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Perceptual Benefits of Extended
Bandwidth Hearing Aids With Children:

A Within-Subject Design Using
Clinically Available Hearing Aids
Maaike Van Eeckhoutte,a,b,c Susan Scollie,a,d

Robin O’Hagan,a and Danielle Glistaa,d
Purpose: The aim of the study was to investigate the achieved
audibility with clinically available, modern, high-end, behind-
the-ear hearing aids fitted using the Desired Sensation Level
v5.0 child prescription for a clinical sample of children
with hearing impairment and the effect of the extended
bandwidth provided by the hearing aids on several outcome
measures.
Method: The achieved audibility was measured using
the maximum audible output frequency method. Twenty-
eight children (7–17 years old) with mild to severe
hearing losses completed this study. Two hearing aid
conditions were fitted for each participant: an extended
bandwidth condition, which was fitted to targets as closely
as possible, and a restricted bandwidth condition, for
which aided output was restricted above 4.5 kHz. Consonant
discrimination in noise, subjective preference, aided loudness
growth, and preferred listening levels were evaluated in
both conditions.
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Results: The extended bandwidth hearing aid fittings
provided speech audibility above 4.5 kHz for all children,
with an average maximum audible output frequency of 7376 Hz
(SD = 1669 Hz). When compared to a restricted bandwidth,
the extended bandwidth condition led to an improvement
of 5.4% for consonant discrimination in noise scores, mostly
attributable to /s/, /z/, and /t/ phoneme perception. Aided
loudness results and preferred listening levels were not
significantly different across bandwidth conditions; however,
65% of the children indicated a subjective preference for
the extended bandwidth.
Conclusion: The study suggests that providing the full
bandwidth available, with modern, behind-the-ear hearing
aids, leads to improved audibility, when compared to restricted
bandwidth hearing aids, and that it leads to beneficial
outcomes for children who use hearing aids, fitted to the
Desired Sensation Level v5.0 child prescription, without
causing significant increases in their loudness perception.
I n the early 2000s, hearing aids provided maximum
achievable audibility to 5–6 kHz at most (Moore
et al., 2001; Stelmachowicz et al., 2004). Today, hear-

ing aids are generally specified as being able to provide a
greater bandwidth than this, which may translate to greater
audibility. This limited bandwidth was proposed as a con-
tributing factor in delays of speech recognition, fricative
production, and phonological development in children with
hearing loss, particularly when listening to female speech
(Moeller et al., 2007; Stelmachowicz et al., 2001, 2004). In
some languages, including English, the /s/ and /z/ high-
frequency fricatives are used for possession, plurality, and
tense markers (Glista & Scollie, 2012; Mines et al., 1978;
Stelmachowicz et al., 2004). Consequently, access to an ex-
tended bandwidth (EBW) of speech is often recommended
(e.g., American Academy of Audiology [AAA], 2013). Pro-
vision of an audible band of speech that extends to the 9- to
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10-kHz range has been extensively studied in laboratory
settings using hearing aid simulators or by examining indi-
vidual differences in bandwidth across participants. These
approaches have limitations for predicting real-world perfor-
mance, and individual differences across participants can
be confounded by differences in audiometric configura-
tion, listening experience, or both. A review article by Hunter
et al. (2020) provides an overview of the relevance and impli-
cations of extended high-frequency hearing and speech per-
ception, primarily focusing on the benefits for normal-hearing
adults and children. For children with normal hearing and
hearing loss, an EBW to about 9 kHz versus a 4- to 5-kHz
setting has been associated with increased speech recogni-
tion and rates of short-term word learning, with the conclusion
that children require more audibility than adults to achieve
similar performance levels (Pittman, 2008; Stelmachowicz
et al., 2000, 2001). Given this evidence, some practice guide-
lines for children recommend fitting EBW hearing aids to
include 9 kHz (AAA, 2013). More recent real-world trials
have indicated that long-term speech and language develop-
ment may be facilitated by improved hearing aid audibility
in the high frequencies (McCreery et al., 2017).

EBW in hearing aids may impact hearing aid out-
comes in a variety of perceptual domains, including speech
recognition, loudness, sound quality, and subjective mea-
sures of preference and acceptable noise level. Considering
speech recognition, early studies in adults reported a degra-
dation in speech recognition with EBWs for listeners whose
thresholds exceeded 80 dB HL at 4 kHz (Ching et al., 1998;
Hogan & Turner, 1998), while later studies have mainly
shown small but beneficial effects of EBW on speech discrim-
ination (Amos & Humes, 2007; Cox et al., 2011; Füllgrabe
et al., 2010; Hornsby et al., 2011; Hornsby & Ricketts,
2003; Levy et al., 2015; Mackersie et al., 2004; McCreery &
Stelmachowicz, 2011; Plyler & Fleck, 2006; Simpson et al.,
2005; Turner & Cummings, 1999; Turner & Henry, 2002).
Recent reports also have shown that extended high frequen-
cies contribute to the perception of speech in noise and in
challenging, more ecologically relevant situations (Monson
et al., 2019; Motlagh Zadeh et al., 2019). Additional studies
have considered other domains of outcome. For example,
some adults report subjective preference for EBW versus re-
stricted bandwidth (RBW; Brennan et al., 2014; Füllgrabe
et al., 2010; Moore, 2012; Moore et al., 2011; Moore &
Tan, 2003; Plyler & Fleck, 2006; Ricketts et al., 2008). More
recently, Seeto and Searchfield (2018) reported improved
detection of high-frequency phonemes in quiet with EBW
versus RBW fittings in adults, with no difference in sound
quality preference (Seeto & Searchfield, 2018). Subjectively,
users of EBW light-driven direct-drive hearing devices
had scores similar to users’ own aids, with a slight improve-
ment in the ease of communication and no change in aver-
siveness (Arbogast et al., 2019). These more recent adult
studies illustrate the relevance of considering outcomes other
than speech recognition when evaluating the impact of
EBW fittings, as well as the need for further research to
compare the outcomes of EBW versus RBW hearing aid
fittings in children.
2 Journal of Speech, Language, and Hearing Research • 1–13
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The provision of an EBW via modern devices yielded
beneficial results in a recent multi-outcome study with adult
hearing aid users (Van Eeckhoutte et al., 2020). This study
demonstrated better perception of high-frequency phonemes
(/s/, /z/, and /t/) in noise, with no adverse changes in loud-
ness perception or preferred listening levels (PLLs). In terms
of subjective preference, most listeners preferred the full
bandwidth available (46%) or were indifferent about the
provided bandwidth (33%). The outcomes of this clinical
study indicated that the speech recognition benefits of EBW
in wearable hearing aids were largely in line with those re-
ported in previous studies and that the fittings were accept-
able in real-world use and for aided loudness levels. All the
adult participants in the study of Van Eeckhoutte et al.
(2020) had mild-to-moderately severe sensorineural hearing
loss and were fitted with receiver-in-canal (RIC) devices to
the Desired Sensation Level (DSL) v5.0 adult prescription.
While these results may be typical for adults, one might ex-
pect differences in a clinical population of aided children.
First, substantial differences in audiological characteristics
exist for children with hearing impairment when compared
to adults, including a large mix of audiometric severities
and configurations, with most variability in the higher fre-
quencies (Pittman & Stelmachowicz, 2003). Those configu-
ration differences might lead to a larger achieved bandwidth
compared to adults with a high-frequency sloping hearing
loss. Second, children are more likely to be fitted with higher
levels of gain and output than is prescribed for adults,
whether they are fitted with the DSL v5.0 child prescription
(Scollie et al., 2005) or the NAL-NL2 prescription (Keidser
et al., 2012). If enrolled in an early intervention program
(Joint Committee on Infant Hearing, 2019), aided children
may present with greater hearing aid experience levels, when
compared to aided adults. Third, children are typically
fitted with behind-the-ear (BTE) hearing aids connected
to custom earmolds (AAA, 2013), which may be less likely
to provide EBW compared to RIC devices that are com-
monly used with adults. Recently, BTE devices have been
advertised by manufacturers to provide gain over a band-
width that exceeds 10 kHz (Kimlinger et al., 2015). Measure-
ments of audibility in the extended high-frequency range
(maximum audible output frequency [MAOF]) using a range
of BTE devices, audiometric configurations, and stimuli
have indicated that the achievable bandwidth across com-
mercial devices varies, with audible bandwidths from 3.5 kHz
to beyond 8 kHz (Kimlinger et al., 2015). These results indi-
cate that real-world feasibility and the impact of achieving
the recommended 9-kHz bandwidth for children requires
further investigation.

The aim of the current study was to (a) investigate
the achievable maximum frequency of audibility with mod-
ern BTE devices with a clinical sample of children who use
hearing aids and (b) investigate the effect of providing the
available EBW compared to the RBW, with a multi-outcome
battery that included speech sound recognition in noise,
subjective preference, loudness perception, and PLLs. The
outcomes were evaluated using commercially available,
wearable hearing aids marketed for use with children. The
erms of Use: https://pubs.asha.org/pubs/rights_and_permissions 



two experimental bandwidth conditions were implemented
within the same hearing device to hold other device param-
eters constant.
Method
Participants

We recruited 28 children (18 boys and 10 girls) who
were between 7 and 17 years old (M = 12.1, SD = 2.8 years),
who reported regular use of hearing aids. The children were
involved in a large study exploring multiple research ques-
tions and were tested in the Child Amplification Laboratory
at the National Centre for Audiology. Most children visited
the lab 5 times. The Western University Research Ethics
Board granted approval for the study. Depending on the
participant’s age, the children signed a letter of information
and consent (13–17 years old) or an assent letter (7–12 years
old). The parents signed a consent form for all children.
Participants received compensation for their time and were
able to keep the hearing aids upon completion of the study.

Audiometric assessments were completed with all chil-
dren and included otoscopy, audiometric thresholds at oc-
tave and interoctave frequencies between 0.125 and 8 kHz
(GSI-61 audiometer with ER-3A insert earphones coupled
to participants’ own occluded earmolds), and middle ear
analyses (Madsen Zodiac 901). Cerumen management and
impressions for new earmolds were completed when required.
All children had middle ear status within a normal tympa-
nometric range (British Society of Audiology, 2013). The
children presented with variable audiometric configurations
and degrees of hearing loss (see Figure 1). The four-frequency
pure-tone average (PTA; 0.5, 1, 2, and 4 kHz), averaged
across ears, indicated that seven children were within the
Figure 1. Audiometric thresholds for all 28 children measured w
as well as the group mean (thick line, red and blue in the online
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American Speech-Language-Hearing Association ranges
for mild hearing loss, 11 for moderate, seven for moderately
severe, and three for severe hearing loss (American Speech-
Language-Hearing Association, 2015). One participant had
no measurable thresholds for the test frequencies between
4 and 8 kHz in the poorer ear, and these thresholds were
coded as 120 dB HL. The between-ear difference in PTA
was ≤ 15 dB for most children, except for four who had
between-ears differences between 16 and 30 dB.

Hearing Aid Fitting and Verification
Real-ear-to-coupler differences (RECDs) were mea-

sured using personal earmolds. In some cases, an RECD
from the child’s clinician, obtained within a 6-month period,
was accepted for use in the study.

Using the earmold audiometric thresholds and RECD
values, each participant was fitted with study-worn BTE
hearing aids: Phonak Sky V90 devices, which were power,
superpower, or ultrapower, depending on the required fitting
range. The hearing aids were fitted according to the DSL
v5.0 child prescription (Bagatto et al., 2005; Scollie et al.,
2005), and coupler-based verification was completed with
the Audioscan Verifit 2 prior to testing. Fine tuning was
completed using the International Speech Test Signal (ISTS)
speech signal (Holube et al., 2010) at input levels of 55, 65,
and 75 dB SPL and for tone bursts at 90 dB SPL to assess
the maximum power output targets. The feedback manager
was activated for three participants. All other hearing aid
features were disabled. Fit-to-target deviations were within
2-dB root-mean-square error (RMSE) using 0.5, 1, 2, and
4 kHz, for speech input levels at 55, 65, and 75 dB SPL, within
4-dB RMSE when including 6 kHz and within 10 dB when
including 8 kHz. These values are within the recommended
ith occluded earmolds. Individual thresholds are plotted,
version).

ckhoutte et al.: Extended Bandwidth Hearing Aids for Children 3
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Figure 2. An illustration of the coupler-based verification of the
extended bandwidth (EBW) and restricted bandwidth (RBW) conditions
for the left ear of one participant in the study. Seen in the figure
are the long-term average speech spectrum results for the EBW
(green) and RBW (purple) condition, with the shaded area indicating
the amplified speech area between the speech valleys (30th
percentile) and the speech peaks (99th percentile), the Desired
Sensation Level v5.0 targets shown in green open crosses, and the
participant’s hearing thresholds shown as blue crosses (color in the
online version).
5-dB RMSE for frequencies up to 6 kHz for hearing aid fit-
ting (Baker & Jenstad, 2017; Brennan et al., 2017; McCreery,
Bentler, et al., 2013). For the maximum power output test
signal, the values were within 3 dB for frequencies up to 4 kHz,
within 5 dB for up to 6 kHz and within 12 dB up to 8 kHz.

Two experimental bandwidth conditions were cre-
ated for this study: (a) an EBW condition, in which the full
hearing aid bandwidth was provided as described above,
and (b) an RBW condition, for which gain was minimized
above 4.5 kHz. This condition was created by adjusting
the gain handles at and above the 4.8-kHz gain handle in
the manufacturer’s software to the lowest possible gain set-
ting. All other gain handles were maintained and verified
according to the recommended fit to target. The EBW and
RBW conditions were stored as separate programs in the
hearing aids. Verification of aided output for a 65-dB SPL
ISTS stimulus indicated that the EBW and RBW condi-
tions provided aided output levels that were matched within
2, 4, and 7 dB at 4, 4.24, and 4.5 kHz and that the RBW
fitting had 26 and 41 dB less output than the EBW condi-
tion at 5 and 6 kHz, respectively. The hearing aid output
was measured in the test box to illustrate the difference
between the EBW and RBW conditions for one partici-
pant. Figure 2 shows that the programming strategy suc-
cessfully removed the high-frequency energy in the RBW
condition.

To verify high-frequency audibility in the EBW condi-
tion, the MAOF was measured for the better hearing ear,
according to each child’s four-frequency PTA value, and by
examining the verified simulated real-ear aided response
for an ISTS speech input at 60 dB SPL. The highest fre-
quency at which the child’s audiometric thresholds intersected
with both the peak levels (99th percentiles) of speech, and
the RMS levels of speech were measured (Kimlinger et al.,
2015; McCreery, Brennan, et al., 2013; Scollie et al., 2016).
If the speech RMS and peak levels fell above thresholds
at all frequencies, the MAOF was coded as 10 kHz, which
represents the processing limit of the hearing aid.

Outcome Measures
Outcome measures were completed in a double-walled

sound-treated booth, with the participants wearing the study
hearing aids wired to the programming computer. Stimuli
were presented from a loudspeaker at 0° azimuth. Outcome
measures included a consonant discrimination in noise task,
an aided loudness perception task, a paired comparisons
task for subjective preference of bandwidth, and a PLL task.
Outcome measures and test conditions were presented in a
randomized order. The participants were also blinded to
the test condition. Unless specifically stated, outcome mea-
sures were obtained binaurally. Regular rest breaks were
given depending on the participants’ needs. The data were
analyzed in R Version 3.4.3.

Consonant Discrimination in Noise
Consonant discrimination in noise was measured

with the University of Western Ontario Distinctive Features
4 Journal of Speech, Language, and Hearing Research • 1–13
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Differences Test (Cheesman & Jamieson, 1996). Similar to
tests used in other recent studies of bandwidth on speech
discrimination (Alexander & Rallapalli, 2017; McCreery
et al., 2014; Van Eeckhoutte et al., 2020), this test presents
nonsense words in the presence of background of noise.
Stimuli were presented at 60 dB SPL, with background
speech-shaped noise from loudspeakers at 90°, 180°, and
270°, with a +10 dB signal-to-noise ratio. The stimuli used
an /∧ C ɪ l/ context, in which C is one of the 21 English
consonants. Each word was spoken by two prerecorded
female and male talkers, for a total of 84 items. The child
had to choose which consonant was heard by clicking on
one of the 21 response options shown on the computer screen.
Custom software controlled the stimulus presentation,
responses, and storage of response files.

Aided Loudness Growth
Aided loudness growth was measured with an ap-

proach similar to that used in the study of Van Eeckhoutte
et al. (2016) but modified for aided testing in the sound
field. The stimulus was a sentence from a custom recording
erms of Use: https://pubs.asha.org/pubs/rights_and_permissions 



of the Connected Speech Test (“A wolf looks like a skinny
wild dog”; Cox et al., 1987; Saleh et al., 2020). Each time
the stimulus was presented, the child had to judge the loud-
ness of the sentence by choosing a position on a graphic
rating scale (GRS), shown on a computer interface. A GRS
is a continuous rating scale with loudness categories dis-
played purely as guidelines. For the purpose of this study,
pediatric-friendly facial expressions were also used to depict
loudness categories; these were displayed next to the con-
tinuum line (see Figure 3). The loudness categories were
“Did not hear,” “Too soft,” “A bit soft,” “Just right,” “A
bit loud,” “Too loud,” and “Much too loud.” The child
could pick any position on the continuous scale using a
computer mouse, either at or in between the written catego-
ries. Stimuli were presented between 52 and 80 dB SPL,
with a step size of 2 dB and in pseudorandom order to
avoid context effects (Brand & Hohmann, 2002). Specifi-
cally, stimuli were presented in random order, with the con-
straint that the level difference of two consecutive stimuli
never exceeded 12 dB, which was about half of the range of
stimulus levels used. A starting level of 66 dB SPL was used,
with repetition of each level during testing for a total of
30 trials per loudness test. The software coded the chosen
loudness position on the scale as a number between 0 and 1.
The task was completed binaurally in the EBW and RBW
conditions and repeated monaurally for the EBW condition
for comparison.

Subjective Preference
The children were asked to indicate their subjective

preference for either EBW or RBW using a single-blind
ABX paired comparison task (Eisenberg et al., 1997; Punch
Figure 3. The graphic rating scale with categories and mood faces
as guidelines for loudness judgments.

Van Ee
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et al., 2001). For this task, a speech passage consisting of
multiple spoken custom-recorded Connected Speech Test
sentences was presented at 60 dB SPL (Saleh et al., 2020).
While the child was listening, bilaterally aided, the experi-
menter changed the hearing aid program to alternate be-
tween bandwidth conditions and to indicate if the child was
listening to “Program 1” (counterbalanced to either the
EBW or RBW condition) or “Program 2.” The starting pro-
gram was counterbalanced, and each child listened to both
programs twice, alternating between the programs. The child
was blinded to the bandwidth condition that was associated
with either program. After listening, the child was asked to
indicate a preference for Program 1 or 2 or no preference.
The paired comparison task was measured twice, and the
results from the two trials were combined as follows: “a strong
preference for EBW” or “a strong preference for RBW” was
coded if the child indicated the same preference on both
trials; the category “no preference” was coded if the child
indicated no preference on both trials; “a weak preference
for EBW” or “a weak preference for RBW” was coded if
the child indicated no preference once and a preference
for the respective condition once. If the child indicated op-
posite preferences on the two trials, a “no preference” result
was recorded.

PLLs
PLLs for the EBW and RBW conditions were mea-

sured and compared to the overall recommended listening
levels (RLL or fit to targets) using an adjustment proce-
dure (see Jesteadt 1980; Levitt, 1971; Van Wieringen &
Wouters, 2001). During this task, the children listened to
the same spoken speech passage that was used for the sub-
jective preference task, presented at 60 dB SPL. To avoid a
systematic bias toward the starting level (Van Eeckhoutte
et al., 2018), the adjustment procedure was repeated from
opposite perceptual sides. Specifically, the procedure was
administered once starting from below PLL and once
from above the estimated PLL, resulting in a PLL estimate
of the “Up” track and “Down” track. The child was in-
formed that the experimenter would adjust the hearing aids
until the child verbally indicated that the hearing aids were
at a volume that they would want to listen to all day, every
day. The experimenter then decreased the overall gain of
the hearing aids to be 15 software steps below the RLL set-
ting for the Up track. Next, the experimenter increased
the gain and bracketed the PLL, which was defined as the
PLL of the Up track. The child was then instructed to indi-
cate the first point where the level was no longer at their
PLL while the experimenter carefully further increased
the gain. This was done to establish a starting level that
was clearly above the participant’s PLL, set slightly above
the first point while avoiding excessive loudness. The starting
level is not expected to influence the results, as long as both
perceptual sides are included in testing (Van Eeckhoutte
et al., 2018). From there, the PLL of the Down track was
measured using the same procedure, but in the opposite di-
rection. The experimenter recorded the coordinating soft-
ware level (Phonak Target) at each setting. The measured
ckhoutte et al.: Extended Bandwidth Hearing Aids for Children 5
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PLL for the Up and Down tracks were averaged together
to determine the PLL to be used during hearing aid veri-
fication. Verification of the PLL level, across partici-
pants, was completed using the ISTS speech signal at
60 dB SPL, as well as the hearing aid output at the RLLs
for comparison.

Results
Audibility

For seven participants, the MAOF was coded as
10 kHz, as the speech RMS and peak levels fell above thresh-
olds (i.e., were likely audible) at all frequencies. Across partic-
ipants, the RMS MAOF was, on average, 7376 Hz (SD =
1669 Hz), and the peak MAOF was 8033 Hz (SD = 1262 Hz).
Both the RMS and peak MAOFs exceeded 4.5 kHz for each
child, and the minimum peak MAOF was 6.1 kHz. These
results indicate that audibility in excess of 4.5 kHz was
achieved for all children in the EBW condition.

Consonant Discrimination in Noise
The average scores on the consonant discrimination

in noise task were 81.9% (SE = 2.0 %) for the EBW condi-
tion and 76.5 % (SE = 1.8 %) for the RBW conditions
(see Figure 4). Percent correct scores were transformed
to rationalized arcsine units (rau) for statistical analysis
(Sherbecoe & Studebaker, 2004). A linear mixed-effects
model with bandwidth set as a repeated measure and par-
ticipant as a random effect R v3.4.3 showed a significant
effect of bandwidth on the rau scores, b = −6.92, t(27) =
−6.88, p < .001, with a large effect size (r = .80). Thus, com-
pared to the RBW condition, the EBW condition led to a
significant improvement in consonant recognition, with an
average improvement of 5.4%.
Figure 4. The average consonant discrimination in noise scores for
the two bandwidth conditions (EBW = extended bandwidth; RBW =
restricted bandwidth). The stars indicate the level of significance
(p < .001). The standard errors of the mean are shown.

6 Journal of Speech, Language, and Hearing Research • 1–13
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To further explore error patterns across bandwidth
conditions, confusion matrices were calculated for each
condition. Confusion matrices were then subtracted from
each other to produce a difference matrix (see Table 1).
The table shows positive numbers of 67, 42, and 48 on the
diagonal for /s/, /t/, and /z/, respectively, meaning that those
consonants were more often identified correctly in the EBW
than in the RBW condition. Confusions between consonants
are shown outside the diagonal. Negative numbers indicate
the amount of responses that were more often confused in
the RBW condition than in the EBW condition. As can be
seen in the table, the participants confused /s/ for /f/ 48 times,
/t/ for /k/ 38 times, and /z/ for /v/ 38 times more in the RBW
condition than in the EBW condition. These are confusions
of place of articulation with correct identification of manner
and voicing of articulation. The /s/, /t/, and /z/ consonants
all contain significant cues in the high-frequency spectral
region. For each bandwidth condition, the rau scores were
correlated with the better ear four-frequency PTA (with r =
−.52, p = .004 for the EBW condition and r = −.56, p =
.004 for the RBW condition) after Holm correction. These
results indicate poorer speech recognition with increasing
degree of hearing loss.

Aided Loudness Growth
Aided loudness growth ratings were examined to re-

move outliers according to test–retest reliability, as follows.
Across all participants, levels, and conditions, the differ-
ences between the first loudness response and second loud-
ness response were calculated, yielding a mean difference
of 0.01, with a standard deviation of 0.16. The range of ±
2 SDs corresponds to the distance of two loudness catego-
ries on the GRS. If a child’s test and retest loudness ratings
differed by more than this criterion, these two loudness re-
sponses were removed from analyses for that given partici-
pant, condition, and level (leading to a total of 196 out of
3,360 points that were removed).

Next, each condition was fitted with a sigmoidal func-
tion (see Figure 5). Descriptively, higher loudness ratings
were obtained in the binaural EBW condition. The magni-
tude of the loudness differences among conditions was
assessed by comparing the input levels associated with spe-
cific loudness levels on these functions. From this, we ob-
served that the children indicated a similar rating of “a bit
soft” across all test conditions. Specifically, the input levels
were 58.8, 59.6, 59.6, and 59.9 dB SPL for the binaural
EBW condition, the binaural RBW condition, the monaural
left condition, and monaural right condition, respectively.
This corresponds to input-level differences of 0.8 and 1.1 dB
between the monaural EBW conditions and the binaural
EBW condition, and 0.8 between the binaural RBW condition
and the binaural EBW condition. The chosen loudness
category of “a bit loud” corresponded to 71.3, 72.4, 72.7,
and 73.2 dB SPL for the binaural EBW condition, the bin-
aural RBW condition, the monaural left condition, and
monaural right condition, respectively. These differences
were slightly larger, by 1.4 and 1.9 dB, between the monaural
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Table 1. The consonant confusion matrix measured in reduced bandwidth was subtracted from the confusion matrix measured in extended
bandwidth, and the remaining difference matrix is shown here.

Stimuli

Response differences

B CH D F G H J K L M N P R SH S TH T V W Y Z

/b/ /t∫/ /d/ /f/ /g/ /h/ /dʒ/ /k/ /l/ /m/ /n/ /p/ /r/ /∫/ /s/ /θ/ /t/ /v/ /w/ /j/ /z/

B −9 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 8 0 1 0
CH 0 −4 0 0 0 −1 0 0 1 0 0 0 0 3 −1 3 0 0 0 0 0
D 2 0 −5 0 2 1 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0
F 0 0 0 4 0 1 0 0 0 0 0 −2 0 0 −1 −2 0 1 0 0 0
G 0 0 4 −1 −3 0 −2 2 0 0 0 −1 0 0 0 0 0 1 0 0 0
H 0 0 0 −2 1 2 0 0 0 0 1 0 0 −1 0 0 0 1 0 −1 0
J 0 1 0 0 5 −1 −5 0 0 1 0 0 0 0 0 0 0 0 0 0 0
K 0 −1 0 0 1 0 0 2 0 0 0 −1 1 1 0 0 0 0 0 0 0
L 0 0 0 0 0 0 0 0 3 1 −1 0 −2 0 0 0 0 0 −1 −1 0
M −1 −1 0 0 0 0 0 1 1 6 −4 0 0 −1 0 1 0 0 −1 0 0
N 0 0 −1 0 0 0 0 0 0 5 −2 0 0 0 0 0 0 0 1 −1 0
P 0 0 0 0 0 −1 0 6 0 0 0 −8 0 0 0 −1 3 0 0 0 1
R 0 0 0 0 0 0 0 0 2 1 0 0 2 0 0 0 0 −1 −1 −1 0
SH 0 1 0 0 0 0 0 0 0 0 0 0 1 0 2 −1 0 0 0 −1 −1
S 0 0 0 −48 0 −2 0 0 0 0 0 −7 0 −2 67 −5 0 −1 0 0 0
TH −3 −1 2 0 −1 1 0 0 1 0 −1 1 0 0 0 0 0 3 −2 1 0
T −1 0 0 0 0 −1 0 −38 0 1 0 −4 0 0 1 2 42 0 0 0 0
V −2 0 1 −2 −1 −1 0 0 0 0 0 0 2 −1 0 −1 0 4 −2 0 3
W 0 0 0 0 0 1 0 0 −1 −1 −1 0 2 0 0 −1 0 −1 2 0 0
Y 0 0 1 0 −2 0 −1 0 0 0 0 1 2 0 1 0 0 1 1 −3 0
Z 0 0 0 0 1 0 0 0 −1 0 0 −2 0 0 7 −8 0 −38 −3 −1 48

Note. Absolute values equal to or more than 10 are indicated in bold.
EBW condition and the binaural EBW condition, and 1.1 be-
tween the binaural RBW condition and the binaural EBW
condition.

In order to determine if these changes were significant,
a linear mixed-effects model was conducted on the raw data
with “level” and “condition” set as fixed effects (repeated-
measure factors), “participant” set as a random effect, and
the following contrasts: the contrast between binaural EBW
and monaural EBW conditions, the contrast between mon-
aural conditions, and the contrast between the binaural
EBW and binaural RBW condition. The effect of level was
significant (b = 0.02, t = 93.3, p < .001), as was the con-
trast between the binaural EBW and monaural EBW con-
ditions (b = −0.01, t = −2.18, p = .032). All other contrasts
were nonsignificant (p > .05).

Furthermore, correlation coefficients were calculated
to investigate the relationship between speech discrimina-
tion in noise scores and loudness perception for speech
stimuli at 60 dB SPL. Better speech discrimination in
noise scores were not associated with a perception of
greater loudness in the EBW condition after Holm correc-
tion (r = .43, p = .076), nor in the RBW condition (r = .15,
p = .447).
Subjective Preference
More than half of the children had a strong preference

for the EBW condition (15/28 or 54%), as shown in Figure 6.
In contrast, only two children (7%) had a strong preference
Van Ee
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for the RBW condition. Weak preferences were observed for
three children (11%) in each of the RBW and EBW condi-
tions, and five children (18%) had no preference for either
bandwidth condition. A one-sample Kolmogorov–Smirnov
test indicated a significant mean preference for the EBW
condition (p = .001). The children’s preference scores were
not correlated with the four-frequency PTA of the better
ear (r = −.14, p = .473). This is consistent with our previous
findings in adults (Van Eeckhoutte et al., 2020).
PLLs
For the PLL data, the Up and Down track of the

procedure provided slightly different PLL estimates, con-
sistent with a bias toward the starting level (see Figure 7).
The values shown are the gain values from the hearing aid
fitting software for the right ear, according to moderate
input sounds (G65) for the “mid” frequency handle when
displaying three frequency handles, to demonstrate the dif-
ference in PLL when measuring the Up and Down track.
Paired t tests indicated significant differences between the
tracks of both conditions, with p values of < .001 after
Holm correction. The results indicate that the use of both
the Up and Down tracks may help to balance the response
bias from the final PLL measure by approximately 2 dB.

The software values associated with average PLL from
the Up and Down tracks were used when measuring the
hearing aid output for the ISTS signal at 60 dB SPL, at
PLL and at RLL settings (see Figure 8). For both the EBW
ckhoutte et al.: Extended Bandwidth Hearing Aids for Children 7
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Figure 5. The sigmoidal fits of the aided loudness growth conditions as well as the mean ± 1 SEM are shown.
EBW = extended bandwidth; RBW = restricted bandwidth; HA = hearing aid (color in the online version).

Figure 7. Comparison of the procedural tracks to measure the
preferred listening levels (PLLs). Each dot on the y-axis shows the
and RBW conditions, the PLLs and RLLs were compared
using the better ear. The aided 1/3 octave band levels of
speech were power sum averaged over the range of 0.2–4
kHz to represent the bandwidth present in both conditions.
The differences between the PLLs and RLLs were calcu-
lated between the EBW and RBW condition to determine
if aided bandwidth changes resulted in different PLLs.
The PLLs differed from RLLs by −0.9 and −0.7 dB on
Figure 6. The subjective preference of the children as measured by
an unforced-choice paired comparisons task. RBW = restricted
bandwidth; EBW = extended bandwidth.

8 Journal of Speech, Language, and Hearing Research • 1–13
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average in the EBW and RBW conditions and ranged be-
tween −14.3 and 10.8 dB. The PLL and RLL differences
for both bandwidth conditions were not significantly differ-
ent from each other, t(27) = 0.64, p = .527. No significant
average PLL of the Up and Down track subtracted from the found
PLL value (software value, see text) for each participant. The individual
results for each condition are shown on top of the box plots with
jitter (color in the online version). EBW = extended bandwidth; RBW =
restricted bandwidth.
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Figure 8. Recommended listening levels (fit to target) were compared to the measured preferred listening levels for the extended bandwidth
(EBW) and restricted bandwidth (RBW) condition. The black thin line of perfect correspondence is shown, as well as the blue regression line,
and the 95% confidence interval in gray (color in the online version).
correlations were found between the PTA of the better ear
and the PLL–RLL differences, in either the EBW condi-
tion (r = −.01, p = .957) or the RBW condition (r = .11,
p = .552).
Discussion
Main Findings

In this group of children, modern BTE devices pro-
vided average audibility of the peaks of midlevel speech to
about 8 kHz. On average, these MAOF findings are close
to the recommended 9 kHz of EBW in the Pediatric Am-
plification Guideline, for optimal audibility of high-frequency
sounds, such as /s/ (AAA, 2013). High-frequency audibility
limits exceeded 4.5 kHz for all children and yielded a high
consonant discrimination in noise score of 82%, on average.
Many previous laboratory studies have used RBW condi-
tions with filtering to about 4 or 5 kHz to represent the
achievable bandwidth of older hearing aids (e.g., Cox et al.,
2011; Füllgrabe et al., 2010; Hornsby & Ricketts 2003;
McCreery & Stelmachowicz 2011). In this study, we aimed
to examine this difference by using wearable modern hear-
ing aids to assess outcomes across test conditions. We pro-
vided hearing aid fittings using an EBW condition and a
condition in which output was minimized above 4.5 kHz,
or the RBW condition. Consonant discrimination in noise
scores dropped, on average, by 5.4% in the RBW condi-
tion, which is attributed to the improved perception of
high-frequency phonemes in the EBW condition. However,
no significant difference between bandwidth conditions
was found for aided loudness perception, nor was there
a significant difference in PLLs when comparing results
for the bandwidth conditions. Furthermore, measures of
Van Ee
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subjective preference indicated that 65% of the children
preferred the EBW condition over the RBW condition, with
54% of all children indicating a strong preference. The re-
sults suggest that providing the full bandwidth available in
modern devices had beneficial effects for children who use
hearing aids, fitted to the DSL v5.0 child prescription, with-
out causing significant increases in their loudness perception.
This EBW is equal to providing audibility up to 8 kHz,
when considering average MAOF results reported for peak
levels of speech.
Comparison to Adults
In a previous study, a group of adults were evaluated

using a similar outcome measure battery (Van Eeckhoutte
et al., 2020). The group of adult listeners had mild-to-
moderate high-frequency sloping sensorineural hearing loss.
The current study shows that the children in this study,
who had a large range of degrees and configurations of
hearing loss, also benefitted from the full bandwidth avail-
able from modern hearing aids. Furthermore, we did not
observe a significant difference in aided loudness percep-
tion or a significant difference in PLLs with EBW versus
RBW. This was observed in both groups, despite several
differences between the two studies: (a) The DSL v5.0 tar-
gets for children provide more gain than the adult prescrip-
tion for the same audiometric hearing loss (Scollie et al.,
2005), and (2) different device types were used—the adult
listeners were fitted with RIC devices, and children were
fitted with BTE devices with custom earmolds. Overall,
this may indicate that it is possible to provide improved
speech sound recognition without adversely affecting loud-
ness or requiring a different volume control setting in either
ckhoutte et al.: Extended Bandwidth Hearing Aids for Children 9
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group. The magnitude of speech sound recognition im-
provement with EBW was similar between groups (5.4%
for children, 4.1% for adults) and was mainly driven by
the high-frequency phonemes /s/, /z/, and /t/ in both adults
and children. However, more children (65%) indicated a
preference for the EBW condition, compared to the adults
(46%), which is consistent with previous studies indicat-
ing that children prefer and require more audibility to
achieve similar levels of performance (see reviews by Scollie
et al., 2005; Stelmachowicz et al., 2004).

Comparison of Outcome Measures in Other Studies
Consonant Discrimination in Noise

The results of this study are largely consistent with
lab studies that show sometimes small, but generally bene-
ficial, effects of providing the EBW on speech discrimi-
nation in noise (Amos & Humes, 2007; Cox et al., 2011;
Füllgrabe et al., 2010; Hornsby et al., 2011; Hornsby &
Ricketts, 2003; Levy et al., 2015; Mackersie et al., 2004;
McCreery & Stelmachowicz, 2011; Plyler & Fleck, 2006;
Seeto & Searchfield, 2018; Simpson et al., 2005; Turner
& Cummings, 1999; Turner & Henry, 2002). Similar to
results in other studies, these confusion differences are also
consistent with improved access to and use of high-frequency
speech audibility (Alexander & Rallapalli, 2017; McCreery
et al., 2014; Pittman, 2008; Stelmachowicz et al., 2004),
with a small change in overall percent correct having a
large impact on the audibility of specific, high-frequency
phonemes.

In Van Eeckhoutte et al.’s (2020) study, the frequency
spectra of the /s/, /t/, and /z/ stimuli that were used for the
consonant discrimination in the noise task were analyzed,
and the frequency of the largest spectral peak was found
to exceed 4.5 kHz (min = 5.0 kHz, max = 7.6 kHz) for /s/
and /z/ stimuli and for the two female talkers for /t/. The
provision of more fricative energy may lead to better per-
ception of /s/ and /z/ (Dubno & Levitt, 1981; Pittman &
Stelmachowicz, 2000, 2003). Providing access to an EBW
could prevent delays in phonological development in chil-
dren with hearing loss (McCreery et al., 2017; Moeller et al.,
2007; Stelmachowicz et al., 2004).

Subjective Preference
Subjective preference has mainly been investigated with

adult listeners (Füllgrabe et al., 2010; Moore et al., 2011;
Moore & Tan, 2003; Ricketts et al., 2008; Van Eeckhoutte
et al., 2020). Using a linear lab system, one study measured
higher pleasantness ratings for an RBW condition (5 kHz)
versus an EBW condition (7.5 or 10 kHz) in a similar group
of adult listeners with hearing loss (Füllgrabe et al., 2010).
However, using a multichannel compression system, no
consistent preference in terms of pleasantness was associ-
ated with RBW versus EBW, except for results measured
for female speech processed with fast compression (Moore
et al., 2011). The indifference, in terms of subjective pref-
erence, for either bandwidth condition is similar to the
adult study by Van Eeckhoutte et al. (2020). In their study,
10 Journal of Speech, Language, and Hearing Research • 1–13
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most listeners (71%) indicated “no preference” at least once
for either the RBW or EBW bandwidth condition. The
largest group (33%) indicated “no preference” twice, while
the remaining participants indicated preferring either the
RBW (13%) or the EBW (25%) once and “no preference”
once. Brennan et al. (2014) investigated subjective prefer-
ence for RBW and EBW with children and adults and
found that both groups did not differ in their preferences.
However, based on their figures, it seemed that more
children than adults preferred the EBW over the RBW
condition for speech, which agrees with the results of this
study.

Aided Loudness Perception and PLLs
The results from this study indicate that the loudness

perception, as measured by both aided loudness growth and
PLLs, did not vary significantly with bandwidth. Further-
more, the level difference needed to reach the same loud-
ness percept for the binaural EBW loudness condition and
the monaural EBW loudness conditions was only around
1 dB (0.8 and 1.1 dB SPL for “a bit soft”, and 1.4 and
1.9 dB for “a bit loud”). This small difference is thought
to reflect binaural loudness constancy rather than binaural
loudness summation (Fletcher & Munson, 1933), and this
difference was also found in the adults study. The phenom-
enon was first described by Epstein and Florentine (2012),
showing less binaural loudness summation in the presence
of ecologically valid variables. For example, less binaural
loudness summation was found for speech presented via
a loudspeaker than presented via insert earphones and less
with visual cues from a video screen than without. Cox
and Gray (2001) and Van Eeckhoutte et al. (2020) both
reported a difference of 1 dB between the binaural EBW
and binaural RBW conditions, as well as between the
binaural EBW and monaural EBW conditions for adults.
This study with children reports the same difference (0.8
and 1.1 dB SPL for “a bit soft” and “a bit loud”). Further
research could investigate whether the same conclusions,
in terms of loudness perception, are measured for music
stimuli.

Conclusions
This study supports the recommendation to provide

the full available bandwidth, whenever possible, when fit-
ting children with modern commercially available hearing
aids. An EBW can be beneficial, especially when consid-
ering speech sound recognition performance. In this clini-
cal sample of children with different configurations and
degrees of hearing loss, fitted to the DSL v5.0 child pre-
scription, all children achieved audibility exceeding 4.5 kHz,
as measured by the MAOF method. Average achieved audi-
bility was approximately 8 kHz. Outcome measures indi-
cated that these fittings provided considerable improvements
for /s/, /z/, and /t/ perception in noise compared to a fitting
with RBW to about 4.5 kHz, without any significant effects
for loudness perception or PLLs. Most children (65%) had
a subjective preference for the EBW condition compared to
erms of Use: https://pubs.asha.org/pubs/rights_and_permissions 



the more RBW condition. In summary, the study suggests
that modern hearing aids can achieve greater bandwidth,
when compared to past studies. Clinicians should seek to
verify and maximize high-frequency audibility to achieve
any potential perceptual benefits in children with hearing
loss who wear hearing aids.
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