
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Apr 19, 2024

Development of a Fast Screening Method for Selecting Excipients in Formulations
using MD simulations, NMR and MicroScale Thermophoresis

Indrakumar, Sowmya; Zalar, Matja; Tschammer, Nuska; Pohl, Christin Alina; Nørgaard, Allan; Streicher,
Werner; Harris, Pernille; Golovanov, Alexander P; Peters, Günther H.J.

Published in:
European Journal of Pharmaceutics and Biopharmaceutics

Link to article, DOI:
10.1016/j.ejpb.2020.10.015

Publication date:
2021

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Indrakumar, S., Zalar, M., Tschammer, N., Pohl, C. A., Nørgaard, A., Streicher, W., Harris, P., Golovanov, A. P.,
& Peters, G. H. J. (2021). Development of a Fast Screening Method for Selecting Excipients in Formulations
using MD simulations, NMR and MicroScale Thermophoresis. European Journal of Pharmaceutics and
Biopharmaceutics, 158, 11-20. https://doi.org/10.1016/j.ejpb.2020.10.015

https://doi.org/10.1016/j.ejpb.2020.10.015
https://orbit.dtu.dk/en/publications/4305e7c3-4649-4809-9959-fe8436ce07c3
https://doi.org/10.1016/j.ejpb.2020.10.015


Journal Pre-proofs

Development of a Fast Screening Method for Selecting Excipients in Formu-
lations using MD simulations, NMR and MicroScale Thermophoresis

Sowmya Indrakumar, Matja Zalar, Nuska Tschammer, Christin Pohl, Allan
Nørgaard, Werner Streicher, Pernille Harris, Alexander P. Golovanov,
Günther H. J. Peters

PII: S0939-6411(20)30315-5
DOI: https://doi.org/10.1016/j.ejpb.2020.10.015
Reference: EJPB 13439

To appear in: European Journal of Pharmaceutics and Biophar-
maceutics

Received Date: 6 July 2020
Revised Date: 22 October 2020
Accepted Date: 24 October 2020

Please cite this article as: S. Indrakumar, M. Zalar, N. Tschammer, C. Pohl, A. Nørgaard, W. Streicher, P. Harris,
A.P. Golovanov, G. H. J. Peters, Development of a Fast Screening Method for Selecting Excipients in
Formulations using MD simulations, NMR and MicroScale Thermophoresis, European Journal of
Pharmaceutics and Biopharmaceutics (2020), doi: https://doi.org/10.1016/j.ejpb.2020.10.015

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover
page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version
will undergo additional copyediting, typesetting and review before it is published in its final form, but we are
providing this version to give early visibility of the article. Please note that, during the production process, errors
may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier B.V.

https://doi.org/10.1016/j.ejpb.2020.10.015
https://doi.org/10.1016/j.ejpb.2020.10.015


1

Development of a Fast Screening Method for Selecting Excipients in Formulations 

using MD simulations, NMR and MicroScale Thermophoresis

Sowmya Indrakumar1,2*, Matja Zalar3,4, Nuska Tschammer5,6, Christin Pohl1,7, Allan Nørgaard7, 

Werner Streicher7,8, Pernille Harris1, Alexander P. Golovanov3, and Günther H. J. Peters1*

1Technical University of Denmark, Department of Chemistry, 2800 Kgs. Lyngby, Denmark; 
2Current address: University of Copenhagen, Biomolecular Sciences. Ole Maaløes Vej 5. 2200 

København N, Denmark; 3Manchester Institute of Biotechnology, and Department of Chemistry, 

School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, 

Manchester M1 7DN, United Kingdom; 4Current address: CRUK Beatson Institute, Garscube 

Estate, Switchback Road, Glasgow G61 1BD, United Kingdom; 5NanoTemper GmbH 

Technologies, Floessergasse 4 81369 Munich, Germany; 6Current address: Crelux GmbH- a WuXi 

AppTec Company, Am Klopferspitz 19a, 82152 Planegg, Germany; 7Novozymes, Krogshoejvej 

36, 2880 Bagsvaerd, Denmark; 8Current address: NanoTemper GmbH Technologies, 

Floessergasse 4 81369 Munich, Germany. 



2

ABSTRACT

Development of peptide therapeutics generally involves screening of excipients that inhibit 

peptide-peptide interactions, hence aggregation, and improve peptide stability. We used the 

therapeutic peptide plectasin to develop a fast screening method that combines microscale 

thermophoresis titration assays and molecular dynamics simulations to relatively rank the 

excipients with respect to binding affinity and to study key peptide-excipient interaction hotspots 

on a molecular level, respectively. Additionally, 1H-13C-HSQC NMR titration experiments were 

performed to validate the fast screening approach. The NMR results are in qualitative agreement 

with results from the fast screening method demonstrating that this approach can be reliably 

applied to other peptides and proteins as a fast screening method to relatively rank excipients and 

predict possible excipient binding sites. 

Keywords: molecular dynamics simulations; FTMap; NMR; microscale thermophoresis; 

chemical shift perturbations; hotspots; excipients
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INTRODUCTION 

Naturally occurring peptides are important biomolecules that have crucial roles in human 

physiology, including actions as hormones, growth factors, or host defense.[1] The peptides 

generally show high affinity, specificity, and efficacy for their targets, and therefore, there is an 

increasing interest in using peptides as therapeutics.[2] One example of such peptides is plectasin, 

initially isolated from the saprophytic ascomycete Pseudoplectania nigrella fungus found on the 

ground of northern European pine forests.[3] It is a small, 40 amino acid,  cystine-stabilized peptide 

with antibiotic properties.[4] Plectasin has a tertiary structure that closely resembles those of 

defensins found in spiders, scorpions, and mussels, and the peptide belongs to the class of 

amphipathic antimicrobial peptides (AMPs) that are widely distributed as intrinsic host defense 

molecules produced by all multicellular organisms.[5,6] The studies have shown effective 

antimicrobial and antiviral effects against a broad range of bacteria, viruses, and fungi. Plectasin 

and its variants  are especially active against Gram-positive bacteria including S. aureus and S. 

pneumonia.[7] For instance, plectasin cured pneumococcal peritonitis and pneumonia with low 

toxicity in mice signifying the therapeutic potential of plectasin as an antimicrobial peptide.[3,8–

10] While their smaller sizes make them easier to deliver across biological barriers compared to 

larger proteins, their formulation can be problematic since these peptides are prone to chemical 

and colloidal instabilities[11,12] that can lead to aggregation.[11,13,14] 

The colloidal stability of peptides depends on the nature of the peptides, and their stability can be 

modulated by adjusting solution conditions such as pH, buffer composition, ionic strength, and by 

the addition of excipients.[11],[15] The addition of appropriate excipients increases peptide 

stability, since the excipients interact with aggregation prone regions on the peptide surface and 

thereby reducing peptide-peptide interactions and subsequently aggregation.[16] Identifying 

appropriate excipients can involve extensive experimental work that is often time-consuming since 

it involves screening of excipients at different physicochemical conditions. Alternatively, in-silico 

methods can be utilized to screen different conditions to narrow the number of potential excipients 

used to increase colloidal peptide stability. Previously, review work by Pandya, Dalby et. al., 2018, 

has well documented the various biophysical methods especially NMR and modelling approaches 

to address protein-excipient interactions.[17] The study showed the potential use of molecular 

docking and simulations methods to develop a high-throughput screening method to facilitate 
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initial formulation. Other recent studies have shown the potential use of docking and simulation 

techniques in combination with experimental approaches to identify protein-excipient binding sites 

and rational design of excipient to aid formulation of biologics.[18–20] We have previously 

applied such in-silico screening methods in combination with small angle X-ray scattering to map 

protein-excipient interaction sites and study their effect on dynamics and oligomerization of 

human transferrin and albumin-neprilysin fusion protein.[21,22] 

In this study, we introduce an alternative docking approach which is relatively fast in comparison 

with the already existing approaches and performs blind docking and clustering to identify 

predominant binding sites. Taking this further in combination with MD simulations and MST, one 

can predict fairly well the protein-excipient binding sites. Here, in-silico studies were validated 

with NMR studies. Furthermore, the excipient concentration for in-silico studies were similar to 

NMR experiments, that is certain number of excipient molecules corresponding to a specific 

concentration were randomly positioned in the solvated protein box. Such an approach can be 

extended further to study interactions of proteins with combination of different excipients. 

In this study, the focus is on developing a fast screening methodology that utilizes microscale 

thermophoresis (MST) measurements and computational methods to predict peptide-excipient 

interaction hotspots. The initial ranking of excipients based on overall binding affinities (Kd) was 

obtained using MST experiments. Peptide-excipient interaction hotspots were predicted using 

FTMap[23] with the listed excipients in scope in combination with molecular dynamics (MD) 

simulations. If the predicted sites are also plausible sites for peptide-peptide interactions, 

excipients that bind to these sites are potentially good candidates for inclusion in the 

formulation.[16,24,25] Aggregation prone regions (APRs) were identified using freely available 

webservers for predicting APRs.[26,27] Additionally, NMR titration experiments were performed 

to validate the fast screening methodology. This workflow shows good agreement between the in-

silico and experimental methods and can be applied effectively to other peptide and protein 

systems. 
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MATERIALS AND METHODS

In-silico Approaches

Structure preparation and aggregation prone regions. A library of 12 different excipients was 

included in the study to verify the computational screening methods. The excipients are amino 

acids (arginine, glycine, histidine, methionine, and proline), sugars (sucrose and trehalose), sugar 

glycols (mannitol, sorbitol, and glycerol), and buffering agents (Tris and succinate). The excipient 

structures were taken from the ZINC database (www.zinc.docking.org/)[28], and the LigPrep 

program in the Schrödinger suite 2016-3 (Schrödinger, LLC, New York, NY, USA)[29] was used 

to adjust the protonation state at pH 4 (corresponding to the pH used in the experiments). The X-

ray crystal structure of plectasin was retrieved from the protein data bank, PDB ID:3E7U[30], and 

the PrepWiz tool in the Schrödinger suite 2016-3 was used to adjust the protonation state of the 

residues at pH 4. The structure was subsequently used as a starting structure for MD simulations. 

Site-specific binding studies. Excipients structures were obtained from Zinc Database[28]. These 

excipients were prepared at pH 4 using the Ligprep tool in Schrödinger release 2016-3 

(Schrödinger, LLC, New York, NY, USA)[29]. Histidine arginine and Tris at pH 4 carry an overall 

+1 positive charge. The prepared excipients were docked to each of the two sites using Glide 

program that is part of the Schrödinger suite 2016-3. The docking experiments were performed 

using default parameters for grid generation and docking runs, where the latter was performed with 

extra precision (XP).[31] From each site, the pose with the lowest energy was chosen further for 

MD simulations. All-atom simulations were performed for 500 ns each with the same settings as 

described in the FTMap section of the main manuscript, the excipient concentration was adjusted 

to 150 mM that corresponds to the same concentration used in NMR titration experiment. In total, 

31 molecules were added to the solvated system containing approximately 11250 water molecules. 

The parameter file for the excipients was prepared using the antechamber[32] module in Amber 

16 at pH 4 and applying the AM1-BCC[33] charge method. The number of excipients 

accumulating at every residue was calculated by counting the number of excipients within 4Å of 

the residue divided by the sum of the number of contacts for all excipients, also defined as contacts. 

Molecular dynamics simulations. Classical all-atom constant pH MD simulations[34] in explicit 

solvent were carried out for 100 ns at pH 4 using the software Amber 16 with the amber force field 

http://www.zinc.docking.org/


6

ff99SB[35] for proteins to generate an ensemble of possible peptide structure in solution. The 

titratable residues (Asp, Glu, His) were allowed to change their protonation state during the 

simulations. The peptide was solvated in a truncated octahedron water box having a 15 Å cutoff 

in all directions, and water molecules were represented using the TIP3P[36] water model. The 

system was neutralized with four chloride ions. The particle mesh Ewald method[37] was 

employed with a real-space cutoff of 8 Å to determine the non-bonded electrostatics energies. The 

system was minimized for 5000 steps using 1500 steps of steepest descent method followed by 

3500 steps of conjugate gradient method. Successively, the system was heated linearly from 10 K 

to 300 K using the Langevin thermostat[38] with a collision frequency of 5 ps−1 for 1ns. The 

systems were then equilibrated for 4 ns with coordinates saved every 5 ps at constant temperature 

(300 K) and pressure (1bar). Finally, production simulations were run for 100 ns, and coordinates 

were saved every 10 ps. 

Experimental Methods 

Relative Ranking of excipients using Microscale Thermophoresis. The experiments were 

performed using a Monolith NT.115 LabelFree® instrument (NanoTemper Technologies, Munich, 

Germany). Label-free system makes use of the intrinsic protein fluorescence caused by the 

aromatic amino acids phenylalanine, tyrosine, and tryptophan (Trp), with the latter being the 

dominant intrinsic fluorophore. Plectasin samples were provided by Novozymes A/S. Plectasin 

was extensively dialyzed into 10 mM acetate buffer pH 4 at 4°C using slide-a-lyzer 2000 MWCO 

dialysis cassettes (Thermo Scientific) for 20 hours with three times buffer exchange after 3, 6 and 

12 hours. The final concentration of plectasin was 17mg/mL as determined by measuring UV 

absorbance at 280 nm (A280=38.08, ε = 2.24 mLmg-1cm-1) with a Nanodrop2000 (Thermo 

Scientific). The excipient stocks were prepared in 10 mM acetate buffer pH 4 (Table S1). In the 

case of pH shift, pH was adjusted using either NaOH or HCl. Table S1 shows the stock 

concentrations [C]stock used for the measurements. The excipient was diluted in 16 serial steps in 

PCR tubes. Subsequently, to each of the PCR tubes, plectasin was added to a final concentration 

of 10 μM. The prepared samples were incubated for 1 hour before loading into MST premium 

coated capillaries, where the coating minimizes peptide binding to the capillary wall. Experiments 

were performed in triplicates at the same MST-power to determine uncertainties in the measured 
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values. MST power was set to 40 % for all excipients except succinate and mannitol where the 

power was set to 20%.  

NMR titration experiment to identify peptide-excipient binding regions. The plectasin sample 

was prepared as mentioned previously described in MST sample preparation. The total peptide 

sample volume was 500 µL, which included 2 mM peptide, 1 µL trimethylsilylpropanoic acid 

(TSP) (used as a reference for peak identification), 25 µL D2O and volume adjusted to 500 µL 

with buffer. Excipients were added stepwise to the peptide sample from the 1M stock solution, 

which minimized dilution effects. All NMR experiments were acquired at 25 °C on Bruker 

800MHz Avance III spectrometer equipped with a temperature control unit and a 5 mm TCl 

cryoprobe. The plectasin assignments are based on those published previously.[39] ArgHCl was 

added to a final concentration of 1, 5, 7.5, 10, 15, 20, 30, 40, 50 and 75 mM to the prepared 500 

µL plectasin sample. All other excipients were added to a final concentration of 25, 50, 75, 100 

and 150 mM. At each titration point, 1D 1H and 2D natural abundance 1H-13C-heteronuclear single 

quantum correlation (HSQC) experiment with sensitivity enhancement, gradient coherence 

selection, and multiplicity editing was acquired. For all 1D 1H experiments, 32k complex points 

were collected with spectral windows of 16.0 ppm, while 2D data matrix of 2k x 512 complex 

points with spectral windows 16.0 ppm for 1H and 165 ppm for 13C dimension were acquired. The 

total acquisition time for 2D-HSQC experiments was 150 min. All HSQC spectra were referenced 

against the TSP peak. The weighted chemical shift perturbations (CSP), , occurring due to  ∆𝛿𝐶𝐻

binding of excipients to plectasin were calculated as follows: 

∆𝛿𝐶𝐻 =
1
2[𝛿2

𝐻 + (0.432.𝛿2
𝐶)] (1)

where  and  are chemical shift changes in proton and carbon dimensions, respectively. The ∆𝛿𝐻 ∆𝛿𝑐

weight attributed to the carbon chemical shift was calculated as a ratio between the average peak 

width in the proton and carbon dimension. To obtain the binding affinity Kd values, we have 

assumed 1:1 binding mode on the individual reside basis. As this assumption might not be 

necessarily true when considering larger surface area (i.e. patch) of the peptide, we did not attempt 

the global fits even for local patches. The binding affinity (  and max CSP (  can be 𝐾𝑑) ∆𝛿𝑚𝑎𝑥)

obtained as follows:
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∆𝛿𝐶𝐻 =
∆𝛿𝑚𝑎𝑥{([𝑃]𝑡 + [𝐿]𝑡 + 𝐾𝑑) ― [([𝑃]𝑡 + [𝐿]𝑡 + 𝐾𝑑)2 ― 4[𝑃]𝑡[𝐿]𝑡] 

0.5} 
2[𝑃]𝑡 (2)

where  and are the total protein (2 mM) and ligand concentrations, respectively. The [𝑃]𝑡 [𝐿]𝑡 

threshold was set to 0.025 ppm corresponding to the standard deviation when taking into account 

all CSPs. CSPs above the threshold reflect significant signal perturbations. The same cutoff of 

0.025 ppm cutoff was used for all the excipients to account for the differences in their binding 

affinities. It is essential to choose an appropriate threshold value to increase specificity (to pick 

residues genuinely interacting with excipients).[40] Residue specific Kd values were calculated 

considering peaks with significant perturbations. To get site specific Kd values at site I and II (sites 

predicted by FTMap and SiteMAp), average Kd value was calculated by taking an average of 

residue-specific Kd values (<500 mM) of residues belonging to a specific site. Moreover, 

significant curvature of  vs excipient concentrations is required to calculate accurate binding ∆𝛿𝐶𝐻

affinities. The excipients used in this study show weak interactions (10-500 mM range).
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RESULTS

In this section, we will present the findings from experimental as well as computational studies. 

The rationale is to develop a fast screening approach by combining complementary methods to 

enhance our understanding on the protein-excipient interactions.

Relative ranking of excipients using MST. A library of 12 different excipients was included in 

the study (Table 1). The excipients can be broadly defined in four classes as sugars (sucrose and 

trehalose), sugar glycols (mannitol, sorbitol, and glycerol), amino acids (arginine, glycine, 

histidine, methionine, and proline), and buffering agents (Tris and succinate) that are frequently 

used in stabilization of therapeutics.[24,41,42] MST label-free measurements were done in 10 mM 

acetate buffer at pH 4 as high colloidal stability was previously reported for plectasin in acidic pH 

range.[12] Data were analyzed and Kd values were obtained using the MO software version 2.3 

from NanoTemper Technologies. At least 10 out of 16 titration points from the titration series were 

taken for the analysis to improve fitting (based on χ2). For most of the excipients, the maximum 

obtainable stock concentration was 5 M (Table S1 in Supporting Information (SI)). The viscosity 

of all excipient solutions was measured using the automated micro viscosizer (Anton Paar). All 

measured viscosities were within the limit of the MST instrument, negating any effect of viscosity 

on the thermophoresis of the molecule. The MST trace of each capillary was analyzed for the 

difference between the fluorescence during thermophoresis (Fhot) and baseline fluorescence (Fcold). 

The normalized fluorescence (Fnorm) is defined as Fhot/Fcold. Binding curves can be displayed using 

∆Fnorm values (baseline-corrected normalized fluorescence) or fraction bound (∆Fnorm values are 

divided by the amplitude of the curve) against excipient concentration (Figure 1). Table 1 shows 

the resulting apparent Kd values from the MST measurements, which reflect overall binding of 

excipients to protein, possibly at multiple sites. For some excipients, saturation is starting to appear 

that enables accurate determination of Kd (corresponding to 50% saturation) (Figure 1). A 

numerical comparison of the apparent Kd values allows for the ranking of excipients based on the 

binding affinities (Figure 1). Saturation was reached for arginine (Kd = 35 mM), histidine (46 mM), 

Tris (56 mM), and trehalose (65 mM). In the case of other excipients, saturation was not obtained, 

which implies only an estimate of Kd value can be extracted from the data (Figure 1). 
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Table 1. Experimentally determined Kd of excipients to plectasin using MST label-free method in 

10 mM acetate, pH 4. Here, %[PE]/100 corresponds to the fraction of peptide (P)-excipient (E) 

complex; [P] = 17mg/mL and [E]stock = 150 mM. Saturation is not achieved for the excipients 

having %[PE]/100 lower than 50%. Therefore, the calculated Kd represents the minimum Kd value.

Excipient Kd (mM) %[PE]/100 Excipient Kd (mM) %[PE]/100

Arginine 35±12 0.81 Glycine 217±204 0.41

Histidine 46±6 0.77 Sucrose 275±83 0.35

Tris 56±14 0.73 Proline 437±44 0.26

Trehalose 65±48 0.7 Mannitol 600±870 0.2

Succinate 137±77 0.52 Sorbitol 900±600 0.14

Methionine 180±140 0.45 Glycerol 4200±7000 0.03
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Figure 1. A. Concentration-response curves for the binding interactions between different 

excipients and unlabeled plectasin displayed using ∆Fnorm against ligand (excipient) 

concentrations. B. Concentration-response curves for the binding interactions between different 

excipients and unlabeled plectasin displayed using fraction bound against ligand concentrations. 
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In-silico Approaches

Aggregation prone regions and peptide-excipient interaction hotspot. Aggregation prone 

regions were predicted using AGGRESCAN3D[26], CAMSOL[27], CSSP[43], that all are based 

on structure-based methods and hence consider the local environment around a given residue to 

estimate a solubility score. Different servers were used to see if similar regions were picked as 

APRs. As shown in Figure 2A, APRs are concentrated in the termini; especially, a large segment 

of a beta-strand is predicted to be prone to aggregation. 

Molecular dynamics simulations. Classical all-atom constant pH MD simulations[34] in explicit 

solvent were carried out for 100 ns at pH 4. Conformations taken from the MD simulation 

trajectories were grouped into distinct clusters using the average-linkage method, which is part of 

Cpptraj[44] in Amber 16. Cluster representatives were analyzed using FTMap 

(http://ftmap.bu.edu/param)[23], which identifies binding hotspots of macromolecules. Using 

FTMap, small organic molecules (present as default) and molecules of choice are docked blindly 

onto the peptide surface, clustered, and ranked based on average energy.[45] Results from FTMap 

on different cluster representatives were analyzed further using a simple statistical method to rank 

sites that are predominant interaction sites for excipients in all cluster representatives. To do this, 

every residue, j, is assigned an interaction score, Iscore, defined as:

                                        Iscore= ∑10
𝑖 = 1𝑐𝑖 (𝐼(𝑗)𝑛𝑜𝑟𝑚 ≥ 1) (3)

where
𝐼(𝑗)𝑛𝑜𝑟𝑚 =

𝐼(𝑗)𝑛𝑜𝑛 ― 𝑏𝑜𝑛𝑑𝑒𝑑 
⟨𝐼(𝑗)𝑛𝑜𝑛 ― 𝑏𝑜𝑛𝑑𝑒𝑑⟩ 

(4)

is the non-bonded interaction value at residue (j) obtained from FTMap. is 𝐼(𝑗)𝑛𝑜𝑛 ― 𝑏𝑜𝑛𝑑𝑒𝑑 𝐼(𝑗)𝑛𝑜𝑟𝑚 

the normalized non-bonded interaction value at residue j, where  is divided by the 𝐼(𝑗)𝑛𝑜𝑛 ― 𝑏𝑜𝑛𝑑𝑒𝑑

mean of overall 40 residues. Non-bonded interactions were considered as they 𝐼(𝑗)𝑛𝑜𝑛 ― 𝑏𝑜𝑛𝑑𝑒𝑑 

http://ftmap.bu.edu/param


13

define the main hotspots.[45] In equation 3, for a given residue, j, and frame, i,  𝑐𝑖 = 1 if 𝐼(𝑗)𝑛𝑜𝑟𝑚 

, otherwise 0. Equation 3 is applied over all 10 representative conformers obtained from ≥ 1

clustering. The Iscore threshold of 4 was arbitrarily chosen to highlight residues that are often visited 

by excipients and hence potential hotspots. Figure 2B shows the plectasin structure colored based 

on . Residues Gly1, Phe2, Glu10, His16, His18, Tyr25, Tyr29, Cys30, Val36, Cys37, and  𝐼𝑠𝑐𝑜𝑟𝑒

Lys38 have >4. Similar segments (Gly1, Phe2, Gln5, Tyr29, Lys32, Gly33, Phe35, Val36, 𝐼𝑠𝑐𝑜𝑟𝑒 

Lys38, and Tyr40 ) are also found to be APRs (Figure 2A). 

Figure 2. A. APRs are shown in red on the plectasin structure. The residue is colored red if it is 

predicted as aggregation prone by any one of the webservers (AGGRESCAN3D[26], 

CAMSOL[27], CSSP[43]). B. Structure coloring based on FTMap score. Residues with a score 

above an arbitrarily chosen threshold ( >4) are labeled and considered as protein-excipient 𝐼𝑠𝑐𝑜𝑟𝑒 

interaction hotspots. These residues are Gly1, Phe2, Glu10, His16, His18, Tyr25, Tyr29, Cys30, 

Val36, Cys37, and Lys38. 
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Site-specific binding. The previous results from FTMap were based on representative peptide 

structures obtained from 100 ns MD simulation. To access the effect of peptide flexibility on 

peptide-excipient binding, MD simulations of the complexes were performed for 500 ns with the 

same setting as described above. The excipients that had relatively low affinities (strong binding) 

in MST experiments were taken for independent MD simulations. These are arginine, histidine, 

trehalose, succinate, and Tris. Glycerol was taken as a negative control to access its weak binding. 

For each excipient, the concentration was adjusted to 150 mM, which corresponds to 31 excipient 

molecules for the solvated system containing approximately 11250 water molecules (as described 

in MD methodology section). Predominantly, four regions were identified as potential excipient 

binding sites using FTMap (red arrows on top of Figure 3), which were also predicted as the main 

binding sites for small molecules using the SiteMap program in the Schrödinger suite 2016-3 (data 

not shown). For simplicity, we have assigned four sites in this order; residues Gly1, Phe2, Val36, 

Cys37, and Lys38 belong to site I, residues His16, His18, Tyr29, and Cys30 belong to site II, and 

regions around Glu10 and Tyr25 are annotated as site III and IV, respectively. Figure 3 provides 

an overview of the excipient binding in different regions at the peptide surface. Relatively high 

contact frequency is found for the four sites. Figure 4 summarizes in-silico results in the sequence 

positions of plectasin. The residues marked in red are predicted hotspot regions from FTMap, of 

which some of the predicted regions are also APRs. It is observed that excipients arginine, 

histidine, and Tris make more contact with the peptide (Figure 3), which are also the ones with 

relatively strong affinities (Table 1). On contrast, glycerol makes the least contact of all excipients 
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during the MD simulations (Figure 3), which is in good agreement with MST experiments where 

we see negligible binding (Table 1).

Figure 3. The contacts formed between plectasin and the different excipients. The number of 

contacts is normalized by the sum of contacts calculated over all excipients. The hotspot regions 

predicted by FTMap are marked as red arrows on top of each Figure. 

NMR 1H-13C HSQCs titration experiments. The backbone and side-chain assignments of 

plectasin were achieved as previously described[39] and are shown in Figure S1 and S2. To 

identify interaction sites for excipients on plectasin, 1H-13C HSQCs titration experiments were 

performed in 10 mM acetate buffer, pH 4 for all the 12 excipients (for experimental details see 

Table SI). An example of 1H-13C HSQC spectra overlays for arginine as an excipient is shown in 
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Figure 5. For the other excipients, HSQC overlays are given in the Supporting Information 

(Figures S3-13). 

Figure 4. A. Mapping the results of in-silico calculations and NMR signal perturbation mapping 

on sequence positions of plectasin. For APR, residues that were predicted as aggregation prone 

from different servers are marked in red. For FTMap, residues with  are marked in red. 𝐼𝑠𝑐𝑜𝑟𝑒 > 4

The distinct classes of excipients are colored differently. Amino acids (dark blue), sugar glycols 

(green), sugar (gray), and buffering agents (orange). In NMR consensus, residues that are 

perturbed significantly (CSP >0.025 ppm) in the presence of at least five different excipients are 

marked in red. Finally, for each of the different excipients, residues that showed a significant 

perturbation in NMR experiments (CSP > 0.025 ppm) are marked in red. 

Maximum chemical shift perturbations were calculated for each residue in the presence of different 

excipients,  and CSPs above 0.025 ppm were  considered to be significant (Figure 6). Additionally, 

significant chemical shift perturbations (CSP >0.025 ppm) were mapped onto the plectasin 

structure (Figure 7A-I). It is observed that amino acids and buffering agents interact at many sites 

on the peptide, as highlighted in red, whereas sugars and sugar glycols interact in fewer places 

(Figure 7). 
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Figure 5. 

NMR 

signal perturbations caused by the addition of increasing concentrations of 

excipient. 1H-13C HSQC spectra overlay of plectasin in the absence (magenta) and in the presence 

of 1 mM (red), 5 mM (orange), 7.5 mM (yellow), 10 mM (light green), 15 mM (green), 20 mM 

(dark green), 30 mM (cyan) and 40 mM (light blue) arginine. Assignments are noted next to the 

corresponding peaks. Peaks labeled in black, red, green, purple, and blue belong to Cα-Hα, Cβ-Hβ, 

Cγ-Hγ, C-H, and Cδ-Hδ groups. Lines in the spectra connect peaks from two protons that are 

connected to the same C atom. 

Similar to Iscore in the FTMap analysis, an NMRscore was assigned to each residue. NMRscore is 

defined as the number of times a given residue is perturbed significantly due to interactions with 

the different excipients. A threshold of five (NMRscore >5) was arbitrarily chosen to define a residue 

as a protein-excipient interaction hotspot based on NMR experiments (Figure 7M). Perturbations 

with CSP > 0.025 ppm were used to estimate the Kd values for local binding (Figure S14). 

Furthermore, site-specific Kd values at site I and II were calculated (see NMR section in SI). 

Previous studies have shown that affinities as weak as 10 mM can be determined using NMR, 

which is the upper limit that can be calculated.[40] The excipients used in this study show weak 

interactions (Kd in the 10-500 mM range), which make it challenging to determine Kd values 
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precisely using NMR (Figure S14). Figure 4 maps the NMR results onto the sequence positions of 

plectasin, where residues that are significantly perturbed are marked in red. 

Figure 6. The maximum CSP mapping of plectasin upon the addition of different excipients. The 

dotted line represents the threshold (CSP = 0.025 ppm) above which the perturbations are 

considered to be significant. 
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Figure 7. Structure coloring of plectasin based on CSP. Regions with significant perturbations 

(CSP > 0.025 ppm) are colored red. A. Arginine, B. Histidine, C. Methionine, D. Glycine, E. 

Proline, F. Sorbitol, G. Mannitol, H. Glycerol, I. Trehalose, J. Sucrose, K. Tris, and L. Succinate. 

M. Structure coloring based on NMRscore. Residues with a score above an arbitrarily chosen 

threshold (NMRscore > 5) are labelled and considered as main interaction hotspots for excipient 

interactions.
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DISCUSSION

Microscale thermophoresis is a robust and fast method used to characterize peptide-excipient 

interactions and their binding affinities. As the sample is free to move during the measurement, it 

creates conditions close to the native state.[46] We used a label-free system, which takes into 

account the intrinsic tryptophan fluorescence of plectasin. It measures the change in 

thermophoresis upon direct binding of small molecules to the target peptide, thus allowing 

quantitative measurement of direct binding affinity. Based on the MST approach, an initial ranking 

of excipients based on binding affinities to plectasin was obtained. Effective overall Kd values 

were predicted in the case of arginine (35 mM), histidine (46 mM), Tris (56 mM), and trehalose 

(65 mM), which reached saturation in the dose-response curve (Figure 1) resulting in Kd values 

with fairly low standard deviations (Table 1). 

In order to study the excipient interaction sites on the peptide surface on a molecular level, FTMap, 

a docking method, was used.[23,45] FTMAP is a direct computational equivalent of the 

experimental screening approaches, and have been previously used in various studies to identify 

potential binding hotspots of small molecules on protein surfaces.[47–49] In this study, FTMap 

was able to pick a few prominent hotspots, which we classified as sites I-IV, which consists of 

residues: Gly1, Phe2, Glu10, His16, His18, Tyr25, Tyr29, Cys30, Val36, Cys37, and Lys38 

(Figure 2B and 4). Hotspot is defined as a residue with Iscore>4, which implies any listed excipient 

is certainly going to interact with the identified hotspots. Although the FTMap predicted hotspots 

are unspecific, the hotspots provide an overall picture about the possible binding sites irrespective 

of the excipient type. Some of the hostpot regions are also identified as aggregation prone regions 

(residues: 1-2, 29, 36-40) (Figure 2B and 4). 

Independently, constant pH MD simulations were performed considering arginine, histidine, Tris, 

trehalose, succinate and glycerol as excipients. The five excipients except glycerol showed 

relatively strong binding to plectasin, whereas glycerol did not show any binding. In Figure 3, it is 

observed that all excipients make more contacts compared to glycerol with the peptide surface. 

Comparing Tris and succinate, it is observed that succinate makes fewer contacts with plectasin 

than Tris, which correlates well with the MST results indicating that succinate binds only weakly 

to plectasin. In case of arginine, histidine and Tris even though the apparent affinities discussed 
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here are in the millimolar range, specific binding of excipients at certain regions on the peptide 

surface has the potential to affect peptide stability – either in a positive or in a negative 

way.[11,42,50] Each of the three excipients carry an overall net charge of +1 at the pH 4, which 

leads to stronger interactions with the tetrapeptide segment (9-12) mainly due to the negatively 

charged patch (Site III) and around Tyr25 (Site IV); both of which are predicted hotspot regions 

from FTMap (Figure 3). Rather weak interactions are observed at site I that constitutes of a flexible 

N-terminus and a beta strand, and it is the flexibility arising from the free end that causes weak 

binding. Likewise, excipients interact favorable with His16 of site II as discussed in the NMR 

section below. The in-silico method in combination with experimental methods is therefore useful 

for fast screenning of potential excipients. 

Additionally, series of NMR spectra of the peptide were recorded in the absence and presence of 

varying concentrations of excipients to validate the in-silico predictions. For all the 12 excipients, 
1H-13C HSQCs were recorded and processed considering the peaks that could be unambiguously 

assigned. Overall, the addition of excipient can lead to direct binding of excipient to the peptide 

that may be highlighted as ‘perturbations’ i.e. CSP. Significant CSP (CSP > 0.025 ppm) were 

mapped on to the structure (Figure 7A-L). Figure 7M shows the secondary structure of plectasin, 

where the coloring is based on the NMRscore, which is defined as the number of time a given residue 

is perturbed significantly in the presence of different excipient. NMRscore highlight regions that are 

often perturbed due to interactions with the different excipients and it is similar to Iscore (from 

FTMap). It is observed that NMR and FTMap pick similar regions for peptide-excipient 

interactions. Residues in the C-terminal region (36-40) that constitute site I as well as APRs are 

identified by both techniques (Figure 3 and 7M). Furthermore, residues around His16 (Site II), 

regions around Glu10 (site III) and Tyr25 (site IV) have been identified by both in-silico and NMR 

approaches. For each excipient, interaction sites on the peptide are discussed below. 

In general, regions having CSP below 0.025 ppm do not interact with excipients, or interactions 

are too weak to be detected by NMR. However, there are certain regions (CSP > 0.025 ppm) that 

interact relatively strongly with excipients (Figure 6 and 7). Although there were many peaks with 

noticeable perturbations, Kd values could be calculated only for some peaks as significant 

curvature of the CSPs against excipient concentration is required to determine accurate Kd values 

(Figure S14). In all cases, excipients binding to site II interact favorably with the side chains atoms 
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as compared to when they bind close to site I, where they interact with the backbone atoms (Figure 

5, Figures S3-S13). Figure 5 shows 1H-13C HSQC spectra overlay for arginine as an excipient, and 

peaks corresponding to Cα-Hα of Gly34, and Val36 have noticeable perturbations. The average 

binding affinities at the two main binding sites are equivalent (site I: Kd = 30 mM and site II: Kd = 

18 mM). It is the same for His as excipient (site I Kd = 61 mM as compared to site II Kd = 52 mM). 

His and Arg at pH 4 carry an overall +1 charge. Jungwirth and coworkers[51,52] showed in a 

computational study that His-His, Arg-Arg, His-Arg pairing makes favorable interactions in spite 

of alike charges. This could explain the favorable binding of His and Arg in site II (His16 and 

His18). Moreover, favorable electrostatic interactions of positively charged excipients (His, Arg 

and Tris) with the negatively charged tetrapeptide stretch leads to greater accumulation of 

excipients in this region. Further, it is observed that Arginine and Histidine as excipients show 

similar interaction patterns with the peptide, the respective side chains make less contact with the 

tetrapeptide stretch as opposed to the backbone atoms (Figure S15). Here, one can notice favorable 

electrostatic interactions of the charged excipients with the peptide backbone and certain amino 

acids on the peptide. Methionine as excipient has preference for site II (18 mM). Moreover, these 

excipients also bind to FTMap predicted hotspot at Tyr25 (site IV) with affinity in the range of 1-

100 mM.

In the case of neutral or multi-OH containing molecules (sugars, sugar glycols, glycine, and 

proline), binding is weak (Figure 6D-J, Figure 7D-J). However, glycine and trehalose interact 

weakly (10-30 mM) with plectasin around site I and II (Figure 7, Figure S14). Previously, a study 

showed that aromatic residues on peptide surface frequently interact with sugars in the order Trp 

>> Tyr> His.[53] Hydroxyl groups on the sugars have the tendency to replace a water molecule 

close to the peptide during dehydration making itself available to interact with the polar patches 

on the peptide leading to peptide stabilization.[54] Alternatively, buffering reagents, Tris and 

succinate, interact with many segments on the peptide as arginine, histidine, and methionine. Tris 

and succinate prefer binding to site I with affinities around 19 mM and 56 mM, respectively. 

Overall, Tris (30 mM) has favorable interactions as compared to succinate (58 mM). This is in 

good agreement with MD simulations where Tris makes more contact with the peptide surface 

compared to succinate (Figure 3, Figure S15). Tris makes more contact with the peptide using the 

amino group as opposed to the hydroxyl groups (Figure S15). It should be cautiously noted that 

lysines form clustered peaks, for example, peaks corresponding to C-H, Cγ-Hγ, and Cδ-Hδ groups 
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of lysines form clusters (Figure 5, Figures S3-13). Therefore, the peaks for these groups might be 

placed vaguely and may not imply true binding in these regions. On the whole, most of the 

excipients certainly bind in the predicted hotspot regions from FTMap, which also constitute the 

two predicted binding sites with higher binding affinity, for instance, Val36 and His16 that are part 

of site I and site II, respectively, are perturbed significantly (Figures S3-S13). The observed 

favorable peptide-excipient interactions could explain the improved peptide stability.[16,24]

Overall, there is a good correlation between the total sum of normalized contacts deduced from 

simulations and the overall Kd values measured using MST. For instance, Arginine that has high 

affinity towards plectasin and in comparison, to the other excipients makes more contacts with the 

peptide as observed in the MD simulations. The methodology presented here can provide insight 

into the molecular origin of the relative ranking of the excipients based on measured binding 

affinities to the protein and identify protein-excipients interactions sites deduced from in-silico 

modelling, which can certainly accelerate formulation procedure.

CONCLUSION

We show that computational approaches in combination with MST correlate well with the NMR 

titration experiments utilized here. Binding affinities of distinct excipients to plectasin were 

determined using the fast experimental screening approach, MST. For some excipients (arginine, 

histidine, trehalose, and Tris), apparent Kd values were predicted accurately due to 50% saturation 

of peptide with the excipient. In other cases, Kd values were calculated with relatively large 

uncertainties. Furthermore, these overall binding affinities were traced to a molecular level using 

in-silico methods. Using the FTMap approach, a quick blind docking of excipients were performed 

on different conformers of peptide obtained from MD trajectory clustering. Subsequently, simple 

statistical analyses were performed to give an interaction score per residue to identify regions that 

are prone to interaction with excipients of interest. Additionally, constant pH MD simulations were 

performed, and the results indicated that the five tested excipients, arginine, histidine, trehalose, 

Tris and succinate, bind favorably to regions corresponding to the FTMap predicted hotspot 

regions. Glycerol did not show any preference, which is in good agreement with the MST and 

NMR results presented in this study. These findings were further investigated using 1H-13C HSQC 

titration experiments. Most of the peaks could be assigned explicitly. In silico approaches and 

NMR consensus regions picked analogous segments on the peptide as the most frequently 
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interacting regions with excipients (regions around Val36-Tyr40) that are also APRs. In principle, 

weak binding of excipients enhances colloidal stability at pH 4, and favorable electrostatic 

interactions of positively charged excipients (His, Arg and Tris) with the negatively charged 

tetrapeptide stretch leads to greater accumulation of excipients in this region. 

We have shown MST works for peptides, but also for bigger proteins or more complex 

systems.[55,56] Our approach provides a methodology that can be extended to other 

biotherapeutics, such as mAbs and fusion proteins, in order to capture protein dynamics at desired 

physicochemical conditions. Such an approach in combination with coarse grained simulation can 

be performed to simulate on longer time scales in short duration. Previously, we have applied such 

an in-silico screening method in combination with small angle X-ray scattering to understand 

protein-excipient interactions and their effect on oligomerization and dynamics.[21,22] Thus, the 

discussed fast screening methodology can effectively be carried forward to study the effect of 

combination of different excipients and how it alters proteins dynamics and thus aggregation.
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