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Highlights
Barriers to gene flow are best studied
where divergent populations are in con-
tact, and studies of single-taxon hybrid
zones have generated important knowl-
edge about the nature of reproductive
barriers.

Marine environments, earlier considered
to host unstructured species due to
high connectivity, offer multispecies con-
tact zones structured by simple physical
gradients (e.g., salinity) ideal for compara-
Barriers to gene flow between divergent populations result in contact (hybrid)
zones. Locations where multiple contact zones overlap can be used in compara-
tive studies asking: what mechanisms maintain barriers; what is the origin of the
genetic variation involved; and do differences in life history affect the nature of
barriers? In a review of 23 marine species’ genetic divergence over a postglacial
salinity gradient, many showed steep genetic clines supported by divergent selec-
tion and/or temporal or spatial segregation. Contacts were primary or secondary
and shaped by ancestral variation sometimes involving inversions. The dispersal
potential of species seemed less important in shaping clines. Studies of multi-
species contact zones will increase our understanding of speciation, but we
need to address the taxonomic bias and focus more on postzygotic isolation.
tive studies of divergence and speciation.

Overlapping contact zones offer possi-
bilities for comparison of barriers among
species of various taxa, life histories,
and demographic backgrounds and to
test the role of species-specific traits in
the formation and function of barriers.

Combining genome scans and demo-
graphic modelling, barrier regions in the
genomecanbe located andbarrier origin
traced. With genetic maps, inversions
that affect recombination rate (and
hence gene flow) can be identified.
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Contact Zones Are Speciation Laboratories
Contact zones (see Glossary) are laboratories for studies of the nature of barriers to gene
flow between divergent populations or taxa [1–3]. Genome-wide sequencing and genetic
maps have powered the identification of candidates for barrier loci and investigations of the
genomic landscape shaping divergence and speciation [4]. Divergence is usually considered
to evolve either in situ as a result of different selection regimes acting on either side of the
contact (primary contact) or after secondary contact of populations that have already accumu-
lated differences by selection and/or drift [5–8] (Box 1). In both types of contact, identification of
the origin and mechanisms of the genetic barriers are central to our understanding of the evo-
lution and maintenance of the divergence [4,7,9]. For example, what are the roles of divergent
ecological selection, assortative mating (whether due to spatial, temporal, or behavioural
isolation), and postzygotic isolation mechanisms caused by intrinsic genetic incompatibilities
or extrinsic selection against hybrids?

Studies of single contact zones generate important details of mechanisms involved but give
less indication of their quantitative importance. Moreover, single-species studies cannot
inform us about the role of traits that are invariable within a species (e.g., many life-history
traits, large genomic traits). Studies of multispecies contact zones, where the contacts of
different species overlap under the same external conditions, allow assessments of the
general importance of different patterns of origin, ancestral variation, and genomic architec-
tures in barrier formation. They also enable us to investigate how life-history traits such as
dispersal, generation time, and reproductive biology contribute to gene-flow barriers, and
the role of prezygotic and postzygotic isolation mechanisms. Multispecies contact zones
(sometimes referred to as ‘suture zones’) are present in both terrestrial [10,11] and marine
[5,12–17] environments. Compiling recent data from a marine multispecies contact zone at
the entrance of the Baltic Sea, we here highlight questions that a comparative approach of
such zones can address, to support an increased understanding of the mechanisms involved
in divergence and speciation.
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Glossary
Barrier loci: loci involved in
reproductive isolation and in reducing
gene flow between populations.
Chromosomal arrangement: here
used for the two chromosome
sequences – the ancestral and the
derived – with mirrored orders of
nucleotides that are the result of a
chromosomal inversion.
Contact zone: a geographic area
where two divergent populations or
closely related species overlap in
distribution and potentially hybridise; the
term ‘contact zone’ is more appropriate
than ‘hybrid zone’ unless it is clear that
hybrids are produced.
Demographic inference/modelling:
approaches that use DNA sequence
information to test historical scenarios of
population expansions and bottlenecks,
isolation, and gene flow, and which can
suggest the timing of various population
events.
Genomic landscape/architecture:
how genes and other functional
elements of the genome are physically
arranged on the chromosomes.
Haplotypeblock: a part of the genome
that is inherited together without being
broken up by recombination.
Introgression: incorporation of genetic
material from one species or population
into the genome of another species or
population by hybridisation followed by
repeated backcrossing.
Multispecies contact zone: a
geographic area where several species
form overlapping contact zones (see
also ‘suture zone’)

Trends in Ecology & Evolution
The Baltic Sea Multispecies Contact Zone
The transition zone between the marine North Sea (North-East Atlantic) and the brackish Baltic
Sea is shaped by a salinity gradient with its steepest part in the Danish Straits (Figure 1, Key Figure).
Importantly, low salinity imposes strong physiological stress onmost marine organisms and so this
gradient impacts heavily on the distribution and adaptation of marine species in this area. After its
formation 8000 years ago by the opening of a postglacial freshwater lake into the Atlantic, the Baltic
Sea was subsequently colonised by a subset of the marine species living in the North Sea. A few of
these established populations along the entire environmental gradient while the majority colonised
only the outer part of the gradient [18]. Many of the marine species established in the Baltic Sea
show strong plasticity in phenotypic traits [19–22]; in addition, early genetic studies had already
shown examples of strong genetic clines over the salinity gradient [23,24].

We scanned published studies describing genetic variation in species present over the North Sea–
Baltic Sea transition and retrieved useful data for 23 species. These species represent a wide range
of taxa (15 fish, five invertebrates, two macroalgae, and one microalga) and a wide range of life
histories (Table 1). With only one exception, the recently invaded bay barnacle (Balanus improvisus)
[25], all species show genetic differentiation over the transition zone. In most species, the separa-
tion is between a Baltic Sea and a North Sea population, while in European flounder (Platichthys
spp.) there is an additional subdivision inside the Baltic Sea (Figure 1). Importantly, all species
form contact zones between divergent populations. Original descriptions indicated that 16 of 22
contact zones roughly overlapped (Figure 1), and after fitting clines to the species with enough
data (14 species) this shows that the overlap coincides with the steepest part of the salinity
gradient, although some clines are slightly shifted towards lower salinities (Figure 2). In 12 species,
the available data allowed a more formal analysis of the presence of genetic clines. This test sup-
ports stepped or segmented clines in ten species, while in the isopod Idotea baltica and the Baltic
clam [Limecola (Macoma) balthica] divergence tends to be linear rather than stepped (Table 1).

A Taxonomic Bias
We found genetic data for only twomacroalgae (Fucus vesiculosus and Saccharina latissima) and
one diatom species (Skeletonemamarinoi) and none of themwere genome-wide data. Neverthe-
less, all show divergence over the salinity ecotone (Table 1), with the contact zone of Saccharina
shifted 300 km outside the steepest part of the transition. In bothmacroalgae, divergence is weak
Reciprocal transplant: translocation
of individuals between two divergent
populations living in different habitats to
assess how much of their phenotypic
difference is induced by the environment
and how much is inherited difference.
Transplant experiments can be done in
the wild, but often (for practical reasons)
they are conducted in the laboratory,
where the two environments are
simulated.
Suture zone: a boundary area where
two separate organism assemblages
meet. In biology a suture zone is
similar to a multispecies contact zone,
but in geology it has a completely
different meaning and is therefore
avoided here.
Transition zone: in the setting of this
study, used to describe the geographic
area over which the environmental
gradient (here salinity) changes.

Box 1. Primary and Secondary Contact

A contact zone originates in one of two ways: (i) secondary contact is formed between two populations that have diverged by
genetic drift or selection during a period of isolation prior to contact; whereas (ii) primary contact is formed in situ when a
population expands across an environmental transition under divergent selection and gene flow. Genomic patterns resulting
from hybridisation will initially be very different between secondary and primary contact zones [7], and one such difference is
the haplotype structure. Secondary contact will produce an introgression pattern characterised by successively smaller
‘pieces’ of the original background haplotypes with increasing distance from the contact [87]. This is because repeated
recombination during backcrossing breaks apart large introgressed pieces of genomic material (Figure I, ‘young’ secondary
contact). Primary contact, by contrast, will emerge from a common background and hybridisation will occur between
haplotypes sharing a common origin. In both secondary and primary zones, ancestral genetic variation (green and brown
loci/alleles in Figure I) are likely to play a key role: in secondary zones, ancient adaptive differences will remain important for
divergence after contact, while in primary zones ancient polymorphisms can segregate under divergent selection. Over time,
new variation (dark blue and red in Figure I), from newmutations or from outside the zones, will establish under selection and
contribute to divergence and barriers. Secondary contact can initially form wherever the two earlier isolated populations
happen to meet. However, both neutral and selected genetic clines that form at first contact will move until they become
trapped in a density trough and/or at a steep environmental shift [1,5]. Primary hybrid zoneswill evolve at steep environmental
shifts. Positions of secondary and primary zonesmight overlap sometime after establishment [7], modelling the demographic
history using nonadmixed populations outside the contact zone can, however, help to resolve their origin. Also, primary
zonesmight have components of secondary origin; for instance, if primary contact zones form from standing genetic variation
that evolved during earlier periods of isolation [85].
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Trapping hypothesis: a model
suggesting that allelic clines of hybrid
zones are attracted by low-population-
density areas and by areas where
environmental gradients are steep.
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Figure I. Introgression and Divergence under Secondary and Primary Contact. Chromosome pairs sampled
from populations distributed at different distances from a contact zone with hybridisation and introgression. Different
ground colours (light blue and pink) illustrate different genomic backgrounds, while green and brown bands illustrate a
nonneutral difference present prior to contact. Blue and red bands represent new nonneutral genetic variation
introduced by mutation or gene flow (from outside the zones). Both the ancestral and the new genetic variation
contribute to the genetic clines established by divergent selection over the contact zones.

Trends in Ecology & Evolution
and might simply be the result of isolation by distance [26,27]. Skeletonema represents a pelagic
microscopic species with an enormous population size (1 million cells per litre during spring
blooms [28]) and a high potential for long-distance dispersal. Still, divergence over the salinity
transition is clearly stepped in this species (Figure 2 and Table 1). Divergent selection, anchoring
of local populations by a benthic resting stage, and oceanographic connectivity patterns have
been suggested to contribute to the clinal genetic structure [29]. This unique example from a di-
atom species shows that clinal divergence over contact zones can also be informative in micro-
organisms, stressing the need to reduce the current taxonomic bias in future comparative
studies.

Primary and Secondary Contacts
The origin of contact zones is of fundamental interest. With thousands of genetic markers, it is
possible to reconstruct the divergence history of populations using demographic inference,
in which one compares different scenarios of evolution (‘models’) with the observed patterns of
divergence. From divergence under simple allopatry, primary, or secondary contact, these
models have been increasingly tuned to represent more complex demographic scenarios
involving past and/or present variation in effective population size [30,31]. In addition, these
Trends in Ecology & Evolution, November 2020, Vol. 35, No. 11 1023
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Key Figure

The North Sea–Baltic Sea Multispecies Contact Zone
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models can account for the genomic heterogeneity involved in divergence and speciation; for
example, the semipermeability of gene flow along the genome [32–34] or the interactions be-
tween recombination rate and selection at linked sites [8,30,35]. Integrating such model-
based demographic inference under a comparative framework represents a way to understand
the origin of contact zones, although the development of these models remains in its infancy
and earlier conclusions might have to be revisited [31].

Phylogeographic studies of the Baltic clam (L. balthica) and the bluemussel (Mytilus edulis/trossulus)
show that, following repeated invasions from the Pacific to the Atlantic, the Baltic Sea populations
are the result of recent invasions while the lineages present in the North Sea have an old relationship
with the Pacific ancestors [36,37]. By contrast, recent demographic inference suggests that the
Baltic Sea population of Atlantic herring (Clupea harengus) was formed by a recent niche expansion
from the eastern Atlantic, followed by divergence under gene flow [38]. Moreover, a study on five
flatfish species (Pleuronectiformes) with similar adult migratory patterns and with passive drift of
large numbers of eggs and larvae during several weeks found both primary and secondary contacts
of the Baltic Sea populations based on demographic inferences usingmodels that included genomic
heterogeneity [39–41] and variation in effective population sizes [31]. This suggests that the origin of
clines might be independent of dispersal capacity. That the majority of secondary clines overlap with
the steepest part of the salinity gradient supports the trapping hypothesis; that is, clines in
both neutral and selected alleles are trapped at environmental ecotones and density troughs [1,5].
Trapping is also illustrated by the position of the contact zones in ballanwrasse and corkwingwrasse
(see below).

Studying multispecies contact zones offers a possibility to disentangle the separate and combined
roles of primary and secondary divergence over many species. Using relatively young contact
zones increases the power of these analyses since patterns of primary and secondary divergence
converge over time in the presence of gene flow (Box 1).

The Nature of Barrier Mechanisms
Once contact zones are established, genetic isolation can be maintained by prezygotic and/or
postzygotic mechanisms. Prezygotic isolation typically involves loci under divergent ecological
selection and/or loci involved in mate segregation (spatial, temporal, or behavioural) resulting in
assortative mating. Postzygotic isolation can be maintained through intrinsic genetic incom-
patibilities or through extrinsic causes of selection against hybrids.

Atlantic cod (Gadus morhua) has a complex pattern of genetic differentiation along several envi-
ronmental axes, including both genetic differentiation established prior to the Baltic Sea contact
Figure 1. Approximate positions of species contact zones are indicated along the salinity gradient. The majority of contac
zones overlap with the steepest part of the salinity gradient (broken circle). These species are shown in the bottom panel
from top left: isopod (Idotea baltica), European plaice (Pleuronectus platessa), small sandeel (Ammodytes tobianus), common
dab (Limanda limanda), blue mussel (Mytilus edulis/trossulus), Atlantic herring (Clupea harengus), Atlantic cod (Gadus morhua)
sand goby (Pomatoschistus minutus), Baltic clam [Limecola (Macoma) balthica], bladder wrack (Fucus vesiculosus), turbo
(Scophthalmus maximus), three-spined stickleback (Gasterosterus aculeatus), sugar kelp (Saccharina latissima), Atlantic
salmon (Salmo salar), diatom (Skeletonema marinoi), and greater sandeel (Hyperoplus lanceolatus). Corkwing wrasse
(Symphodus melops), ballan wrasse (Labrus bergylta), and common sole (Solea solea) contact zones are shifted 300–
500 km outside the main zone. European flounder has two contact zones, one overlapping with the main zone and one shifted
300 km inside the Baltic Sea (the latter is the contact between the pelagic Platichthys flesus and the demersal Platichthys
solemdali). A shallow-water and a deep-water population of the vase tunicate (Ciona intestinalis) form a vertical contact zone
along the Swedish west coast (parallel lines). Finally, no contact zone is evident in the invasive bay barnacle (Balanus improvisus
top right) distributed over almost the complete salinity gradient. Photograph credits: Jan Drent, Ann-Margrethe Iseklint, Bo
Johannesson, Lars-Ove Loo, Paul Naylor, Fredrik Pleijel, Anders Salesjö, Josefin Sefbom, and Mark Thomas.
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Figure 2. Position and Shape of Genetic Clines in 14 Species. Top panel: Dots represent normalised pairwise FST estimates between the outermost population and
all other populations of the same species, plotted against waterway distance from the entrance of the Baltic Sea. To illustrate cline shapes and positions, clines [88] are
fitted to the data (unbroken lines), and cline centres are also indicated (broken vertical lines); see Table 1 for tests of cline fits. We omitted species without any contact
(Balanus improvisus), species with vertical contact (Ciona intestinalis), the second contact of European flounder (Platichthys flesus/solemdali), five species with poorly
resolved geographic data [Fucus vesiculosus, Saccharina latissima, common sole (Solea solea), sandgoby (Pomatoschistus minutus), and three-spined stickleback
(Gasterosterus aculeatus)], and Atlantic salmon (Salmo salar), where we lacked FST data. Bottom panel: Sea-surface (yearly average) salinity plotted over the same
geographic interval.
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and differentiation evolved in situ [5,42,43]. A major genetic divide is between the eastern Baltic
Sea population and all other populations, with a genetic shift of allele frequencies overlapping
with the steepest part of the salinity gradient (Figure 2). Today, gene flow over this contact
zone seems very restricted, as first-generation hybrids are rarely found [23,44]. Critical traits con-
tributing to barriers, such as spawning season and egg buoyancy, differ between populations on
either side of the contact zone due to divergent selection [45]. Additional genetic divergences are
established among stationary fjord populations outside the Baltic Sea, migratory North Sea cod
populations, and stationary eastern North Sea populations, with behavioural barriers contributing
to isolation [46,47]. As discussed further below, at least three large chromosomal inversions that
are under selection play various and important roles in this divergence [41,46,48].

Current data suggest that barriers to gene flow involve prezygotic mechanisms, such as spatial or
temporal segregation (six of the 22 contact zones), and local adaptation resulting from divergent
ecological selection (ten of the 22 zones) (Table 1). However, in several species there is no infor-
mation on the mechanisms involved. In addition, it is most likely that gene flow is impeded by
1028 Trends in Ecology & Evolution, November 2020, Vol. 35, No. 11
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more than one isolation mechanism in many of the contact zones. The lack of evidence for
postzygotic mechanisms ismost likely due to the absence of studies targeting suchmechanisms.

While the majority of the Baltic Sea contact zones are associated with the centre of the transition, a
few displaced zones shed further light on the details of the barrier mechanisms involved. For
example, corkwing wrasse (Symphodus melops), a small fish confined to coastal seaweed
habitats, forms a sharp genetic cline that is strongly shifted outside the major contact (Figure 2).
The divergence is genome wide but only few loci are outliers and under divergent selection [49].
Demographic analysis shows that bottlenecks and divergence prior to contact 5500 years ago
shaped this contact zone, which is today trapped in a hostile habitat (a 60-km sandy-beach
area) at the margin of the transition (Figure 1). This example clearly illustrates the importance of
ancestral divergence and the trapping of a secondary contact zone at a density trough. Notably,
population-genetic data show the presence of a contact zone in a taxonomically close and
ecologically very similar species, ballan wrasse (Labrus bergylta), overlapping with the corkwing
wrasse contact [50] (Figure 2).

In European flounder, a second contact zone appears inside the Baltic Sea (Figure 1) separating
pelagic spawning and benthic spawning populations [51,52]. Demographic analysis suggests that
divergence started during a very recent period of isolation after the formation of the Baltic Sea,
forming a stronger barrier to gene flow than over the contact at the steep salinity shift (Table 1).
The inner contact is associated with low salinity where pelagic eggs are no longer buoyant [52].
This is an example where selection on a critical trait (egg buoyancy) strongly impacts the strength
and position of the contact zone.

The vase tunicate (Ciona intestinalis) appears with two genetically divergent populations separated
in their vertical distributions over the transition; one is confined to the high-salinity water below 20m
outside the entrance of the Baltic Sea and the other is present in the brackish surface water flowing
out from the Baltic Sea [53,54]. Demographic modelling and heterozygote deficits suggest
secondary contact with limited gene flow [55]. Still, populations are interfertile in laboratory crosses
(J. Hudson, personal communication) and show high larval plasticity in different salinities following
reciprocal transplants [21]. This contact zone supports the importance of the salinity gradient, as
the genetic divergence in this species coincide with the halocline (the salinity change). Both the
physical barrier to dispersal of larvae over the halocline and divergent selection between shallow
and deep water might contribute to impede gene flow. Furthermore, the reproductive periods of
the two populations only partly overlap [53].

The coupling between the variation in the environment and the distribution of the contact zones
can help us understand the nature of the genetic barriers. In the North Sea–Baltic Sea transition,
it is obvious that salinity is a strong forcing factor, causing both horizontal and vertical genetic
clines. However, as illustrated by the two species of wrasse, a few contacts appear less affected
by divergent ecological selection related to the salinity gradient while being instead trapped by
density troughs in environments that are hostile for these specific species.

Genomic Landscapes of Divergence
Recent progress in understanding the evolution of diverged lineages comes frommapping the dis-
tribution of divergent genomic regions to positions on the genome. Although this is as yet limited to
a handful of fish species in the North Sea–Baltic Sea transition, a diversity of genomic landscapes
emerges, from divergent regions distributed across the entire genome (e.g., Baltic populations of
cod, turbot, herring, and demersal flounder) to divergence restricted to a few genomic regions or
loci (e.g., dab, plaice, pelagic flounder) [39,41,42,51,56]. Thus, multispecies contact zones like in
Trends in Ecology & Evolution, November 2020, Vol. 35, No. 11 1029
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the Baltic Sea cover a wide range of stages of divergence along the speciation continuum in a wide
range of taxa, and studies of these zones can provide us with a broader understanding of the ge-
netic mechanisms involved in barrier formation and speciation. In the few examples from fish spe-
cies here, these differences do not appear to be linked to major differences in dispersal (a key life-
history trait) as all of these fish species have highly mobile adult stages and have long-lived pelagic
larvae. More likely, these variable patterns are, at least in part, explained by different demographic
histories and by the presence of chromosomal rearrangements.

Chromosomal inversions that reduce recombination and establish large ‘supergenes’ might
contribute important barriers in contact zones in general. Inversions play a pivotal role in di-
vergence in Atlantic cod, European plaice, and Atlantic herring and possibly also in demersal
flounder (P. Momigliano, personal communication). In cod, an inversion on chromosome 2
includes loci important in osmoregulation and one of the two chromosomal arrange-
ments is overrepresented in the Baltic Sea [42,47]. In plaice, most of the Baltic Sea differ-
entiation is clustered on two putative inversions, which appear to be significantly enriched
in immune-related genes [57]. In herring, most of the differences are concentrated in regions
of reduced recombination, including haplotype blocks and in four large inversions
[38,56,58].

From these few examples, it seems as if large chromosomal rearrangements, such as inver-
sions, are important components of divergence over contact zones. The coupling of loci that
constitute barriers to gene flow provided by the inversion is an efficient way of reducing gene
flow between populations in contact [9,59–61]. Multispecies contact zones allow quantitative
assessment of the role of inversions and other large chromosomal rearrangements in barrier
formation and of the relationship between recombination and the pattern of differentiation
along the genome.

Contribution of Ancestral Variation
Inversions that contribute to species divergence and local adaptation tend to be old [62]. In three
of the fish clines over the North Sea–Baltic Sea transition, the chromosomal arrangements now
present in the Baltic Sea are older than the Baltic Sea [47,56,57] and also present outside the
Baltic Sea (Figure 3). As inversions are typically polymorphic, they constitute important parts of
the standing genetic variation of populations [9,62]. Consequently, arrangements containing
alleles that promote local adaptation to a specific environment can rapidly increase in frequency
and promote the formation of local genetic clines over similar environmental transitions, as
observed in Atlantic herring and Atlantic cod [47,56,58].

The cases of secondary divergence also provide obvious evidence for the contribution of
ancestral variation. For instance, the Baltic Sea populations of the blue mussel and the Baltic
clam with recent origins in the Pacific were already separated from the east Atlantic coast
populations millions of years ago [63–65]. However, the blue mussel adaptation to brackish
water conditions in the Baltic Sea by M. trossulus seems to be recent and by primary diver-
gence, since in eastern Canada it is the other lineage (M. edulis) that has established in brackish
water conditions [66].

As illustrated with the Baltic Sea data, individual phylogenetic and demographic analyses can be
used to address the origin of contact zone divergences, and studies of multiple overlapping
contacts will support the identification of extrinsic mechanisms potentially affecting whole
communities of species.
1030 Trends in Ecology & Evolution, November 2020, Vol. 35, No. 11
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The Role of Selection
Multiple contact zones trapped by the same environmental gradient show that divergent selection
strengthens barriers in many of the contacts, including those formed by secondary contact. Over
the North Sea–Baltic Sea transition, there is also evidence from reciprocal transplant experiments
and field studies that migrants crossing a contact zone perform worse than native individuals
[22,27,47,66–68]. In addition, experiments suggest that the salinity gradient, sometimes in combi-
nation with a parallel temperature gradient, is a major selective force (Table 1 and references there
in). Atlantic cod was one of the first species where a sharp genetic cline in haemoglobin was
observed over the transition zone [23] and this was later attributed to detailed selection mecha-
nisms at the molecular level ( [69,70] and see [71]). On the analysis of candidate genes, other
molecular functions have been suggested to be associated with local adaptation in cod, such as
heat-shock proteins [72]. Proteins from the same family have also been found as candidates for
selection along the North Sea–Baltic Sea transition in other fish species [57,73,74]. Similarly, the
same single-base mutation in the rhodopsin gene is found repeatedly in populations of several
fish species with vision adapted to red-shifted waters as, for example, in the Baltic Sea [75].
Such convergent evolution lends strong support to selection and provides general knowledge
about the role of a specific biological function in a given environment. Furthermore, a multispecies
contact zone appears to be an ideal framework to study convergent evolution by providing repli-
cates of evolution under shared environmental conditions. For instance, several species converge
to increased asexual reproduction inside the Baltic Sea [12], possibly resulting from selection
favouring uniparental reproduction during colonisation of a new habitat [76]. Moving forwards in
our understanding of the role of natural selection, the integration of whole-genome sequencing
into comparative frameworks in multispecies contact zones would allow us to characterise conver-
gent evolution occurring at levels from SNPs to biological functions.

A Combinatorial View on Divergence
Hybridisation followed by introgression can be central to the evolution of diverging populations.
Although hybridisation and introgression mostly contribute genetic homogenisation, or break up
locally adapted gene clusters [77], rare introgression between diverging lineages can provide new
genetic material for the evolution of local adaptation [3,78]. There is evidence from demographic
modelling that historic introgression has played a key role in the evolution of some of the Baltic
Sea lineages; for example,Mytilus and Limecola [37,79,80]. These introgressions have increased
the standing genetic variation of both species and probably promoted local adaptation to the
marginal Baltic Sea environment [81]. It is also suggested that introgression between divergent
lineages has supported the formation of the brackish water population of C. intestinalis [55]. In
addition, introgression from the demersal flounder formed inside the Baltic Sea possibly
supported the adaptation of the pelagic flounder to brackish-water conditions [52].

Introducing new genetic variation by hybridisation and introgression over contact zones is probably
a much more efficient way to promote rapid adaptation than waiting for new mutations when there
is a shortage of available genetic variation [78]. Such a combinational view provides an alternative to
the classical primary versus secondary divergence dichotomy.

Dispersal Potential and Width of Selected Clines
Dispersal can be critical in shaping genetic clines. At equilibrium, the width of allele frequency
clines over a contact zone with gene flow is expected to be related to the balance between
Figure 3. Distribution of Inversions in Atlantic Cod, Atlantic Herring, and European Plaice. Pie charts indicate the frequencies of the two chromosomal arrange-
ments of the inversion on chromosome 2 in Atlantic cod (Gadus morhua) [47,89], the inversion on chromosome 12 in Atlantic herring (Clupea harengus) [56], and the two
inversions on chromosomes 19 and 21 in European plaice (Pleuronectus platessa) [57]. There are no data for plaice on the American side.
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Outstanding Questions
What are the barriers to gene flow over
contact zones? Are barriers the result of
the coupling of a large number of traits
or of divergence in a few large-effect
loci? The poor link between general
divergence (e.g., FST) and the strength
of barriers (e.g., the absence or presence
of hybrids) over the North Sea–Baltic Sea
transition is puzzling.

What is the role of dispersal potential
in contact zone evolution? Our
expectation that more long-range
dispersal would result in wider genetic
clines was not observed over the
North Sea–Baltic Sea transition.

How are contact zone mechanisms
related to life-history traits (other than
dispersal)? For example, extending
the comparisons to include species
with much shorter generation times
(such as microalgae) and with different
reproductive strategies (sexual vs
asexual) would be desirable.

How do primary and secondary
processes interact in population
divergence over contact zones and
is the relative importance of the two
processes linked to species traits, to
the environmental and historical
context, or to a combination of the two?

How important are chromosomal
inversions for the evolution of barriers
over contact zones? Old inversion
polymorphisms seem to contribute key
elements of divergence in some species
over the North Sea–Baltic Sea transition
zone. However, the general importance
of inversion polymorphisms in the forma-
tion of barriers over contact zones
cannot be judged from a few examples;
we need data from additional species.
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dispersal and the strength of divergent selection following w ∝ √(σ2/s), where w is the cline width
defined as 1/maximum slope, σ is the per-generation dispersal, and s is the strength of selec-
tion [1,82,83]. Marine organisms typically have either high or low dispersal potential. Accordingly,
under the bold assumption that the magnitude of divergent selection is roughly similar among
species, we expect wider genetic clines in species with high dispersal potential than in those with
very limited dispersal (Table 1). However, this is not what we observe. For example, some species
with high dispersal potential (herring and the diatom) have wide clines, while others (blue mussel,
cod, plaice, dab, and the greater and small sandeel) have narrow clines (Figure 2). What seems to
be an uncoupling between cline shape and dispersal can have various explanations, such as differ-
ences in the strength of divergent selection, the demographic history, or the genomic architecture
[7]. In addition, if clines have not reached equilibrium, we expect that clines formed from secondary
contact initially have steep slopes that will successively erode under gene flow until they reach a
steady state [7]. Primary clines, by contrast, build successively, with alleles with large effects estab-
lishing narrow clines faster than alleles with smaller effects [7,84].

Marine multispecies contact zones have a strong potential for comparisons of the effects of
dispersal potential on barrier formation, but we need many more data, including data on barrier
strength, hybrid formation, and hybrid fitness. Furthermore, comparative studies including spe-
cies that vary in other life-history traits will offer possibilities to relate the shape of genetic barriers
to variation in traits such as generation time and reproductive potential.

Concluding Remarks and Future Perspectives
To understand the nature of barriers to gene flow between diverging taxa, we need studies of con-
tact zones. Usingmultispecies contact zones, we can address new questions and derive more gen-
eral answers to old ones, such as: how is divergence affected by the type and origin of the barriers;
and what are the roles of ancestral genetic variation, the genomic architecture, and life-history traits?
While young multispecies contact zones contain clear footprints of demographic and divergence
histories prior to contact, older contacts converge with respect to history but more clearly express
patterns of selection, introgression, and gene flow. For both, we need the power of the new genetic
tools to compare the barrier effects of primary and secondary divergence and their interactions.
Furthermore, we need to compare the effects of different chromosomal architectures, demographic
histories, and life histories among species. Over the North Sea–Baltic Sea transition, divergence in
many of the species is shaped by a combination of processes strongly linked to evolution at different
temporal scales [85], leading to the conclusion that the primary–secondary divergence dichotomy
might be less relevant. To fully explore the complexity of this and other multispecies contact
zones (see Outstanding Questions), high genomic coverage and geographic reference
outside the contact zone are needed. We also need data that are less taxonomically biased
and include more information on dispersal, locally adapted traits (not least associated with re-
production), and hybrid fitness. Thus, experimental ecological approaches are necessary and
complementary to the current boom of genomic studies. Marine contact zones seem ideal for
broad taxonomic comparisons combined with oceanographic modelling of dispersal patterns
[86]. Finally, the incorporation of empirical data into theoretical models that explore the
mechanisms of the evolution of reproductive barriers will further increase our understanding
of divergence and speciation.
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