as a part of the beam
element formulation. To explain, the beam cross-section is
discretised by straight wall elements and by use of strain
energy the beam equilibrium equations are derived. This
equation system is then used to determine cross-sectional
displacement fields with associated axial variations as so-
lution modes to the beam equilibrium equations. Exam-
ples of the cross-sectional displacement fields are illus-
trated in Figure 5 and 6, where Figure 5 includes those
cross-sectional displacement fields that corresponds to the
polynomial beam modes and Figure 6 contains those dis-
placement fields that corresponds to the exponential beam
modes. The modes are deduced with respect to the cross-
section assessed in Example 1 in Section 5.1.

The mode determination procedure is an exact solution
method for the second-order differential equation system,
which is solved as a quadratic eigenvalue problem. Con-
sequently, twice as many solution modes are deduced and
therefore, the modes do not span an orthogonal vector-
space. Hence, a selection procedure is required to formu-
late the transformation matrix Vi used in Equation (6).

The cross-sectional beam displacement modes are given
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Figure 5: Cross-sectional displacement modes used to represent the fundamental beam displacement modes, which have
the polynomial amplitude function. Each row represents the content in the four matrices V3 to Vo, respectively. The
dotted-line-box highlights the six rigid motions adopted as part of the interface modes

as columns in the matrix V (see also Equation (A.18)).
The modes both represent solutions with a polynomial
axial variation (Figure 5) as well as solutions with expo-
nential axial variations (Figure 6). The modes are cat-
egorised as fundamental and distortional modes, respec-
tively. Thus, the matrix V may, therefore, be subdivided
into two subsets, which we write as:

V=[V,, V] (15)

The polynomial modes are contained in V,, and consists
of four submatrices, hence V,, = [V3 V3 V; V], where
each subscript refers to the polynomial order that the spe-
cific mode refers to. For clarity see also Equation (A.12)
and Figure 5 in which each row represents the content of
the four matrices V3 to Vy, respectively. According to [3]
the modes in V1, Vs and V3 are repetitions of the modes
in Vo, and therefore these are not relevant for the proce-
dure finding a set of orthogonal cross-sectional beam dis-
placement modes. Through an in-depth assessment of the
modes in Vg only the six rigid cross-sectional displacement
modes should be used, which are highlighted in Figure 5
with the dotted box as well. The remaining six modes
in Vg corresponds to distortional behaviours, e.g. due to

Poisson effects and shear stresses, which can be found as
combinations of the cross-sectional displacement modes in
the distortional set of modes contained in V.

Because the solution modes in V are found as solutions
to a quadratic eigenvalue problem, the distortional modes
are determined as either real pairs or complex quadruples.
Within each pair of modes or quadrupled set of modes, the
mode-vectors are similar only with different signs. More-
over, each set shares the same eigenvalue, which only de-
viates in the sign as well. To avoid repeated modes in the
transformation matrix, Equation (5), and thereby a sin-
gular transformation matrix, a procedure is implemented
choosing the correct modes from the full set of modes in
V.. Accordingly, in case of a real pair of cross-sectional
displacement modes we have, [v —v] € V.. Here, the first
vector is chosen for the transformation, and the other one
is rejected (see for example mode 13 and 14 in Figure 6,
where mode 13 is chosen but mode 14 has been rejected).
In the case of having a set of complex quadruples, the se-
lection is a bit more sophisticated. A complex set of modes
can be written as:

[v -v vV -V ]eV, (16)
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Figure 6: The first number of cross-sectional displacement modes from V. that have an exponential axial variation.
The modes are represented by one pair of real modes and three quadruples of complex modes (each mode eigenvalue is
represented as well). The dotted boxes indicates those modes chosen for interface modes

where a single mode is: v = a+ bi and a and b represents
the real and imaginary part of the vector, respectively.
To represent the complex quadruples in Equation (16),
the vectors a and b are chosen as the unique modes for
the transformation and therefore added separately to the
matrix V7 (see also Figure 6, where the modes 15, 19, and
23 are the modes used as interface modes, which have been
illustrated in Figure 9 as well).

To test whether the chosen modes span an orthogonal
vector-space it is convenient to compute the null-space of
the mode-transformation-matrix Vi, that is:

where AV( ) is the null-space operator. Fulfilling this, the
mode orthogonality is confirmed.

4.1. Normalisation of interface modes

To be able to compare mode intensities in a later post-
analysing assessment of elements based on modes, the
modes in Vi are normalised by letting the translational
degree of freedom with the largest absolute magnitude in
each mode be equal to unity.

5. Illustration of the methodology

Throughout this section, the approach, which has been
presented in the present paper, is applied to two examples
illustrating the versatility and usability. The examples are:

1. A right angled frame corner assembling two similar
lipped open channel sections with different configura-
tions of stiffeners in the joint.

2. A beam-to-column connection between rectangular
hollow sections inducing plate bending and thus, in-
fluenced by local plate bending modes.

The present approach has been modelled by use of the
numerical software MATLAB [13] and the general material
properties used are Young’s modulus: £ = 210 GPa and
a Poisson ratio equal to: v = 0.3. In general, the joint
elements that will be used in the following examples are
modelled using triangular shell finite elements, like the one
in Figure 3. The artificial stiffness related to the rotational

degrees of freedom (vely, vel, vely) is chosen as 1079 times



the maximum absolute value in the diagonal of the element
stiffness matrix.

5.1. Ezx. 1 — Frame corner

This example analyses the mechanical behaviours of a
connection in a portal frame. The connection is an or-
thogonal assembly of two equal length thin-walled lipped
channel sections, as illustrated in Figure 7. The dimen-
sions are given in the figure as well. The frame corner
is modelled by two beam elements and three joint ele-
ments (one primary joint element at the corner and two
secondary joint elements at the two free beam ends). The
boundary conditions are applied to three individual nodes.
One being pinned, one being pinned and movable in the Z-
direction, and one being pinned and movable in the Y- and
Z-directions. However, all three supports prevent trans-
lational movements out of the frame plane (in the global
X-direction), which for example could be prevented by
purlins in a real structure. The load P is applied as a
nodal load with a magnitude of 100 N.

To present an in-depth assessment of the frame corner
and the transmission of displacements through the cor-
ner joint element, different stiffening configurations have
been tested to identify the influences from stiffeners on the
frame behaviour. Hence, four different joint configurations
have been used throughout this example being:

e a joint without any stiffening plates [non]

« a joint with a diagonal stiffening plate [dia]

« ajoint with two stiffening plates (box stiffened) [box

Primary join
element
105mm
Secondary joint
element
™~
A
100mm 165mm %
LA [ /5mm &
B 1 t %
7 eam elemen @qsmm
Y Secondary joint |
X element }J¢

Figure 7: Ex. 1 — The set-up. All plates are 2 mm thick, and
the point load is P = 100 N. To the right, the four different
joint configurations are shown
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Figure 8: Ex. 1 — Mesh density of the primary joint element
with the box stiffening configuration

o a joint fully stiffened with three stiffening plates (di-
agonal and box stiffeners) [full]

The names in squared parenthesis will be used when re-
ferring to the different stiffening configurations. Further-
more, these joint configurations are shown to the right in
Figure 7 as well. Except the degrees of freedom chosen
to represent boundary conditions, loads, and those at the
connected faces, the remaining will be condensed accord-
ing to the procedure in Section 3.

The discretisation of the joint elements are governed by
the nodes chosen in the connected beam element. To il-
lustrate the mesh density Figure 8 shows a discretised pri-
mary joint element with box stiffeners.

The beam element stiffness matrices are deduced using
the approach outlined in Appendix A with a discreti-
sation having eight wall elements in each lip, eight wall
elements in the flanges, and sixteen wall elements along
the web. This results in a total of 294 interface modes,
i.e. degrees of freedom at each interface. The unique first
13 cross-sectional displacement modes used as part of the
transformation matrix V7 are illustrated in Figure 9. The
order of the modes is based on the eigenvalues that relates
to the beam displacement modes (see also Figure 6). The
first six interface modes reflects the rigid displacements of
the interface, then follows the global distortional modes
and after these modes the local displacement modes fol-
low. Because the two beam elements are identical, they
share the same stiffness matrix as well as the same cross-
sectional displacement modes to be used, transforming the
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Figure 9: Ex. 1 — The first 13 modal-degrees of freedom out of 294 modes representing the interface modes. The upper
row represents the in-plane part and the lower row represents the displacements orthogonal to the cross-sectional plane
(warping)
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Figure 10: Ex. 1 — Global deformation and mode intensities at the two interfaces related to the primary joint element
with different stiffness configurations
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formulation into the mode-based formulation.

5.1.1. Verification

Before a detailed assessment of the frame corner is con-
ducted, a comparison of the present approach is conducted
comparing with a full finite element analysis. To this
purpose the commercial finite element software Abaqus
[14] has been used. Hence, the frame corner with the
box-stiffened joint configuration has been chosen to ver-
ify against Abaqus. The finite element model discretises
the entire frame corner with triangular shell finite elements
(S3 in Abaqus nomenclature) with full integration and in
a structured mesh. The meshing is conducted with a max-
imum element side length of maximum 5mm, and in some
regions, even a finer mesh has been used. The displace-
ments at the three locations A, B, and C have been mea-
sured and listed in Table 1 (see also Figure 7). The largest
displacement at each point is highlighted with boldface
and the relative deviations for these displacements are at
point A: Auyz = 1.40 %, at point B: Auy = —1.18%, and
at point C: Aux = —1.88 %, respectively.

5.1.2. Mode-based assessment

Figure 10a shows each of the four frame corners with
their associated global displacements. The first to be ob-
served is the reduction in displacements at the ends when
the stiffening configurations at the corner is increased. Ad-
ditionally, it is seen how the transmission of rotation is
more and more prevented increasing the number of stiffen-
ing plates, with almost no deformations being transmitted
with the fully stiffened joint configuration.

Now, continuing the assessment, the mode identifica-
tion is considered next. In Figure 10b and 10c the in-
tensities of each mode at the interface between a beam
element and the primary joint element are shown as bar-
diagrams. These intensities are directly extracted from uj.
Each graph relates to one of the two joint corner interfaces.
In each diagram, a bar represents a mode, and the inten-
sity is given at the vertical axis. To be noticed is that the
vertical axis is logarithmic. Common for all graphs in Fig-
ure 10 is that those modes with the highest intensity, i.e.
the most pronounced displacement modes at an interface,
are the first ones. This is the case for all four kinds of joint
configurations. In Table 2, the ten modes with the highest
absolute intensity values are listed for each stiffening con-

Table 1: Ex. 1 — Displacements measured for the frame corner
with the box stiffening configuration, [ - 10~2mm)]

A B C
Present wux —-0.02 —-3942 —-40.91
theory Uy —0.70 0.33 —11.22
uy —56.44 —0.77 —6.13
Abaqus ux —-0.02 —-39.89 —-41.69
uy —0.66 0.27 —11.45
uy —55.66 —0.66 —6.25

10

figuration. This table indicates that the primary modes
being activated are the modes related to rigid movements
(mode 1-6) and the first torsional and distortional modes
(mode 7-9)(see also Figure 9). However, what is observed
as well is that a few modes with a high intensity belong
to the upper mode index (modes 275-278). A tendency
that is seen in all four joint configurations according to
Figure 10. Therefore, an assessment of these modes has
been conducted and resulted in the conclusion that these
modes contribute only with a small displacement being

Table 2: Ex. 1 — Interface mode intensities

Interface 1 Interface 2
Index Intensity | Index Intensity
non 4 —0.4513 4 5.8202
7 0.2142 7 4.8942
8 —0.1710 1 0.7937
2 —0.1634 2 —0.1452
1 0.1184 6 0.0983
9 —0.0221 8 —0.0923
275 —0.0124 5 —0.0766
276 0.0124 3 —0.0488
277 —0.0093 10 0.0068
278 0.0069 15 —0.0039
dia 4 1.3149 4 1.5613
7 —1.1488 7 1.3515
1 —0.1621 1 0.1982
8 —0.0698 8 —0.0966
6 —0.0238 6 0.0235
5 0.0177 5 —0.0181
3 0.0121 10 —0.0160
2 —0.0077 3 —0.0105
17 —0.0067 2 0.0073
9 —0.0058 14 —0.0024
box 4 —1.2067 4 1.2249
7 0.9689 7 0.9761
1 0.1821 1 0.1844
2 —0.0754 2 —0.0674
6 0.0199 6 0.0157
5 —0.0158 5 —0.0136
3 —0.0101 9 0.0094
276 0.0043 3 —0.0073
275 —0.0042 8 —0.0047
35 —0.0037 14 0.0038
full 4 —0.0975 4 0.1153
7 0.0852 7 0.0918
1 0.0146 1 0.0164
2 —0.0034 9 0.0053
6 0.0021 2 0.0046
5 —0.0018 8 —0.0035
17 —0.0013 6 —0.0022
3 —0.0010 3 0.0019
276 —0.0010 11 0.0018
275 0.0010 15 —0.0014




very localised at the end of each lip.

Consequently, it seems intuitive to start out reducing the
number of modes (i.e. the number of degrees of freedom)
by eliminating modes with a high mode index in the trans-
formation matrix, i.e. Equation (6) and (7). This is done
by eliminating modes with a high index in the transforma-
tion matrix. To explain the procedure, at first, we keep
the first 250 columns, i.e. modes, in V1 at all interfaces.
Then, we reduce to 225 columns in Vi, and so forth until
the six rigid modes are left. After each reduction of modes
(degrees of freedom at each interface) the displacements at
the locations A, B and C are measured. The relative de-
viations, compared to the case, including all 294 modes, is
illustrated in Figure 11. It is seen that nearly no variation
is observed when reducing to 250 modes, which confirms
our hypothesis that the transformation modes with the
highest index relate to modes with very localised effects,
an do not influence the global deformations. When re-
ducing further, it is observed that the frames with no, a
diagonal, or a box stiffening configuration do not receive
relative deviations above 5 % until only the first 50 modes
are included. The same behaviour is seen for the frame
configuration with both the diagonal and box stiffening
plates at point A. Nonetheless, at point B and C, the rel-
ative deviation increases when reducing from 250 modes
to 225 modes. However, it should be noticed that due
to the very stiff joint configuration, the displacements at
the points B and C are limited and therefore the relative
deviations may be considered as misleading. To illustrate,
when including the first 100 modes only, the displacements
at point B and C are —0.0168mm and —0.0311mm, respec-
tively, whereas at point A the displacement is —0.3791mm
being approximately ten times larger.

5.1.3. The joint eigenmodes

Throughout this subsection, a detailed analysis of the
primary joint element with box stiffeners is conducted.
This analysis has been performed in order to assess if it
is possible to deduce meaningful displacement modes re-
lated to the joint element itself letting the joint element
displacement field be governed by the beam displacement
modes occurring at the interfaces. In this analysis the
condensed stiffness matrix K’ from Equation (11) is used
without boundary degrees of freedoms, i.e. uf € @ and
f: € (. However, before the stiffness matrix is assessed
through an eigenvalue problem, the stiffness matrix is re-
duced by only including a few number of modal degrees of
freedom at the interfaces. This reduction is chosen because
it is hypothesised that the primary displacement modes
will be governed by the first number of interface modes.
Hence, by using Equation (5) and (7) with Vi containing
the six rigid cross-section displacement modes the joint el-
ement stiffness matrix K’ is transformed into a 12 x 12
mode-space-governed stiffness matrix Kfn that is spanned
by the first six interface modes at each interface (see also
Figure 9). Then, orthogonal displacement modes for the
joint element are computed as eigenmodes by solving the
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Table 3: Ex. 1 — Eigenvalues that relates to the eigenmodes
shown in Figure 12 for the joint element with the box stiffener

configuration
Mode Eigenvalue Mode Eigenvalue [-10°]
1 0.0 7 0.4542
2 0.0 8 0.7100
3 0.0 9 0.7664
4 0.0 10 2.2631
5 0.0 11 3.7980
6 0.0 12 4.6623

eigenvalue problem:

(Kﬂn ~A I) Vi =0 (18)
It follows that the eigenvectors in V, corresponds to dis-
placement modes of the joint element governed by the dis-
placement modes at the interfaces enforced by the mode
transformation. Moreover, the matrix A is a diagonal ma-
trix containing the eigenvalues.

The modes deduced from Equation (18) given in Vi,
are back-transformed according to Equation (5), (7) and
(10) and drawn in Figure 12. The corresponding eigen-
values deduced in the diagonal of A are listed in Table 3.
It is observed that the first six modes have null eigenval-
ues, which corresponds to rigid motions that are shown
in Figure 12a, in which the motions are governed by the
cross-sectional beam displacement modes at Interface 1.
The remaining six joint element modes are modes hav-
ing eigenvalues different from zero (Table 3) and results in
displacement shapes deforming the joint element, see also
Figure 12b. These displacement shapes are either symmet-
ric or anti-symmetric with respect to the joint diagonal.

To conclude the joint element displacement modes de-
duced in Equation (18) reflect the six rigid displacements
as well as displacement modes that could be used in a bi-
linear elasto-plastic formulation, which however, is beyond
the scope of this paper. Nonetheless, a modal-based for-
mulation of a joint element seems reasonable and such a
mode formulation could be useful in order to extend this
mode-based methodology to include non-linear behaviours
as well, in future studies.

This final assessment of the joint element concludes this
example regarding the frame corner.
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Figure 11: Ex. 1 — The influence on the displacements at point A, B and C illustrated as relative deviations when
reducing the number of modes within the elements

(a) Six rigid modes
Mode 10

(b) Six non-rigid modes (three-dimensional view and side view)

Figure 12: Ex. 1 — Eigenmodes related to box stiffened joint element (the magnitude of the displacements are scale ten
times)
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5.2. Ex. 2 — Beam-to-column connection

This second example assesses a connection between a
cantilever beam and a clamped column, as illustrated in
Figure 13. The model consists of three beam elements
(two used for the column part and a single beam element
for the beam part). Furthermore, four joint elements are
used (three secondary joint elements one for each beam
element end and a primary joint element located where
the three beam elements meet). The geometry and di-
mensions, as well as load and boundary conditions, are
shown in Figure 13. The load of magnitude 160 N is ap-
plied at the secondary joint element located at the free end
of the beam where it is evenly distributed along the two
web-panels. Furthermore, all degrees of freedom at each
of the two secondary joint elements at the ends of the col-
umn are restrained to fulfil the clamped support condition.
The remaining degrees of freedom within all four joint ele-
ments not being at a connected face nor assigned for load
or boundary conditions are condensed. It follows that the
discretisation of the joint elements is mainly governed by
the mesh chosen for the beam elements and is illustrated
in Figure 14. The cross-section of the two beam elements
forming the column consists of 16 wall elements at the
narrow sides and 12 wall elements at the other side. This
discretisation results in 56 nodes in total within a cross-
section and thus, a total of 336 interface modes at each

Clamped support —\ 60mm

r25mm

Secondary joint
element

Beam element
530mm

Primary joint
element

25mm 410mm 1

140mm

120mm J

Loads/H Beam element

80mm
Secondary joint

element

530mm
Beam element

VA
1
Y-

Secondary joint

element /4_/4—

Clamped support 180mm

T25mm

Figure 13: Ex. 2 — The beam-to-column set up. The thickness
of all plates are 2 mm

Primary joint element

Secondary joint element

Figure 14: Ex. 2 — Visualisation of the mesh density for the
different kind of joint elements

Beam
cross-section

Column cross-section

180 mm 120 mm

80 mm

160 mm

Figure 15: Ex. 2 — Discretisation of the two types of beam
elements used

beam element interface. Regarding the cantilever beam,
eight wall elements have been used at each of the four
edges, which results in 32 nodes in total and hence, 192
interface modes as a maximum related to this connected
face. The discretisation of the beam element cross-sections
are shown in Figure 15 for clarity.

5.2.1. Verification

Verification of the model has been performed by com-
parisons with a finite element model from Abaqus. The
finite element model in Abaqus uses triangular shell ele-
ments (S3 elements in Abaqus nomenclature) in a struc-
tured mesh and with full integration. The mesh is chosen
such that the column has 16 elements along each edge in
the cross-section whereas the beam has eight elements at
the narrow sides and 16 elements at the others. In general,
the finite element side length is approximately 10 mm.

The uy and uz displacements at the free end of the
beam at the point located at the middle of the upper flange
and at the plate centre line have been measured and are
listed in Table 4. Comparing the main displacements in uz



Table 4: Ex. 2 — Displacements measured at the free end of
the beam at the middle of the flange and at the centre line of
the plate, [ - 10~2mm]

Present Abaqus
theory
Uy 27.02 27.99
Uy —195.5 —202.6

obtained by the present theory with the results from the
Abaqus model results in a relative deviation of —3.50 %.

5.2.2. Mode-based assessment

Figure 16 and 17 illustrates the global deformation of
the beam-to-column connection. The intensities at each
interface of the primary joint element are illustrated in
Figure 16 as well. Due to the different discretisations of
the beam and column elements, the number of interface
modes varies. Hence, at Interface 1 and 3 there are 336
modes whereas at Interface 2 there are 192 modes. The
tendency at Interface 1 and 3 is that the primary modes
are the first ones and then the intensities decay for increas-
ing mode indices. However, at Interface 2, a single mode
stands out from the others, which is mode five and has
an intensity being atleast ten times higher compared to
the other modes, which are at a more constant level not
decreasing in the same ways as seen at Interface 1 and 3.
The first number of interface modes regarding Interface 2
are illustrate in Figure 18.

Now, as in the previous example, the number of modes
used for the analysis is decreased. The displacements uy
and uz at the beam flange are measured, and the relative
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Figure 16: Ex. 2 — Global deformation and intensities at in-
terfaces related to the primary joint element. The magnitude
of the displacements are scaled 100 times

Figure 17: Ex. 2 — A close-up of the deformation at the con-
nection and a top view illustrating the bending of the column
panels. The magnitude of the displacements are scale 100
times

deviation compared to the full mode formulation is illus-
trated in Figure 19. It is seen that a rapid increase in the
relative deviation is measured as we reduce the number
of modes. The main reason for this shall be found in the
fashion the frame deforms. Because the beam width does
not equal the column width, the bending that occurs at
the connection will be obtained by plate bending in the
column plate panels. The interface modes supporting this
behaviour are modes with a high index number and thus,
not including these modes, the induced error will be signif-
icant. Furthermore, the stiffness of this type of connection
is limited, and therefore, the following section introduces
a re-design of the connection, results in an stiffer joint.

5.2.3. Re-design

This subsection focus on an optimisation of the connec-
tion in order to increase the bearing capacity by avoiding
plate bending in the column. Hence, the beam width is
increased, such that it equals the column width. Then,
the displacements at the middle of the upper flange at
the free end are reduced to: uy = 0.399 - 1072 mm and
uz = 2.83 - 1072 mm, which is a significant decrease com-
pared to the displacements in Table 4 with almost a fac-
tor 100. Of cause, the moment of inertia is increased in
the beam due to the increase flange width; however, the
main strengthen is mainly obtained because the bending is
transferred to the web and flange panels directly without
inducing as much local plate bending within the column
plate panels.

With the re-designed set up of the beam-to-column con-
figuration, the mode assessment is conducted. Figure 20
shows the global deformation as well as the intensities of
the modes at the interfaces similar to Figure 16. In ac-
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Figure 18: Ex. 2 — The first twelve interface modes used at Interface 2 in Figure 16. The upper row represents the
in-plane part of the displacement modes and the lower row represents the out-of-plane displacements of the modes

(warping)

cordance with the increased stiffness and the reduction in
displacements, the intensities are generally decreased com-
pared to those in Figure 16. Moreover, since this design
avoids main plate bending in the column panels, it is seen
how the number of modes with high intensities is reduced,
especially at Interface 1 and 3. Also, at Interface 2, we see
a decrease in the number of modes with a clear influence.
Nonetheless, what is more interesting is that executing the
procedure, reducing the number of interface modes in the
analysis, the relative deviation in displacements is not as
significant as in the case of the poor design. The relative
deviations obtained in the displacements when reducing
the number of interface modes are illustrated in Figure
19. The graph illustrates how the local modes with a high
mode index do not influence the displacement to the same
extent as in the case with the narrow beam. When only
the first 100 modes are kept, the relative deviation is still
below 6 % whereas for the poor design this number if 26 %.

Relative deviation [%]

—x— uyre-design
—+— uy re-design
— =ity
i 11,
80 | | | | | |
50 100 150 200 250 300
Number of modes included

Figure 19: Ex. 2 — Relative deviations when reducing the
number of modes within the model. Displacements measured
at the middle of the upper flange at the free end of the can-
tilever beam
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6. Discussion

A generic methodology to perform a first-order linear
elastic frame analysis of steel frame structures based on
displacement modes have been presented here.

The analysis is based on a systematic method and de-
tailed description of each element within the frame, i.e.
beam elements and joint elements. The joint elements are
modelled by use of finite shell elements and are versatile
in the sense of covering any complex geometry associated
with the connection between beam elements. The beam
elements, on the other hand, are described by an advanced
mode-based beam theory that includes cross-sectional dis-
placement modes. These cross-sectional beam displace-
ment modes are used as a novel set of degrees of freedom
instead of standard degrees of freedom, and thus, interfaces
between beam elements and joint elements are transformed
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Figure 20: Ex. 2 — Global deformation of the re-designed
model (magnitude of the deformations are scale 1000 times).
The intensities of the interface modes related to the primary
joint element are illustrated as well
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into a cross-sectional beam displacement mode-based de-
gree of freedom space. Thereby, the entire frame structure
is described by a set of interface displacement modes in-
stead of the standard nodal degrees of freedom. Through
an assessment of these modes, it is observed that with
proper joint design it is reasonable to reduce the number
of mode related-degrees of freedom but still retain a suffi-
cient level of accuracy as well as including advanced dis-
placements such as cross-sectional distortion. Because the
reduction in the number of degrees of freedom is directly
related to the computational time, the presented method-
ology is especially interesting when larger frame structures
have to be analysed since the computational capacity may
be a limiting factor.

Two examples have been included, and consistent results
have been obtained compared to a full shell finite element
model computed in a commercial finite element software.
The joint elements within the two examples are modelled
exclusively by shell elements. However, future studies will
focus on the inclusion of other kinds of elements to be able
to handle components within a connection, such as bolts.

A unique feature with this approach is the identifica-
tion of activated displacement modes. The deformation of
a beam element can be decomposed into pre-established
beam displacement modes, and hence, extended informa-
tive knowledge regarding a global frame deformation may
be obtained. Furthermore, based on this knowledge, a re-
design may be considered. Not only the beam elements
may be decomposed into structural meaning full displace-
ment modes, but the joint elements may also be assessed
to deduce displacement modes as well. Moreover, the joint
displacement modes may be used in future studies of the
influence of non-linear geometric or material behaviours
by pursuing an interactional modal formulation.

Due to the general formulation, this methodology can
be used with most advanced beam theories that are based
on a displacement mode-based formulation.
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Appendix A. Advanced beam theory

In accordance with the advanced beam theory presented
in [2, 3], some of the key-points will be highlighted in this
appendix.

The beam geometry is defined by the cross-section lo-
cated in the zy-plane and then being extruded continu-
ously in the direction of the z-axis. Within the thin-walled
cross-section, a local Cartesian coordinate system (n, s, z)
is introduced. Here, n is the wall normal, s is the wall
tangential, and z is parallel to the beam axis. An example
of a beam element is illustrated in Fig. A.21.

The deformation of a beam element is found as a sum
of beam displacement modes. Each mode consists of two
cross-sectional displacement fields that are associated with
an axial amplitude function. These amplitude functions
are linear independent, which guarantee a continuity of the
displacement fields along the beam axis. The two cross-
sectional displacement fields are one related to in-plane
motions and the other one relates to motions perpendicular
to the cross-sectional plane.

A cross-section is constituted by straight wall elements,
which gives the freedom to form any cross-sectional ge-
ometry, being a member with an open or a closed cross-
section. An example of a cross-sectional wall element is
shown in Fig. A.22. The division into minor elements is
done for better approximation features and the wall el-
ement supports both flexural and membrane behaviours.
The kinematic presumptions consider a Kirchhoff formu-
lation in the n, s-plane, a Mindlin formulation in the n, z-
plane, and a Timoshenko formulation in the s, z-plane. To
fulfil these kinematics, we formulate three equations to
describe the displacement of a wall element as functions
of the z-axis. Hence, the displacement of a single wall
element is defined from the plate element centre surface
on its three local coordinate directions, u = [u,, us uz]T.

AT

Figure A.21: Cartesian beam coordinate system (z,y, z) and
local cross-sectional coordinate systems (n, s, z) regarding a
thin-walled beam member
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Figure A.22: Wall element, which is used to discretize the
cross-section also illustrating the displacement components

from uﬁf and u?ll, respectively

These are independently approximated through interpola-
tion functions along the coordinate s. The interpolation
functions are governed by the nodal displacement compo-
nents at the wall element ends as the degree of freedom
vectors ug (z) and ug (z), which relates to in-plane (index
w) and out-of-plane (index ) translations and rotations
as illustrated in Fig. A.22. To be mentioned, the degrees
of freedom in the vectors u¢!(z) and ug (z) are sums of m
displacement modes and can be computed as:

uil(z) = vi W) e
=t (A1)

m
ug(z) = vg n'(z) e

i=1
in which v and v§ are wall element mode displacement
vectors, 1(z) and n(z) are the axial amplitude functions,
and c is a mode intensity factor used to scale the intensity
of each mode.

Accordingly, the displacements of a single wall element

are approximated as follows:

un(s,2) = Np(s) uflf

(2)
us(n, s, z) = [ N;(s) = n N, 4(s) } u!

w(2) (A.2)

uz(n,s, z) = [ Nq(s) + nNy(s) } ug(z)

The interpolation vectors N,, and N, contain linear La-
grange interpolation functions, and the vectors N and N
includes cubic Hermite interpolation functions, see also
[15]. Furthermore, an n or s-index that follows a comma
indicates a derivative, e.g.: (-) s = d(-)/ds, whereas axial
derivatives will be signed using the Lagrange notation, i.e.
a prime: (- ) =d(-)/dz.

Displacements are obtained under the small displace-
ment hypothesis, and thus, the strains are obtained calcu-
lating:

e=8u withe= [57177,; Essy €zzy Vszy Vnzs ’Vns]T (AS)



having the strains written in Voigt notation and the strain
operator given by:

o .. . 2 o7T
on 0z Js
— 9 9 9
S = ds 0z on (A4)
o9 9 0
0z ds  On
In this expression, a dot [ -] represents a suitable zero

matrix, which is a notation used throughout this appendix.

From Eq. (A.3) and the displacements in Eq. (A.2) it
follows that €,, = 0 and v,s = 0. Now, the stresses are
formulated on the assumption of linear elastic isotropic
material properties and thereby the Generalised Hooke’s
law is used. As a consequence, the shear stress 7, = 0 and
the normal stress 0, = 0 are defined zero. The remaining
non-null stress field is found from the constitutive relation:

oc=De (A.5)

in which the stress components are written in the vector
format: o = [0ss, 0., Tsz, Tnz]', the strain vector only
include non-null terms, and the elastic stiffness matrix D
is defined for a plane stress state taking into account the
Poisson effect as follows:

E, vE
p= VB B (A.6)

G -

G

Here, F is the plate type elastic modulus: Es = E/(1 —

v?), where E is the modulus of elasticity; v is the Poisson

coefficient; and G is the shear modulus: G = E/(2(1+4v)).
Equilibrium for the beam element is found using the

linear elastic strain energy, which is derived by integrat-

ing the strain energy density over the full continuum V.
Hence, in its purest form, the strain energy is expressed

as: 1
sz/ ol edV
2 174

The volume integral is separated into an integration over
the beam length ¢ along z, and integration over each wall
element thickness t.; and wall element width b.; being sup-
plemented by assembling of wall elements. Hence, substi-
tuting Eq. (A.2) into the strain and stress formulations, in
Eq. (A.3) and (A.5), local wall element stiffness matrices
can be computed as indicated in Tab. A.5. To that end,
assembling the wall elements based on standard transfor-
mations and their degrees of freedom, the strain energy
from Eq. (A.7) is rewritten into the following expression
based on stiffness matrices and displacement vectors.

(A7)

T S SO
Uy wa w || Uw
1/ uq K’SYZQ K;Y)w uo
U=_ , o , |dz (A8)
2 0 Wy KwQ wa uy,
ags g I
Ug Quw oodllg
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The superscripts s, 0 and «y on the stiffness matrices iden-
tifies terms related to transverse, axial and shear strains,
respectively.

A system of second-order beam differential equilibrium
equations is deduced from the strain energy in Eq. (A.8).
This is done by seeking a minimum of energy and requir-
ing the strain energy to be stationary using the principle
of variation when introducing virtual displacement fields,
which is kinematic admissible, then perform partial inte-
gration on selected terms. A homogeneous system of dif-
ferential equilibrium equations in terms of displacements
is then deduced as follows:

Kou"(2) + Kiu'(z) + Kou(z) = 0 (A.9)

where the matrices Ko, K; and Ky are defined as blocks
of cross-sectional stiffness matrices and the common dis-
placement vector u(z) is introduced containing both the
translational and warping displacement vectors. To clar-

2l
_ [K1z)1u

Each block matrix is nxn, where n is six times the number
of nodes within a beam cross-section.

A full homogeneous solution space to Eq. (A.9) is a sum-
mation of two parts, that is: u = u, +u.. The first part of
the solution space relates to solutions with a polynomial
variation along z. The second part of the solution space
is reserved for those solutions having an exponential vari-
ation. In paper [3], it was found that the solutions having
a polynomial variation relates to the fundamental beam
modes and is a set of twelve solutions. Consequently, u,
contains n, = 12 solution modes. The other part, the ex-
ponential solutions u., corresponds to displacement modes
of higher order and has an exponential attenuation of the
mode along the beam axis. The number of modes related
to this part of the solution space depends on the cross-
sectional discretisation and is: n., = 2n — n,. These solu-
tions might include pairs of complex conjugate solutions.

In the following section, solutions to the differential
equation system from Eq. (A.9) is computed as cross-
sectional displacement fields with associated axial ampli-
tude functions.

Cross-sectional displacement field

Thus, the deformation of the cross-section is governed
by a set of displacement fields, which is assumed by inter-
polation functions of generic straight wall elements. Such
straight wall element is also illustrated in Fig. A.22. To
this end, a set of cross-sectional stiffness matrices are de-
duced, and a strain energy formulation is written. Solu-
tions to Eq. (A.9) are computed by a generalised eigen-
value problem, [16]. To solve the system it is assumed



Table A.5: Local stiffness matrices

Stiffness matrices related to normal stresses

Stiffness matrices related to shearing stresses
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that n(z) = ¢(z) in Eq. (A.1). Thus, cross-sectional dis-  in which I, is an identity matrix of size n, x n, and c,

placement fields are determined as eigenvectors, and the
associated eigenvalues relate to the axial amplitude func-
tions.

Fundamental modes

Those eigenvectors having eigenvalues equal to zero rep-
resents the fundamental modes, which have polynomial
amplitude functions that are limited to third-order. Since
these modes share the same eigenvalue, it follows that since
the algebraic and geometric multiplicity of the eigenvalues
do not coincide some generalised eigenvectors are related
to these solutions as well, Strang [17]. This was solved
by Vieira [18] and Morandini et al. [19] using a Jordan
Chain method extracting these additional solution modes.
Hansen & Jonsson [2] outlined a more engineering-based
procedure and adopted here as well. The result is an
extension of the twelve eigenvectors with associated null-
eigenvalues into four sets of twelve cross-sectional displace-

ment fields. This we write as:
V,=[Vs Vy Vi Vg ] (A.11)

A single displacement field is then a combination of four

columns — one from each of the matrices Vi to V3. The
displacement for a single mode j is expressed as:
23 22
upj(z) 3'V3] + o7 V2 + 2vij + Vo,
(A.12)

where the j-subscript refers to a column index in V; for
i=0,.,3and j =1,..,12. The ¢, is a constant regulating
the intensity of the mode.

The solution to Eq. (A.9) related to the polynomial dis-
placement is conveniently written as:

u,(z) =V, ¥p(2) T), cp

where V), is given in Eq. (A.11) and the remaining com-
ponents are outline below.

(A.13)

s , I, Cp,
() =| %.Ipzi | o= iz L cp= o
pIp Iy Cpn.,

(A.14)
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contains the twelve mode intensity constants.

Ezxponential modes

The eigenvectors having a non-null eigenvalue are sorted
with decreasing eigenvalues and stored as column vectors
in the matrix V.. The associated eigenvalues are substi-
tuted into exponential functions in the diagonal of the am-
plitude matrix ¥.(z). To explain this amplitude matrix
we have:

(A.15)

6)\"‘32

where A is the eigenvalue and n. is the number of expo-
nential solution modes. Now, the solution space to Eq.
(A.9) related to the exponential part can be written as:

u.(2)

Here, I, is a "dummy" unit matrix of size n. x n. and has
been introduced to ease the later summation with funda-
mental modes. The mode intensity constants are stored in

C. as:
T
Cen. ]

=V, ¥.(2) L c. (A.16)

Ce = [cel Ce, (A.17)
Full displacement formulation
The full homogeneous solution space to the beam equi-

librium equation system (A.9) corresponds to a summa-
tion of the displacement formulations in Eq. (A.13) and
(A.16). These we add together and receive a full homo-
geneous solution space expressed in terms of displacement
modes being:

Cp

Ce

u(z) = uy(2) + ue(z)
(A.18)

TP
L

W, (z .
=V, V. [ .( ) @, (2)
=V ¥(z) T, c

in which the components are defined in Eq. (A.11), (A.14),
(A.15), and (A.17).



In conclusion, we can describe the beam deformation as
a combination of cross-sectional displacement fields with
exact axial amplitude functions. The intensity constants
in c regulate each mode intensity.

Beam equation system

A linear beam element formulation can be obtained us-
ing the potential energy. The strain energy contribution
was defined in Eq. (A.8) and for simplicity only nodal loads
at beam end cross-sections are taken into account regard-
ing the potential contribution from loads. Hence, to for-
mulate the beam element stiffness matrix from the strain
energy, the integration in Eq. (A.8) is solved by using the
beam displacement modes from Eq. (A.18) as interpolation
functions. Thus, the potential energy follows as:

V=U+10 & V=1

1u] KEu, —ul f  (A.19)

Using the variational principles on the potential energy
introducing the virtual displacement field 5ug, onto Eq.
(A.19) and apply the condition of stationarity by requiring
kinematic admissible boundary conditions, we obtain the
beam element formulation:

KB u, =f (A.20)

where KB is the beam element stiffness matrix deduced
from Eq. (A.8), u, is a boundary vector containing the end
cross-sectional degrees of freedom and f is a load vector
likewise related to the degrees of freedom at the beam end
cross-sections. The choice of interface modes is derived in
Section 4.

20
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Structural systems of thin-walled members such as steel frames in power plants and
sport facilities have reached increasing attention throughout the last decades. This
increased attention is mainly due to an efficient material utilisation. However, the
methods for structural analysis existing today are primarily based on single member
analysis, which does not include the actual interaction between the members. Despite
that, the modelling of the beams, columns, and especially their connections is essential
for the assessment of the overall structural performance and for the ability to provide
more economical design.

This thesis presents a novel methodology to analyse thin-walled frame structures. In
general, the method consists of two different types of elements - advanced thin-walled
beam elements and detailed joint elements. The computational efficiency of
the process is achieved by the use of beam displacement modes, which reduces

the number of equations needed. Furthermore, an in-depth assessment of each
component is possible due to a displacement-based decomposition procedure. This
procedure subdivides the deformation of each element into structurally meaningful
displacement modes, whereby the user gains informative knowledge of the structural
response.

The obtained results show that the methodology has potential and is well-suited
for further development and practical use by enabling a full mechanical analysis
of thin-walled frames. Furthermore, this general formulation is suitable for
implementation in other approaches that uses displacement modes when
analysing structural systems.
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