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1 Introduction

This report considers the problem presented in the International Timetabling
Competition 2019 (ITC2019). The ITC2019 problem description presents a
generalized model for the University Course Timetabling problem combined
with an XML data format. The generalized model aims to include most of
the aspects that universities worldwide might consider when constructing a
timetable. The model has been simplified to some extent, but the complexity
of the problem remains. To understand the origin of the data, the data format,
and to get a more in-depth description of the generalized model, it is encour-
aged to read the ITC2019 problem description (Müller et al., 2018).

When considering an operational research problem like the ITC2019, it can
be beneficial to describe the problem with a mathematical model. It is an ex-
cellent way to check if the problem formulation has been wholly understood.
It also provides some idea of the problem’s complexity. Additionally, if a com-
mercial solver can solve the mathematical model, no further work needs to
be done. Moreover, a mathematical model can serve as a basis for developing
matheuristics and can also validate solutions from other solution methods, i.e.,
metaheuristics.

In this report, the ITC2019 problem is described using a linear Mixed Inte-
ger Programming (MIP) model. The MIP model has been verified by compar-
ing objective penalties and feasibility of solutions with the validator provided
for the ITC2019 (www.itc2019.org/validator).
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2 Notations

This section contains an overview of the notation for the MIP model. Table 1
shows the sets that are used. Table 2 contains the notation of the parameters
that are given in the XML data. Table 3 shows other modelling notation.

Symbol Description
∆ Set of distribution constraints
P Set of penalty variables
T Set of time slots
D Set of days
W Set of weeks
K Set of courses
C Set of classes
T Set of times
R Set of rooms
S Set of students
Cδ Set of classes for a distribution constraint δ ∈ ∆
Cs Set of classes a student s ∈ S can attend
Cζ Set of classes of a subpart ζ ∈ Zω
Rc Set of available rooms for a class c ∈ C
Tc Set of available times for a class c ∈ C
Ks Set of courses a student s ∈ S must attend
Sc Set of students that can attend a class c ∈ C
Sk Set of students that must attend a course k ∈ K
Ωk Set of configurations of a course k ∈ K
Zω Set of subpart of a configuration ω ∈ Ωk

Table 1 Set notations.
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Symbol Description
cδ Cost of the distribution constraint δ ∈ ∆
pc,t Penalty of assigning time t ∈ T to class c ∈ C
pc,r Penalty of assigning room r ∈ R to class c ∈ C
ψt Objective weight of the time penalties
ψr Objective weight of the room penalties
ψδ Objective weight of the distribution constraint penalties
ψs Objective weight of the student conflict penalties
D Distribution constraint parameter
G Distribution constraint parameter
M Distribution constraint parameter
R Distribution constraint parameter
S Distribution constraint parameter
tstart The starting time slot of time t ∈ T , tstart ∈ T
tlength The duration in time slots of time t ∈ T
tend The ending time of time t ∈ T , tstart + tlength = tend ∈ T
tdays The set of days of time t ∈ T , tdays ⊆ D
tdays.first The first day of time t ∈ T , tdays.first ∈ D
tweeks The set of weeks of time t ∈ T , tweeks ⊆ D
tweeks.first The first week of time t ∈ T , tweeks.first ∈ W

Table 2 Parameter notations. Parameters are given in the data sets.

Symbol Description
ci A specific class with ID i ∈ Z+

cparent
i The parent class of class ci, c

parent
i ∈ C

climit The student limit of class c
r̃ A ’dummy’ room, which only exists in the model and

does not follow the rules of a regular room.
ri A room of class ci, ri ∈ Rci
ti A time of class ci, ti ∈ Tci
t̄ Another time different from t ∈ T , t̄ ∈ T
τ̄ Another time slot different from τ ∈ T, τ̄ ∈ T
cp Cost of the penalty p ∈ P
T′ Set of start time slots, T′ ⊆ T
T′′ Set of end time slots, T′′ ⊆ T
M Big-M

Table 3 Other modelling notation.
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3 Decision variables

The model includes two main decision variables; the scheduling variable xc,t,r
and the student sectioning variable es,c. The scheduling variable is binary with
indices, classes, times, and rooms. It is defined as

xc,t,r =

{
1 if class c ∈ C is scheduled in time t ∈ Tc in room r ∈ Rc
0 otherwise

and is defined for all c ∈ C, t ∈ Tc and r ∈ Rc. If the class does not need to be
assigned a room we set Rc = {r̃}, where r̃ is a ’dummy’ room and r̃ 6∈ R.
The scheduling variables xc,t,r (class-time-room) leads to the following auxil-
iary variables yc,t (class-time), zc,d (class-day) and wc,r (class-room).

yc,t =

{
1 if class c ∈ C is scheduled in time t ∈ Tc
0 otherwise

zc,d =

{
1 if class c ∈ C is scheduled on day d

0 otherwise

wc,r =

{
1 if class c ∈ C is scheduled in room r ∈ Rc
0 otherwise

The student sectioning variable es,c is also binary with indices; students
and classes. It is defined as

es,c =

{
1 if student s ∈ S is attending class c ∈ Cs
0 otherwise

and is defined for all s ∈ S and c ∈ Cs.
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4 Constraints

The constraints are divided into three categories; the primary constraints that
ensure general timetable feasibility, the distribution constraints that define
the feasibility between the scheduling of classes, and the student sectioning
constraints that ensure that the students are assigned the classes according to
the enrollment and the structure of the courses.

4.1 Primary constraints

The primary constraints ensure that all classes are scheduled and that no room
can be double booked. ∑

t∈Tc

∑
r∈Rc

xc,t,r = 1 ∀ c ∈ C

This constraint defines that all classes must be assigned a time and a room
(possibly the dummy-room if no room is required).∑

c∈C,
t̄∈T :

t.Overlap(t̄)

xc,t̄,r +M
∑
c∈C

xc,t,r ≤M ∀ r ∈ R, t ∈ T

The constraint ensures that if a class is scheduled in room r in time t, then
there can be no classes scheduled in any overlapping times in the same room.
The Overlap function is described further in appendix A. The big-M is equal
to the number of classes M = |C|.

Furthermore we have the following constraints to control the auxiliary vari-
ables ∑

r∈Rc

xc,t,r = yc,t ∀ c ∈ C, t ∈ Tc

∑
t∈Tc:d∈tdays,

r∈Rc

xc,t,r = zc,d ∀ c ∈ C, d ∈ D

∑
t∈Tc

xc,t,r = wc,r ∀ c ∈ C, r ∈ Rc
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4.2 Distribution constraints

In this section, the modeling of the distribution constraints of different types
is described. Each subsection considers a single distribution constraint of the
given type. The constraints presented are therefore generated for each dis-
tribution constraint of that type. If any auxiliary variables are defined, they
have an extra dimension δ that is not written explicitly, such that auxiliary
variables from two different distribution constraints are not mixed. Each type
of distribution constraint can be either soft or hard. Each soft constraint will
include a penalty variable p, which dimensions will not be stated explicitly.
The cost of the penalty variable is denoted by cp. Each distribution constraint
has a set of classes Cδ. The soft distribution constraints have a penalty cδ. It
will be stated in the section if the distribution constraint has parameters.

4.2.1 SameStart

The SameStart constraint says that if a class ci is assigned time ti, which starts
at time slot τ , then cj cannot be assigned a time that starts at a different time
slot. Here we have p ∈ {0, 1} and cp = cδ.

Hard:
∑

ti∈Tci :
tstarti =τ

yci,ti +
∑

tj∈Tcj :

tstartj 6=τ

ycj ,tj ≤ 1 ∀ ci, cj ∈ Cδ : i < j, τ ∈
⋃
t∈Tci

tstart

Soft:
∑

ti∈Tci :
tstarti =τ

yci,ti +
∑

tj∈Tcj :

tstartj 6=τ

ycj ,tj − 1 ≤ p ∀ ci, cj ∈ Cδ : i < j, τ ∈
⋃
t∈Tci

tstart

4.2.2 SameTime

The SameTime constraint says that if a class ci is assigned time ti, then cj
cannot be assigned a time that is not taught at the same time. Here we have
p ∈ {0, 1} and cp = cδ.

Hard: yci,ti +
∑

tj∈Tcj :

¬((tstarti ≤tstartj ∧tend
j ≤t

end
i )

∨(tstartj ≤tstarti ∧tend
i ≤t

end
j ))

ycj ,tj ≤ 1 ∀ ci, cj ∈ Cδ : i < j, ti ∈ Tci

Soft: yci,ti +
∑

tj∈Tcj :

¬((tstarti ≤tstartj ∧tend
j ≤t

end
i )

∨(tstartj ≤tstarti ∧tend
i ≤t

end
j ))

ycj ,tj −1 ≤ p ∀ci, cj ∈ Cδ : i < j, ti ∈ Tci
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4.2.3 DifferentTime

The DifferentTime constraint says that if a class ci is assigned time ti, then
cj cannot be assigned a time that overlaps the same time of the day. Here we
have p ∈ {0, 1} and cp = cδ.

Hard: yci,ti +
∑

tj∈Tcj :

¬((tend
i ≤t

start
j )

∨(tend
j ≤t

start
i ))

ycj ,tj ≤ 1 ∀ ci, cj ∈ Cδ : i < j, ti ∈ Tci

Soft: yci,ti +
∑

tj∈Tcj :

¬((tend
i ≤t

start
j )

∨(tend
j ≤t

start
i ))

ycj ,tj − 1 ≤ p ∀ ci, cj ∈ Cδ : i < j, ti ∈ Tci

4.2.4 SameDays

The SameDays constraint says that if a class ci is assigned time ti, with day-set
tdays
i , then cj cannot be assigned a time with day-set tdays

j if the smaller of the
day-sets is not included in the larger. Here we have p ∈ {0, 1} and cp = cδ.

Hard: yci,ti +
∑

tj∈Tcj :

tdays
i *tdays

j ∧
tdays
j *tdays

i

ycj ,tj ≤ 1 ∀ ci, cj ∈ Cδ : i < j, ti ∈ Tci

Soft: yci,ti +
∑

tj∈Tcj :

tdays
i *tdays

j ∧
tdays
j *tdays

i

ycj ,tj − 1 ≤ p ∀ ci, cj ∈ Cδ : i < j, ti ∈ Tci

4.2.5 DifferentDays

The DifferentDays constraint says that if a class ci is assigned time ti, with
day-set tdays

i , then cj cannot be assigned a time with day-set tdays
j if the two

sets have any days in common. Here we have p ∈ {0, 1} and cp = cδ.

Hard: yci,ti +
∑

tj∈Tcj :

tdays
i ∩tdays

i 6=∅

ycj ,tj ≤ 1 ∀ ci, cj ∈ Cδ : i < j, ti ∈ Tci

Soft: yci,ti +
∑

tj∈Tcj :

tdays
i ∩tdays

i 6=∅

ycj ,tj − 1 ≤ p ∀ ci, cj ∈ Cδ : i < j, ti ∈ Tci
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4.2.6 SameWeeks

The SameWeeks constraint says that if a class ci is assigned time ti, with week-
set tweeks

i , then cj cannot be assigned a time with week-set tweeks
j if the smaller

of the week-sets is not included in the larger. Here we have p ∈ {0, 1} and
cp = cδ.

Hard: yci,ti +
∑

tj∈Tcj :

tweeks
i *tweeks

j ∧
tweeks
j *tweeks

i

ycj ,tj ≤ 1 ∀ ci, cj ∈ Cδ : i < j, ti ∈ Tci

Soft: yci,ti +
∑

tj∈Tcj :

tweeks
i *tweeks

j ∧
tweeks
j *tweeks

i

ycj ,tj − 1 ≤ p ∀ ci, cj ∈ Cδ : i < j, ti ∈ Tci

4.2.7 DifferentWeeks

The DifferentWeeks constraint says that if a class ci is assigned time ti, with
week-set tweeks

i , then cj cannot be assigned a time with day-set tweeks
j if the

two sets have any weeks in common. Here we have p ∈ {0, 1} and cp = cδ.

Hard: yci,ti +
∑

tj∈Tcj :

tweeks
i ∩tweeks

j 6=∅

ycj ,tj ≤ 1 ∀ ci, cj ∈ Cδ : i < j, ti ∈ Tci

Soft: yci,ti +
∑

tj∈Tcj :

tweeks
i ∩tweeks

j 6=∅

ycj ,tj − 1 ≤ p ∀ ci, cj ∈ Cδ : i < j, ti ∈ Tci

4.2.8 Overlap

The Overlap constraint says that if a class ci is assigned time ti, then cj
cannot be assigned a time that does not overlap ti. Here we have p ∈ {0, 1}
and cp = cδ.

Hard: yci,ti +
∑

tj∈Tcj :

¬((tstartj <tend
i )∧

(tstarti <tend
j )∧

(tdays
i ∩tdays

j 6=∅)∧
(tweeks
i ∩tweeks

j 6=∅))

ycj ,tj ≤ 1 ∀ ci, cj ∈ Cδ : i < j, ti ∈ Tci
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Soft: yci,ti +
∑

tj∈Tcj :

¬((tstartj <tend
i )∧

(tstarti <tend
j )∧

(tdays
i ∩tdays

j 6=∅)∧
(tweeks
i ∩tweeks

j 6=∅))

ycj ,tj − 1 ≤ p ∀ ci, cj ∈ Cδ : i < j, ti ∈ Tci

4.2.9 NotOverlap

The NotOverlap constraint says that if a class ci is assigned time ti, then
cj cannot be assigned a time that overlaps ti. Here we have p ∈ {0, 1} and
cp = cδ.

Hard: yci,ti +
∑

tj∈Tcj :

(tstartj <tend
i )∧

(tstarti <tend
j )∧

(tdays
i ∩tdays

i 6=∅)∧
(tweeks
i ∩tweeks

i 6=∅)

ycj ,tj ≤ 1 ∀ ci, cj ∈ Cδ : i < j, ti ∈ Tci

Soft: yci,ti +
∑

tj∈Tcj :

((tstartj <tend
i )∧

(tstarti <tend
j )∧

(tdays
i ∩tdays

i 6=∅)∧
(tweeks
i ∩tweeks

i 6=∅)

ycj ,tj − 1 ≤ p ∀ ci, cj ∈ Cδ : i < j, ti ∈ Tci

4.2.10 SameRoom

The SameRoom constraint says that if a class ci is assigned room ri, then
another class cj cannot be assigned another room. Here we have p ∈ {0, 1}
and cp = cδ.

Hard: wci,ri +
∑

rj∈Rcj \{ri}

wcj ,rj ≤ 1 ∀ci, cj ∈ Cδ : i < j, ri ∈ Rci

Soft: wci,ri +
∑

rj∈Rcj \{ri}

wcj ,rj − 1 ≤ p ∀ci, cj ∈ Cδ : i < j ∈ Cδ, ri ∈ Rci
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4.2.11 DifferentRoom

The DifferentRoom constraint says that if a class ci is assigned room ri, then
another class cj cannot be assigned the same room. Here we have p ∈ {0, 1}
and cp = cδ.

Hard: wci,r + wcj ,r ≤ 1 ∀ci, cj ∈ Cδ : i < j, cj ∈ Cδ, r ∈ Rci ∪Rcj

Soft: wci,r + wcj ,r − 1 ≤ p ∀ci, cj ∈ Cδ : i < j, cj ∈ Cδ, r ∈ Rci ∪Rcj

4.2.12 SameAttendees

The SameAttendees constraint says that if a class ci is scheduled at time ti in
room ri, then another class cj cannot be scheduled such that the times overlap
(like the Overlap constraint) but also not such that the the classes overlap in
a time-room sense. That means that the classes must be scheduled such that
the travel time between the two assigned rooms does not exceed the duration
between the two assigned times. Here we have p ∈ {0, 1} and cp = cδ.

Hard: xci,ti,ri+
∑

tj∈Tcj :

ti.Overlap(tj)

ycj ,tj +
∑

tj∈Tcj :

¬ti.Overlap(tj),
rj∈Rcj :

ti.Overlap(tj ,rj ,r)

xcj ,tj ,rj ≤ 1 ∀ci, cj ∈ Cδ : i < j, ti ∈ tci , ri ∈ Rci

Soft: xci,ti,ri+
∑

tj∈Tcj :

ti.Overlap(tj)

ycj ,tj +
∑

tj∈Tcj :

¬ti.Overlap(tj),
rj∈Rcj :

ti.Overlap(tj ,rj ,r)

xcj ,tj ,rj −1 ≤ p ∀ci, cj ∈ Cδ : i < j, ti ∈ tci , ri ∈ Rci

4.2.13 Precedence

The Precedence constraint says that if a class ci is assigned time ti, then
another class cj cannot be assigned a time that starts in an earlier week or
on an earlier day of the week (if they start in the same week) or on an earlier
time (if they start in the same week on the same day). Here we have p ∈ {0, 1}
and cp = cδ.

Hard: yci,ti+
∑

tj∈Tcj :

tweeks.first
j <tweeks.first

i ∨
(tweeks.first
j =tweeks.first

i ∧
(tdays.first
j <tdays.first

i ∨
(tdays.first
j =tdays.first

i ∧tstartj <tstarti )))

ycj ,tj ≤ 1 ∀ci, cj ∈ Cδ : i < j, ti ∈ Tci
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Soft: yci,ti+
∑

tj∈Tcj :

tweeks.first
j <tweeks.first

i ∨
(tweeks.first
j =tweeks.first

i ∧
(tdays.first
j <tdays.first

i ∨
(tdays.first
j =tdays.first

i ∧tstartj <tstarti )))

ycj ,tj −1 ≤ p ∀ci, cj ∈ Cδ : i < j, ti ∈ Tci

4.2.14 WorkDay(S)

The WorkDay(S) constraint says that if a class ci is assigned time ti, then
another class cj cannot be assigned a time that overlaps any week and any
day such that the time difference between earliest start time and latest end
time is greater than the parameter S. Here we have p ∈ {0, 1} and cp = cδ.

Hard: yci,ti+
∑

tj∈Tcj :

tweeks
i ∩tweeks

i 6=∅ ∧
tdays
i ∩tdays

i 6=∅ ∧
max (tend

i ,tend
j )−min (tstarti ,tstartj )>S

ycj ,tj ≤ 1 ∀ci, cj ∈ Cδ : i < j, ti ∈ Tci

Soft: yci,ti+
∑

tj∈Tcj :

tweeks
i ∩tweeks

i 6=∅ ∧
tdays
i ∩tdays

i 6=∅ ∧
max (tend

i ,tend
j )−min (tstarti ,tstartj )>S

ycj ,tj −1 ≤ p ∀ci, cj ∈ Cδ : i < j, ti ∈ Tci

4.2.15 MinGap(G)

The MinGap(G) constraint says that if a class ci is assigned time ti, then
another class cj cannot be assigned a time that overlaps any week and any
day such that the time between the earliest end time and the latest start time
is less than G. Here we have p ∈ {0, 1} and cp = cδ.

Hard: yci,ti +
∑

tj∈Tcj :

¬(tweeks
i ∩tweeks

i =∅ ∨
tdays
i ∩tdays

i =∅ ∨
tend
i +G≤tstartj ∨
tend
j +G≤tstarti )

ycj ,tj ≤ 1 ∀ ci, cj ∈ Cδ : i < j, ti ∈ Tci

Soft: yci,ti +
∑

tj∈Tcj :

¬(tweeks
i ∩tweeks

i =∅ ∨
tdays
i ∩tdays

i =∅ ∨
tend
i +G≤tstartj ∨
tend
j +G≤tstarti )

ycj ,tj − 1 ≤ p ∀ ci, cj ∈ Cδ : i < j, ti ∈ Tci
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4.2.16 MaxDays(D)

The MaxDays(D) constraint says that the given classes cannot be spread over
more than D days. We define the auxiliary variable:

γd =

{
1 if any class c ∈ Cδ is scheduled on day d ∈ D
0 otherwise

For all days d ∈ D The variable γd is bounded by the constraint:∑
c∈Cδ

zc,d ≤Mγd ∀d ∈ D

Where M = |Cδ|. The MaxDays(D) constraints are shown below, where
p ∈ Z+ and cp = cδ.

Hard:
∑
d∈D

γd ≤ D

Soft:
∑
d∈D

γd − D ≤ p

4.2.17 MaxDayload(S)

The MaxDayload(S) says that the given classes cannot be scheduled such that
the number of time slots on any day (day load) does not exceed S. We define
the day load φw,d ∈ Z+ on a day d in a week w.

φw,d =
∑
c∈Cδ,

t∈Tc:tweek=w∧tday=d

tlengthyc,t ∀w ∈ W, d ∈ D

Thus the constraints are as follows.

Hard: φw,d ≤ S ∀w ∈ W, d ∈ D

Soft: φw,d − S ≤ ιw,d ∀w ∈ W, d ∈ D

The variable ιw,d ∈ Z+ counts the number of exceeding time slots on day
d in week w. Thus the penalty for this distribution constraint is set by:

cδ
|W|

∑
w∈W,
d∈D

ιw,d − 0.999 ≤ p

The penalty should be computed using integer division. Since the division
by |W| can result in non-integer value we subtract 0.999 to bind p correctly.
As the distribution constraints cost cδ is included in the above constraint, we
have p ∈ Z+ and cp = 1



14 Dennis S. Holm et al.

4.2.18 MaxBreaks(R,S)

The MaxBreaks(R,S) constraint says that there can be no more than R breaks
during a day, on any day in any week. A break is defined by having more than
S empty timeslots between two consecutive classes. Two consecutive classes
are considered to be in the same block if there is no break between them. This
means that on any day d in any week w, the number of blocks βw,d ∈ Z+ must
be less than R + 1.

Hard: βw,d − 1 ≤ R ∀w ∈ W, d ∈ D

Soft: βw,d − 1− R ≤ ηw,d ∀ w ∈ W, d ∈ D

The variable ηw,d ∈ Z+ counts the number of exceeding time slots on day
d in week w. Thus the penalty for this distribution constraint is set by:

cδ
|W|

∑
w∈W,
d∈D

ηw,d − 0.999 ≤ p

Since the distribution constraint cost cδ is included in the above constraint,
we have p ∈ Z+ and cp = 1

Constraints to control βw,d

To count the number of blocks on a day d in a week w, we define the
variable αw,d,τ ∈ {0, 1}. Let T′ ⊆ T be the set of time slots where any c ∈ Cδ
can start.

αw,d,τ =

{
1 if a block starts in week w∈W on day d

at time slot τ∈T′

0 otherwise

and thus we have

βw,d =
∑
τ∈T′

αw,d,τ ∀ w ∈ W, d ∈ D

To set αw,d,τ correctly, we need the auxiliary variable

σw,d,τ =

{
1 if any class c ∈ Cδ starts in week w∈W

on day d at time slot τ∈T′

0 otherwise

Which is controlled by the constraints:∑
c∈Cδ,

t∈Tc:tstart=τ

yc,t ≥ σw,d,τ ∀ w ∈ W, d ∈ D, τ ∈ T′
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∑
c∈Cδ,

t∈Tc:tstart=τ

yc,t ≤Mσw,d,τ ∀ w ∈ W, d ∈ D, τ ∈ T′

Where M = |Cδ|. We define another auxiliary variable

εw,d,τ =

{
1 if any class c ∈ Cδ is scheduled in week w∈W

on day d∈D and overlaps any time slot {τ−1−S,...,τ−1}
0 otherwise

Which is controlled by the constraints:

∑
c∈Cδ,
t∈Tc:

t.Overlap({τ−1−S,...,τ−1})

yc,t ≥ εw,d,τ ∀ w ∈ W, d ∈ D, τ ∈ T

∑
c∈Cδ,
t∈Tc:

t.Overlap({τ−1−S,...,τ−1})

yc,t ≤Mεw,d,τ ∀ w ∈ W, d ∈ D, τ ∈ T

Where M = |Cδ|. The auxiliary variables σw,d,τ and εw,d,τ sets αw,d,τ using
the following constraints.

σw,d,τ − εw,d,τ ≤ αw,d,τ ∀ w ∈ W, d ∈ D, τ ∈ T′

σw,d,τ ≥ αw,d,τ ∀ w ∈ W, d ∈ D, τ ∈ T′

εw,d,τ + αw,d,τ ≤ 1 ∀ w ∈ W, d ∈ D, τ ∈ T′

Note that for a time slot τ̄ where εw,d,τ̄ = 0 because
∑

c∈Cδ,
t∈Tc:

t.Overlap({τ−1−S,...,τ−1})

yc,t

is fixed to 0 (there exists no yc,t satisfying the sum conditions), then

σw,d,τ̄ = αw,d,τ̄ ∀ w ∈ W, d ∈ D, τ̄ ∈ T :

∣∣∣∣∣∣∣∣∣∣
⋂
c∈Cδ,
t∈Tc:

t.Overlap({τ̄−1−S,...,τ̄−1})

{yc,t}

∣∣∣∣∣∣∣∣∣∣
= 0

The Overlap-function tells if a time t overlaps a time period, similarly to
the Overlap distribution constraint.
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4.2.19 MaxBlock(M,S)

The MaxBlock(M,S) says that a block on any day in any week can be no
longer than M time slots. Two consecutive classes are said to be in the same
block if there are no more than S time slots between them. There exist special
cases where a class by itself is longer than the maximum allowed time slots
M. It is stated that such a class cannot be in a block with another class (or
if the constraint is soft, we penalize when that happens). For the following
constraints, we ignore the classes with length strictly larger than M (which is
covered later). We define the variable ρw,d,τ ∈ {0, 1}

ρw,d,τ =

{
1 if a block longer than M starts in week w ∈ W on day d ∈ D at time slot τ

0 otherwise

ρw,d,τ =

{
1 if a block longer than M starts in week w∈W

on day d∈D at time slot τ∈T′

0 otherwise

Then we can define the constraints

Hard:
∑
w∈W,
d∈D,
τ∈T

ρw,d,τ = 0

Soft:
cδ
|W|

∑
w∈W,
d∈D,
τ∈T

ρw,d,τ ≤ p

Since the distribution constraints cost cδ is included in the above con-
straint, we have p ∈ Z+ and cp = 1

Constraints to control ρw,d,τ

From section 4.2.18 we have defined αw,d,τ (any block starting at w, d, τ).
Here we also need variable γw,d,τ defined as

γw,d,τ =

{
1 if a block ends in week w ∈ W on day d ∈ D

at time slot τ∈T′′

0 otherwise

We have that

ρw,d,τ ≤ αw,d,τ ∀ w ∈ W, d ∈ D, τ ∈ T

Mρw,d,τ + S
∑

τ̄∈T:τ<τ̄≤τ+M

γw,d,τ̄ ≤ M ∀ w ∈ W, d ∈ D, τ ∈ T

αw,d,τ −
∑

τ̄∈T:τ<τ̄≤τ+M

γw,d,τ̄ ≤ ρw,d,τ ∀ w ∈ W, d ∈ D, τ ∈ T
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To control γw,d,τ , we need two auxiliary variables. Let T′′ ⊆ T be the set
of time slots where any c ∈ Cδ can end.

ϕw,d,τ =

{
1 if any class c ∈ Cδ ends in week w ∈ W on day d ∈ D

at time slot τ∈T′′

0 otherwise∑
c∈Cδ,
t∈Tc:
tend=τ

yc,t ≥ ϕw,d,τ ∀ w ∈ W, d ∈ D, τ ∈ T′′

∑
c∈Cδ,
t∈Tc:
tend=τ

yc,t ≤Mϕw,d,τ ∀ w ∈ W, d ∈ D, τ ∈ T′′

Where M = |Cδ|. We define the variable θw,d,τ

θw,d,τ =

{
1 if a class c ∈ Cδ is scheduled in week w∈W

on day d∈D and overlaps {τ+1,...,τ+1+S}
0 otherwise

and the constraints∑
c∈Cδ,
t∈Tc:

t.Overlaps(τ+1,...,τ+1+S)

yc,t ≥ θw,d,τ ∀ w ∈ W, d ∈ D, τ ∈ T′′

∑
c∈Cδ,
t∈Tc:

t.Overlaps(τ+1,...,τ+1+S)

yc,t ≤Mθw,d,τ ∀ w ∈ W, d ∈ D, τ ∈ T′′

We can now define the constraints on γw,d,τ .

ϕw,d,τ − θw,d,τ ≤ γw,d,τ ∀ w ∈ W, d ∈ D, τ ∈ T′′

ϕw,d,τ ≥ γw,d,τ ∀ w ∈ W, d ∈ D, τ ∈ T′′

θw,d,τ + γw,d,τ ≤ 1 ∀ w ∈ W, d ∈ D, τ ∈ T′′

Note that for a time slot τ̄ where θw,d,τ̄ = 0 because
∑

c∈Cδ,
t∈Tc:

t.Overlap({τ+1,...,τ+1+S})

yc,t

is fixed to 0 (there exists no yc,t satisfying the sum conditions), then

ϕw,d,τ̄ = γw,d,τ̄ ∀ w ∈ W, d ∈ D, τ̄ ∈ T :

∣∣∣∣∣∣∣∣∣∣
⋂
c∈Cδ,
t∈Tc:

t.Overlap({τ̄+1,...,τ̄+1+S})

{yc,t}

∣∣∣∣∣∣∣∣∣∣
= 0

Special case
A special case is where a class length is longer than M. We define the set of
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such classes as C>M
δ . For the hard constraint, we know that if a class c ∈ C>M

δ

is scheduled in a specific time, then any other class from Cδ cannot use a time
that will place the two in the same block. It implies that if the times share
at least one week and at least one day, there cannot be less than S time slots
between them.

Hard: yci,ti +
∑

cj∈Cδ\{ci},
tj∈Tcj :

tweeks∩tweeks
j 6= ∅ ∧

tdays∩tdays
j 6= ∅ ∧

(tstarti −tend
j < S ∨

tstartj −tend
i < S)

ycj ,tj ≤ 1 ∀ ci ∈ C>M
δ , t ∈ Tci

For the soft constraint we need to set the ρw,d,τ variable if the time between
the class ci ∈ C>M

δ and another class cj ∈ Cδ \ {ci} is less than S. That means
that we must have a constraint for each week and day of any time of the class
ci.

Soft: yci,ti + M
∑

cj∈Cδ\{ci},
tj∈Tcj :

w∈tweeks
j ∧

d∈tdays
j ∧

(tstarti −tend
j < S ∨

tstartj −tend
i < S)

ycj ,tj ≤ ρw,d,tstart ∀ci ∈ C>M
δ , t ∈ Tci , w ∈ tweeks, d ∈ tdays
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4.3 Student sectioning

Recall that es,c is the decision variable that tells if student s is attending class
c.

The number of students attending any class cannot exceed the limitation.

∑
s∈Sc

es,c ≤ climit ∀ c ∈ C

If a student attends a class given a parent class, the parent class must also
be attended. Equality does not hold since classes can share the same parent.

es,ci ≤ es,cj ∀ s ∈ S, c ∈ Cs : cparent
i = cj

4.3.1 Students attending courses

For courses with only one configuration, the students who must attend the
course must attend exactly one class from each configuration subparts.

∑
c∈Cζ

es,c = 1 ∀ k ∈ Ks : |Ωk| = 1, ω ∈ Ωk, ζ ∈ Zω, s ∈ Sk

For courses that have more than one configuration, we define the auxiliary
variable bs,ω ∈ {0, 1}.

bs,ω =

{
1 if student s ∈ S is attending a class in configuration ω ∈ Ωk
0 otherwise

The students must attend the courses by attending exactly one of the
configurations.

∑
ω∈Ωk

bs,ω = 1 ∀ s ∈ S, k ∈ Ks : |Ωk| > 1

To attend a configuration, the students must attend exactly one class from
each of the configuration subparts. Furthermore, if a student is not attending
a configuration, no classes from the subparts of that configuration can be
attended.

∑
c∈Cζ

es,c = bs,ω ∀ k ∈ Ks : |Ωk| > 1, ω ∈ Ωk, ζ ∈ Zω, s ∈ Sk
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4.3.2 Student conflicts

For student conflicts we define the variable χs,ci,cj ∈ {0, 1}

χs,ci,cj =

{
1 if there is a student conflict for student s ∈ S between classes ci ∈ and cj ∈ Cs
0 otherwise

χs,ci,cj =

{
1 if there is a student conflict for student s ∈ S

between classes ci ∈ Cs and cj ∈ Cs
0 otherwise

This variable is dependent on variables fs,ci,cj and oci,cj .

fs,ci,cj =

{
1 if student s ∈ S is attending both class ci ∈ Cs and cj ∈ Cs
0 otherwise

oci,cj =

{
1 if classes ci ∈ C and cj ∈ C overlaps

0 otherwise

Both have to be 1 for a student conflict to occur

oci,cj + fs,ci,cj − 1 ≤ χs,ci,cj ∀ s ∈ S, (ci, cj) ∈ Cs : i < j

Controlling the auxiliary variables
The variable fs,ci,cj is dependent on the variables es,c

es,ci + es,cj − 1 ≤ fs,ci,cj ∀ s ∈ S, (ci, cj) ∈ Cs : i < j

es,ci ≥ fs,ci,cj ∀ s ∈ S, (ci, cj) ∈ Cs : i < j

es,cj ≥ fs,ci,cj ∀ s ∈ S, (ci, cj) ∈ Cs : i < j

The variable oci,cj is dependent on the time and room of both classes. It is
similar to the SameAttendees distribution constraint, but here it is split into
two types of constraints, one for the times that overlap and one for the times
that do not overlap, but the assigned rooms cause an overlap.

yci,ti +
∑

tj∈Tcj :

ti.Overlap(tj)

ycj ,tj − 1 ≤ oci,cj ∀ ci, cj ∈ Cδ : i < j, ti ∈ tci

xci,ti,ri+
∑

tj∈Tcj :

¬ti.Overlap(tj),
rj∈Rcj :

ti.Overlap(tj ,rj ,ri)

xcj ,tj ,rj−1 ≤ oci,cj ∀ci, cj ∈ Cδ : i < j, ti ∈ tci , ri ∈ Rci
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5 Objectives

There are four categories of objectives: time, room, distribution constraints,
and student conflicts. These categories have respective weights ψt, ψr, ψδ, and
ψs that prioritize the types of objectives compared to each other.

5.1 Time

The time objective is related to a penalty on a class c being scheduled at a
specific time t.

ψt
∑
c∈C,
t∈Tc

pc,tyc,t

5.2 Room

The time objective is related to a penalty on a class c being assigned a specific
room r.

ψr
∑
c∈C,
r∈Rc

pc,rwc,r

5.3 Distribution constraint

Recall that each soft distribution constraint defined a penalty variable p, which
was written without dimensions and a penalty cost cp. We have the set of all
penalty variables P.

ψδ
∑
p∈P

cpp

5.4 Student conflicts

Each student conflict has a penalty of 1; thus, we penalize the total number
of student conflicts.

ψs
∑
s∈S,

(ci,cj)∈Cs

χs,ci,cj
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6 Results

The results consist of two parts. Section 6.1 presents the sizes of the MIP
models in number of constraints and variables. Section 6.2 presents the per-
formance of solving the MIP.
The MIP is solved using Gurobi 9.0 with 8 threads on a 64bit computer running
Scientific Linux 7.7. The machine is equipped with two Intel Xeon E5-2650 v4
CPUs clocked at 2.20GHz and 256GB of RAM.
The 30 instances from the ITC2019 competition are used to test the MIP.
There is no data available for pu-proj-fal19 as we could not construct the MIP
model because of a lack of memory.

6.1 Size of the MIP

The total number of constraints and variables are shown in Table 4. Appendix
B gives specific details on the number of constraints and variables used to
model the different parts of the MIP.

Instance Constraints Variables

agh-fis-spr17 10,716,234 5,270,957
agh-ggis-spr17 10,971,106 10,532,658
bet-fal17 7,427,922 4,770,806
iku-fal17 11,440,488 3,772,222
mary-spr17 1,716,685 1,287,460
muni-fi-spr16 4,958,093 4,350,531
muni-fsps-spr17 1,003,857 717,147
muni-pdf-spr16c 26,203,626 6,922,578
pu-llr-spr17 8,980,995 5,542,707
tg-fal17 597,723 232,749
agh-ggos-spr17 15,912,008 3,523,533
agh-h-spr17 12,642,901 1,881,442
lums-spr18 589,187 458,344
muni-fi-spr17 6,475,267 5,711,500
muni-fsps-spr17c 17,717,840 1,466,645
muni-pdf-spr16 10,554,793 6,901,019
nbi-spr18 1,955,308 631,823
pu-d5-spr17 31,570,758 30,624,014
pu-proj-fal19
yach-fal17 4,407,666 1,336,902
agh-fal17 45,591,515 25,795,085
bet-spr18 10,006,170 6,165,343
iku-spr18 9,617,259 3,728,533
lums-fal17 525,567 448,222
mary-fal18 3,754,624 3,307,703
muni-fi-fal17 8,032,513 7,384,314
muni-fspsx-fal17 23,884,170 2,791,093
muni-pdfx-fal17 48,957,509 22,345,083
pu-d9-fal19 115,664,227 56,683,344
tg-spr18 645,009 130,533

Table 4 Total number of constraints and variables for each instance



A MIP Formulation of the International Timetabling Competition 2019 Problem 23

6.2 Solving the MIP

The performance is tested with a 24 hour time limit, including reading and
processing the data. Table 5 shows the performance of the MIP after 1 hour
and 24 hours.

Time 1 hour 24 hours

Instance UB LB Gap UB LB Gap

agh-fis-spr17 - - - - 779 100%
agh-ggis-spr17 - - - - 21,703 100%
bet-fal17 - - - - - -
iku-fal17 - - - - 10,947 100%
mary-spr17 - 2,435 100% 15,932 13,212 17.07%
muni-fi-spr16 - - - - 3,276 100%
muni-fsps-spr17 - 851 100% 868 868 0%
muni-pdf-spr16c - - - - 9,196 100%
pu-llr-spr17 - - - 10,710 9,683 9.59%
tg-fal17 4,215 4,215 0% 4,215 4,215 0%
agh-ggos-spr17 - - - - - -
agh-h-spr17 - - - - 5 100%
lums-spr18 - 1 100% 95 24 74.74%
muni-fi-spr17 - - - 24,572 2,056 91.63%
muni-fsps-spr17c - - - - 923 100%
muni-pdf-spr16 - - - - - -
nbi-spr18 18,979 17,438 8.12% 18,212 17,654 3.06%
pu-d5-spr17 - - - - 4,147 100%
pu-proj-fal19
yach-fal17 - 30 100% 19,046 516 97.29%
agh-fal17 - - - - - -
bet-spr18 - - - - - -
iku-spr18 - - - - 14,006 100%
lums-fal17 - 196 100% 405 233 42.47%
mary-fal18 - - - - 3,009 100%
muni-fi-fal17 - - - - 1,486 100%
muni-fspsx-fal17 - - - - 1,680 100%
muni-pdfx-fal17 - - - - - -
pu-d9-fal19 - - - - - -
tg-spr18 12,704 12,704 0% 12,704 12,704 0%

Table 5 Runtime stats after 1 hour and 24 hours. Optimal solutions are in bold. Dash
means that the solver is running, but there was no value.

When solving the MIP, Gurobi will first try to reduce the MIP by a pre-
solve procedure. The presolve procedure will try to make the MIP smaller and
easier to solve. In Table 6, we present the number of constraints and variables
removed by presolve and the size of the model after presolve. The Gurobi
Presolve parameter is left at its default setting.
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Instance
Removed

constraints
Removed
variables

Number of
constraints

after presolve

Number of
variables

after presolve
Time (sec)

agh-fis-spr17 3,303,883 2,688,938 7,412,351 2,582,019 2,956
agh-ggis-spr17 9,004,781 8,571,540 1,966,325 1,961,118 239
bet-fal17 1,208,055 788,486 6,219,867 3,982,320 680
iku-fal17 2,040,648 478,300 9,399,840 3,293,922 2,662
mary-spr17 942,132 761,533 774,553 525,927 62
muni-fi-spr16 1,843,183 1,644,797 3,114,910 2,705,734 100
muni-fsps-spr17 471,269 349,566 532,588 367,581 34
muni-pdf-spr16c 9,263,603 3,277,787 16,940,023 3,644,791 4,825
pu-llr-spr17 4,288,999 3,652,660 4,691,996 1,890,047 289
tg-fal17 477,409 106,435 120,314 126,314 22
agh-ggos-spr17 2,557,583 873,066 13,354,425 2,650,467 1,413
agh-h-spr17 1,830,684 295,957 10,812,217 1,585,485 5,379
lums-spr18 101,420 22,924 487,767 435,420 189
muni-fi-spr17 2,050,479 1,833,495 4,424,788 3,878,005 150
muni-fsps-spr17c 4,574,019 604,346 13,143,821 862,299 1,497
muni-pdf-spr16 2,739,129 2,298,089 7,815,664 4,602,930 698
nbi-spr18 734,527 431,815 1,220,781 200,008 52
pu-d5-spr17 23,427,922 22,939,347 8,142,836 7,684,667 473
pu-proj-fal19
yach-fal17 1,086,201 326,048 3,321,465 1,010,854 194
agh-fal17 14,037,069 12,331,961 31,554,446 13,463,124 11,506
bet-spr18 1,662,060 971,980 8,344,110 5,193,363 660
iku-spr18 2,666,485 780,152 6,950,774 2,948,381 2,216
lums-fal17 109,252 16,101 416,315 432,121 134
mary-fal18 1,438,431 1,294,436 2,316,193 2,013,267 92
muni-fi-fal17 2,625,159 2,433,535 5,407,354 4,950,779 154
muni-fspsx-fal17 5,813,525 1,197,584 18,070,645 1,593,509 2,860
muni-pdfx-fal17 22,427,991 14,035,002 26,529,518 8,310,081 11,008
pu-d9-fal19 39,699,909 32,863,017 75,964,318 23,820,327 5,970
tg-spr18 573,696 58,854 71,313 71,679 29

Table 6 The number constraints and variable removed by Gurobi presolve and the MIP
model sizes after presolve. Last column is the time spend in presolve.
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7 Concluding remarks

We have presented a MIP formulation for the ITC2019 problem. This MIP
formulation results in models with a vast number of constraints and variables.
The performance was tested on the 30 instances of ITC2019 resulting in so-
lutions to ten instances, including three optimal solutions. The results also
provide lower bounds on 22 of the instances. One instance reached the mem-
ory limit and thus was not able to be computed. The results are, of course,
dependant on different Gurobi parameter settings. For example, one could
wish to use a more aggressive presolve strategy and a MIP focus parameter
set to feasibility or optimality. Such settings might provide more reductions in
presolve and might also provide feasible solutions to more instances with worse
lower bounds as a consequence. However, before such parameter tuning is per-
formed, it should be considered if the model can be formulated differently.
Table 6 shows the number of constraints and variables removed by presolve.
For some instances, Gurobi can remove numerous constraints and variables in
very little time. This might indicate that the MIP formulation contains many
redundant constraints and/or variables.

This basic MIP formulation can provide good solutions to smaller instances
within a reasonable time. There is no time limit of the ITC2019, but the final
data instances are released 10 days before the deadline. It is not expected that
the MIP models will perform significantly better by increasing the time limit
to 10 days. We believe that it is likely that an improved formulation of the
MIP or a matheuristic based on the MIP can outperform these results.
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Appendices

A The Overlap function

The Overlap function takes different input parameters and gives a boolean result if the time
and the input parameters overlap.

The different types

t.Overlap({τmin, . . . , τmax})
- Returns true if the time slots of t overlaps the time slots from τmin to τmax.

τmin < tend ∧ tstart < τmax

t.Overlap(t̄)
- Returns true if the times t and t̄ have at least one week and one day in common and the
time slots overlaps.

tweeks ∩ t̄weeks 6= ∅ ∧

tdays ∩ t̄days 6= ∅ ∧

t̄start < tend ∧ tstart < t̄end

t.Overlap(t̄, r̄, r) - Returns true if the times t and t̄ have at least one week and one
day in common and the time slots overlaps or it is not possible to get from one room to the
other in the time difference.

tweeks ∩ t̄weeks 6= ∅ ∧

tdays ∩ t̄days 6= ∅ ∧

[t̄start < tend ∧ tstart < t̄end ∨

max{tstart, t̄start} −min{tend, t̄end} < distance(r̄, r)]
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B Specified MIP size

Tables 7-11 gives the specified number of constraints used to model each of the distribution
constraint types. Table 12 gives the number of constraint and variable used for student
sectioning.

Instance SameStart SameTime SameDays SameWeeks SameRoom

agh-fis-spr17 0 | 0 6, 002 | 341 6, 002 | 9, 657 731 | 0 68 | 51
agh-ggis-spr17 0 | 0 8, 281 | 397 15, 871 | 21, 048 0 | 0 1, 094 | 126
bet-fal17 64 | 0 37 | 0 198 | 55, 680 0 | 0 333 | 510
iku-fal17 208 | 0 3, 324 | 0 13, 628 | 1, 714 0 | 0 4, 959 | 1, 677
mary-spr17 0 | 0 164 | 0 659 | 875 0 | 0 159 | 57
muni-fi-spr16 0 | 0 628 | 0 1, 253 | 278 84 | 0 149 | 9
muni-fsps-spr17 0 | 0 2, 308 | 1, 192 2, 558 | 1, 222 0 | 0 116 | 15
muni-pdf-spr16c 0 | 0 3, 626 | 573 3, 904 | 0 0 | 0 132 | 28, 555
pu-llr-spr17 1, 736 | 0 261 | 0 296 | 563 0 | 0 427 | 277
tg-fal17 0 | 0 833 | 0 833 | 6, 967 0 | 0 0 | 0
agh-ggos-spr17 0 | 0 19, 938 | 0 21, 962 | 516 44 | 0 789 | 1
agh-h-spr17 0 | 0 32, 138 | 616 32, 218 | 102, 452 54 | 0 271 | 27
lums-spr18 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0
muni-fi-spr17 0 | 0 300 | 0 1, 057 | 65 162 | 0 141 | 11
muni-fsps-spr17c 0 | 0 1, 056 | 0 1, 182 | 0 846 | 234 0 | 1, 489
muni-pdf-spr16 0 | 0 1, 723 | 40 2, 289 | 5, 891 0 | 0 619 | 2, 387
nbi-spr18 0 | 0 947 | 0 992 | 275 0 | 0 0 | 0
pu-d5-spr17 4 | 0 75 | 178 2, 016 | 323 0 | 0 671 | 1, 965
pu-proj-fal19
yach-fal17 0 | 0 0 | 0 23 | 0 0 | 0 24 | 1, 145
agh-fal17 0 | 0 44, 698 | 65, 737 51, 903 | 153, 694 1, 592 | 12 3, 434 | 2, 782
bet-spr18 2 | 0 316 | 0 831 | 69, 564 0 | 0 249 | 1, 417
iku-spr18 210 | 0 3, 972 | 0 14, 822 | 50 0 | 0 5, 518 | 0
lums-fal17 0 | 0 77 | 0 118 | 0 0 | 0 0 | 0
mary-fal18 0 | 0 115 | 0 408 | 206 0 | 0 354 | 46
muni-fi-fal17 0 | 0 388 | 0 788 | 448 0 | 0 289 | 0
muni-fspsx-fal17 0 | 0 615 | 0 1, 987 | 1, 372 1, 320 | 0 69 | 2, 235
muni-pdfx-fal17 0 | 0 7, 571 | 655 12, 135 | 7, 439 392 | 444 898 | 42, 685
pu-d9-fal19 1, 512 | 0 1, 022 | 0 5, 413 | 4, 965 0 | 0 5, 149 | 8, 068
tg-spr18 0 | 0 180 | 17, 591 350 | 17, 591 0 | 0 1, 081 | 3, 871

Table 7 Number of constraints in the MIP to model each of the distribution constraint
types. Data represented Hard | Soft.
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Instance DifferentTime DifferentDays DifferentWeeks DifferentRoom

agh-fis-spr17 0 | 0 478 | 210 0 | 0 0 | 0
agh-ggis-spr17 0 | 0 78 | 14 0 | 0 0 | 0
bet-fal17 3 | 0 8, 154 | 54, 691 0 | 0 0 | 431
iku-fal17 0 | 0 105 | 0 0 | 0 0 | 0
mary-spr17 0 | 0 0 | 0 0 | 0 0 | 0
muni-fi-spr16 0 | 0 171 | 225 0 | 0 0 | 0
muni-fsps-spr17 0 | 0 50 | 0 0 | 0 0 | 0
muni-pdf-spr16c 0 | 0 0 | 0 178, 622 | 1, 512 0 | 0
pu-llr-spr17 38 | 19 77 | 51 0 | 0 0 | 0
tg-fal17 0 | 0 0 | 331 0 | 0 0 | 0
agh-ggos-spr17 0 | 0 25 | 0 0 | 0 0 | 0
agh-h-spr17 0 | 0 0 | 0 0 | 0 0 | 0
lums-spr18 0 | 0 0 | 0 0 | 0 0 | 0
muni-fi-spr17 0 | 0 146 | 162 0 | 0 8 | 0
muni-fsps-spr17c 0 | 0 0 | 0 118, 192 | 0 0 | 0
muni-pdf-spr16 0 | 0 664 | 1, 176 116 | 0 0 | 0
nbi-spr18 0 | 0 1, 333 | 40 0 | 0 0 | 0
pu-d5-spr17 0 | 0 2, 303 | 0 0 | 0 0 | 0
pu-proj-fal19
yach-fal17 0 | 0 12, 427 | 0 0 | 0 0 | 0
agh-fal17 0 | 0 1, 101 | 0 0 | 0 0 | 0
bet-spr18 0 | 0 11, 507 | 68, 076 0 | 0 0 | 1, 924
iku-spr18 0 | 0 1, 117 | 0 0 | 0 0 | 0
lums-fal17 0 | 0 0 | 0 0 | 0 0 | 0
mary-fal18 0 | 0 0 | 0 0 | 0 0 | 0
muni-fi-fal17 0 | 0 106 | 272 0 | 0 0 | 0
muni-fspsx-fal17 0 | 0 8 | 60 156, 245 | 0 0 | 0
muni-pdfx-fal17 0 | 0 582 | 357 225, 539 | 0 0 | 0
pu-d9-fal19 467 | 28 47 | 68 0 | 0 0 | 0
tg-spr18 0 | 0 1, 359 | 0 0 | 0 0 | 0

Table 8 Number of constraints in the MIP to model each of the distribution constraint
types. Data represented Hard | Soft.
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Instance Overlap NotOverlap SameAttendees Precedence

agh-fis-spr17 0 | 0 2, 286 | 222 6, 263, 527 | 3, 374 272 | 22, 983
agh-ggis-spr17 0 | 0 64 | 5, 427 498, 878 | 0 991 | 8, 125
bet-fal17 0 | 0 205 | 0 1, 521, 402 | 0 0 | 0
iku-fal17 1, 072 | 0 539, 015 | 1, 043 10, 604, 393 | 2, 920 1, 571 | 21, 855
mary-spr17 0 | 0 0 | 16, 385 306, 332 | 539, 511 41 | 0
muni-fi-spr16 0 | 0 2, 700 | 17, 279 57, 483 | 0 464 | 378
muni-fsps-spr17 0 | 0 0 | 6, 215 94, 501 | 0 957 | 0
muni-pdf-spr16c 0 | 0 0 | 29, 354 18, 099, 414 | 0 91, 893 | 1, 265
pu-llr-spr17 0 | 0 3, 111 | 5, 643 37, 641 | 0 0 | 126
tg-fal17 0 | 0 7, 406 | 0 407, 532 | 134, 745 0 | 0
agh-ggos-spr17 0 | 0 0 | 0 3, 161, 309 | 0 989 | 67, 366
agh-h-spr17 0 | 0 159, 239 | 0 8, 445, 889 | 12 2, 352 | 1, 104
lums-spr18 0 | 0 108, 029 | 33, 772 392, 946 | 0 0 | 0
muni-fi-spr17 0 | 0 3, 539 | 16, 670 73, 599 | 0 1, 208 | 84
muni-fsps-spr17c 0 | 0 0 | 9, 994 2, 979, 413 | 0 16, 321 | 0
muni-pdf-spr16 0 | 0 0 | 73, 914 2, 321, 086 | 0 454 | 201
nbi-spr18 0 | 0 0 | 635 334, 989 | 0 0 | 0
pu-d5-spr17 0 | 0 7, 261 | 90, 598 55, 526 | 2 965 | 1, 519
pu-proj-fal19
yach-fal17 0 | 0 0 | 12, 075 339, 540 | 0 0 | 0
agh-fal17 0 | 0 10, 151 | 1, 402 10, 410, 795 | 234, 335 6, 080 | 190, 573
bet-spr18 0 | 0 180 | 960 2, 254, 545 | 0 0 | 0
iku-spr18 0 | 0 766, 819 | 0 8, 521, 716 | 45, 806 1, 799 | 17, 797
lums-fal17 0 | 0 153, 234 | 31, 524 287, 927 | 0 0 | 0
mary-fal18 0 | 0 0 | 13, 907 111, 775 | 11, 781 198 | 0
muni-fi-fal17 0 | 0 1, 901 | 12, 557 53, 199 | 0 421 | 1, 129
muni-fspsx-fal17 0 | 0 29, 711 | 26, 530 3, 425, 746 | 11 26, 794 | 532
muni-pdfx-fal17 0 | 0 372 | 72, 744 25, 140, 403 | 2, 653 115, 569 | 6, 390
pu-d9-fal19 0 | 0 3, 937 | 78, 834 418, 931 | 0 76 | 759
tg-spr18 0 | 0 3, 860 | 0 559, 997 | 0 120 | 356

Table 9 Number of constraints in the MIP to model each of the distribution constraint
types. Data represented Hard | Soft.
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Instance WorkDay MinGap MaxDays

agh-fis-spr17 0 | 1, 844 0 | 0 80 | 48
agh-ggis-spr17 6, 449 | 2, 104 0 | 0 0 | 24
bet-fal17 9, 757 | 168 0 | 55, 351 80 | 0
iku-fal17 10, 027 | 642 0 | 0 0 | 0
mary-spr17 201 | 112 108 | 739 0 | 0
muni-fi-spr16 713 | 162 0 | 0 0 | 0
muni-fsps-spr17 130 | 8 0 | 0 0 | 0
muni-pdf-spr16c 28 | 61, 001 0 | 0 0 | 0
pu-llr-spr17 17 | 459 0 | 44 0 | 0
tg-fal17 0 | 118 0 | 0 0 | 0
agh-ggos-spr17 1, 821 | 75 0 | 0 16 | 16
agh-h-spr17 74 | 2, 371 0 | 0 136 | 40
lums-spr18 0 | 0 0 | 0 0 | 0
muni-fi-spr17 638 | 58 0 | 0 8 | 0
muni-fsps-spr17c 100 | 0 0 | 0 0 | 0
muni-pdf-spr16 488 | 13, 459 33 | 210 0 | 0
nbi-spr18 0 | 0 0 | 275 0 | 0
pu-d5-spr17 1, 366 | 143 85 | 54 0 | 0
pu-proj-fal19
yach-fal17 0 | 0 23 | 0 0 | 0
agh-fal17 5, 127 | 6, 424 16 | 104 352 | 216
bet-spr18 13, 363 | 252 0 | 68, 769 120 | 0
iku-spr18 11, 174 | 0 0 | 0 0 | 0
lums-fal17 0 | 0 0 | 0 0 | 0
mary-fal18 202 | 45 0 | 116 0 | 0
muni-fi-fal17 391 | 263 0 | 0 16 | 0
muni-fspsx-fal17 592 | 52 0 | 1, 364 0 | 0
muni-pdfx-fal17 1, 069 | 21, 761 0 | 1, 132 0 | 64
pu-d9-fal19 3, 370 | 1, 430 199 | 95 0 | 0
tg-spr18 0 | 0 0 | 0 0 | 0

Table 10 Number of constraints in the MIP to model each of the distribution constraint
types. Data represented Hard | Soft.
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Instance MaxDayLoad MaxBreaks MaxBlock

agh-fis-spr17 0 | 0 0 | 93, 490 0 | 0
agh-ggis-spr17 0 | 0 0 | 5, 904 0 | 0
bet-fal17 32 | 0 0 | 0 749, 119 | 0
iku-fal17 0 | 0 0 | 0 0 | 0
mary-spr17 0 | 0 0 | 0 0 | 0
muni-fi-spr16 114 | 0 0 | 0 0 | 14, 325
muni-fsps-spr17 0 | 0 0 | 0 0 | 0
muni-pdf-spr16c 50 | 1, 289 0 | 0 6, 992 | 211, 584
pu-llr-spr17 0 | 0 0 | 6, 032 0 | 0
tg-fal17 0 | 0 0 | 0 0 | 0
agh-ggos-spr17 0 | 0 9, 898 | 0 0 | 0
agh-h-spr17 546 | 71 0 | 431, 581 0 | 0
lums-spr18 0 | 0 0 | 0 0 | 0
muni-fi-spr17 70 | 0 0 | 0 91, 638 | 24, 893
muni-fsps-spr17c 0 | 0 0 | 0 0 | 0
muni-pdf-spr16 286 | 1, 541 0 | 0 26, 352 | 554, 275
nbi-spr18 0 | 0 0 | 0 0 | 0
pu-d5-spr17 0 | 0 41, 250 | 0 0 | 0
pu-proj-fal19
yach-fal17 2, 935 | 0 0 | 0 0 | 0
agh-fal17 975 | 0 165 | 792, 455 0 | 0
bet-spr18 0 | 0 0 | 0 892, 608 | 0
iku-spr18 0 | 0 0 | 0 0 | 0
lums-fal17 0 | 0 0 | 0 0 | 0
mary-fal18 0 | 0 0 | 0 0 | 0
muni-fi-fal17 104 | 53 0 | 0 148, 171 | 27, 939
muni-fspsx-fal17 0 | 0 0 | 0 0 | 0
muni-pdfx-fal17 428 | 1, 614 0 | 0 6, 145 | 562, 289
pu-d9-fal19 0 | 31 56, 607 | 3, 016 0 | 0
tg-spr18 0 | 152 0 | 0 0 | 0

Table 11 Number of constraints in the MIP to model each of the distribution constraint
types. Data represented Hard | Soft.
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The number of constraints and variables used to model the student sectioning is pre-
sented in Table 12. The constraints and variables are split into two categories. One category
is the student sectioning part. This part considers the constraints and variables used in
assigning the students to the correct classes. The other part, student conflicts, is the con-
straints and variables used to model when the students’ assignment leads to conflict.

Student Sectioning Student Conflicts

Instance es,c bs,ω Constraints Variables Constraints

agh-fis-spr17 65,376 0 53,277 3,566,172 3,986,367
agh-ggis-spr17 116,552 0 57,723 10,061,361 10,257,182
bet-fal17 94,893 15,990 62,440 3,575,690 4,843,252
iku-fal17 - - - - -
mary-spr17 28,230 0 6,046 507,735 806,431
muni-fi-spr16 64,506 14 7,454 4,205,866 4,834,674
muni-fsps-spr17 20,667 776 7,704 644,280 867,989
muni-pdf-spr16c 80,918 5,246 56,494 3,735,530 7,157,505
pu-llr-spr17 236,980 20,353 103,598 5,108,450 8,773,805
tg-fal17 - - - - -
agh-ggos-spr17 56,818 0 45,621 2,111,511 12,415,681
agh-h-spr17 11,530 0 4,954 310,548 2,996,086
lums-spr18 - - - - -
muni-fi-spr17 70,257 60 8,373 5,504,735 6,232,852
muni-fsps-spr17c 17,190 0 10,135 973,959 14,490,356
muni-pdf-spr16 103,864 2,822 22,982 5,468,914 7,420,773
nbi-spr18 29,986 0 4,984 422,248 1,565,002
pu-d5-spr17 442,232 9,886 302,079 29,956,847 31,033,720
pu-proj-fal19
yach-fal17 28,779 150 25,665 1,183,118 3,986,219
agh-fal17 305,022 108 198,075 20,701,326 32,709,410
bet-spr18 105,021 14,998 80,461 4,814,300 6,473,132
iku-spr18 - - - - -
lums-fal17 - - - - -
mary-fal18 83,731 0 12,970 2,986,780 3,564,777
muni-fi-fal17 90,997 0 9,991 7,141,048 7,758,047
muni-fspsx-fal17 44,916 194 18,373 2,155,918 20,066,497
muni-pdfx-fal17 241,256 14,776 135,103 16,817,990 22,120,722
pu-d9-fal19 941,391 57,306 513,531 54,867,830 114,406,242
tg-spr18 - - - - -

Table 12 Overview of the number of variables and constraints that are connected to student
sectioning and student conflicts.
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