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Abstract25

We present a statistical method for intercalibration of fishery surveys methods, i.e.26

determining the difference in catchability and size selectivity of two methods, such27

as trawl gears or vessels, based on data from paired fishing operations. The model28

estimates the selectivity ratios in each length class by modelling the size distribution29

of the underlying population at each station and the size-structured clustering of30

fish at small temporal and spatial scales. The model allows for overdispersion31

and correlation between catch counts in neighboring size classes. This is obtained32

by assuming Poisson distributed catch numbers conditional on unobserved log-33

Gaussian variables, i.e. the catch is modelled using log-Gaussian Cox processes.34

We apply the method to catches of hake (Merluccius Paradoxus and M. Capensis)35

in 341 paired trawl hauls performed by two different vessels, viz. the RV Dr.36

Fridtjof Nansen and the FV Blue Sea, operating off the coast of Namibia. The37

results demonstrate that it is feasible to estimate the selectivity ratio in each size38

class, and to test statistically the hypothesis that the selectivity is independent of39

size or of species. For the specific case, we find that differences between size classes40

and between species are statistically significant.41

Keywords: Selectivity; Intercalibration; Mixed-effects models; and Log-Gaussian Cox42

processes43

1 Introduction44

Fishery-independent surveys are of pivotal importance for fish stock assessments, where45

they provide a relative abundance index, as well as for basic biological research [Millar,46

1992]. While the objective of a survey is to assess the abundance of the underlying pop-47

ulation, it only provides a filtered view, specified by the selectivity of the operation. The48

vessels, riggings, and gears applied in these surveys often develop or shift over time, as do49

fishing methods by captains [Weinberg and Kotwicki, 2008], leading to changes in size se-50

lectivity and overall catch efficiency [Miller, 2013, Thorson and Ward, 2014]. To maintain51

as long time series as possible, it is often desireable to combine information from differ-52

ent operations. However, differences in selectivity of vessel-gear combinations must be53

accounted for before time series and spatial distribution data can be combined and syn-54

thesized, which can be problematic [Axelsen and Johnsen, 2015]. To this end, dedicated55

experiments may be performed, involving two or more vessel-gear combinations, with the56

objective of calibrating these combinations against each other, i.e. intercalibration. Here,57

the difference in catch rates are investigated by performing pairwise near-simultaneous58

hauls in the same area, so as to minimizes the time-space variation of the fished pop-59

ulation between the hauls. With such data, the selectivity ratios, which measure the60

efficiency of the two vessel-gear combinations against each other, can be estimated for61
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each species and each size class. Then, these selectivity ratios can be used as calibration62

factors by adjusting catches from one type of operation so that they are comparable with63

the catches from the other operation [Kotwicki et al., 2017].64

Multiple calibration procedures have been proposed and applied over time, in partic-65

ular differing in how the size dependency in selectivity ratios is modelled and estimated.66

When considering the selectivity curve of a single gear, a common choice is to restrict67

attention to a parametric family of curves; for example logistic functions for towed gear68

and Gaussian functions for gill nets [Millar and Fryer, 1999]. When comparing two gears,69

a typical choice has been to use polynomials in length to describe the ratio between70

the two selectivity curves [Millar et al., 2004, Lewy et al., 2004, Holst and Revill, 2009,71

Kotwicki et al., 2017]. The coefficients in these polynomials may be estimated in a GLM72

framework, but a point of particular importance is to allow for overdispersion relative73

to Poisson counts [Lewy et al., 2004]. This overdispersion arises for many reasons, in-74

cluding between-haul variation in the selectivity [Millar, 1993]. If this effect is ignored,75

and catches from different hauls are pooled, it will lead to overconfidence in the accuracy76

of estimates; a remedy is to use a double bootstrap to assess the accuracy of estimates77

[Millar, 1993, Sistiaga et al., 2016]. An alternative is a GLMM approach where the rela-78

tive selectivity curves are allowed to vary between hauls; either non-parametrically using79

autoregressive processes [Cadigan et al., 2006] or parametrically in terms of shifting and80

scaling slope base curves [Cadigan and Dowden, 2010]. Alternatives to fixed polynomi-81

als include orthogonal polynomials, GAMs or Smooth-Curve Mixed Models [Fryer et al.,82

2003, Miller, 2013]. A typical problem of these data is the large number of zero catches;83

therefore Thorson and Ward [2014] considered delta-GLMM’s, where the probability of84

zero catch is explicitly modeled. Kotwicki et al. [2017] compared three models, two of85

which included polynomials to account for the dependence on length, and one which used86

GAM’s to this effect, and advocated cross-validation techniques to select the best fitting87

model for a given data set.88

When the original assumption is that the catch in each size class and in each haul89

is Poisson distributed conditional on the abundance, a common approach is to condition90

on the total catch in each size class. Then, the catch in the individual haul is binomially91

distributed [Millar, 1992]. Conceptually, a related approach is the beta regression, in92

which a ratio of Catches Per Unit Effort in each size class is assumed to be beta distributed93

[Kotwicki et al., 2017].94

A common phenomenon for size structures in catches is that not only are the num-95

bers in each length group overdispersed, there is also strong tendency for positive cor-96

relations between nearby size classes in the same haul [Pennington and Vølstad, 1994,97

Kristensen et al., 2014]. If not taken into account, this phenomenon means that fluctua-98

tions across size classes in raw selectivity ratios will be over-interpreted. Pragmatically,99

the consequence of this is that estimated selectivity ratio curves should be smoothed, but100
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preferrably, the size correlations should be included in the statistical model structure.101

This ensures that the model describes the fluctuations in data adequately which is a102

prerequisite for the statistical analysis to be valid.103

Overdispersion and correlation in count data are, in general, conveniently modeled104

using compound Poisson distributions. These are hierarchical models, where it is as-105

sumed that the random data is generated through a two-stage procedure: In the first106

stage, a random intensity is generated for each data point. In the second stage, this107

intensity is used as the mean value for Poisson variables which constitute the count data.108

With this construction, the variance of the random intensity yields overdispersion rela-109

tive to Poisson data, while the correlation structure of the intensity cascades to the count110

data. A recent example of such a model structure is Miller et al. [2018]. A particular111

framework of interest is that of log-Gaussian Cox processes [Diggle et al., 2013], where112

the log-intensity is a Gaussian process. Since a Gaussian process is fully described by113

its mean and covariance, this framework is highly operational and lends itself readily to114

computations. Log-Gaussian Cox processes have previously been applied to the spatio-115

temporal modeling of size structured populations, where it has elucidated distributions116

of cod (Gadus morhua) in the North Sea [Lewy and Kristensen, 2009, Kristensen et al.,117

2014], of whiting (Merlangius merlangus) in the Baltic [Nielsen et al., 2014], of the larvae118

and juveniles of mackerel (Scomber scombrus) in the North Sea [Jansen et al., 2012, 2015],119

and of shallow-water hake (Merluccius capensis) [Jansen et al., 2016] and deep-water hake120

(M. paradoxus) [Jansen et al., 2017] in the Benguela current system.121

Since log-Gaussian Cox processes proved suitable for these applications, it is natural122

to ask if the framework is also suitable for the problem of estimating selectivity ratios.123

The paper addresses this question. When applying the framework of log-Gaussian Cox124

processes to the selectivity ratios, the unobserved size-dependent phenomena include the125

selectivity ratios, which is the primary object of inference, but also the local abundance126

present for each pair of operations, as well as aggregations that are specific to the individ-127

ual operation. Each of these phenomena is characterized by a covariance structure, which128

describes both the magnitude of fluctuations and their persistence across size ranges. The129

construction is a fairly simple application of the log-Gaussian Cox framework, and has130

the appeal that we can specify the properties of the various processes affecting the catch,131

from which the properties of the log-intensity follow automatically.132

In this paper we describe the framework and the resulting method. We demonstrate133

the method using data from a case where the objective was to investigate differences134

between two vessels which used gear with the same specifications: The RV Dr. Fridtjof135

Nansen and the FV Blue Sea, which have been used for surveying the stocks of hake136

in Namibian waters. The objective of the analysis is to estimate the selectivity ratios137

between the two vessels, including confidence intervals, and to test if the ratios depend on138

size and the particular hake species. In addition, we perform a simulation experiment to139
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verify the model, test for significance of certain specific model components, and compare140

the full model with a simplified model where inference is conditional on total catch at141

length for each station.142

2 Methods143

2.1 Statistical model144

Our method for intercalibration is based on a statistical model for the selectivity ratios145

which explains the size composition of the catch in survey operations, and in particular146

differences in this composition between operations conducted differently on the same fish147

population. For ease of reference, we refer to these operations as ’hauls’, whether the148

gear involved is e.g. trawls, longlines or gill nets. Similarly, we refer to differences be-149

tween ’gear’, even if the actual differences between operations could also involve different150

vessels, different personel, or different procedures. The model is a non-linear mixed effect151

model involving both fixed effects parameters and random effects. We conduct inference152

in the model using numerical maximum likelihood estimation, employing the Laplace153

approximation [Kristensen et al., 2016] to integrate out random effects.154

The observed quantities are count data, Nijk, which represents number of individuals155

caught at station i = 1, . . . , ns, with gear j = 1, 2, and in length group k = 1, . . . , nl.156

Thus, at each station i, two operations have been performed; one with each gear j, and157

the size distribution of the catch has been measured.158

We assume that these catches depend on swept area Aij (or a similar measure of159

effort) and three sets of random variables, which all depend on the size class k: First,160

Φik which for a given station i characterizes the distribution across size of the population161

encountered by both hauls j. Second, haul-specific fluctuations Rijk in the size compo-162

sition which we will term the “nugget effect” with a reference to geostatistics [Cressie,163

1993, Petitgas, 2001] and elaborate on in the following. Third, the relative selectivity Sjk164

which is specific to the gear. Given these random variables Φ, R, S, we assume that the165

count data is Poisson distributed:166

Nijk|Φ, R, S ∼ Poisson(Aij · exp(Sjk + Φik +Rijk))

The swept area Aij is a known input to the model. This is Cox model of catches, also167

referred to as a doubly stochastic Poisson model, in that the mean values for the Poisson168

variates are themselves random. The joint distribution of the processes S, Φ, and R is169

Gaussian, so that the entire model is a log-Gaussian Cox process [Møller et al., 1998,170

Diggle et al., 2013]. We now describe the details of the processes S, Φ and R.171

First, the selectivity (on the log scale) Sjk of gear j in size group k is the main object172
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of interest. Since we do not know the actual size distribution of the stock, we cannot173

estimate the absolute selectivities S1k and S2k of the two types of gear, but only the174

relative selectivity, i.e. S1k − S2k. We therefore require175

S1k = −S2k, (1)

which allows us to focus on S1k. This symmetric choice ensures that Ni1k and Ni2k176

are identically distributed, which ultimately implies that the estimated selectivities Sjk177

simply change sign if the gears are relabeled.178

We note an alternative would be to enforce S1k = 0 and estimate S2k. This would be179

reasonable when the first gear is a reference gear that we measure the second gear against.180

In that case the variance on Ni1k would then be smaller than that on Ni2k, since Ni2k181

would contain the extra variance component S2k. This asymmetry would cascade to the182

estimates, so that the estimated relative selectivities depend on which gear is considered183

the reference gear. In the present study, we have no reason to consider the one gear a184

reference, and therefore we prefer the symmetric choice S1k = −S2k.185

To interpret the selectivities Sjk, it is useful to momentarily disregard the nugget effect186

R. Then, conditional on Φ and S, the expected catches at station i and in size class k187

with the two types of gear are Ai1 exp(Φik + S1k) and Ai2 exp(Φik − S1k), respectively.188

Thus, exp(2S1k) is the ratio between the expected catch per unit effort with the two types189

of gear:190

exp(2S1k) =
E{Ni1k/Ai1|Φ, S}
E{Ni2k/Ai2|Φ, S}

. (2)

This ratio is termed the selectivity ratio [Kotwicki et al., 2017]. Since this ratio must191

be positive, and since we do not assume a particular parametric form, it is convenient to192

represent it on the log scale, i.e. in terms of the process S. We model S1k as a random193

walk in size k, i.e.194

S1(k+1) − S1k ∼ N(0, σ2
S) for k = 1, . . . , nl − 1

and assume independence between increments. To ensure that the log-selectivity ratio195

S is a well defined stochastic process, we complement this recursion with initial conditions196

Sj1 ∼ N(0, σ2
1) where σ1 is fixed at a “large” value 10, which from a practical point of197

view implies that the level of the estimated log-sensitivity ratio S is not dictated by the198

prior model but rather by data.199

Next, Φik is a log-density which describes the size distribution of the fish caught at200

station i- Specifically, Aij exp(Φik) is the expected number of fish caught in size group201

k at station i with a hypothetical gear which averages the two gears j = 1 and j = 2, in202

absence of nuggets (R = 0).203
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We assume independence of size distributions at different stations, i.e. Φik and Φi′k′204

are independent for i 6= i′. At each station i, we assume that the log-density of the size205

distribution is a random walk over size groups, i.e.206

Φi(k+1) − Φik ∼ N(0, σ2
Φ) for k = 1, . . . , nl − 1 ,

and that these increments are independent. Thus, the prior on the log-density Φ is a207

standard random walk which enforces continuity; the most probable density is flat. We208

add initial conditions209

Φi1 ∼ N(0, σ2
1)

with the same “large” standard deviation σ1 = 10, so that the overall level of Φ is210

not dictated by the prior model but rather by the total catch. The parameter σ2
Φ is211

estimated. Since we assume independence between stations, we do not attempt to model212

any large-scale spatiotemporal structure of the population. We note that this is the main213

difference between this model and the GeoPop model [Kristensen et al., 2014], where214

emphasis is exactly on this spatiotemporal structure.215

Finally, the haul-specific fluctuations Rijk are akin to the nugget effect in spatial statis-216

tics; i.e. they describe variability in the catch data on very small spatial and temporal217

scales. While the term “nugget” originates in applications to mining, where repeated218

measurements on the same location may hit or miss a nugget, the envisioned mechanism219

in survey operations is that the gear may hit or miss aggregations of fish such as schools220

or shoals, that have limited range in space and quickly form, move, dissolve and regroup.221

Since the two hauls at one station have been performed at slightly different locations222

and times, they will encounter different aggregations, and therefore Rijk and Ri′j′k′ are223

independent unless (i, j) = (i′, j′), i.e. the same haul. Thus, at a given station i and in224

a given size class k, Φik models the population that is common to the two hauls, while225

Rijk models independent components which are distinct to each haul. We think of the226

aggregations giving rise to the nugget effect Rijk as size-structured, and therefore, for a227

given haul (i, j) and as a function of size k, the nugget effect arises as the sum of a white228

noise process and a zero-mean first order autoregressive process. Specifically229

Rijk = RWN
ijk +RAR

ijk

where RWN
ijk ∼ N(0, σ2

WN) and are independent. In turn RAR
ijk ∼ N(0, σ2

AR) and are230

independent for different stations i or gear j, but correlated between size classes at a231

given station i and gear j so that E(RAR
ijkR

AR
ijk′) = σ2

ARρ
|k−k′|. The white noise component232

allows overdispersion relative to Poisson without correlation, while the autoregressive233

component models the size-specific clustering: If a particular size group is more abundant234
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in the haul than expected, we would expect the same to apply to nearby size groups but235

not necessarily to very different size groups. We note that this same model structure was236

used by Cadigan et al. [2006] with the same motivation, but also that the effect could237

equally well represent other differences between the individuals hauls, e.g. differences in238

the way the gear is deployed, or combinations of such differences.239

The model has five fixed effects parameters which are estimated, viz. the variance240

parameters σ2
S, σ2

Φ σ
2
WN , σ2

AR, and the correlation ρ. In addition there are a large number241

of random effects: Φ has nsnl variables, S has nl, and R has ns2nl.242

2.2 Implementation243

The statistical model in section 2.1 defines the joint distribution of the count data, N ,244

and the unobserved random variables Φ, R, S, for given parameters σS, σΦ, σWN , σAR245

and ρ. The unobserved Φ, R and S are integrated out using the Laplace approximation,246

to yield the likelihood as a function of the five parameters. The likelihood function is247

maximized to yield estimates of the five parameters, after which the posterior modes of248

the random effects Φ, R, and in particular S are reported.249

The computations are performed in R version 3.1.2; we use the Template Model Builder250

(TMB) package [Kristensen et al., 2016] for evaluating the likelihood function and its251

derivatives, and in particular for integrating out unobserved random variables using the252

Laplace approximation. Typical run-times for the models considered in this paper, where253

there are 77,680 random effects, are 25 seconds on a standard laptop computer. The code254

is available at GitHub in package github.com/Uffe-H-Thygesen/Intercalibration.255

The code and the statistical model is verified by simulation. Briefly, we simulate 1,000256

realizations of random effects and data sets, adjusting the mean of the size distributions257

Φ so that the total catch in the simulated data sets are approximately 17,000 fish, which258

corresponds to the total catch in the case described in the following. For each realization,259

we re-estimate the parameters in the model and the log-selectivity ratios. The variance260

parameters σ2
S, σ2

Φ σ2
WN , and σ2

AR are estimated on the log scale. We construct 1σ confi-261

dence intervals for each of the five parameters using the estimated standard deviation as262

computed from the Hessian of the log-likelihood. Theoretically, these confidence intervals263

should contain the true parameters for 68% of the simulated data sets; we find that they264

do so for between 66 % and 71 % of the simulated data sets, except for the parameter265

log σ2
Φ, where the coverage is only 48 %. For this parameter, the low coverage is explained266

by a bias in the estimates: The mean estimate is 0.07 smaller than the true value, which267

should be compared with an estimated standard deviation which is also 0.07. While neg-268

ative bias is not uncommon for maximum likelihood estimates of variance parameters, it269

could possibly be reduced with restricted maximum likelihood (REML) [Pawitan, 2001].270

We also constructed 2-σ confidence limits, which should contain the true value in 95 %271
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of the runs, and find that they do so for between 86 % and 96 % of the simulated data272

sets. The relative uncertainties on the variance parameters σ2
S and σ2

AR (measured from273

the standard deviation on estimates) are 13 % and 7 %, respectively, with a bias which274

is an order of magnitude smaller. The relative uncertainty on ρ is 2% with a bias of 0.2275

%. In roughly half the simulations, the model cannot identify the white noise component276

in the residuals and consequently estimates σ2
WN to be very low (σ2

WN/σ
2
AR < 10−5);277

in these cases, also the estimated variance on log σ2
WN is very large (i.e. > 10) so that278

the confidence intervals still cover the true value. While the white noise component is279

effectively removed from the model through the estimation for these simulated data sets,280

the reduced model is estimated well. We note that such problems of estimating sepa-281

rate variance components in hierarchical models are not uncommon [Auger-Méthé et al.,282

2016]. With this caveat, the simulation experiments verifies the code and the model.283

2.3 Data284

We apply the method to a case study involving two vessels, the Norwegian fisheries285

research vessel Dr Fridtjof Nansen and the commercial trawler F/V Blue Sea, conducting286

hake surveys in Namibian waters.287

Following independence of Namibia in 1990, abundance of Namibias hake stocks was288

monitored by trawl surveys conducted by the R/V Dr Fridtjof Nansen. From 2000 the289

Ministry of Fisheries and Marine Resources in Namibia (MFMR) conducted the surveys290

using the F/V Blue Sea. In 1998 and 1999, before the shift, extensive experiments were291

performed by completing the entire annual survey in parallel with both vessels. The two292

vessels used Gisund fishing gear and rigging following the same specifications; neverthe-293

less, some difference in the performance of the gear must be anticipated [Weinberg and294

Kotwicki, 2008]. The stations are mapped in Figure 2.295

Catch data collected from these surveys were extracted from the NAN-SIS database296

in November 2014 [Strømme, 1992]. The analysis was based on 341 of the 365 pairs of297

trawl hauls. 24 pairs were excluded because the trawl durations were less than 15 minutes298

and/or the difference in trawl durations exceeded 10 minutes.299

Catch in numbers per length group and the hauling distance were available for each300

haul. Figure 3 shows all catches, summed over all stations, for the two species M. Para-301

doxus (deep-water hake) and M. Capensis (shallow-water hake). Since the two species302

have different preferred habitats but are morphologically very similar [Jansen et al., 2016,303

2017], a question of particular relevance is if the two species have the same selectivity.304
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3 Results305

Figure 4 shows the selectivity ratio from (2), i.e. exp(2S1k), between the RV Dr. Fridtjof306

Nansen and the FV Blue Sea. Index 1 corresponding to FV Blue Sea, so that a ratio above307

1 indicates that the FV Blue Sea has higher expected catch than the RV Dr. Fridtjof308

Nansen. Estimated parameters, including standard errors derived from the Hessian of309

the log-likelihood function, are shown in Table 1. Since the gears used on the two vessels310

have the same specifications, a reasonable hypothesis is that there is no size structure in311

these calibration factors. This hypothesis could be accepted for M. Capensis (a likelihood312

ratio test of the hypothesis σS = 0 has critical significance level p ∼ 0.08) but is rejected313

strongly for M. Paradoxus (p < 10−9). These p-values have been computed with the314

standard asymptotic χ2-distribution of the log-likelihood ratio, which does not strictly315

apply since the null hypothesis σS = 0 is on the boundary of the parameter space, so316

that the correct p-values may be somewhat smaller. It holds for both species that the317

FV Blue Sea is more efficient at catching larger hakes than the RV Dr. Fridtjof Nansen.318

The size dependency is more pronounced for M. Paradoxus, where the FV Blue Sea is319

less efficient in the small size classes. The selection of small M. Capensis is similar for320

the two vessels. The estimated relative selectivity appears to fluctuate more between321

neighboring size classes for M. paradoxus than for M. capensis. This may be because the322

smaller catches of M. capensis imply less statistical certainty, so that the smooth prior323

is more visible in the estimates. It could also be connected to the observation that the324

estimated correlation ρ is closer to 1 for M. paradoxus than for M. capensis so that small325

scale fluctuations in the data is attributed to the nugget effect for M. capensis but, to a326

larger degree, to fluctuations in the relative selectivity for M. paradoxus.327

Since there is no clear prior explanation why the selectivity curves for the two species328

would differ, a reasonable hypothesis is that they are identical. This hypothesis appears329

to be strengthened by the qualitative similarity between the estimated curves in Figure330

4. This suggests to estimate a combined selectivity ratios for the two species, see Figure331

5. In this combined model, we assume that the size distribution and the nugget effect332

applies to the two species separately, i.e. the small-scale clustering of fish is species-333

specific. Since each fit yields a likelihood, it is possible to select between the two models334

(i.e., the two species have the same relative selectivity curve, or two different curves)335

using an information criterion such as that of Akaike, the AIC. The log-likelihood of the336

combined model is 258 less than that of the original model; this decrease results from337

the reduction of the number of parameters (fixed effects) from 10 to 5. Thus, the AIC338

will prefer strongly the model where the two species have separate selectivity ratios; for a339

likelihood ratio test, the critical p-value would be 10−108. We note that since the primary340

objective of inference is on the relative selectivity curves, which are random effects in the341

model, one could argue that model selection should be performed with the conditional342

10



S
p
e
ci
e
s

lo
g
σ

Φ
ρ

lo
g
σ
W

N
lo

g
σ
A
R

lo
g
σ
S
−

lo
g
L

D
F

M
.

C
ap

en
si

s
−

0.
15
±

0.
02

0.
95
±

0.
01
−

0.
41
±

0.
02
−

0.
05
±

0.
04
−

4.
17
±

0.
50

44
94

0
5

M
.

P
ar

ad
ox

u
s

−
0.

25
±

0.
02

0.
98
±

0.
01
−

0.
95
±

0.
03

0.
06
±

0.
05
−

3.
29
±

0.
24

34
60

7
5

S
u
m

79
54

7
10

C
om

b
in

ed
−

0.
19
±

0.
01

0.
96
±

0.
01
−

0.
61
±

0.
01

0.
01
±

0.
03
−

3.
68
±

0.
24

79
80

5
5

C
om

b
in

ed
w

/o
ρ
−

0.
18
±

0.
01

−
0.

10
±

0.
01

−
3.

87
±

0.
27

82
41

7
3

T
ab

le
1:

P
ar

am
et

er
es

ti
m

at
e

fo
r

th
e

tw
o

sp
ec

ie
s

se
p
ar

at
el

y
an

d
co

m
b
in

ed
,

w
it

h
es

ti
m

at
ed

st
an

d
ar

d
d
ev

ia
ti

on
s.

In
cl

u
d
ed

is
al

so
th

e
n
eg

at
iv

e
lo

g-
li
ke

li
h
o
o
d

an
d

th
e

n
u
m

b
er

of
p
ar

am
et

er
s

(fi
x
ed

eff
ec

ts
)

of
th

e
m

o
d
el

.

11



AIC [Vaida and Blanchard, 2005]. While the computation of the conditional AIC is a343

non-trivial task in our settings, a bound can be obtained by including the random effects344

in the degrees of freedom; this holds because each random effect in the cAIC framework345

is associated with a non-integer degree of freedom between 0 and 1. Then, the difference346

in log-likelihood should be compared with a maximum difference of 76 in the degrees of347

freedom, which would still favour strongly separate selectivity ratios for the two species.348

We conclude that the differences between the two species are statistically significant, even349

if the relative selectivity curves for the two species show similar qualitative features.350

To illustrate the importance of the correlation between the different size classes, we351

fit a new model to this combined data set, in which the autoregressive component of352

the nugget effect has been removed, so that the nugget effect acts independently at each353

size class (Figure 5, right panel). Removing this component from the model results in354

a decrease in the maximum log-likelihood of 2612 while decreasing the numbers of pa-355

rameters by 2; thus this autoregressive component is extremely significant (p ≈ 10−1134).356

Nevertheless, the estimates from this reduced model agree qualitatively with the those357

from the model that includes autocorrelation in the nugget effect (compare Figure 5, left358

panel), although some minor differences are noticeable. Moreover, omitting the autocor-359

relation decreases the estimated variance associated with the selectivity ratio curves, so360

that the simpler model indicates higher accuracy than warranted.361

Since several previous studies including [Millar, 1992, Lewy et al., 2004, Cadigan and362

Dowden, 2010] have considered a conditional approach, where inference is conditional on363

the total catch at length at each station, appendix A compares such a conditional model364

with the model as described in section 2.1. The two models give qualitatively similar365

results, but the estimated selectivity ratios from the unconditional model are generally366

closer to 1. The unconditional model has slightly narrower confidence intervals and is367

slightly more demanding in terms of computing time.368

4 Discussion369

We developed a statistical method for intercalibrating survey gear and vessels, based370

on estimating the selectivity ratios from paired hauls. The method is directly available371

through an R package on GitHub. The envisioned application of our method is to adjust372

data obtained from multiple surveys, thus allowing them to be combined to yield a longer373

time series which may enter into a stock assessment. The adjustment would take place by374

multiplying the one series with the estimated selectivity ratios. The uncertainties on the375

estimated selectivity ratios would then propagate to the adjusted time series, for example376

using the delta method as implemented in TMB [Kristensen et al., 2016]. While one could377

envision integrated stock assessment models that use multiple raw survey indices as well378

as data from paired fishing operations, the preliminary step of adjusting and combining379
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surveys appears to be preferable at least in the foreseeable future.380

Our model is based on log-Gaussian Cox processes, which have been used earlier in381

the context of fisheries surveys to map spatiotemporal dynamics of stocks [Kristensen382

et al., 2014, Jansen et al., 2016], but not in the present way for comparing selectivities.383

The framework uses a non-parametric model for the relative selectivity and allows for384

overdispersion relative to the Poisson distribution, as well as correlations between size385

groups in paired trawl catches. These features all contribute to larger varibility in data,386

and the Gaussian structure of the components simplifies analysis and computations. If the387

statistical analysis is based on models which fail to include such variance contributions,388

there is a risk that the confidence in the results are inflated, e.g. in the sense that389

confidence intervals appear narrower than justified. Such phenomena of overconfidence390

are well know, both in general statistics and in the specific context of selectivity studies391

[Fryer, 1991]. They can be seen as a manifestation of the general bias-variance trade-off.392

Previous methods to address between-haul and within-haul variation include bootstrap393

[Millar, 1993, Sistiaga et al., 2016] in addition to mixed effects models [Cadigan et al.,394

2006]. In the present study, an example of such overconfidence is seen in Figure 5,395

comparing the two panels, where the right panel is based on a simplified model in which396

the autoregressive component of the nugget effect has been removed. Recalling that a397

hypothesis test rejected this simplification, and noticing that the reduced model produces398

estimated confidence intervals which are considerably narrower, we can conclude that399

these confidence intervals give an overoptimistic view on the accuracy of estimates. This400

overoptimism can be attributed to the omission of an important variance component.401

As another example of possible overconfidence, selectivity ratios can be modeled as402

constants which apply to all size classes, as size-dependent functions using parametric403

forms, or non-parametrically as we have done here. While specific parametric families404

of functions are convenient in the analysis, it is difficult to hypothesize a reasonable405

functional form prior to seeing the data. If a specific functional form is postulated, then406

it is likely that parameters in this form can be estimated with seemingly high accuracy.407

However, the sensitivity of the results to mis-specification of the functional form needs to408

be taken into consideration which is not straightforward. As a result, we would be prone409

to overestimate our confidence in estimated selectivity ratio curves, by the same reasoning410

as in the previous paragraph. Thus nonparametric curves, such as the ones we provide411

in this study, involve the smallest number of assumptions and are the most conservative412

choice in the sense of not risking overinterpretation of data. For some applications it413

is convenient to report parametric forms. This would be a minor extension, technically,414

but a subsequent step of model validation needs to ensure that the parametric family415

is suitable. On the other hand, non-parametric estimates require some regularization to416

avoid erratic fluctuations in the estimated curves. Here, we have obtained this smoothness417

by using a random walk prior on the relative selectivity curve, which is a minimal way of418
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enforcing continuity. An alternative is to use smooth basis functions or smoothing splines419

[Miller, 2013].420

The core of our approach is to take into consideration the covariance between different421

size classes, both in the selectivity ratio curves that we aim to estimate, and in the catch422

data. Neglecting this covariance would require that data is binned into large size bins423

with sufficiently high catch numbers, so that we can estimate the selectivity in each424

bin without borrowing information from neighboring bins. If the true selectivity ratios425

vary with size, this would lead to a classical trade-off between bias and variance of the426

estimates. Specifying the fluctuations between size classes, as we have done, bypasses427

this trade-off and will give consistent results regardless of how small size bins are chosen.428

The crux of this approach is the correct specification of the covariance structure. Here,429

we have taken a conservative approach in that we model the log-densities Φ and the430

relative selectivity S as random walks across size, which amounts to enforcing continuous431

dependency on size. In turn, the nugget effect is an autoregressive process. The effect432

of this structure is that large catches across size groups in a specific haul is attributed433

to high selectivity (S) or to high density at the station (Φ), whereas an isolated peak in434

catch numbers at a given size range in a specific haul is attributed to size-specific shoaling435

aggregations, i.e. the nugget effect R.436

In our model, the random walks have unbiased and identically distributed steps. One437

would expect that the selectivity ratios fluctuate more in those size classes, where the438

selectivity curve of each gear changes the most, and less for the large size classes where439

both gears have full selectivity. Similarly, we would expect that the size distributions are440

skewed towards the smaller size classes. Thus, our model structure relies on simplifying441

assumptions, and we do not expect the model to fully describe all variability in the data.442

Nevertheless, our simulation study indicates that the model structure allows estimation443

of the selectivity ratios which is the objective of the model.444

Inspecting the appearance of the nugget effect in the model, we see that it could445

equally well be interpreted as a factor that modifies the selectivity of the gear in the446

operation, although we interpret it as a factor affecting the local abundance. Such ran-447

dom fluctuations in selectivity have been considered previously [Fryer, 1991, Miller, 2013].448

Based on the information in data sets such as the present, the two effects are confounded449

[Cadigan and Dowden, 2010]: It is not possible to tell if a high catch in one particular op-450

eration was because the gear encountered an aggregation, or because the gear functioned451

better than average in that operation. In both cases, the net effect is a larger variability452

between repeated hauls.453

A key question that the model aims to answer is if the gear (or vessel) effect can454

be assumed to be identical for all size classes, and it is interesting to notice that this455

does not appear to be the case for M. Paradoxus. Similarly, it is interesting that the456

two species appear to have different selectivity ratios. Although there is no single clear457
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biological explanation for this, there will always be several minor differences in the nets,458

the rigging, and the way the hauls are performed, which can contribute to such differences459

[Weinberg and Kotwicki, 2008], keeping in mind the numerous processes that interact460

and influence the catchability. At the same time caution most be exercised: The results461

indicate that the size structure in the catches would be extremely improbable if the gear462

effect acted identically on all size classes, or identically to the two species, under the463

assumptions in the model. The result therefore hinges on the model representing the464

variability in catches correctly. While informal model checks suggest that this is the465

case, we have not performed a stringent model validation using e.g. the techniques in466

[Thygesen et al., 2017], as the computations would be prohibative. Thus, there is a risk467

that some overdispersion in the data is not included in the model, and that the apparent468

differences between size classes and species are artifacts of this overdispersion.469

While our main motivation for investigating the relative selectivity is scientific sur-470

veys, another important area of application is the selectivity of commercial gear. Here,471

trade-offs between efficiency and environmental impact is one concern that motivates472

comparative studies of the selectivity of different gear [Sistiaga et al., 2015, Vogel et al.,473

2017].474

An underlying assumption behind our analysis is that the two operations at a given475

station do not affect each other. This assumption conflicts somewhat with the require-476

ment that the two operations are performed close to each other, both in space and time,477

so that it is plausible that they encounter the same population. In contrast, Lewy et al.478

[2004] focused on the disturbance effect that a first haul has on the local fished popula-479

tion, and the implications for the second haul. In the present study, none of the pairs480

in the available dataset are exceedingly close, so it would be superfluous to include such481

effects. Nevertheless, when applying the method to other data sets, it would be possible482

to parametrize such an effect and include it in the model. A logical extension would be483

to let the variance on the nugget effect increase with the distance between the two oper-484

ations in space and time; however, it may be difficult to identify such structures reliably.485

The limiting case of unpaired fishing operations [Sistiaga et al., 2016] is straightforward486

to analyze with our present framework but we have not investigated the quality of the487

resulting estimates.488

Several previous similar studies have used a conditional approach along the lines in489

appendix A. In the present study, we found that the estimates from the conditional and490

unconditional model differed somewhat with estimates from the unconditional model gen-491

erally being closer to 1. The conditional model has fewer random effects, but computing492

times are becoming less important thanks to the efficiency of Template Model Builder.493

The unconditional model has the advantage that it is applicable also to data sets with494

unpaired, or partially paired, hauls, but it is conceivable that the prior model for the size495

distribution in the population (Φ) is more critical in such situations and would require496
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further scrutiny.497

5 Conclusion498

We have demonstrated the feasibility of estimating size-specific selectivity ratios from499

paired fishing operations, using conditional Poisson distributions while overdispersion500

and the covariance structure is modelled using unobserved random fields. These fields501

represent stock size composition, small scale size structured clustering, and gear selec-502

tivity. The Laplace approximation, implemented in TMB, allows us to integrate out the503

many unobserved random variables so that the model is computationally feasible. The504

model allows testing of various hypotheses using the likelihood ratio principle, and model505

selection using for example AIC. The model, of which an R implementation is publically506

available, yields non-parametric selectivity ratios, including confidence regions, which can507

be used to integrate survey catches obtained with different vessels or gear configurations.508
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A Conditioning on the total catch at length and620

station621

We compare the model as described in section 2.1 with a variant where we condition on622

the total catch at length and station. Specifically, let Ni·k = Ni1k + Ni2k be the total623

catch at station i in length group k. Then the conditional distribution of the catch in624

the first haul, Ni1k given this total catch Ni·k is binomial:625

Ni1k|Φ, R, S,Ni·k ∼ Binom(Ni·k,
Ai1 exp(S1k +Ri1k)

Ai1 exp(S1k +Ri1k) + Ai2 exp(S2k +Ri2k)
) (3)

In turn, the probabilities of the total catches Ni·k are626

Ni·k|Φ, R, S ∼ Poisson(Ai1 exp(Φik + S1k +Ri1k) + Ai2 exp(Φik + S2k +Ri2k)) (4)

The joint density as developed in section 2.1 could therefore alternatively be written627

as a product of these binomial probabilities (3), the Poisson probabilities (4), and the628

prior density of the Gaussian processes Φ, R, S. We may now condition the inference on629

the total catch Ni·k and thus remove the term in the joint density that originates from630

the total catches Ni·k, i.e. the terms (4). Since the size distributions Φ do not enter631

into the conditional probabilities (3), they only appear in the joint density through their632

prior distribution. Thus, the size distributions Φ vanish after integration, so they can be633

removed from the model.634

Figure 6 shows the result from this modified model. The Figure should be compared635

with Figure 4, which shows the corresponding results for the original model. Notice that636

the estimates of the selectivity curves are not completely identical, since the omitted637

term (4) does depend on the selectivities, but still fairly similar. The estimates from the638

unconditional model are, in general, closer to 1, and the marginal confidence intervals are639

somewhat wider when conditioning on the total catches. This is not surprising, since this640

model excludes the information in the total catches. The conditional models has 20 %641

less random effects, which allows faster computations, although our code does not fully642

exploit this.643
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Figure 1: Example of data and model components. Estimated density exp(Φ) of the size
distribution at one particular station (thick solid lines). Different nugget effects R apply
to the two hauls and results in different size structures encountered by the two hauls
(thin solid and dashed lines). The relative selectivity S modifies the expected catch in
each size group and for each haul (not shown). Observed counts N in each size group
and in each haul are shown with “o” and “+”, respectively. Note log scale on the count
axis; zero catches are not shown.
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Figure 2: Map of the study area.
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Figure 3: Density (total catch divided by swept area) by size, summed over all hauls.
Left panel: M. Capensis. Right panel: M. Paradoxus.
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Figure 4: Relative selectivity (vessel calibration factor), comparing catches of M. Capensis
(left) and M. Paradoxus (right) with Gisund gear on RV Dr. Fridtjof Nansen and FV
Blue Sea. Large values indicate that the FV Blue Sea has higher selectivity. Solid curve:
Estimated relative selectivity (posterior mode). Grey region: Marginal 95 % confidence
intervals for the relative selectivity, computed as 1.96-σ-intervals on the log scale.
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Figure 5: Left panel: Relative selectivity, as in Figure 4, for the two species combined.
Right panel: Same, but without the autoregressive component in the nugget effect.
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Figure 6: As figure 4, but based on the model where we condition on the total catch in
each length group, i.e. without the terms (4) in the likelihood.
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