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Analysis and design of gain-scheduling blade-pitch controllers for wind
turbine down-regulation*

Wai Hou Lio1,2, Christos Galinos1 and Albert Meseguer Urbán1

Abstract— The use of down-regulation control strategies on
turbines offers a means of stabilising the grid or improving
the efficiency of the wind farm. Nonetheless, these de-rating
strategies are often imposed upon an existing blade-pitch
control structure, resulting in sub-optimal or poor performance.
In particular, such an approach would potentially deteriorate
the robustness of the rotor speed control loop and excite
other turbine dynamics. Thus, this work proposes a blade-pitch
control design for de-rating operation, where the strategy takes
into account the changes in the aerodynamic characteristics of
the turbine caused by down-regulation. Most importantly, the
proposed controller retained the desired control bandwidth and
robustness properties in both nominal and de-rating operations.
Numerical simulations showed that an improvement on the
pitch activities during down-regulation could lead to better
reductions in the fatigue loads of some key turbine components.

I. INTRODUCTION

Large wind turbines are often curtailed or down-regulated
for the purposes of improving the wind farm efficiency or
stabilising the grid. One of the examples is that a reduction
in the power/thrust of the upstream turbine could improve the
aerodynamic wake situation for the downstream turbines [1],
[2]. In the literature, there exist numerous de-rating strategies
characterised by the rotor speed set-point for down-regulating
a turbine [3]–[5]. One strategy (Max-Ω) is that for a given
de-rated power demand, the rotor speed is maintained at a
rate set by the blade-pitch controller and the generator torque
decreases accordingly, whereas another strategy (Const-Ω)
reduces the rotor speed for achieving the de-rated power
output. Both down-regulation methods require the use of
the blade-pitch controller to track the rotor speed set-point.
Nonetheless, the blade-pitch control design for nominal or
de-rating operations often remains the same or overlooked.

In nominal operations, the blade-pitch controller ensures
the rotor speed to track the rated value, typically, via
proportional-integral (PI) design (e.g. [6]). The blade-pitch
is adjusted in response to the rotor speed variations and
such variations are mainly caused by the wind-induced
aerodynamic torque. The aerodynamic torque on the turbine
blade is well-known as a non-linear function of the blade-
pitch angle, rotor speed and wind speed. Thus, the blade-
pitch controller often adopted a gain-scheduling approach
based on the turbine operating conditions for improving the
pitch controller performance and robustness (e.g. [6]–[8]).
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In down-regulation, the operating conditions of the turbine
are different from those in nominal operations. The major-
ity of wind turbine down-regulation studies often simply
imposed the de-rating strategies upon the existing blade-
pitch control structure, that could potentially lead to a sub-
optimal performance or excitation of other turbine dynamics.
Consequently, this work aims to address this problem by in-
vestigating the gain-scheduling blade-pitch controller during
down-regulation. The contributions of this work are twofold.

• Firstly, a counterexample demonstrates the adverse ef-
fects on the system robustness and performance when
the de-rating strategy is simply imposed on an existing
pitch control structure.

• Secondly, a new method is proposed to retain the
robustness and performance of the blade-pitch control
loop during down-regulation.

The remainder of this paper is structured as follows.
In Section II, the background on the nominal blade-pitch
controller is presented. It is followed in Section III by
the motivating example and proposed design for the blade-
pitch controller in down-regulation. In Section IV, simulation
results on the high-fidelity turbine demonstrate the perfor-
mance of the baseline and proposed controller in down-
regulation. Conclusions are in Section V.

II. DESIGN OF THE NOMINAL BLADE-PITCH
CONTROLLER

This section presents the nominal pitch controller design.
Considering the simplified non-linear drive-train dynamics
of the turbine, assuming the shaft is rigid, defined as follows
(e.g. [6]):

JrΩ̇(t) = τa(Θ, V,Ω)− τg(Ω), (1a)

where Ω(t), Jr ∈ R denote the rotational speed and inertia
of the rotor, respectively. The (quasi-steady) aerodynamic
torque τa(Θ, V,Ω) : R×R×R→ R is a non-linear function
of the blade-pitch angle Θ(t), wind speed V (t) and rotor
speed Ω(t), whilst the generator torque τg(Ω) : R → R in
the above-rated wind conditions is defined as follows:

τg(Ω) =
Psp

ngbΩ
, (1b)

where Psp ∈ R is the power set-point and ngb ∈ R is the
gearbox ratio.

Next, a linear model is developed based on (1). In the
above-rated wind conditions, for each operating wind speed
V ∗ ∈ R, there is corresponding equilibrium pitch angle



Θ∗(V ∗) ∈ R and the rotor speed is operating at rated Ω∗.
The deviation notation is defined as follows:

ω(t) = Ω(t)− Ω∗, θ(t) = Θ(t)−Θ∗, v(t) = V − V ∗.
(2a)

The aerodynamic torque in (1) is linearised around the
turbine operating conditions (Θ∗, V ∗,Ω∗) as follows:

τa(Θ, V,Ω)

≈ τa(Θ∗, V ∗,Ω∗) +
∂τa
∂θ

θ(t) +
∂τa
∂v

v(t) +
∂τa
∂ω

ω(t). (2b)

Similarly, the generator torque in (1) is linearised as follows:

τg(Ω) ≈ τg(Ω∗) +
∂τg
∂ω

ω(t). (2c)

Substituting (2) into (1) yields the linear drive-train model
as follows:

Jrω̇(t) =
∂τa
∂θ

θ(t) +
∂τa
∂v

v(t) +
∂τa
∂ω

ω(t)− ∂τg
∂ω

ω(t). (3)

For brevity, the linear drive-train model (3) is expressed in
terms of the azimuth angle φ̇(t) = ω(t), defined as follows:

Jrφ̈(t) + (
∂τg
∂ω
− ∂τa
∂ω

)φ̇(t) =
∂τa
∂θ

θ(t) +
∂τa
∂v

v(t). (4)

Next, the nominal blade-pitch PI controller is presented.
The linear model in (4) only considers the key drive-train
dynamics whereas the torsion and other turbine dynamics to
the drive-train are neglected. The rotor speed variations are
mainly dominated at the low frequency that is typically lower
than the rotational frequency of the blade (1p frequency).
Thus, the controller design needs to avoid exciting other
turbine dynamics. The typical blade-pitch PI control structure
is as follows:

θ(t) = Kpω(t) +Ki

∫ t

0

ω(τ)dτ = Kpφ̇(t) +Kiφ(t), (5)

where Kp,Ki ∈ R denote the proportional and integral
gains, respectively. Typically, the nominal blade-pitch control
adopts the pole-placement method for choosing the Kp

and Ki [8]. The pole-placement method is to assign the
location of the eigenvalues of the closed-loop systems to
achieve certain bandwidth and response. Substituting the
controller (5) into the linear drive-train model (4) yields the
closed-loop system mode, defined as follows:

Jrφ̈(t) + (
∂τg
∂ω
− ∂τa
∂ω
−Kp

∂τa
∂θ

)φ̇(t)−Ki
∂τa
∂θ

φ(t)

=
∂τa
∂v

v(t). (6)

Let the desired closed-loop eigenvalues denote as λcl =
−ζΩωΩ ± jωΩ

√
1− ζ2

Ω ∈ C, where ζΩ, ωΩ ∈ R are the
damping ratio and natural frequency of the closed-loop
system whilst j :=

√
−1. The desired eigenvalues ensure the

frequency of the rotor speed regulation mode is sufficiently
below the turbine tower frequency, where the typical values
of the natural frequency ωΩ and damping ratio ζΩ are 0.06 Hz
and 0.7, respectively [9]. Based on (6), the Kp and Ki that
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Fig. 1: Aerodynamic gains of the turbine in down-
regulation. The crosses and lines show the simulation
data and their quadratic approximation.
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Fig. 2: The contour of the power coefficient Cp of the
DTU 10MW turbine and different operating points in
down-regulation.

gives the desired eigenvalues of the closed-loop system (6)
are derived as follows:

Kp =
2ζΩωΩJr + ∂τa

∂ω −
∂τg
∂ω

−∂τa∂θ
, Ki =

ω2
ΩJr

−∂τa∂θ
, (7)

Notice that in the closed-loop model (6), the aerodynamic
gain ∂τa

∂θ varies dependent upon the operating conditions
(Θ∗, V ∗,Ω∗). Thus, to ensure good closed-loop response,
the blade-pitch controller typically adopts a gain-scheduling
approach based on the operation conditions, where the
aerodynamic gain ∂τa

∂θ and aerodynamic damping ∂τa
∂ω are

formulated as a function of the operating pitch angle Θ∗

and ∂τg
∂ω is a function of the operating rotor speed, defined

as follows:

∂τa
∂θ

=
∂τa
∂θ

∣∣∣
Θ=0

(
1 +

Θ

Kθ
1

+
Θ2

Kθ
2

)
;

∂τa
∂ω

=
∂τa
∂ω

∣∣∣
Θ=0

(
1 +

Θ

Kω
1

+
Θ2

Kω
2

)
;
∂τg
∂ω

= − Psp

ngbΩ∗2
,

(8)

where Kθ
1 ,K

θ
2 ,K

ω
1 ,K

ω
2 ∈ R are the coefficients of linear

and quadratic terms in gain-scheduling. For example, aero-
dynamic gains in down-regulation are depicted in Figure 1.



TABLE I: Parameters of the DTU 10MW reference wind turbine [10]

Nominal Power Pnom 10MW Rotor orientation Upwind Rotor diameter 178.3 m
Hub height 119 m Rated rotor speed 9.6 rpm (≈ 0.16Hz) Rotational inertia of the rotor 1.61×108 kgm−2

III. BLADE-PITCH CONTROLLER FOR
DOWN-REGULATION: MOTIVATING EXAMPLE AND MAIN

RESULT

This section presents the problem of simply imposing the
down-regulation strategy upon the existing nominal blade-
pitch controller and also the solution. Figure 2 depicts the
power coefficient Cp surface for the DTU 10MW reference
wind turbine [10], where the details of the turbines is listed in
Table I. The points in Figure 2 are illustrated the operating
points with respect to different power demand. It is clear
in Figure 2, for down-regulation, the turbine operates at
different tip-speed ratio λ := Ωr

V and pitch angle Θ than
nominal, where r ∈ R is the blade length. Based on the Cp

surface and operating points in Figure 2, the aerodynamic
gains ∂τa

∂θ for different power demand are derived as shown in
Figure 1. As for the following analysis, 75% of the nominal
power Pnom is chosen to represent the de-rating situations.

Lemma III.1. In nominal operations, the response and
bandwidth of the closed-loop systems (6), formulated by the
linear drive-train model (4) and the gain-scheduling con-
troller (5) with the aerodynamic gains (8), are characterised
by the desired eigenvalues λcl.

Proof: It is trivail since the controller (5) is constructed
based on the desired closed-loop eigenvalues λcl, which
characterises the response and bandwidth of the closed-loop
system.

Notice the aerodynamic gain in the controller (5) is a
quadratic approximation of the real aerodynamic gains. Thus,
the natural frequency and damping ratio of the closed-loop
system might vary slightly from the desired values 0.06
Hz and 0.7, respectively, as shown in Figure 3. Next, a
motivating (sub-optimal) example is presented where the
de-rating strategy is implemented upon the nominal pitch
controller.

Lemma III.2. For down-regulation, the linear drive-train
dynamics is defined as follows:

Jrφ̈(t) + (
∂τg,d
∂ω

− ∂τa,d
∂ω

)φ̇(t) =
∂τa,d
∂θ

θ(t) +
∂τa,d
∂v

v(t).

(9)

where τa,d, τg,d denote the aerodynamic and generator
torques during de-rating. The response and bandwidth of the
closed-loop system, formulated by the linear system (9) and
the controller (5) based on the aerodynamic gains (8) are
not characterised by the desired eigenvalues λcl, resulting in
excitation of other turbine dynamics.

Proof: Substituting the nominal controller (5) into (9)
yields the (sub-optimal) closed-loop systems, where the
natural frequency and damping ratio of such a closed-loop
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Fig. 3: The natural frequency and damping ratio of the
closed-loop systems.
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Fig. 4: Block diagrams of the closed-loop system.

system λcl are far from the desired position in the desired
positions, as shown in Figure 3.

To investigate the effect of other turbine dynamics on the
rotor speed control loop, transfer functions G(s), Gd(s) ∈
R are defined that maps the pitch angle θ to the rotor ω
during nominal (4) and de-rating (9) operations, respectively,
as follows:

G(s) :=
∂τa
∂θ

Jrs+
(
∂τg
∂ω − ∂τa

∂ω

) ;

Gd(s) :=
∂τa,d
∂θ

Jrs+
(
∂τg,d
∂ω −

∂τa,d
∂ω

) . (10)

The Laplace transform of the nominal controller (5) is
defined as follows:

K(s) = Kp +Ki
1

s
. (11)

Considering the closed-loop system as depicted in Fig-
ure 4, for the purpose of evaluating the effect of the
disturbance d(s), including the wind v and other turbine
dynamics to the rotor speed ω(s), the sensitivity functions
are employed, defined as follows:

S(s) =
1

1 +G(s)K(s)
, Ssub(s) =

1

1 +Gd(s)K(s)
. (12)
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Fig. 5: The sensitivity functions. The dash lines show the
minimum and maximum, whilst the mean is depicted by the
solid line of different operating conditions.

Figure 5 shows the magnitude of the disturbance sensitivity
functions S(s), Ssub(s) ∈ R for the nominal and sub-optimal
de-rating closed-loop systems, respectively. The gain cross-
over frequency for Ssub(s) is higher and more uncertain
than S(s), that implies the controller (5) in down-regulation
attenuates the disturbances or noises that it is not supposed
to reduce, which could potentially excite other turbine dy-
namics.

Consequently, for the blade-pitch controller (5) not to
excite other turbine dynamics and improve the closed-loop
response, the sensitivity function and the eigenvalues (natural
frequency and damping ratio) of the closed-loop system
during down-regulation needs to be identical to those in
nominal operations.

Theorem III.3 (Main result). Considering the nominal blade
pitch controller (7) whose parameters Kp and Ki are up-
dated based on the de-rated operations, defined as follows:

Kp =
2ζΩωΩJr +

∂τa,d
∂ω −

∂τg,d
∂ω

−∂τa,d∂θ

, Ki =
ω2

ΩJr

−∂τa,d∂θ

, (13a)

∂τa,d
∂θ

=
∂τa,d
∂θ

∣∣∣
Θ=0

(
1 +

Θ

Kθ
1,d

+
Θ2

Kθ
2,d

)
, (13b)

∂τa,d
∂ω

=
∂τa,d
∂ω

∣∣∣
Θ=0

(
1 +

Θ

Kω
1,d

+
Θ2

Kω
2,d

)
, (13c)

∂τg,d
∂ω

= − Psp

ngbΩ∗2 , (13d)

then, the response and control bandwidth of the closed-
loop system during down-regulation, formulated from (9)
and (13), are identical to the systems in nominal opera-
tions (6).

Proof: Substituting (13) into (9) yields the closed-loop
system model during down-regulation:

Jr

(
φ̈(t) + 2ζΩωΩφ̇(t) + ω2

Ωφ(t)
)

=
∂τa,d
∂v

v(t), (14)

and the natural frequency and damping ratio of the closed-
loop system (14) are identical to those of the nominal closed-

loop system (6), as shown in Figure 3. Moreover, considering
the Laplace transform of (13) as Kd(s), combining the
linear drive-train model during de-rating Gd(s) in (10) forms
the sensitivity function Sopt(s) := 1

1+Gd(s)Kd(s) , which is
nearly equivalent to the sensitivity function of the nominal
closed-loop S(s), that is illustrated in Figure 5 and such
similarities can be confirmed by the ν-gap metric [11]. The
small difference between S(s) and Sopt(s) is a result of
the quadratic approximation in aerodynamic characteristics
in Figure 1.

IV. NUMERICAL SIMULATIONS

A. Simulation environment setting

The turbine model used in this study is the DTU 10MW
reference wind turbine [10] upon the HAWC2 platform [12].
This model includes many degrees-of-freedom such as the
tower fore-after, side-to-side, in addition to the rotor and
blade dynamics. The controller employed in this study is the
open-source DTU basic controller1 [8] with down-regulation
feature.

B. Step wind case

In these closed-loop simulations, two blade-pitch con-
trollers in down-regulation were examined. The power set-
point was 75% of the nominal power. The baseline is the
controller (5) based on the nominal aerodynamic gains (8)
and it is compared with the proposed controller (13) with
updates on the aerodynamic gains based on the power
demand.

Figure 6 shows the sample time history of the rotor speed
response, pitch angle and pitch rate subject to a step wind
from 11ms−1 to 12ms−1. It is clearly shown that the pitch
activities were better for the proposed controller, with a mere
increase in the rotor speed variations, that fits the eigenvalue
analysis in Section III and Figure 3.

C. Turbulent wind cases

The closed-loop simulations were conducted under a tur-
bulent wind field with the mean speed of 16 ms−1 based
on the IEC standard [13]. The histograms of the rotor speed
and pitch rate variations are shown in Figure 7a and 7b. The
proposed controller achieved reductions in pitch activities
and slight increases in the rotor speed variations. The 1Hz-
equivalent fatigue loads on the key turbine components
are summarised in Table II. Reductions on pitch activities
resulted in better attenuation on the tower-base side-side
loads, blade flap-wise, edge-wise loads and pitch bearing,
with merely increases in the main shaft torsion and tower
fore-aft loads.

V. CONCLUSION

In this paper, the design of gain-scheduling blade-pitch
controller for wind turbine down-regulation is presented. The
proposed design retains the desired robustness, bandwidth
and performance of the rotor speed regulation loop in both

1Available in GitLab:
https://gitlab.windenergy.dtu.dk/OpenLAC/BasicDTUController



TABLE II: Performance of the baseline and proposed blade-pitch control strategy in down-regulation

Controller Main shaft torsion Tower fore-aft Tower side-side Blade flap-wise Blade edge-wise blade-pitch bearing
Baseline (5) [%] 100.00 100.00 100.00 100.00 100.00 100.00

Proposed (13) [%] 100.21 100.43 98.53 98.23 97.34 97.71
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Fig. 6: The sample time histories of the baseline (blue) and
proposed (red) controller in down-regulation.

(a) The rotor speed.

(b) The pitch rate.

Fig. 7: The histograms of the baseline (blue) and proposed
(red) controller in down-regulation.

nominal and de-rating operations. In the future, we look into
the possibility of extending this blade-pitch control design
to more down-regulation methods, for example, Const-λ and
Const-Ω in [3]. Also, the closed-loop eigenvalue analysis
will be conducted with a higher degree-of-freedom drive-
train model.
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