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AbstrAct:
Breast cancer in younger patients often presents with adverse histopathological 
features, including increased frequency of estrogen receptor negative and lymph node 
positive disease status. Chromosomal instability (CIN) is increasingly recognised as 
an important prognostic variable in solid tumours. In a breast cancer meta-analysis of 
2423 patients we examine the relationship between clinicopathological parameters 
and two distinct chromosomal instability gene expression signatures in order to 
address whether younger age at diagnosis is associated with increased tumour 
genome instability. We find that CIN, assessed by the two independently derived 
CIN expression signatures, is significantly associated with increased tumour size, ER 
negative or HER2 positive disease, higher tumour grade and younger age at diagnosis 
in ER negative breast cancer. These data support the hypothesis that chromosomal 
instability may be a defining feature of breast cancer biology and clinical outcome.

IntroductIon

Breast cancer in younger women has been shown 
to be associated with a worse prognosis than in older 
women [1-3]. Risk factors, including high tumour grade, 
large tumour size, positive lymph node, and Estrogen 
receptor (ER) negative status, have been shown to be 
more prevalent in younger breast cancer patients, leading 
some to suggest that breast cancer in younger women 
represents a distinct clinical entity[4]. 

Chromosomal instability has been widely 
documented to be associated with poorer prognosis in 

solid tumours [5] and CIN induced by MAD2 expression 
promotes rapid tumour relapse following withdrawal of 
an oncogenic stimulus in animal models [6]. However 
pre-clinical models have in some cases demonstrated a 
deleterious impact upon cancer cell survival associated 
with excessive chromosomal instability initiated by 
spindle assembly checkpoint inactivation [7] and we and 
others have shown that aneuploidy has a negative impact 
upon cell proliferation [8]. Indeed, animal models have 
also demonstrated that aneuploidy may confer a tumour 
suppressor effect in cancer prone mice[9]. Cahill and 
colleagues have suggested that whilst genetic instability 
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may be advantageous under tumour-stromal selection 
pressures, a threshold may exist beyond which excessive 
instability becomes deleterious for cancer survival[10].

We reasoned that the association of CIN with poorer 
prognosis may mask more subtle associations and that 
extreme CIN predicts improved outcome in contrast to 
intermediate CIN that might be associated with poorer 
prognosis. We have previously demonstrated that there 
may be a non-monotonic relationship between CIN and 
clinical outcome in a retrospective analysis of breast 
cancer outcome. We have used a surrogate of CIN status, 
assessed by CIN70 expression signature, which we have 
shown acts as a robust surrogate of structural chromosomal 
complexity measured by CGH and numerical CIN 
assessed by DNA image cytometry[11]. In this study, we 
separated patients into quartiles of CIN70 expression and 
identified that patients with ER negative breast cancer with 
CIN extreme (4th quartile of CIN70 expression) appear to 
have improved outcome relative to patients with tumours 
in the intermediate 3rd quartile which were associated 
with the worst outcome. In summary, these data confirm 
the association of CIN with poorer outcome, but also 
suggest that extreme CIN, exceeding a certain threshold, 
is associated with improved prognosis.

Here we assess the relationship between CIN70 
quartile, which we have previously demonstrated 
correlates with both numerical chromosomal instability 
and structural chromosomal complexity, and breast 
cancer histopathological parameters and age at 
diagnosis. Additionally, we determine the relationship 
of histopathological parameters with a breast cancer 
genomic instability signature derived by Habermann et 
al.[12]. We find evidence for a significant association of 
both chromosomal instability signatures with high risk 
histopathological features and importantly with younger 
age at diagnosis in ER negative patients in a meta-

analysis of 2423 patients. These data are concordant with 
recent suggestions that breast cancer in younger women 
represents a distinct clinical entity with higher risk 
molecular features[4].

results

comparison of cIn70 quartiles with the 12 gene 
genome instability signature

We used two different methods to assess 
chromosomal instability across large cohorts of patients 
with primary breast cancer for which tumour microarray 
gene expression data were available. Firstly, we used 
the CIN70 expression signature derived from a measure 
of total functional aneuploidy [13]. We have previously 
shown that this measure correlates with both numerical 
CIN and structural chromosomal complexity in breast 
cancer [11]. Secondly, we used a 12-gene genome 
instability signature defining genomically unstable (GU) 
breast cancers correlating gene expression data with 
chromosomal instability in breast cancer measured by 
DNA image cytometry, previously derived by Habermann 
and colleagues [12]. In this study, aneuploid genomically 
unstable breast cancers were defined as having the 
broadest distribution of DNA content. To compare the two 
signatures, we derived quartiles of the CIN70 expression 
scores, as previously described[11], in a meta-analysis 
of gene expression datasets deriving from 2423 patients 
with primary breast cancer (Table 1). We assessed the 
representation of genomically unstable (aGU) and 
genomically stable (GS) tumours based on the 12 gene 
signature within each CIN70 expression quartile (Figure 
1). We found a significant trend of increasing proportions 
of genomically unstable tumours with increasing CIN70 
quartiles (Figure 1, p < 0.0001), suggesting that both 
chromosomal instability expression signatures derived 
through independent methods, are highly correlated.

cIn status and histopathological parameters

To assess the association of CIN70 expression 
scores with breast cancer histopathological variables we 
performed a meta-analysis of 13 primary breast cancer 
expression datasets (n=2423 patients). We confirmed 
that tumours of higher grade are enriched with increasing 
chromosomal instability scores assessed by the CIN70 
signature (Figure 2A, p < 0.0001) [13]. Increasing 
CIN70 quartile correlated with higher risk breast cancer 
histopathological features including larger tumour size 
(Figure 2B, p < 0.0001) and the proportion of patients with 
ER negative (Figure 2C, p < 0.0001) or HER2 positive 
(Figure 2D, p < 0.0001) breast cancer. We detected no 

Figure 1: Association of cIn70 gene expression 
signature and the 12 gene genomic instability signature. 
Proportions of genomically unstable (GU) and genomically 
stable (GS) patients, derived by the 12-gene genomic instability 
signature, with CIN70 score quartiles.
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Figure 2: Association of genomic instability expression signatures with clinical parameters. Association of CIN70 quartiles 
(left) and the 12-gene genomic instability signature (right) with tumour grade (Figure 2A), tumour size (Figure 2B), ER status (Figure 2C) 
and HER2 status (Figure 2D).
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association of CIN70 quartiles with lymph node status 
(data not shown). In addition, we assessed the association 
of histopathological parameters with tumours grouped 
by genomically unstable (GU) or genomically stable 
(GS) status based on the independently derived 12 gene 
genomic instability expression signature [12]. Consistent 
with the results obtained with the CIN70 signature, we 
observed that tumours of higher grade (Figure 2A, p < 
0.0001), larger size (Figure 2B, p = 0.0008), ER negative 
(Figure 2C, p < 0.0001) or HER2 positive (Figure 2D, p < 
0.0001) status are enriched in the GU group. Similar to the 
CIN70 analysis, no association of lymph node status with 
GU was observed (data not shown).

Assessment of cIn status with age of breast 
cancer diagnosis

To address whether there is a relationship between 
chromosomal instability status and younger age of 
diagnosis we analysed 8 microarray datasets, for which 

age data were available, comprising 1710 patients and 
classified patients into two groups based on age < 45 years 
(N = 337) and ≥45 years (N = 1373), a standard threshold 
used to separate breast cancer patients. Firstly, we tested 
for differences in CIN70 scores between younger and older 
patients for the combined dataset and found that CIN70 
scores and CIN70 expression quartiles were significantly 
higher in tumours from younger patients (Figure 3A, 
p < 0.00005). In contrast, we observed no significant 
association of aGU tumours in younger patients in the 
combined dataset (Figure 3A, p = 0.3562). We examined 
ER negative and ER positive breast cancers separately 
and found a significant association of higher CIN70 
expression with younger age in both ER positive and ER 
negative breast cancer (Figure 3B, ER negative p = 0.026 
ER positive p = 0.006 suggesting that the differences in 
CIN70 scores are independent of ER status. A significant 
association of younger age with aGU tumours was detected 
in ER negative breast cancer (Figure 3B, p = 0.0053) but 
not in ER positive breast cancer (Figure 3B). Finally, we 
used logistic regression models to test for a significantly 
higher probability for patients being in the younger patient Table 1

 

 CIN70 
0 – 25% 

CIN70 
25 – 50% 

CIN70 
50 – 75% 

CIN70 
75 – 100% 

 Habermann 
GS 

Habermann 
GU 

        
Age (N, %)        
     Median Age  
     (Range) 

55 (25-88) 55 (25-95) 55 (24-93) 52 (24-88)  55 (24 - 88) 54 (25 - 95) 

     Age < 45 70 (16) 71 (17) 89 (21) 107 (25)  187 (19) 150 (21) 
     Age ≥ 45 369 (84) 341 (83) 335 (79) 328 (75)  801 (81) 572 (79) 
     Unknown 176 185 181 171  475 238 
        
Grade (N, %)        
     1 147 (39) 68 (19) 32 (9) 10 (3)  217 (25) 40 (7) 
     2 188 (50) 197 (55) 128 (37) 61 (16)  383 (44) 191 (33) 
     3 40 (11) 93 (26) 185 (54) 311 (81)  276 (31) 353 (60) 
     Unknown 240 239 260 224  587 376 
        
ER Status (N, %)        
     ER Positive 515 (89) 440 (79) 355 (74) 194 (34)  1156 (85) 348 (39) 
     ER Negative 64 (11) 115 (21) 197 (36) 372 (66)  204 (15) 544 (61) 
     Unknown 36 42 53 40  103 68 
        
HER2 Status        
     HER2 Positive 21 (4) 90 (17) 127 (24) 113 (21)  158 (12) 193 (26) 
     HER2 Negative 532 (96) 438 (83) 393 (76) 427 (79)  1129 (88) 661 (74) 
     Unknown 62 69 85 66  176 106 
        
Size (N, %)        
     0 – 2 cm 174 (60) 156 (57) 110 (43) 99 (35)  374 (53) 165 (42) 
     > 2cm 117 (40) 116 (43) 146 (57) 182 (65)  335 (47) 226 (57) 
     Unknown 324 325 349 325  754 569 
        
Lymph Node (N, %)        
     Positive 89 (24) 101 (29) 95 (30) 90 (26)  250 (28) 125 (26) 
     Negative 278 (76) 248 (71) 219 (70) 253 (74)  633 (72) 365 (74) 
     Unknown 248 248 291 263  580 470 
 

table 1: Association of chromosomal instability signatures with clinical parameters. Association 
of CIN70 quartiles and genomic instability grouped by the 12 gene signature with age, grade, tumour size, lymph 
node status, ER status and HER2 status.
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A) Chromosomal Instability vs Age

B) Chromosomal Instability vs Age in ER Subtypes 

C) Meta-Analysis CIN70 Scores vs Age
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Figure 3: Association of genomic instability expression signatures with age at diagnosis. Association of age with CIN70 
quartiles (left) and the 12-gene genomic instability signature (right) for all patients. (Figure 3B) Association of CIN70 scores and the 12-
gene genomic instability signature in ER negative and ER positive breast cancer. (Figure 3C): Forestplot showing the meta-analysis results 
of a logistic regression assessing the odds ratio for the younger patient group vs. the older patient group as CIN70 scores increase.
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group as CIN70 scores increase. We found significant 
differences in 2 out of 9 datasets and a trend for patients 
with higher CIN70 scores being in the younger patient 
group in 5 out of 9 datasets (Figure 3C). When all datasets 
were combined, we found a highly significant association 
of younger age at diagnosis with increased CIN70 scores 
(p < 0.0001). In summary, we have identified evidence for 
the enrichment of CIN, using two independently derived 
CIN signatures, in tumours from younger patients with 
ER negative breast cancer. 

dIscussIon

Clinical and histopathological analyses in breast 
cancer have suggested that cancer in younger women 
appears to be associated with high-risk histopathological 
features and worse clinical outcome. Chromosomal 
instability represents one recognised prognostic feature 
in solid tumours. Given the association of a surrogate 
measure of CIN, the CIN70 expression signature, 
with both numerical CIN and structural chromosomal 
complexity [11], we were able to determine that tumours 
from younger patients with breast cancer were more likely 
to be characterised by high CIN70 expression levels in 
both ER positive and ER negative breast cancer. We 
also demonstrate, using a second independently derived 
measure of CIN, the 12 gene genome instability score, 
that GU/CIN tumours are significantly enriched in ER 
negative breast cancers from younger patients relative 
to patients with ER negative breast cancer older than 
45 years at diagnosis. However, we observed divergent 
results for ER positive breast cancers, where tumours 
from younger patients displayed higher CIN70 scores but 
were unexpectedly enriched within the GS group derived 
by the 12-gene genomic instability signature. Taken 
together, these data suggest that CIN may be a particular 
feature of younger-onset ER negative breast cancers, that 
may define outcome in this high-risk group.

These data are somewhat surprising given the 
potential for aneuploidy and genome instability to be 
generated in aging somatic cells [14-16]. Several lines 
of evidence support the propensity for somatic cells 
to generate aneuploidy and mitotic errors with age. 
Specific changes in gene expression associated with 
the kinetochore, centromere, microtubule and spindle 
assembly apparatus have been associated with age-
dependent aneuploidy [14, 15]. In addition, continued 
telomeric attrition and senescence failure may generate 
mitotically unstable chromosomes through breakage-
fusion-bridge cycles [17, 18]. Therefore, from these data, 
it might be predicted that aneuploidy may be enriched in 
tumours from older patients. In contrast, we find that total 
functional aneuploidy, measured by the CIN70 expression 
signature[13], appears to be enriched in tumours from 
younger patients with ER negative breast cancer. These 

data suggest the need to identify an underlying mechanistic 
basis for this association of younger age at diagnosis with 
CIN in ER negative breast cancer.

Gene expression changes have previously been 
identified that characterise breast tumours in younger 
patients. Anders and colleagues investigated the age-
specific differences in prognosis, clinicopathologic 
variables and gene expression patterns between younger 
(45 years) and older (65 years) women with breast 
cancer and found a distinct set of genes associated with 
the younger cohort – suggesting there might exist age-
related differences at the molecular level [19]. However, 
it is difficult to draw conclusions as to whether these 
differences represent varying prevalence of distinct 
subtypes and tumour grade between distinct age-cohorts 
or whether they reflect other age related differences [20]. 
More recent work by Anders has suggested that the gene 
expression patterns uniting the younger cohort may relate 
to an enrichment of basal-like tumours in this patient 
group [21]. Our data, using two independently derived 
expression measures of CIN, suggest that a molecular 
feature of tumours from younger patients with ER 
negative breast cancers may reflect structural or numerical 
CIN. Consistent with an association of CIN with higher 
risk features, we show here in our meta-analysis that ER 
negative tumours are enriched for CIN, supporting our 
previous analysis in a smaller cohort [11]. These data are 
in agreement with data from Habermann and colleagues 
suggesting that genome instability is a unifying feature 
of higher risk tumours [12] and tumours from younger 
patients display higher expression of surrogate of 
measurements of tumour growth and genomic instability 
[22].

These data should be interpreted with caution and 
require validation by more direct measurements of CIN, 
such as centromeric FISH, rather than our surrogate 
measure using the CIN70 expression signature. Notably, 
we observe concordance for the association of younger 
age with CIN using both CIN expression measures in 
ER negative but not ER positive breast cancers. The 
reasons for this discordance remain unclear, however, 
others have also failed to demonstrate increased structural 
chromosomal complexity in ER positive tumours from 
younger patients by CGH [23]. 

However, evidence that there may be a propensity for 
increased chromosomal instability in breast cancers from 
younger patients with ER negative breast cancer suggests 
the need for such validation approaches and a requirement 
for a greater understanding of the molecular drivers of 
structural and numerical chromosomal instability in ER 
negative breast cancer that may account for this age-
related disparity.
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Methods

Microarray expression data

Publicly available expression microarray data 
were obtained for 9 breast cancer datasets[24-30] and 
“GSE2109”, including 1772 unique patients. Additionally, 
we used four publicly available neo-adjuvant datasets 
representing 651 unique patients [31-34]. 

data Analysis

For datasets measured on Affymetrix HG-U133A, 
HT-HG-U133A or HG-U133 Plus 2.0 platforms, we 
estimated ER and HER2 status by k-medoids clustering 
of the affymetrix probe sets corresponding to the ESR1 
(205225_at) and ERBB2 (216836_s_at) genes according 
to published methods [35]. We estimated CIN70 scores 
by computing the mean expression of the probe sets 
matching the 70 genes comprising the CIN70 signature 
as described [11, 13]. For microarray platforms where 
not all 70 genes were present on the array platform, we 
computed the mean over all CIN70 genes present on the 
particular platform. For all analyses, CIN70 scores were 
first estimated for each dataset separately and normalized 
to a standard normal distribution. The normalized CIN70 
scores of all datasets were then combined and CIN70 
score quartiles were defined based on the combined 
CIN70 scores. Additionally, all patients were grouped 
into genomically unstable (GU) and genomically stable 
(GS) patients based on a 12 gene genomic instability 
signature derived by Habermann et al[12]. The expression 
of all genes matching the 12 gene signature was utilised 
to cluster the data into GS and GU patients by k-medoids 
clustering. For further analysis, we used the average 
expression values of genes matching several probe sets. 
The cluster membership was derived by comparing the 
expression direction of the genes in the signature with 
published results [12]. The To assess the association of 
the GS and GU groups or CIN70 scores with age, grade, 
size, lymph node, HER2 and ER status all datasets, where 
the particular information was available, were combined.

statistical Analysis

All breast cancer patients where information about 
age was available were grouped into young (age < 45) 
and old (age ≥ 45). Tumours were classified into small 
(0 – 2 cm) and large (> 2 cm). To assess the difference in 
CIN70 scores between young and old patients in a meta-
nalaysis, a logistic regression model was used to obtain 
odds ratios for each dataset separately. Additionally, we 
tested for differences between young and old patients in 

ER negative and ER positive separately with two-sided 
t-tests. Cochrane-Armitage trend tests were performed to 
test for an association of increasing CIN70 quartiles with 
age, pathological complete response, size, lymph node, 
HER2 and ER status and to test for a trend of grade 3 
versus grade 1 and 2 tumours [36]. We used Fishers exact 
tests for the comparison of proportions in 2x2 contingency 
tables. All data analysis and statistics was performed in 
the R statistical environment version 2.11.1. 
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