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ABSTRACT
An analytical model for broadband sound transmission loss of a finite single leaf wall using a
metamaterial was previously developed and validated numerically. It is of interest to validate
the analytical model with experimental results. In this paper, the band gap (BG) behavior
of a locally resonant metamaterial is tested and compared to the analytical and numerical
results. First, the unit cell resonance is measured for four nominally equivalent samples and the
material properties extracted. Then, vibration analysis of a finite metamaterial plate is carried
out. The influence of the variability of the properties of the resonators due to the construction
method is analyzed both experimentally and numerically. Lastly, the result is compared to the
analytical model and conclusions drawn. The analytical model could not be fully validated
with the experimental measurements, but the specimen exhibited BG behavior. The variability
of the resonators has an important influence in the performance of the metamaterial plate.

1. INTRODUCTION

Acoustic metamaterials (AM) are being studied extensively because of their novel properties not
found in nature. The definition of acoustic metamaterials may be broadly interpreted as systems
or materials that display (as a whole) extraordinary properties not found in natural materials with
respect to sound and vibration characteristics, such as negative apparent mass and/or bulk modulus.
[1–6]. They owe this behavior to internal subwavelength structures. One of the most important
characteristics of the AM is the so-called band gaps (BG), a frequency region where wave propagation
is not possible. This property shows great promise to be a good tool to be used in sound insulation,
absorption, and even radiation [7–9]. Band gaps can be introduced into these structures by mounting
an array of resonators to them. This type of construction has been studied and validated in recent
years [1–6].

An analytical model for broadband sound transmission loss of a finite single leaf wall using a
metamaterial was developed [9]. The analytical model is useful to better understand metamaterials
composed of single degree of freedom resonators and how the different parameters affect their
behavior. From the optimization process emerged the possibility of tuning the BG above the
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coincidence frequency as a tool to maximize the frequency range where the transmission loss of the
metamaterial is larger than the bare plate. Numerical simulations validate the analytical model for
the low frequency range where the wavelength of the wave traveling through the plate is much longer
than the periodic distance between the resonators. It is of interest to validate the analytical model
with experimental results.

In this paper, the band gap behavior of a locally resonant metamaterial plate is tested and compared
to the analytical and numerical results. First, the unit cell resonance is measured and the material
properties extracted. Then, vibration analysis of a metamaterial plate of 0.5 x 0.4 x 0.003 m is carried
out. The influence of the variability of the properties of the resonators due to the construction method
is analyzed. The importance of uncertainty quantification was researched and shown by Henneberg
et al [10] and it is of great value to bridge the gap between theory and application in industry. Lastly,
the result is compared to the analytical model and conclusions drawn.

2. METAMATERIAL DESCRIPTION

2.1. Theoretical model
Consider a finite thin plate with mass per unit area m′′p lying in the x−y plane coupled with an array

of distributed resonators as seen in Fig. 1(a). The plate is located inside a rigid baffle at z = 0. For
z < 0 the acoustic field consists of an incident plane wave pi, a reflected plane wave pr, and a scattered
field ps due to the motion of the finite wall. For z > 0 only the transmitted wave (pt) is present. In this
way, the acoustic field is split in two parts; the first considers an incident wave reflecting off of a rigid
wall, and following a correction to take into account a baffled finite plate in the rigid wall through a
scattering and transmission term. The wall is of size a × b. It is important to note that, even though
the plate considered is of finite size, there are no explicit boundary conditions in the formulation. The
resonators are considered distributed and have mass per unit area m′′r , stiffness per unit area s′′ and
provide a reaction force per unit area F′′(Fig.1(b)). Structural damping of the spring is considered by

Figure 1: a) A finite wall of dimensions a× b coupled with a series of mass-spring resonators located
inside a rigid baffle in the x-y plane, at z=0. b) Simplified diagram of a small section of the structure.

assigning the inherent losses to the spring element. For harmonic motion this can be represented by
a complex stiffness s′′ = s′′(1 + iηs) where ηs is the damping loss factor and s′′ is the real part of the
complex spring constant. Note that periodicity is not being explicitly assumed in the analytical model.



The reaction force per unit area of the distributed resonators is studied. This is a good approximation
to the full problem in cases where the reflections at the boundary are of minor importance.

Starting from the forced Helmholtz equation for bending waves in plates it is possible to derive a
modified Helmholtz equation that takes into account the effect of the coupled resonators. The result
is shown in Equation 1 (the full derivation can be found in [9]),

∇4wp − wp
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b +
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where kb = 4
√
ω2m′′p/B′ is the wavenumber of the free bending wave in the plate, B′ is the bending

stiffness of the plate and p(x, y) = pi + pr + ps − pt is the external pressure field. With this notation,
wp(x, y) corresponds to traverse displacement of the plate. ∇4 = ∇2∇2 is the bi-harmonic operator and
∇2 is the Laplace operator. From Equation 1, the modified wavenumber can be identified as
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This is an important expression because it determines the frequency range where wave propagation is
not possible in the structure, commonly referred to as band gap. The modified wavenumber takes an
imaginary value in this frequency range. If losses are not considered and after some modifications, an
expression for the BG can be found

ω0 < ω <

√
ω2

0 +
s′′

m′′p
. (3)

It is shown that the upper limit of the band gap is also related to the natural frequency of the resonators.
The mass of the plate is an important factor in the band gap. From Equation 3, considering s = ω2

0m′′r
and defining a mass ratio M = m′′r /m

′′
p the width of the band gap can be expressed as

∆ωBG = ω0

(√
1 + M − 1

)
. (4)

As a result of this, it can be stated that the frequency width of the band gap grows with mass ratio M.

2.2. Numerical model
The numerical simulations carried out in this research were calculated using COMSOL

Multiphysics® software [11]. The design chosen is presented in Fig. 2. The structure consists
of an aluminium plate of 3 mm thickness with periodically added resonators in two dimensions.
The resonator is made of a rubber spring (hardness 70 shore A) and a steel mass with dimensions
28× 28× 5 mm and 30× 30× 10 mm respectively. The unit cell is 50× 50 mm and Floquet boundary
conditions are used, assuming spatial periodicity (the numerical calculation is greatly simplified by
just considering a single resonator and periodic conditions). Material properties are shown in table
1. The dynamic properties of rubber were extracted from experimental measurements detailed in
Section 2.3. This design was chosen to get as close a possible to the conditions set in the analytical
model, while defining a setup that is realizable in practice.

Dispersion curves are calculated along the irreducible Brillouin contour without losses [12, 13].
The eigensolver analysis is set up as a parametric sweep involving one parameter, k, which varies
from 0 to 3. In this study, 0 to 1 defines a wave number spanning the Γ−X edge, 1 to 2 defines a wave
number spanning the X − M edge, and 2 to 3 defines a wave number spanning the diagonal M − Γ

edge of the irreducible Brillouin zone (IBZ)(Fig. 3). For each value of k, it is solved for the lowest
natural frequencies [14].

A finite metamaterial plate of 0.5 x 0.4 x 0.003 m is simulated in order to compare with the
experimental measurements (Fig. 4). The measurement setup described in Fig. 5(b) and 7 is replicated
in order to compare and match the results.



Figure 2: Unit cell used for validation (50 × 50 mm). Aluminium plate 3 mm thickness, 30 × 30 × 10
mm steel mass and 28 × 28 × 5 mm rubber spring (hardness 70 shore A).

Figure 3: Diagram of the irreducible Brillouin zone used for the dispersion curves computation.

Figure 4: Numerical simulation of a finite metamaterial plate of 0.5 x 0.4 x 0.003 m.



Table 1: Material properties of structure.

Property Aluminium Rubber Steel
Young’s modulus 68 × 109 [Pa] 8.4 × 107 [Pa] 2 × 1011 [Pa]

Density 2670 [kg/m3] 1530 [kg/m3] 8000 [kg/m3]
Poisson’s ratio 0.33 0.4 0.28

Loss Factor 0.05 0.16 0.03

Figure 5: a) Unit cell measurement setup b) Metamaterial plate measurement setup.

2.3. Experimental model
The experimental model is constructed using an aluminium plate, steel mass and rubber springs

as described in Section 2.2. The material properties of aluminium and steel are well known, but the
dynamic properties of rubber are more difficult to estimate. Other factors like temperature, stress
and the geometry itself can change the properties, making rubber an unreliable material for these
resonators. On the other hand, rubber is easy to come by and relatively inexpensive. Furthermore,
this setup was chosen to get as close as possible to the conditions set in the analytical model, given
that the objective is to validate it. In order to extract the material properties of the rubber, 4 unit
cells were constructed and measured for the resonance as shown in Fig. 5(a). An accelerometer is
used to measure the velocity of the steel mass, while an impedance head measures the velocity in the
excitation point where a shaker is connected to the aluminium plate. The input signal is a linear sine
sweep, from 0 Hz up to 12 kHz. The transmissibility is calculated and results are shown in Fig. 6.
The solid red curve is the Comsol simulation of the unit cell measurement. The material properties of
the rubber were chosen to fit roughly to the average of the results and shown in table 1. The unit cells
measured have different resonances and loss factors, possibly due to the construction methodology.
The rubber was glued with epoxy to the steel mass and the aluminium plate. The amount of glue used
was not consistent for all unit cells and the impact this may have in the properties of the rubber is
unknown. Furthermore, the pieces have small size variations because of cutting errors. Nevertheless,
the measured properties of the rubber are within the expected range for this type of material.

The metamaterial plate measurement setup is shown in Fig. 5(b). The test consists of 1 excitation
point and 35 measurement positions. A shaker is used to excite the system with a sine sweep from
800 Hz to 6 kHz. The metamaterial plate is hanging from a lateral excitation stand, supported by 2
rubber bands. As a result, it has free boundary conditions. The shaker is connected to the plate with a
drive rod, and a laser Doppler vibrometer (ldv) measures the input velocity from the back of the plate.
The measurement positions are shown in Fig. 7 and also measured with the ldv. Then, the ratio of the



Figure 6: Unit cell measurement and Comsol simulation results.

Figure 7: Measurement positions for the metamaterial plate test.

average absolute square velocity for all 35 positions to the absolute square velocity in the excitation
point is calculated as

T = 10log
|vm|

2

|ve|
2 , (5)

where vm is the vibration velocity in the measurement positions and ve is the velocity at the excitation
point. The vibration velocity should be highly attenuated in the band gap region, making it easily
identifiable from this result.

3. RESULTS AND ANALYSIS

The numerically determined periodic dispersion curve for the metamaterial plate described in Sec.
2 was calculated using the properties shown in table 1 but without damping. Results are presented in
Fig. 8. The BG is located between 2315 Hz and 5759 Hz. and it is consistent with the approximations
made in the analytical model as shown in [9]. According to the analytical model, the lower limit of the
BG corresponds to the natural resonant frequency of the resonators, while the upper limit corresponds



Figure 8: Numerically determined periodic dispersion curve for the metamaterial plate.

to the opposite case, when the mass of the resonators and the plate are out of phase. This is the case in
the simulations. There are two rotational modes around 2.5 kHz that are not present in the analytical
model given the assumptions made. These can be seen in Fig. 8 represented by the yellow and
magenta lines that are mostly overlapping.

The results of the finite metamaterial plate measurement and the Comsol simulations are presented
in Fig. 9. The properties used for the simulation are shown in table 1. The vertical dashed lines
represent the frequency limits of the theoretical band gap following Eq. (3). It is clear that the
measurement and simulation do not have a good fit in the frequency range of the BG. The simulation
and band gap limits are calculated for an homogeneous case, where all resonators are equal, and in the
case of the theoretical BG, for a simple one degree of freedom resonator without losses. The analytical
BG and the simulation fit well together, but when compared to a real measurement differences arise.
As described in Sec. 2.3, the constructed resonators are not equal. From the unit cell measurements
it was seen that deviations in resonance frequency and loss factor exist. Furthermore, it is possible
that the epoxy used to glue the parts together has hardened to the point of making the connection
between the pieces rigid for this frequency range. To test this hypothesis, a simulation was carried out.
Figure. 9 shows the comparison between the measured metamaterial plate and a simulation performed
with the resonators following a normal distribution with standard deviation consistent with the UC
measurements shown in Fig. 5. This means that the Young’s modulus and loss factor of the rubber are
different for every resonator. Moreover, the boundary between the rubber and steel mass is simulated
as rigid in some of the resonators. The Rigid Connector is a boundary condition for modeling rigid
regions in Comsol. A rigid connector can connect an arbitrary combination of boundaries, edges,
and points which all will move together as being attached to a virtual rigid object. The result of
this simulation shows a larger apparent BG than the homogeneous case, being more consistent with
the measurement. The results are sensitive to all of these variables. Given the complexity and
uncertainties present in this experiment, a mismatch between measurement and simulation is seen.
The simulation with normal distribution indicates that the variability in the resonators and the effect
of the epoxy in the rubber are a likely explanation for the mismatch. The measurement result seem to
indicate the presence of a band gap nonetheless, but it is bigger and it starts at a lower frequency than
expected.

Manufacturing tolerance is an important topic when trying to connect theory and industry
applications. It was observed from the simulations in Fig. 9 that the variability in the resonance



Figure 9: Metamaterial plate measurement results and Comsol simulations with homogeneous
resonators and normal distribution. Vertical dashed lines represent the theoretical BG limits.

of the resonators is an important factor in the performance of the metamaterial plate. In order to
better understand its influence, additional simulations were carried out. Figure 10 shows simulations
of the measurement with normal distribution with different standard deviations compared to the
homogeneous case. The homogeneous case is calculated with the properties presented in table 1.
It is important to note that the loss factor is 0.16 for all simulations. The only stochastic variable
is the Young’s modulus of the rubber for each of the resonators, that follows a normal distribution.
Additionally, the connection between the parts of the resonators is not simulated as rigid. The
objective is to isolate the influence of the variability in the resonance. These results indicate that
a small variation in the resonance frequency of the resonators of the metamaterial increases the
damping of the average velocity of the structure when compared to the homogeneous case. This
may be because of Anderson localization phenomena of nearly periodic structures [15]. It can be
noted that this phenomena can have an apparent increased damping, which is beneficial for sound
insulation [16]. If the standard deviation is large, the velocity response worsens considerably.
Usually, variability in metamaterials is regarded as something unfortunate and negative, but the
simulations shown in Fig. 10 indicate that it may not always be the case, possibly due to Anderson
localization phenomena. Vibrations in the plate are more damped than in the homogeneous case.
This can emerge as a new design tool when creating metamaterials. If the deviations are too great, the
benefits shown disappear. It is left for future research a more comprehensive study of the influence
of the uncertainties in the metamaterial behavior.

4. CONCLUSIONS

Vibration analysis was carried out in a locally resonant metamaterial plate in order to validate a
previously developed analytical model. While the analytical model has been validated with numerical
simulations, the experimental measurements yield inconclusive results. The uncertainties present in
the construction of the specimen measured make the validation difficult. The measured metamaterial
plate exhibits band gap behavior, but not in the same frequency range as the analytical and numerical
simulations indicate. It appears to be a bigger BG and it starts at a lower frequency. The epoxy



Figure 10: Simulations of the measurement with normal distribution of the resonators Young’s
modulus with different standard deviations compared to the homogeneous case. Vertical dashed lines
represent the theoretical BG limits.

used to glue the parts of the resonators has an unknown effect in the properties and behavior of the
metamaterial, making a direct comparison complex.

Even though the analytical model could not be fully validated with the experimental measurements,
the specimen exhibited band gap behavior and in a similar frequency range. The variability shown
by the resonators affects the results considerably, reassuring the importance of establishing
manufacturing tolerances when designing these structures. Furthermore, from the analysis emerges
the possibility of using the variability as a design tool in metamaterials.
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