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ABSTRACT
Adjusting the settings of hearing aids in a clinic is challenging as
the measured thresholds of audibility do not reflect many aspects
of cognitive perception or the resulting differences in auditory pref-
erences across different contexts. Online personalization systems
have a potential to solve this problem, yet the lack of contextual user
preference data constitutes a major obstacle in designing and imple-
menting them. To address this challenge, we propose a simulation-
based framework to inform and accelerate the development process
of online contextual personalization systems in the context of hear-
ing aids. We discuss how to model hearing aid users and context
allowing partial observability, and propose how to generate plau-
sible preference models using Gaussian Processes incorporating
assumptions about the environment in a controlled way. Finally, on
a simple example we demonstrate how an uncertainty-driven agent
can efficiently learn from noisy user responses within the proposed
framework. We believe that such simulated environments are vi-
tal for successful development of complex context-aware online
recommender systems.

CCS CONCEPTS
• Computing methodologies → Simulation environments;
Gaussian processes; • Human-centered computing → Contex-
tual design; User models; • Information systems→ Recommen-
der systems.
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1 INTRODUCTION
The increasing prevalence of hearing loss combined with limited
clinical resources lead to users being dispensed hearing aids (HA)
fitted purely based on audiograms which only measure the loss
of audibility at different frequencies. However, as hearing loss is
a complex distortion in auditory nerve activity patterns rather
than just a loss of sensitivity [13], audiogram-based fitting cannot
address differences among the hearing-impaired such as in speech
understanding in noisy environments [14]. Moreover, apart from
large differences between individuals, there is often lots of variation
in preferences within individuals. For example, binnaural loudness
perception may vary up to 30dB depending on the characteristics
of the soundscape [16]. Similarly, depending on auditory intents in
various daily situations and environments, users show preferences
for very contrasting settings [11, 12]. These findings indicate that
extensive contextual personalization is essential for the hearing
impaired to minimize the risk of experiencing serious consequences
of hearing loss related to e.g. well-being and cognitive load [2].

Multiple attempts have been made at optimizing hearing aid set-
tings based on user feedback addressing different aspects such
as fine-tuning frequency gain curve in static environments us-
ing Bayesian optimization [15], context-aware online preference
learning using reinforcement learning (RL) [1] and learning shared
preferences with hierarchical Bayesian models[5]. While all these
aspects appear to be very important in designing systems for per-
sonalization of HA settings, there is, as of now, no system that
incorporates all of them. When designing such a system, it is tempt-
ing to take a more holistic perspective and think of HA as an inter-
active, context-aware, online recommender system [17] that should
continually adapt not only to users’ setting preferences, but also to
different characteristics of how users interact with the system, such
as level of engagement, frequency of interactions or consistency
of feedback, which can vary tremendously across users. A major
obstacle in developing such a system is the lack of data that would
guide its iterative design and evaluation. User studies are typically
very time-consuming, costly, limited in size and carried out when
the designer believes the prototype (which is developed without
adequate data) is ready for testing. This renders the development
of a complex personalization system very difficult.

A promising direction to facilitate development and evaluation
of recommender systems in domains without adequate historical
data is designing a simulated environment that incorporates rele-
vant characteristics of the real one. Ie et al. [10] recently proposed
RecSim, a framework for constructing such dynamic environments
that allows for evaluation of RL-based recommendation agents. Us-
ing this framework, the goal of the modeler is to define the building
blocks specifying in a probabilistic way what characteristics users
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consist of, how these characteristics contribute to liking specific rec-
ommended items and how they evolve over time. Importantly, the
goal is not to create a completely realistic environment, but rather a
tool that will allow to test agent’s learning capabilities with respect
to various assumptions the designer wants to incorporate about
the environment such as partial observability of user or context
features, noisiness of responses or complexity of preferences.

In this article, we extend this framework and adapt it to the HA
domain. First, we introduce user-dependent context that, together
with user characteristics, conditions user preferences. The context
assumes partial observability which is crucial to evaluate how the
inability to observe all the relevant context can potentially impede
the agent’s learning performance. Secondly, we suggest how to
model context and user features in the HA domain using commonly
available data. Finally, we present a Gaussian Process based model
for sampling plausible contextual preferences whose complexity,
dependence on observable and hidden features as well as degree of
correlation between different users can be easily controlled with
a set of hyperparameters. Even though the proposed approach is
presented in the context of the HA domain, the generative prefer-
ence model works with arbitrary context and user features and thus
can be easily adapted to other domains. While modelling agents
is not the focus of this paper, we also implement a simple agent
and perform a simple simulation to demonstrate how agents can
interact with the proposed environment and learn.

2 SIMULATION ENVIRONMENT
Hearings aids represent a domain in which users might have com-
pletely different preferences depending on the context they are in.
Settings that work well for a user in one situation might totally fail
in another one. While introducing context-awareness in a personal-
ization system allows to distinguish between various situations and
potentially offer optimal settings at the right moment, it also adds
an extra layer of complexity and challenges to the problem. What
if the observed context does not reflect user preferences well? Can
the agent actually learn contextual preferences in an online setting?
Can the agent benefit from correlations between contextual pref-
erences of multiple users? What if users’ contextual preferences
are more complex than one expects? It is crucial for the designer
of a recommendation agent to have some insight into its flexibility
and performance under a range of different assumptions about the
environment.

To facilitate informed development of agents, we borrow and
adapt the RecSim simulation framework proposed by Ie et al. [10].
We present the modified diagram of the data flow in the framework
in Fig. 1. A single cycle of contextual recommendation starts by
sampling a user from a set of users generated for the simulation.
The user is represented by a set of observable and hidden features
according to the user model. Next, the context, also consisting of
observable and hidden features, is sampled according to the user’s
context model (which might have a temporal structure). The agent
observes the observable components of user and context features
and based on them generates a recommendation with a number of
settings within a given setting space. Then, the user generates a
noisy response to the recommendation based on the internal con-
textual preference model. The agent observes the user’s response

Figure 1: Data flow diagramof simulator for contextual pref-
erence learning based on RecSim [10].

and updates its internal recommendation model. Additionally, the
state of the user changes according to the user’s transition model
(e.g. engagement might increase or decrease).

In this paper, we focus on the construction of user and context
features in the HA domain and propose a model for generating
contextual preference models in a controlled way. We start with
a high-level overview of the proposed approach in section 2.1. In
sections 2.2 and 2.3 we discuss how context and user features can be
modeled in the HA domain, and define mechanisms that will allow
control over generated preferences. The details of how we generate
contextual preferences are specified in section 2.4. Section 2.5 relates
user preferences to an actual response to agent’s recommendations.
Finally, in section 3 we present a simple simulation to demostrate
how agents interact with the environment and conclude with a
discussion in section 4.

2.1 Overview
We start by presenting an outline of the approach we propose to
generate user preference models. We define a HA setting vector
s∈R𝐾 (e.g. low-dimensional reparametrization of added gain at dif-
ferent frequencies) that we can control, and context vector c ∈ R𝐷
that fully explains user auditory needs at given instance of time.
Our goal is to create for each user a function (c, s) ↦→ 𝑓 (c, s) ∈ R
that maps context and settings to a latent preference value which
indicates the degree to which the user likes settings s in context
c. Additionally, we want to be able to induce correlations between
functions for similar users and be able to evaluate the function
efficiently for any c and s. To model these functions we employ
Gaussian Processes (GPs), a nonparametric class of models that
enables straightforward control over complexity of the functions
and correlations between them through kernels [18]. We first use
a GP prior to sample preferred settings over a specified range of
contexts to construct preference datasets that incorporate assump-
tions about correlations of user preferences and their complexity.
We then define the latent preference of a user to be the posterior
mean of another GP trained using the dataset specific to that user
which allows us to evaluate their preference for any point in the
complete domain of possible contexts and settings.

2.2 Context model
NowadaysHAusers are not limited to elderly spendingmost of their
time at home, but include many who are professionally and socially

Session 6: HAAPIE 2020: 5th International Workshop  
on Human Aspects in Adaptive and Personalized Interactive Environments UMAP ’20 Adjunct, July 14–17, 2020, Genoa, Italy

294



Figure 2: Varying the ratio of context lengthscale parameters _𝑜 and _ℎ for observed and latent components allows us to sample
user preferences with different assumptions about how well the observed context explains the actual user preferences.

active. Consequently, the environments and situations experienced
by HA users are greatly diverse and so are their auditory needs.
Korzepa et al. [11] provides an overview of various context types
that might be crucial for identifying auditory preferences. They
include characteristics of the acoustic scene at low level (e.g. sound
pressure level, frequency composition) or high level (e.g. restaurant
or office sounds, voice composition), activity (e.g. driving, exercis-
ing), location and time. The range of potentially important contexts
for recognizing specific preferences is extremely wide and in prac-
tice, e.g. due to technical limitations or privacy concerns, it will
never be possible to capture all the relevant context information. To
take this into account in the simulation environment, we assume
partial observability of the context, i.e. c = (co, ch) with co and ch
denoting the observable and hidden components of context c.

Realistic HA user’s context can be generated based on previ-
ously collected data and be user-dependent e.g. by modelling it as
a Bayesian network [8]. In the proposed approach we assume that
c is a low-dimensional representation obtained by dimensionality
reduction of the actual context features e.g. by Principal Compo-
nent Analysis, or Factor Analysis for Mixed Data if context features
include categorical types. The hidden component of the context
can be obtained by e.g. treating some of the observed features as
hidden. To correlate preference in context space, we define the
context kernel:

^𝑐 (c, c′;𝝀𝑐 ) = ^RBF (co, c′o; _𝑐o) · ^RBF (ch, c′h; _
𝑐
h), (1)

where ^RBF (𝑥, 𝑥 ′, _) denotes a radial basis function (RBF) kernel
with lengthscale _ and unit output variance, inwhich the correlation
between the modelled function falls with the increasing distance
between the inputs (i.e. context).

In this paper, for the demonstration purposes, we do not assume
any specific model on context c and simply define c = (𝑐obs, 𝑐hid)
with 𝑐obs ∈ [−2, 2] and 𝑐hid ∈ [−2, 2] representing scalar observed
and hidden context values. Moreover, we limit the settings to a
single scalar value representing overall added gain.

By running simulations with different values of lengthscale pa-
rameters 𝝀𝑐 , we are able to evaluate different aspects of agent’s
performance. One of the most imporant ones might be to mea-
sure how well the agent performs when user preferences can be
fully explained by the observed context and how quickly its per-
formance degrades with an increasing contribution of the hidden
context.We can generate preferences with different degree of depen-
dence on observed and hidden context by controlling ratio _𝑐

ℎ
/_𝑐𝑜 as

demonstrated in Fig. 2. Another important aspect is how complex
preferences the agent is able to learn efficiently. We can generate

Figure 3: Varying context lengthscale parameters allows us
to sample preferences with different degree of smoothness.

preferences of different complexity by adjusting the magnitude of
the lengthscale parameters as shown in Fig. 3.

2.3 User model
While auditory preferences can vary greatly across users, not all
users are completely different [4, 17]. Within a large population of
users, it is natural that there are some groups of users who exhibit
similar preferences, e.g. a preference towards enhanced brightness
in speech environments [17]. We hypothesize that similarities in
user preferences are the result of similarities in some character-
istics that define users. These characteristics might include both
observable and hidden features. A promising strategy to define
observable features is to characterize user’s hearing loss across two
independent dimensions being audibility-related distortions (e.g. as
specified by an audiogram) and non-audibility-related distortions
characterizing reduction in binaural and temporal fine-structure
processing abilities [19]. If such observable characteristics give rise
to specific kind of preferences, knowing them would be crucial to
alleviate cold start problem for new users when the agent has not
collected any preference data about them yet.

Hidden features might relate to various cognitive aspects that
are hard or impossible to measure. Hidden features can be modelled
e.g. by treating some of the observed ones as hidden or constructing
a Gaussian mixture (or a different) model that generates them.

We define user-specific feature vector u as a concatenation of
observable and hidden user-specific feature vectors, u𝑜 and uℎ re-
spectively, i.e. u = (u𝑜 , uℎ), and a distribution 𝑝 (u) that generates
them. Through simulation, we expect to measure the impact that
the presence of preferences induced by observable and hidden user
characteristics has on the agent’s learning performance. To be able
to generate such preferences in a controlled way, we propose a ker-
nel that is a weighted combination of RBF kernels with lengthscales
𝝀𝑢 = (_𝑢𝑜 , _𝑢ℎ ) operating on u𝑜 and uℎ respectively:

^𝑢 (u, u′,𝝀𝑢 ) = \^RBF (uo, u′o; _𝑢𝑜 ) + (1−\ )^RBF (uh, u′h; _
𝑢
ℎ
) . (2)

Session 6: HAAPIE 2020: 5th International Workshop  
on Human Aspects in Adaptive and Personalized Interactive Environments UMAP ’20 Adjunct, July 14–17, 2020, Genoa, Italy

295



us
er

1

us
er

2

us
er

3

us
er

4

us
er

5

us
er

6

us
er

7

us
er

8

user 1

user 2

user 3

user 4

user 5

user 6

user 7

user 8

1.0 0.8 0.3 0.0 0.0 0.0 0.0 0.0

0.8 1.0 0.7 0.0 0.0 0.0 0.0 0.0

0.3 0.7 1.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 1.0 0.9 0.0 0.0 0.0

0.0 0.0 0.0 0.9 1.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 1.0 0.9 0.2

0.0 0.0 0.0 0.0 0.0 0.9 1.0 0.4

0.0 0.0 0.0 0.0 0.0 0.2 0.4 1.0

0.0

0.2

0.4

0.6

0.8

1.0

co
va

ri
an

ce

Figure 4: User kernel ^𝑢 allows to model correlations be-
tween preferences of different users. Here we present the
kernel matrix for a set of eight users for which we generate
sample preferences as can be seen in Fig. 5.

Parameter \ controls the degree to what the preferences are in-
duced by the observed and by the hidden features. For two users
characterized by feature vectors u𝑖 and u𝑗 , we expect their prefer-
ences to be identical if ^𝑢 (u𝑖 , u𝑗 ) = 1 and completely independent
if ^𝑢 (u𝑖 , u𝑗 ) = 0.

In this paper, as we focus on showing how to generate correlated
preferences based on similarities between users rather than using
real audiological data to model the actual features, we arbitrarily
construct observed feature vectors u𝑜 and set \ to 1. We show the
resulting kernel matrix shown in Fig. 4.

It is also important in a simulation to allow for behavioral and
personal differences between users. HA users can differ in the extent
of HA usage, engagement in the hearing loss treatment, familiarity
with new techonologies or cognitive abilities to distinguish between
differences in sound produced by HA. In this paper, due to space
limitations, we do not include them in the simulation, but we get
back to them in the discussion in section 4.

2.4 Preference model
Over a wide range of settings, there tend to exist settings that a
user finds more effective than average and ones less effective than
average. We refer to them as positive and negative preferences. As
the task of an agent is to learn which settings are the effective ones,
we focus on modeling positive preferences. We assume that given a
fixed context c user’s preference peaks around a single setting ŝ and
falls towards the average preference away from it. This assumption
seems plausible if the settings are parametrized such that larger
distance between two settings corresponds to a bigger perceptual
difference in their resulting HA output sounds.

We model preferences for𝑀 users whose feature vectors u we
sample from the user generating distribution 𝑝 (u). For each user
𝑗 , we aim to construct a training dataset D𝑗 = {(c𝑖 , ŝ𝑖 , 𝑓𝐻 ) |𝑖 =

1, . . . , 𝑁 } that consists of 𝑁 pairs indicating optimal setting ŝ𝑖 for
context c𝑖 for which the user’s latent preference 𝑓 attains some
high value 𝑓𝐻 . We assume that individual dimensions 𝑠𝑘 of setting
s can be modelled independently. We define a multi-task GP [6]
with 𝑆𝑘 ∈ R𝑀 output where 𝑗-th output/task models preferred 𝑠𝑘
for user 𝑗 :

𝑆𝑘 ∼ GP(0, 𝛿 · ^𝑐 (c, c′;𝝀𝑐𝑠 ) · ^𝑢 (u, u′;𝝀𝑢𝑠 ))), (3)
where 𝛿 ∈ R+ controls the output scale, ^𝑐 is the context kernel
as defined in (1) with 𝝀𝑐𝑠 lengthscales and ^𝑢 is the user kernel as
defined in (2) with 𝝀𝑢𝑠 lengthscales. As the correlations in the inputs
and correlations in the outputs are independent of each other, the
resulting kernel matrix is Kronecker factored [6] which enables
efficient computations. We construct a representative set C𝑠 of 𝑁
contexts c𝑖 that covers the space of possible contexts well (we can
do it e.g. by taking 𝑅 ≫ 𝑁 samples from 𝑝 (c) and selecting a subset
of 𝑁 such that the distance between any two contexts in the subset
is maximized) and draw a sample Ŝ𝑘 ∈ R𝑁×𝑀 from the GP prior
defined in (3) for each setting dimension𝑘 . Then, the optimal setting
ŝ𝑖 in context c𝑖 for user 𝑗 is defined as ŝ𝑖 = ((Ŝ0)𝑖 𝑗 , . . . , (Ŝ𝐾 )𝑖 𝑗 ).
Having dataset D𝑗 , we define a GP prior on 𝑓𝑗 :

𝑓𝑗 ∼ GP(𝑚 𝑗 , ^𝑐 (c, c′;𝝀𝑐pref) · ^RQ (s, s
′; _𝑠 , 𝛼)), (4)

where𝑚 𝑗 denotes user-dependent mean, ^𝑐 is the context kernel
as defined in (1) with 𝝀𝑐pref lengthscales and ^RQ denotes a rational
quadratic kernel with lengthscale _𝑠 and scale mixture parameter 𝛼
which controls how quickly 𝑓𝑗 decays towards the mean𝑚 𝑗 away
from the optimal settings. By performing noiseless GP regression,
we can evaluate the GP posterior mean, E[𝑓 ∗ |D𝑗 , c∗, s∗] (which
has a simple, well-known analytic solution [18]), at any context c∗
for any setting s∗, and we define it to be the latent preference of
user 𝑗 .

To visualize how the sampled settings and preferences reflect
correlations between users, we construct a grid over 𝑐obs and 𝑐hid,
use the user kernel matrix shown in Fig. 4, set 𝛿 to 10 and𝝀𝑐𝑠 to (1, 1)
and draw a sample from the GP prior defined in (3). In Fig. 5a, we
show the sampled preferred setting (gain) over the context grid for
8 users. Further, we set𝑚 𝑗 to 0 for each 𝑗 , 𝝀𝑐pref to (0.15, 0.15), _𝑠 to
0.75 and 𝛼 to 0.5, and generate preference models by performing GP
regression on the previously sampled preferred setting dataset for
each user. In Fig. 5b, we show how user preference for gain setting
𝑠 ∈ [−10, 10] changes over observed context 𝑐obs with hidden
context 𝑐hid fixed to a specific value.

2.5 Response model
The agent learns from users’ responses to offered recommendations.
Even though users respond according to their latent preference
model, their responses are inherently noisy (e.g. due to dependence
on latent context or cognitive limitations to provide consistent
feedback). The form of user response is typically decided by the
system designer who takes into account suitability of a specific
form from the users’ perspective (e.g. what kind of response is
more engaging or can be given quicker) and the agent’s perspective
(e.g. how efficiently it can learn). Some examples of response types
proposed for personalization of hearing loss compensation include
binary evaluations of sound quality for individual settings [20], or
pair-wise comparisons of two settings using continuous response
in [0, 1] range (represented by a slider) where the deviation from
the middle of the range indicates the degree of preference towards
one or the other setting [15].

In our simulation, we assume users evaluate recommended set-
tings independently by using a slider whose extreme positions,
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(a) Preferred gain as a function of observed context 𝑐𝑜𝑏𝑠 and hidden context 𝑐ℎ𝑖𝑑

(b) Gain preference at hidden context 𝑐ℎ𝑖𝑑 = −1

Figure 5: (a) Preferred gain setting for eight users sampled from a multi-task Gaussian Process prior with the task (user)
covariance matrix shown in Fig. 4. (b) Latent preference of gain setting in [−10, 10] range evaluated at 𝑐hid = −1 for the same
users as in (a).

corresponding to values 0 and 1, indicate maximum dissatisfaction
or satisfaction with a given setting. A natural choice of likelihood
for user response 𝑦 is then the Beta distribution as in [15]:

𝑦 ∼ Beta(a · ` (𝑓 ), a · (1 − ` (𝑓 ))), (5)

where ` (𝑓 ) is a function mapping latent preference 𝑓 to [0, 1] range
and defines the mean of the response, and a controls the noise of
the response (for a → ∞, user response becomes noise-free i.e.
𝑦 → ` (𝑓 )). We define the mapping ` as:

` (𝑓 ) = Φ(𝜎 · 𝑓 ), (6)

where Φ denotes the cumulative standard normal distribution and
𝜎 controls the slope of the transition between negative and positive
preference. Parameters a and 𝜎 are typically user dependent (e.g.
a may depend on users’ cognitive capabilities allowing to provide
more or less consistent feedback). In a large-scale simulation, it
would be reasonable to generate users with a and 𝜎 sampled ac-
cording to some prior distribution that we could construct based
on our assumptions about it or historical data, if available. In our
simulation, we simply set a to 10 and 𝜎 to 0.4.

3 SIMULATIONS
In this paper, we do not focus on agent design and limit the scope
of evaluation to learning preferences of an individual user. In our
simulation we evaluate an agent based on Bayesian optimization.
The agent maintains a surrogate GP model that, based on datasetD
consisting of past interactions with the user, models user’s posterior
latent preference 𝑝 (𝑓 |D) with mean `𝑓 (c, s) and variance 𝜎2

𝑓
(c, s)

for context c and settings s. When observing a new context c∗,
to decide on which setting s∗ to recommend the agent optimizes
Upper Confidence Bound (UCB) [7] over a given possible setting
space S:

s∗ = argmax
s∈S

`𝑓 (c∗, s) + 𝛽 · 𝜎𝑓 (c∗, s), (7)

where 𝛽 controls the trade-off between exploration and exploita-
tion. The agent’s surrogate GP model uses Matern kernel and Beta

likelihood parametrized as in (5) to map from latent function 𝑓 to
actual user response 𝑦. As the Beta likelihood is not conjugate with
the GP prior, we use Variational Inference to infer the GP posterior
and tune the hyperparametrs of the GP by maximizing the marginal
likelihood of the data. We use GPyTorch [9] to implement the GP
model with variational training scheme and employ BoTorch [3] to
optimize the UCB aquisition function.

We compare the UCB agent to a simple baseline agent that always
offers a constant setting 𝑠 that maximizes average user preference
over the distribution of user contexts 𝑝 (c) assumed in the simu-
lation, i.e. 𝑠 = argmax𝑠 E𝑝 (c) 𝑓 (c, 𝑠). This represents the optimal
recommendation without context-awareness. We refer to this agent
as oracle mean agent. We measure the performance of each agent as
the cumulative regret at interaction 𝑡 given by 𝑟𝑡 =

∑𝑡
𝑖=1 ` (𝑓𝑖 ) −𝑦𝑖 ,

where 𝑓𝑖 is the maximum user preference in context c𝑖 observed at
interaction 𝑖 and 𝑦𝑖 is the user response to the agent’s recommen-
dation at interaction 𝑖 .

We run the simulation for user 4 (characterized by preferences
shown in Fig. 5) and limit the number of interactions to𝑇 = 200. We
consider two scenarios: full observability with hidden context 𝑐ℎ𝑖𝑑
fixed to 1 and partial observability with hidden context sampled
uniformly from [−2, 2] range at each interaction. In both scenarios,
the observed context 𝑐𝑜𝑏𝑠 is sampled uniformly (and independently
of the hidden context) from [−2, 2] range. For UCB agent we set
𝛽 = 1 and start with 5 random setting recommendations before
the agent switches to its standard UCB acquisition. UCB agent
retrains its surrogate GP model after each aquisition. We repeat the
simulation 5 times for both scenarios with a different sample of 𝑇
contexts.

We show the cumulative regret incurred by the agents in Fig. 6.
In the full observability scenario, the UCB agent starts incurring
consistently lower regrets than the oracle mean agent already after
15 interactions and finishes the simulation with 33% lower cumu-
lative regret. In the partial observability scenario, the presence of
hidden context greatly impedes the UCB agent’s performance, but
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still it is able to take advatange of the observed context and perform
better than oracle mean agent after 44 interactions. In both scenar-
ios, one can clearly see the exploration and exploitation phases of
the UCB agent.

1 40 80 120 160 200
number of interactions

0

5

10

15

cu
m

ul
at

iv
e

re
gr

et

oracle mean agent

UCB agent

(a) full observability

1 40 80 120 160 200
number of interactions

0

10

20

cu
m

ul
at

iv
e

re
gr

et

oracle mean agent

UCB agent

(b) partial observability

Figure 6: Cumulative regret in full (a) and partial (b) observ-
ability scenarios averaged over 5 runs. The dashed line in-
dicates the point at which the UCB agent starts incurring
consistently lower regret than the oracle mean agent .

4 DISCUSSION
In our simulation we evaluated a simple Bayesian optimization
agent in a single user environment. In practice, we are interested in
simulating personalization on a scale of thousands of users using
agents that also discover and exploit similarities between users
to boost the learning speed. With a large pool of users, we can
model the diversity of contextual preferences, as well as human
factors such as cognitive perception or motivation. If users differ
in the ability of providing consistent feedback, the agent might
dynamically optimize its interventions. For users giving very incon-
sistent responses, the agent might learn to offer more contrasting
settings and ask for a binary response to compensate for a high level
of noise. Conversely, the agent might provide more fine-grained
recommendations if user responses are consistent. Similarly, the
frequency and timing of interventions may impact the users’ moti-
vation to interact with the agent. An intelligent agent should learn
dynamically when and how to interact with users to keep them
motivated over a long period of time. Simulation is a perfect tool to
evaluate agents’ capabilities of adaptation to such human factors
and dynamic behaviors.

The closer the simulation environment is to the actual one, the
less difference we expect between how well agents perform in
simulation and in real world. When deploying the developed system
for the first time, it is very likely that due to inaccurate assumptions
the performance of the agent will be significantly worse than in
the simulation. It is therefore reasonable to start with an agent
that operates in a simpler space of settings and observed context
than intended in the long run. Even if the first version fails to reach
satisfactory performance, valuable insights about the characteristics
of user preferences and interactions are gathered and can be used
to revise the assumptions implemented in the simulator so that an
improved agent can be developed. This creates a self-reinforcing
loop - the data collected by agents improves the simulation which
in turn leads to better performing agents.

The proposed framework allows to model contextual preferences
considering both observable and latent aspects of cognitive per-
ception in a flexible way. Simulation environments like this may
be vital to shape new human-centered adaptive personalization
systems in domains such as hearing healthcare where historical
data is very limited and where (often dynamic) human factors play
an important role in the personalization process.
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