High-level heterologous expression of active Chaetomium thermophilum FDH in Pichia pastoris

Duman, Zeynep Efsun; Duraksoy, Bedri Burak; Aktaş, Fatih; Woodley, John M.; Binay, Barış

Published in:
Enzyme and Microbial Technology

Link to article, DOI:
10.1016/j.enzmictec.2020.109552

Publication date:
2020

Document Version
Peer reviewed version

Citation (APA):
High-level heterologous expression of active *Chaetomium thermophilum* FDH in *Pichia pastoris*

Zeynep Efsun DUMANa-d, Bedri Burak DURAKSOYb-d, Fatih AKTAŞc, John M. WOODLEYe, Barış BİNAYa-d\textasteriskcentered

a Department of Bioengineering, Gebze Technical University, 41400 Gebze, Kocaeli, Turkey
b Department of Chemistry, Gebze Technical University, 41400 Gebze, Kocaeli, Turkey
c Department of Environmental Engineering, Düzce University, 81620 Düzce, Turkey
d Enzyme Consultancy and Identification Center (ETDAM), Gebze Technical University, 41400 Gebze, Kocaeli, Turkey
e Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark

*Corresponding authors

Email: jw@kt.dtu.dk
binay@gtu.edu.tr

Abstract

Nowadays, the use of formate dehydrogenase (FDH, EC 1.17.1.9) is well established as a means of NADH regeneration from NAD+ via the coupled conversion of formate into carbon dioxide. Recent studies have been reported that specifically *Chaetomium thermophilum* FDH (CtFDH) is the most efficient FDH catalyzing this reaction in reverse (i.e. using CO\textsubscript{2} as a substrate to produce formate, and thereby regenerating NAD+). However, to date the production of active CtFDH at high protein expression levels has received relatively little attention. In this study, we have tested the effect of
batch and high cell density fermentation (HCDF) strategies in a small stirred fermenter, as well as the effect of supplementing the medium with casamino acids, on the expressed level of secreted CtFDH using *P. pastoris*. We have established that the amount of expressed CtFDH was indeed enhanced via a HCDF strategy and that extracellular protease activity was eliminated via the addition of casamino acids into the fermentation medium. On this basis, secreted CtFDH in an active form can be easily separated from the fermentation and can be used for subsequent biotechnological applications.

Keywords

CtFDH, *P. pastoris* expression system, HCDF strategy, Casamino acid addition

Introduction

Nicotinamide cofactors are of great importance in enzyme catalysis. Since they are expensive to provide in stoichiometric amounts to synthetic reactions, they are usually regenerated. To date several strategies have been proposed and developed for nicotinamide cofactor regeneration. Although chemical methods are favorable, they often lack the required specificity for the formation of active cofactors and require relatively harsh reaction conditions (frequently leading to a loss of cofactor stability). Electrochemical or photochemical methods need electrical or light energy, respectively, to conduct the regeneration of cofactors but have the same limitations as chemical methods. As a consequence, several enzymatic approaches for cofactor regeneration have been proposed [1,2]. Formate dehydrogenase (FDH) has been reported as the most suitable enzyme, amongst those tested, due to several advantages in the regeneration process of NAD(P)H, including a favorable thermodynamic equilibrium and the production of an inert by-product, CO₂ [3–5].
In this way, FDHs are used most frequently to catalyze the oxidation of formic acid into CO₂ while coupled to the reduction of NAD(P)⁺ to NAD(P)H. FDHs have therefore found a broad range of applications for cofactor regeneration in the synthesis of optically active chiral compounds such as L-\textit{tert}-leucine [6–11]. Recently studies have been reported that FDHs can also be used in reverse and thereby also have the potential to reduce CO₂, while regenerating NAD(P)⁺, although methods to drive the equilibrium would be required [4,12–15]. Indeed, effective methods for NAD(P)⁺ regeneration are still needed, since only a few NADH oxidases are commercially available [16,17].

Amongst the reported FDHs, \textit{Chaetomium thermophilum} FDH (\textit{Ct}FDH) has a wide catalytic range of operational pH and shows moderate thermo-stability, which is important for regeneration conditions in either direction [12]. Moreover, \textit{Ct}FDH is one of the most efficient of the known FDH enzymes capable of reducing directly CO₂ and HCO₃⁻ to formate [12–14,18]. These two properties motivated us to investigate the effective expression and synthesis of \textit{Ct}FDH with the ultimate goal of making the enzyme more available and at a reduced cost.

Previously, an \textit{Escherichia coli} expression system has been reported to be preferred in order to express FDHs. Nevertheless, we considered the secretory expression system of \textit{Pichia pastoris} (\textit{P. pastoris}) as a useful alternative. By switching to a eukaryotic expression system not only do we gain time by eliminating the strenuous cell breakdown step that is necessary for releasing target proteins produced intracellularly by \textit{E. coli} but also avoid factors such as high cell density limit of \textit{E. coli} in liquid culture [19]. \textit{P. pastoris} is capable of continuously producing the target recombinant protein dismissing the periodic growth, expression and purification of \textit{E. coli} [20]. \textit{P. pastoris} (also known as \textit{Komagataella pastoris}), is a methylotrophic single-cell yeast that is frequently used as a heterologous protein expression system due to rapid growth, coupled with ease
of high cell density fermentation, the possibility of extensive post-translational modification, as well as inexpensive and straightforward growth requirements [21,22].

In this study, different fermentation strategies such as batch and High Cell Density Fermentation (HCDF) to produce higher amounts of CtFDH in an active form were tested using BMGY (Buffered Glycerol-complex Medium) and BMMY (Buffered Methanol-complex Medium). In preliminary work, the pPICZαA with 6xHis-Tag CtFDH was obtained and transformed in the P. pastoris X33 expression system. Initially, the Invitrogen™ P. pastoris Expression Kit protocol was used in a batch strategy. Subsequently, an HCDF strategy was used in order to enhance the yield of the protein. Finally, the addition of casamino acids into the fermentation medium combined with the HCDF strategy was tested and this approach was found to enhance both the amount and the specific activity of recombinant CtFDH [23,24].

Materials and methods
Yeast strain, plasmid, and reagents
Chemicals were purchased from Sigma-Aldrich (St. Louis, Missouri, ABD) unless indicated otherwise. Casamino Acids (Bacto casamino acids: acid-hydrolyzed casein, low sodium chloride, and iron concentrations) Cat #223050 were purchased from Becton, Dickinson and Company, Franklin Lakes, New Jersey, ABD. The bicinchoninic acid (BCA) Protein Assay Kit was purchased from Thermo Scientific (Waltham, Massachusetts, ABD) and the His-Trap column was purchased from GE Healthcare (Chicago, Illinois, USA). All measurements were performed in triplicate. An expression cassette encoding an α-factor signal sequence for secretion, the fdh gene from Chaetomium thermophilum with a 6xHis-Tag (UniProt accession number: G0SGU4) was cloned into the pPICZαA (provided by BERC Lab, Turkey). The resulting construct was transformed into chemically competent P. pastoris X33 strain (Invitrogen™) according to the manufacturer's...
instructions and used for expression of C-terminal 6xHis-Tagged CtFDH [25]. A cell stock of this strain was prepared in 50 % glycerol and stored at -80 °C.

Fermentation strategies

Fermentation of *P. pastoris* cells for extracellular CtFDH expression was carried out by using a batch and a high cell density fed-batch fermentation (HCDF) strategy in a 3 L jacketed bench-top stirred tank fermenter (STR) (Applikon, Schiedam, The Netherlands). The fermenter was equipped with a temperature probe, a sparger, dissolved oxygen (DO) probe and pH probe.

YPD broth (Yeast extract peptone dextrose broth, 10 g/L yeast extract, 20 g/L peptone and 20 g/L dextrose) and BMGY (Buffered glycerol-complex medium, 10 g/L yeast extract, 20 g/L peptone, 40 ml/L glycerol, 1.34 % (w/v) YNB, 4x10^{-5} % (w/v) biotin and 100 mM potassium phosphate buffer pH 6.0) medium were used for pre-culture and the inoculum for the fermenter, respectively. A single colony of transformed *P. pastoris* X33/pPICZα A cells was pre-grown overnight in a 100 mL shake flask filled with 10 mL YPD broth at 28 °C and agitated at 180 rpm. Inoculum for the fermenter was initiated in four 500 mL baffled shake flasks filled with 50 mL BMGY (1 % yeast extract, 2 % peptone, 1.34 % YNB, 4 % glycerol, 4x10^{-5} % biotin and 100mM potassium phosphate buffer pH 6.0) and subsequently inoculated (5 mL) into pre-cultures at 28 °C and agitated at 230 rpm until the cell concentration reached approximately 1.5 g dcw/L.

Batch strategy

Recombinant CtFDH was expressed extracellularly by *P. pastoris* X33 using the expression procedure in the Invitrogen™ *Pichia* Expression Kit User Guide. The induction stage of the batch operation of transformed *P. pastoris* cells was initiated by inoculating the fermenter with 10 % of 2 L BMMY (Buffered methanol-complex medium, 10 g/L yeast extract, 20 g/L peptone, 1.34 % (w/v) YNB, 4x10^{-5} % (w/v) biotin and 100 mM potassium phosphate buffer pH 6.0, 2 % methanol) which
was prepared and sterilized in the 3 L STR and incubated for 48 hours according to shake flask studies (Figure S1). The fermentation parameters of the fermenter were as follows: temperature 18°C, airflow 1 volume of air per volume of fermentation broth per minute (vvm) and the dissolved oxygen (DO) at 60%, controlled in cascade mode with an agitation speed between 400-800 rpm and pH 6.0 (maintained via the addition of 3 M KOH and 3 M H₃PO₄, as required). The culture was induced every 24 hours with methanol (2% v/v). The 0.5% (v/v), 1% (v/v) and 2% (v/v) methanol had been previously tested for the induction stage in shake flask studies (Figure S2, Table S1) and the optimum methanol concentration was identified as 2% (v/v). 1 mL samples were collected at 0, 6, 18, 24 and 48 hours from induction to measure the activity, dry cell weight (dcw) and thereby calculate biomass yield on substrate (YXS) (Eq S1). The supernatant part of the fermentation broth was separated by centrifugation at 4500 rpm (30 minutes) and stored at -80°C for further analysis.

High cell density fermentation (HCDF) strategy

Recombinant *P. pastoris* fermentation comprised of three phases: Glycerol batch phase (phase I), glycerol fed-batch phase (Phase II) and methanol induction phase (Phase III). In this study, two different HCDF strategies were carried out in order to enhance active *CtFDH* secretion. This was developed according to the Invitrogen™ Pichia fermentation process guidelines with some modifications [26]. The HCDF1 of *P. pastoris* was started with Phase I for initial cell growth in BMGY prepared and sterilized in the 3 L STR. Phase I lasted for 28 hours by controlling the DO and Phase II was commenced for further cell growth by feeding a glycerol solution (40% (v/v)) glycerol, 1.34 % (w/v) YNB, 4x10⁻⁵ % (w/v) biotin and 100 mM potassium phosphate buffer pH 6.0) at a rate of 1.44 to 12.96 mL/(L.h). When the cell concentration reached approximately 45 g dcw/L, glycerol feeding was stopped and left for a further 4 hours (to allow the cells to consume residual glycerol in the reaction environment). DO spikes were followed in order to determine
whether glycerol was consumed from the culture environment before adding methanol [26].

Throughout Phases I and II, the temperature was maintained at 28 °C and pH was controlled at 6.0 by using 3 M KOH and 3 M H₃PO₄. The DO was maintained above 60% air saturation by supplying filter-sterilized air and automatic adjustment of the agitation speed between 400 and 800 rpm. The methanol induction phase (Phase III) was started by the addition of methanol (2.6 mL/L.h – 7 mL/L.h) and proceeded for 48 hours, during which time the temperature was maintained at 18 °C and the pH was controlled at 6.0 by using 3 KOH and 3 M H₃PO₄. The DO was maintained above 60% air saturation by supplying filter-sterilized air and automatic adjustment of the agitation speed between 400 and 800 rpm. The same fermentation parameters with HCDF1 were used for HCDF2 for Phase I, II and III, BMGY containing 5% (w/v) casamino acids [27] acid and glycerol feeding with 5% (w/v) casamino acids were used during Phase I and Phase II respectively. Centrifugation was applied at the end of Phase III to recover the supernatant and stored at -80°C for further analysis. 1 mL samples were collected at 0, 24, 28, 46, 52, 55, 66, 72, 84, 90 hours and 114 hours of the reaction in order to measure the activity, cell concentration (g dcw/L and hence calculate YXS (Eq S1).

Purification of secreted CtFDH from P. pastoris

The stored supernatant part of the culture was passed through a 0.45 μm filter, and samples were then loaded on a His-trap column (after equilibration with buffer A (20 mM NaH₂PO₄, 500 mM NaCl, 30 mM imidazole pH 7.4)). 6xHis-tagged CtFDH was purified with an optimized TAGZyme purification system (QIAGEN) by eluting with buffer A containing different imidazole concentrations (100, 200, 400 and 500 mM). Collected fractions were analyzed by SDS-PAGE in order to determine fractions bearing pure CtFDH which were subsequently combined. Protein samples were then concentrated in ultracentrifuge tubes (MM Amicon Ultracel-30K). The buffer
was exchanged with NaH₂PO₄ (20 mM, pH 7.0) using a PD-10 desalting column (Amersham Biosciences, Little Chalfont, United Kingdom) at 4 °C and the purified protein was stored at 4 °C for further analysis. The same purification protocol was applied for both fermentation strategies. The protein concentration was measured with a BCA Protein Assay Kit and the product yield on biomass (YPX) was calculated for both strategies via Eq S2.

SDS-PAGE analysis

SDS-PAGE electrophoresis (Bio-Rad electrophoresis unit) was performed according to the method of Laemmli [28] by using 12 % SDS-polyacrylamide gels to determine the purity and approximate molecular mass of the enzyme. All proteins run on the polyacrylamide gel were stained with 0.2% (w/v) Coomassie brilliant blue R-250 for 1 h, then washed with the SDS-PAGE destaining solution (100 mL acetic acid, 300 mL methanol, 600 mL dH₂O) to remove excess dye.

Activity determination of pure CtFDH

The purified enzyme activity was tested by monitoring the formation of NADH at 340 nm after adding the purified CtFDH to the reaction mixture having 20 mM sodium acetate buffer pH 5.0 and 3.0 mM NAD⁺, 30 mM sodium formate at 25 °C, during 5 minutes was assayed as previously described [12]. One-unit enzyme oxidized 1.0 μmole of formate to CO₂ per minute in the presence of β-NAD, at pH 5.0 at 25 °C.

Results and Discussions

Cell growth profile of batch and HCDF strategy

Recombinant CtFDH was successfully expressed extracellularly through bench-top culturing of *P. pastoris* X33 in a batch and HCDF manner. The cell growth profile indicated that transformed *P. pastoris* cells were able to use methanol as a carbon source with the tested fermentation parameters (Figure 1). However, the cell density reached 7.3 g dcw/L at the end of 48 hours induction with 2%
(v/v) methanol (Figure 1-a). On the other hand, the capacity to grow in a minimal medium at a high
density of *P. pastoris* cells facilitated the cellular yield through an HCDF strategy (HCDF1 and
HCDF2) during Phase I and Phase II that demonstrated the efficiency of applying HCDF strategy in
comparison to the batch strategy on the bioreactor (Figure 1-b) [29]. Since the temperature was
diminished and the adaptation into the new environment took approximately 6 hours [30]. As
shown in Figure 1-b, applying HCDF strategy of *P. pastoris* contributed to the cellular yield which
results in 44.9 g dcw/L and 46.9 g dcw/L for HCDF1 and HCDF2 respectively. The biomass yields
on carbon for both strategies were calculated and presented in Table 1. The results clearly indicate
the biomass yield of *P. pastoris* cells was improved about 20-fold in the presence of glycerol in a
stirred tank fermenter. The yield of biomass obtained on methanol was lower than that attained with
glycerol [31]. Even though the Y_{XS} of Phase II of both HCDF1 and HCDF2 were lower than the
batch induction phase, the amount of obtained enzyme was higher than that expressed using the
batch strategy. Therefore, enhancing the cell concentration via the fed-batch glycerol fed-batch
stage improved the yield of secreted CtFDH.

Secretion of CtFDH and its purification

The preferred *P. pastoris* as a host system provided a high-yield extracellular protein production via
fusion product to the secretion signal of the α-mating factor that eliminates the step of harvesting
the disruption of the yeast cells [29]. The purification of secreted recombinant CtFDH with C-
terminal 6XHis-tag was conducted using immobilized metal affinity chromatography (IMAC). The
performed SDS procedure (Figure 2) following purification confirmed the presence and the
molecular weight of the target protein FDH as ∼45 kDa. Also, the expected protein size was
correlated with reported results [32]. An imidazole gradient from 10 to 500 mM was applied in
order to optimize the purification procedure. The fractions (E2 and E3) containing the pure protein were pooled together, concentrated and gave a CtFDH yield of 48.6 mg from a liter culture (HCDF2) with over 90 % purity based on SDS-PAGE analysis. The purity of the CtFDH was sufficient for further experiments.

Activity measurement of CtFDH expressed via different strategies

FDH from *Chaetomium thermophilum* has been reported as one of the most efficient known FDH enzymes in converting formate to CO$_2$. The results of shake flask studies were summarized in Table S1 which represented that the amount of secreted CtFDH enhanced as an increased concentration of methanol. Moreover, the highest methanol concentration had not any adverse effect on the activity of CtFDH since the calculated specific activities were approximately the same. The activities were assayed during the expression of all strategies from collected supernatants. However, since they were highly diluted due to being in the supernatant, their concentration was not ample enough to get a satisfactory reading. Therefore, at the end of fermentation, all produced CtFDH was collected and assayed. The calculated activity, specific activity, the obtained amount of pure CtFDH, the specific product yield and the previously reported results are presented in Table 2. The efficiency of two expression systems, *E. coli* and *P. pastoris* for producing FDH was tested in previously reported studies [12,18,20,32]. Amongst these the most promising one was obtained as ~50 mg/L with 0.40 U/mg specific activity by *E. coli*, which is approximate 10-fold higher than obtained from *P. pastoris* cultured in a shake flask [20,32]. In this study, the acquired pure CtFDH via HCDF2 showed the best activity (Figure S3) at about 7.5-fold and 11-fold more than the batch and HCDF1 strategy respectively. This clearly shows the benefits of enhanced expression via an appropriate fermentation strategy.
A summary of the performance of the different strategies with respect to protein synthesis is presented in Table 2. The conducted bioreactor studies showed that the highest amount of CtFDH obtained was 48.6 mg/L via HCDF2. The activity and specific activity of CtFDH were enhanced about 1.5-fold through the addition of casamino acids into the fermentation medium, repressing extracellular protease activity as suggested by other studies [23,33,34]. On the other hand, while the addition of casamino acid had no significant effect on Y_{PX} of HCDF1 and HCDF2, applying the HCDF strategy resulted in a 2-fold increase in product yield on biomass (Y_{PX}). Additionally, space-time yield (U/L per day) was calculated for batch, HCDF1 and HCDF2 as 1.35, 5.84 and 8.85 U/L per day respectively. HCDF strategy implementation and the addition of casamino acid had a dramatic effect on the space-time yield.

Although the amount of enzyme in this study was approximately the same as the expressed CtFDH via *E. coli*, the secreted enzyme showed approximately 2-fold higher specific activity [32]. These results showed that our obtained CtFDH is far more active than the previously reported version. For further improvement on the yield of CtFDH as follows; strain improvement can be performed for elimination of vacuolar proteases [35], lower pH values facilitate declining neutral extracellular protease effect on enzyme [36], using sorbitol as a co-substrate in methanol induction phase provides the higher cell density of *P. pastoris* and reduces the specific protease production [37], decreasing the airflow rate by replacing air with pure O$_2$ in order to decrease the enzyme inactivation effect of gas bubbles [38].

Conclusion

In this study, the results demonstrated that HCDF of *P. pastoris* with BMMY medium containing casamino acids is the best methodology for CtFDH secretion in a stirred-tank bioreactor. Although the *E. coli* expression system has been well-studied, the *P. pastoris* expression system to secrete
protein into media facilitated the elimination one of the downstream process steps of breaking down the cell mass to release the desired proteins as it would have been necessary if the expression was carried in *E. coli*. Additionally, high-cell density growth of *P. pastoris* provided higher protein yield in STR and facilitated about 3-fold higher *Ct*FDH than reported by Özgün G. et al., (2015) [18], about the same amount of *Ct*FDH with *Cl*FDH [39] and obtaining 2-fold more than *Lb*FDH [40].

This work is the first in which *P. pastoris* expression system was used as a host expression system for expression of FDH enzyme in STR which the ease of upscaling fermentation of *P. pastoris*, these findings will open-up possibilities for larger-scale production of recombinant *Ct*FDH enzyme.

Acknowledgments

This work was supported by Düzce University Scientific Research Project Department with 2017.06.02.578 project number and special thanks to BERC Lab for providing pPICZα A vector with 6xHis-tagged *Ct*FDH. The authors also gratefully acknowledge the help and support of Rowan M Lindeque (Department of Chemical and Biochemical Engineering, DTU, Denmark).

References

https://doi.org/10.1093/protein/gzw062.

https://doi.org/10.1371/journal.pone.0103111.

[17] B.R. Riebel, P.R. Gibbs, W.B. Wellborn, A.S. Bommarius, Cofactor Regeneration of both NAD$^+$ from NADH and NADP$^+$ from NADPH:NADH Oxidase from Lactobacillus

https://doi.org/10.1016/j.molcatb.2015.09.014.

https://doi.org/10.3389/fmicb.2014.00172.

https://doi.org/10.1093/protein/gzx010.

Abstract

Nowadays, the use of formate dehydrogenase (FDH, EC 1.17.1.9) is well established as a means of NADH regeneration from NAD$^+$ via the coupled conversion of formate into carbon dioxide. Recent studies have been reported that specifically *Chaetomium thermophilum* FDH (*CtFDH*) is the most efficient FDH catalyzing this reaction in reverse (i.e. using CO$_2$ as a substrate to produce formate, and thereby regenerating NAD$^+$). However, to date the production of active *CtFDH* at high protein expression levels has received relatively little attention. In this study, we have tested the effect of...
batch and high cell density fermentation (HCDF) strategies in a small stirred fermenter, as well as the effect of supplementing the medium with casamino acids, on the expressed level of secreted CtFDH using *P. pastoris*. We have established that the amount of expressed CtFDH was indeed enhanced via a HCDF strategy and that extracellular protease activity was eliminated via the addition of casamino acids into the fermentation medium. On this basis, secreted CtFDH in an active form can be easily separated from the fermentation and can be used for subsequent biotechnological applications.

Keywords

CtFDH, *P. pastoris* expression system, HCDF strategy, Casamino acid addition

Introduction

Nicotinamide cofactors are of great importance in enzyme catalysis. Since they are expensive to provide in stoichiometric amounts to synthetic reactions, they are usually regenerated. To date several strategies have been proposed and developed for nicotinamide cofactor regeneration. Although chemical methods are favorable, they often lack the required specificity for the formation of active cofactors and require relatively harsh reaction conditions (frequently leading to a loss of cofactor stability). Electrochemical or photochemical methods need electrical or light energy, respectively, to conduct the regeneration of cofactors but have the same limitations as chemical methods. As a consequence, several enzymatic approaches for cofactor regeneration have been proposed [1,2]. Formate dehydrogenase (FDH) has been reported as the most suitable enzyme, amongst those tested, due to several advantages in the regeneration process of NAD(P)H, including a favorable thermodynamic equilibrium and the production of an inert by-product, CO₂ [3–5].
In this way, FDHs are used most frequently to catalyze the oxidation of formic acid into CO$_2$ while coupled to the reduction of NAD(P)$^+$ to NAD(P)H. FDHs have therefore found a broad range of applications for cofactor regeneration in the synthesis of optically active chiral compounds such as L-tert-leucine [6–11]. Recently studies have been reported that FDHs can also be used in reverse and thereby also have the potential to reduce CO$_2$, while regenerating NAD(P)$^+$, although methods to drive the equilibrium would be required [4,12–15]. Indeed, effective methods for NAD(P)$^+$ regeneration are still needed, since only a few NADH oxidases are commercially available [16,17]. Amongst the reported FDHs, *Chaetomium thermophilum* FDH (*Ct*FDH) has a wide catalytic range of operational pH and shows moderate thermo-stability, which is important for regeneration conditions in either direction [12]. Moreover, *Ct*FDH is one of the most efficient of the known FDH enzymes capable of reducing directly CO$_2$ and HCO$_3^-$ to formate [12–14,18]. These two properties motivated us to investigate the effective expression and synthesis of *Ct*FDH with the ultimate goal of making the enzyme more available and at a reduced cost.

Previously, an *Escherichia coli* expression system has been reported to be preferred in order to express FDHs. Nevertheless, we considered the secretory expression system of *Pichia pastoris* (*P. pastoris*) as a useful alternative. By switching to a eukaryotic expression system not only do we gain time by eliminating the strenuous cell breakdown step that is necessary for releasing target proteins produced intracellularly by *E. coli* but also avoid factors such as high cell density limit of *E. coli* in liquid culture [19]. *P. pastoris* is capable of continuously producing the target recombinant protein dismissing the periodic growth, expression and purification of *E. coli* [20]. *P. pastoris* (also known as *Komagataella pastoris*), is a methylotrophic single-cell yeast that is frequently used as a heterologous protein expression system due to rapid growth, coupled with ease
of high cell density fermentation, the possibility of extensive post-translational modification, as well
inexpensive and straightforward growth requirements [21,22].

In this study, different fermentation strategies such as batch and High Cell Density Fermentation
(HCDF) to produce higher amounts of CtFDH in an active form were tested using BMGY
(Buffered Glycerol-complex Medium) and BMMY (Buffered Methanol-complex Medium). In
preliminary work, the pPICZαA with 6xHis-Tag CtFDH was obtained and transformed in the P.
pastoris X33 expression system. Initially, the Invitrogen™ P. pastoris Expression Kit protocol was
used in a batch strategy. Subsequently, an HCDF strategy was used in order to enhance the yield of
the protein. Finally, the addition of casamino acids into the fermentation medium combined with the
HCDF strategy was tested and this approach was found to enhance both the amount and the specific
activity of recombinant CtFDH [23,24].

Materials and methods
Yeast strain, plasmid, and reagents
Chemicals were purchased from Sigma-Aldrich (St. Louis, Missouri, ABD) unless indicated
otherwise. Casamino Acids (Bacto casamino acids: acid-hydrolyzed casein, low sodium chloride,
and iron concentrations) Cat #223050 were purchased from Becton, Dickinson and Company,
Franklin Lakes, New Jersey, ABD. The bicinchoninic acid (BCA) Protein Assay Kit was purchased
from Thermo Scientific (Waltham, Massachusetts, ABD) and the His-Trap column was purchased
from GE Healthcare (Chicago, Illinois, USA). All measurements were performed in triplicate. An
expression cassette encoding an α-factor signal sequence for secretion, the fdh gene from
Chaetomium thermophilum with a 6xHis-Tag (UniProt accession number: G0SGU4) was cloned
into the pPICZαA (provided by BERC Lab, Turkey). The resulting construct was transformed into
chemically competent P. pastoris X33 strain (Invitrogen™) according to the manufacturer’s
instructions and used for expression of C-terminal 6xHis-Tagged CtFDH [25]. A cell stock of this strain was prepared in 50 % glycerol and stored at -80 °C.

Fermentation strategies

Fermentation of *P. pastoris* cells for extracellular CtFDH expression was carried out by using a batch and a high cell density fed-batch fermentation (HCDF) strategy in a 3 L jacketed bench-top stirred tank fermenter (STR) (Applikon, Schiedam, The Netherlands). The fermenter was equipped with a temperature probe, a sparger, dissolved oxygen (DO) probe and pH probe.

YPD broth (Yeast extract peptone dextrose broth, 10 g/L yeast extract, 20 g/L peptone and 20 g/L dextrose) and BMGY (Buffered glycerol-complex medium, 10 g/L yeast extract, 20 g/L peptone, 40 ml/L glycerol, 1.34 % (w/v) YNB, 4x10^{-5} % (w/v) biotin and 100 mM potassium phosphate buffer pH 6.0) medium were used for pre-culture and the inoculum for the fermenter, respectively. A single colony of transformed *P. pastoris* X33/pPICZα A cells was pre-grown overnight in a 100 mL shake flask filled with 10 mL YPD broth at 28 °C and agitated at 180 rpm. Inoculum for the fermenter was initiated in four 500 mL baffled shake flasks filled with 50 mL BMGY (1 % yeast extract, 2 % peptone, 1.34 % YNB, 4 % glycerol, 4x10^{-5} % biotin and 100mM potassium phosphate buffer pH 6.0) and subsequently inoculated (5 mL) into pre-cultures at 28 °C and agitated at 230 rpm until the cell concentration reached approximately 1.5 g dcw/L.

Batch strategy

Recombinant CtFDH was expressed extracellularly by *P. pastoris* X33 using the expression procedure in the Invitrogen™ Pichia Expression Kit User Guide. The induction stage of the batch operation of transformed *P. pastoris* cells was initiated by inoculating the fermenter with 10 % of 2 L BMMY (Buffered methanol-complex medium, 10 g/L yeast extract, 20 g/L peptone, 1.34 % (w/v) YNB, 4x10^{-5} % (w/v) biotin and 100 mM potassium phosphate buffer pH 6.0, 2 % methanol) which
was prepared and sterilized in the 3 L STR and incubated for 48 hours according to shake flask studies (Figure S1). The fermentation parameters of the fermenter were as follows: temperature 18°C, airflow 1 volume of air per volume of fermentation broth per minute (vvm) and the dissolved oxygen (DO) at 60 %, controlled in cascade mode with an agitation speed between 400-800 rpm and pH 6.0 (maintained via the addition of 3 M KOH and 3 M H₃PO₄, as required). The culture was induced every 24 hours with methanol (2% v/v). The 0.5% (v/v), 1% (v/v) and 2% (v/v) methanol had been previously tested for the induction stage in shake flask studies (Figure S2, Table S1) and the optimum methanol concentration was identified as 2% (v/v). 1 mL samples were collected at 0, 6, 18, 24 and 48 hours from induction to measure the activity, dry cell weight (dcw) and thereby calculate biomass yield on substrate (YXS) (Eq S1). The supernatant part of the fermentation broth was separated by centrifugation at 4500 rpm (30 minutes) and stored at -80 °C for further analysis.

High cell density fermentation (HCDF) strategy

Recombinant *P. pastoris* fermentation comprised of three phases: Glycerol batch phase (phase I), glycerol fed-batch phase (Phase II) and methanol induction phase (Phase III). In this study, two different HCDF strategies were carried out in order to enhance active *CtFDH* secretion. This was developed according to the Invitrogen™ Pichia fermentation process guidelines with some modifications [26]. The HCDF1 of *P. pastoris* was started with Phase I for initial cell growth in BMGY prepared and sterilized in the 3 L STR. Phase I lasted for 28 hours by controlling the DO and Phase II was commenced for further cell growth by feeding a glycerol solution (40% (v/v)) glycerol, 1.34 % (w/v) YNB, 4x10⁻⁵ % (w/v) biotin and 100 mM potassium phosphate buffer pH 6.0) at a rate of 1.44 to 12.96 mL/(L.h). When the cell concentration reached approximately 45 g dcw/L, glycerol feeding was stopped and left for a further 4 hours (to allow the cells to consume residual glycerol in the reaction environment). DO spikes were followed in order to determine
whether glycerol was consumed from the culture environment before adding methanol [26].

Throughout Phases I and II, the temperature was maintained at 28 °C and pH was controlled at 6.0 by using 3 M KOH and 3 M H₃PO₄. The DO was maintained above 60 % air saturation by supplying filter-sterilized air and automatic adjustment of the agitation speed between 400 and 800 rpm. The methanol induction phase (Phase III) was started by the addition of methanol (2.6 mL/L.h – 7 mL/L.h) and proceeded for 48 hours, during which time the temperature was maintained at 18 °C and the pH was controlled at 6.0 by using 3 KOH and 3 M H₃PO₄. The DO was maintained above 60% air saturation by supplying filter-sterilized air and automatic adjustment of the agitation speed between 400 and 800 rpm. The same fermentation parameters with HCDF1 were used for HCDF2 for Phase I, II and III, BMGY containing 5% (w/v) casamino acids [27] acid and glycerol feeding with 5% (w/v) casamino acids were used during Phase I and Phase II respectively. Centrifugation was applied at the end of Phase III to recover the supernatant and stored at -80 C for further analysis. 1 mL samples were collected at 0, 24, 28, 46, 52, 55, 66, 72, 84, 90 hours and 114 hours of the reaction in order to measure the activity, cell concentration (g dcw/L and hence calculate YXS (Eq S1).

Purification of secreted CtFDH from P. pastoris

The stored supernatant part of the culture was passed through a 0.45 μm filter, and samples were then loaded on a His-trap column (after equilibration with buffer A (20 mM NaH₂PO₄, 500 mM NaCl, 30 mM imidazole pH 7.4)). 6xHis-tagged CtFDH was purified with an optimized TAGZyme purification system (QIAGEN) by eluting with buffer A containing different imidazole concentrations (100, 200, 400 and 500 mM). Collected fractions were analyzed by SDS-PAGE in order to determine fractions bearing pure CtFDH which were subsequently combined. Protein samples were then concentrated in ultracentrifuge tubes (MM Amicon Ultracel-30K). The buffer
was exchanged with NaH$_2$PO$_4$ (20 mM, pH 7.0) using a PD-10 desalting column (Amersham Biosciences, Little Chalfont, United Kingdom) at 4 °C and the purified protein was stored at 4 °C for further analysis. The same purification protocol was applied for both fermentation strategies. The protein concentration was measured with a BCA Protein Assay Kit and the product yield on biomass (Y$_{PX}$) was calculated for both strategies via Eq S2.

SDS-PAGE analysis

SDS-PAGE electrophoresis (Bio-Rad electrophoresis unit) was performed according to the method of Laemmli [28] by using 12 % SDS-polyacrylamide gels to determine the purity and approximate molecular mass of the enzyme. All proteins run on the polyacrylamide gel were stained with 0.2% (w/v) Coomassie brilliant blue R-250 for 1 h, then washed with the SDS-PAGE destaining solution (100 mL acetic acid, 300 mL methanol, 600 mL dH$_2$O) to remove excess dye.

Activity determination of pure CtFDH

The purified enzyme activity was tested by monitoring the formation of NADH at 340 nm after adding the purified CtFDH to the reaction mixture having 20 mM sodium acetate buffer pH 5.0 and 3.0 mM NAD$^+$, 30 mM sodium formate at 25 °C, during 5 minutes was assayed as previously described [12]. One-unit enzyme oxidized 1.0 μmole of formate to CO$_2$ per minute in the presence of β-NAD, at pH 5.0 at 25 °C.

Results and Discussions

Cell growth profile of batch and HCDF strategy

Recombinant CtFDH was successfully expressed extracellularly through bench-top culturing of *P. pastoris* X33 in a batch and HCDF manner. The cell growth profile indicated that transformed *P. pastoris* cells were able to use methanol as a carbon source with the tested fermentation parameters (Figure 1). However, the cell density reached 7.3 g dcw/L at the end of 48 hours induction with 2%
(v/v) methanol (Figure 1-a). On the other hand, the capacity to grow in a minimal medium at a high density of *P. pastoris* cells facilitated the cellular yield through an HCDF strategy (HCDF1 and HCDF2) during Phase I and Phase II that demonstrated the efficiency of applying HCDF strategy in comparison to the batch strategy on the bioreactor (Figure 1-b) [29]. Since the temperature was decreased from 28 °C to 18 °C at the beginning of Phase III, the growth rate of *P. pastoris* cells diminished and the adaptation into the new environment took approximately 6 hours [30]. As shown in Figure 1-b, applying HCDF strategy of *P. pastoris* contributed to the cellular yield which results in 44.9 g dcw/L and 46.9 g dcw/L for HCDF1 and HCDF2 respectively. The biomass yields on carbon for both strategies were calculated and presented in Table 1. The results clearly indicate the biomass yield of *P. pastoris* cells was improved about 20-fold in the presence of glycerol in a stirred tank fermenter. The yield of biomass obtained on methanol was lower than that attained with glycerol [31]. Even though the YXS of Phase II of both HCDF1 and HCDF2 were lower than the batch induction phase, the amount of obtained enzyme was higher than that expressed using the batch strategy. Therefore, enhancing the cell concentration via the fed-batch glycerol fed-batch stage improved the yield of secreted CtFDH.

Secretion of CtFDH and its purification

The preferred *P. pastoris* as a host system provided a high-yield extracellular protein production via fusion product to the secretion signal of the α-mating factor that eliminates the step of harvesting the disruption of the yeast cells [29]. The purification of secreted recombinant CtFDH with C-terminal 6XHis-tag was conducted using immobilized metal affinity chromatography (IMAC). The performed SDS procedure (Figure 2) following purification confirmed the presence and the molecular weight of the target protein FDH as ~45 kDa. Also, the expected protein size was correlated with reported results [32]. An imidazole gradient from 10 to 500 mM was applied in
order to optimize the purification procedure. The fractions (E2 and E3) containing the pure protein were pooled together, concentrated and gave a CtFDH yield of 48.6 mg from a liter culture (HCDF2) with over 90 % purity based on SDS-PAGE analysis. The purity of the CtFDH was sufficient for further experiments.

Activity measurement of CtFDH expressed via different strategies

FDH from *Chaetomium thermophilum* has been reported as one of the most efficient known FDH enzymes in converting formate to CO₂. The results of shake flask studies were summarized in Table S1 which represented that the amount of secreted CtFDH enhanced as an increased concentration of methanol. Moreover, the highest methanol concentration had not any adverse effect on the activity of CtFDH since the calculated specific activities were approximately the same. The activities were assayed during the expression of all strategies from collected supernatants. However, since they were highly diluted due to being in the supernatant, their concentration was not ample enough to get a satisfactory reading. Therefore, at the end of fermentation, all produced CtFDH was collected and assayed. The calculated activity, specific activity, the obtained amount of pure CtFDH, the specific product yield and the previously reported results are presented in Table 2. The efficiency of two expression systems, *E. coli* and *P. pastoris* for producing FDH was tested in previously reported studies [12,18,20,32]. Amongst these the most promising one was obtained as ~50 mg/L with 0.40 U/mg specific activity by *E. coli*, which is approximate 10-fold higher than obtained from *P. pastoris* cultured in a shake flask [20,32]. In this study, the acquired pure CtFDH via HCDF2 showed the best activity (**Figure S3**) at about 7.5-fold and 11-fold more than the batch and HCDF1 strategy respectively. This clearly shows the benefits of enhanced expression via an appropriate fermentation strategy.
A summary of the performance of the different strategies with respect to protein synthesis is presented in Table 2. The conducted bioreactor studies showed that the highest amount of CtFDH obtained was 48.6 mg/L via HCDF2. The activity and specific activity of CtFDH were enhanced about 1.5-fold through the addition of casamino acids into the fermentation medium, repressing extracellular protease activity as suggested by other studies [23,33,34]. On the other hand, while the addition of casamino acid had no significant effect on Y_{PX} of HCDF1 and HCDF2, applying the HCDF strategy resulted in a 2-fold increase in product yield on biomass (Y_{PX}). Additionally, space-time yield (U/L per day) was calculated for batch, HCDF1 and HCDF2 as 1.35, 5.84 and 8.85 U/L per day respectively. HCDF strategy implementation and the addition of casamino acid had a dramatic effect on the space-time yield.

Although the amount of enzyme in this study was approximately the same as the expressed CtFDH via E. coli, the secreted enzyme showed approximately 2-fold higher specific activity [32]. These results showed that our obtained CtFDH is far more active than the previously reported version. For further improvement on the yield of CtFDH as follows; strain improvement can be performed for elimination of vacuolar proteases [35], lower pH values facilitate declining neutral extracellular protease effect on enzyme [36], using sorbitol as a co-substrate in methanol induction phase provides the higher cell density of P. pastoris and reduces the specific protease production [37], decreasing the airflow rate by replacing air with pure O$_2$ in order to decrease the enzyme inactivation effect of gas bubbles [38].

Conclusion

In this study, the results demonstrated that HCDF of P. pastoris with BMMY medium containing casamino acids is the best methodology for CtFDH secretion in a stirred-tank bioreactor. Although the E. coli expression system has been well-studied, the P. pastoris expression system to secrete
protein into media facilitated the elimination one of the downstream process steps of breaking down
the cell mass to release the desired proteins as it would have been necessary if the expression was
carried in *E. coli*. Additionally, high-cell density growth of *P. pastoris* provided higher protein yield
in STR and facilitated about 3-fold higher *CtFDH* than reported by Özgün G. et al., (2015) [18],
about the same amount of *CtFDH* with *ClFDH* [39] and obtaining 2-fold more than *LbFDH* [40].
This work is the first in which *P. pastoris* expression system was used as a host expression system
for expression of FDH enzyme in STR which the Given the ease of upscaling fermentation of *P.
pastoris, these findings will open-up possibilities for larger-scale production of recombinant *CtFDH*
enzyme.

Acknowledgments

This work was supported by Düzce University Scientific Research Project Department with
2017.06.02.578 project number and special thanks to BERC Lab for providing pPICZα A vector
with 6xHis-tagged *CtFDH*. The authors also gratefully acknowledge the help and support of Rowan
M Lindeque (Department of Chemical and Biochemical Engineering, DTU, Denmark).

References

[1] A. Weckbecker, H. Gröger, W. Hummel, Regeneration of nicotinamide coenzymes:

[2] L. Han, B. Liang, New approaches to NAD(P)H regeneration in the biosynthesis systems,

https://doi.org/10.1042/bj3010625.

https://doi.org/10.1093/protein/gzw062.

https://doi.org/10.1371/journal.pone.0103111.

[17] B.R. Riebel, P.R. Gibbs, W.B. Wellborn, A.S. Bommarius, Cofactor Regeneration of both NAD$^+$ from NADH and NADP$^+$ from NADPH:NADH Oxidase from Lactobacillus

Tables

Table. 1 Calculated biomass yield on glycerol and methanol for glycerol batch phase and induction phase of batch strategy; Phase I, Phase II and Phase III of HCDF strategy.

<table>
<thead>
<tr>
<th>Phase</th>
<th>Yxs (g.g⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batch</td>
<td></td>
</tr>
<tr>
<td>Glycerol Batch</td>
<td>0.04 ± 0.00</td>
</tr>
<tr>
<td>Induction</td>
<td>0.17 ± 0.01</td>
</tr>
<tr>
<td>HCDF1</td>
<td></td>
</tr>
<tr>
<td>Phase I</td>
<td>0.79 ± 0.00</td>
</tr>
<tr>
<td>Phase II</td>
<td>0.19 ± 0.00</td>
</tr>
<tr>
<td>Phase III</td>
<td>0.02 ± 0.00</td>
</tr>
<tr>
<td>HCDF2</td>
<td></td>
</tr>
<tr>
<td>Phase I</td>
<td>0.84 ± 0.01</td>
</tr>
<tr>
<td>Phase II</td>
<td>0.09 ± 0.00</td>
</tr>
<tr>
<td>Phase III</td>
<td>0.04 ± 0.00</td>
</tr>
</tbody>
</table>

Table. 2 Final cell concentration, activity, concentration, specific activity of CtFDH and product yield on the biomass of previously published results and conducted studies.

<table>
<thead>
<tr>
<th></th>
<th>Shake Flask (E. coli, CtFDH), [32]</th>
<th>Shake Flask (P. pastoris, CbFDH), [20]</th>
<th>Batch</th>
<th>HCDF 1</th>
<th>HCDF 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enzyme activity (U/L)</td>
<td>-</td>
<td>-</td>
<td>3.71 ± 0.09</td>
<td>27.75 ± 0.08</td>
<td>42.06 ± 1.80</td>
</tr>
<tr>
<td>Recovered enzyme concentration (mg/L)</td>
<td>~50</td>
<td>~9</td>
<td>5.77 ± 0.07</td>
<td>37.19 ± 0.63</td>
<td>48.57 ± 0.15</td>
</tr>
<tr>
<td>Enzyme specific Activity (U/mg)</td>
<td>0.40</td>
<td>0.13</td>
<td>0.64 ± 0.00</td>
<td>0.78 ± 0.01</td>
<td>0.87 ± 0.06</td>
</tr>
<tr>
<td>Ypx (mg/g)</td>
<td>-</td>
<td>-</td>
<td>0.79 ± 0.01</td>
<td>1.56 ± 0.02</td>
<td>1.58 ± 0.04</td>
</tr>
<tr>
<td>Cell Concentration (g dcw/L)</td>
<td>-</td>
<td>-</td>
<td>7.33 ± 0.47</td>
<td>44.88 ± 0.35</td>
<td>46.91 ± 0.07</td>
</tr>
</tbody>
</table>
Figure 1. Cell density profiles of batch and HCDF strategies of *P. pastoris* culture: **a)** dcw values of batch growth strategy (black dashed line: Batch), **b)** dcw measurements of HCDF strategy; **Phase I:** Glycerol Batch phase, **Phase II:** Glycerol Fed-batch phase, **Phase III:** Methanol fed-batch phase (black line: HCDF1, grey line: HCDF2).
Figure 2 SDS-Page analysis of purified CrFDH; **M**: Marker, **F1-F2**: Flow-through; **E1**: Elution with buffer A containing 10 mM imidazole; **E2**: Elution with Buffer A containing 100 mM imidazole; **E3**: Elution with Buffer A containing 200 mM imidazole; **E4**: Elution with Buffer A containing 400 mM imidazole; **E5**: Elution with Buffer A containing 500 mM imidazole.
High-level heterologous expression of active *Chaetomium thermophilum* FDH in

Pichia pastoris

Supporting Information

Zeynep Efsun DUMANa-d, Bedri Burak DURAKSOYb-d, Fatih AKTAŞc, John M. WOODLEYe*, Barış BİNAYa-d*

a Department of Bioengineering, Gebze Technical University, 41400 Gebze, Kocaeli, Turkey
b Department of Chemistry, Gebze Technical University, 41400 Gebze, Kocaeli, Turkey
c Department of Environmental Engineering, Düzce University, 81620 Düzce, Turkey
d Enzyme Consultancy and Identification Center (ETDAM), Gebze Technical University, 41400 Gebze, Kocaeli, Turkey
e Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
Content

Materials and Methods .. 3-4

Equation.S1 Theoretical yield of produced biomass from the consumed substrate.3

Equation.S2 Theoretical yield of produced product from produced biomass.3

Figure.S1 SDS Page analysis of methanol induction phase on shake flask at different time points. .. 3

Figure.S2 SDS Page analysis of methanol induction phase with different methanol concentration on shake flask. ... 4

Table.S1 Activity, concentration and specific activity of CtFDH expressed via P. pastoris with different methanol concentrations...4

Figure.S3 Enzyme activity assay graph of purified CtFDH enzyme measuring the conversion of NAD\(^+\) to NADH during the oxidation of sodium formate to CO\(_2\) at pH 5.0.........................4
Supporting Information

Equation S1 Theoretical yield of produced biomass from the consumed substrate.

\[
Y_{XS} = \frac{g \text{ cells produced (g \text{ d.w. L}^{-1})}}{g \text{ glycerol/methanol consumed (g.L}^{-1})}
\]

Equation S2 Theoretical yield of produced product from produced biomass.

\[
Y_{PX} = \frac{mg \text{ product produced (mg.L}^{-1})}{g \text{ cells produced (g d.w. L}^{-1})}
\]

Figure S1 SDS Page analysis of methanol induction phase on shake flask at different time points. M: Marker; C: Control; 24h-48h-72h: 2% (v/v) methanol induction on shake flask.
Figure S2 SDS Page analysis of methanol induction phase with different methanol concentration on shake flask. M: Marker; 24/0.5-48/0.5: 0.5% (v/v) methanol induction at 24h and 48 h; 24/2-48/2: 2% (v/v) methanol induction of colony at 24 h and 48 h; 24/1-48/1: 1% (v/v) methanol induction of colony at 24 h and 48 h; C: Control induced with 2% (v/v) methanol at 48 h.

Table S1 Activity, concentration and specific activity of CtFDH expressed via P. pastoris with different methanol concentrations.

<table>
<thead>
<tr>
<th>Methanol Induction Concentration (v/v)</th>
<th>0.5%</th>
<th>1%</th>
<th>2%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enzyme activity (U/mL)</td>
<td>0.04 ± 0.00</td>
<td>0.09 ± 0.01</td>
<td>0.14 ± 0.01</td>
</tr>
<tr>
<td>Enzyme activity (U/L)</td>
<td>0.13 ± 0.00</td>
<td>0.31 ± 0.01</td>
<td>0.46 ± 0.02</td>
</tr>
<tr>
<td>Recovered enzyme concentration (mg/L)</td>
<td>1.74 ± 0.01</td>
<td>2.29 ± 0.02</td>
<td>4.36 ± 0.07</td>
</tr>
<tr>
<td>Enzyme specific Activity (U/mg)</td>
<td>0.31 ± 0.00</td>
<td>0.40 ± 0.02</td>
<td>0.39 ± 0.01</td>
</tr>
</tbody>
</table>
Figure S3 Enzyme activity assay graph of purified *Ct*FDH enzyme measuring the conversion of NAD$^+$ to NADH during the oxidation of sodium formate to CO$_2$ at pH 5.0.