TiO2 microring resonators with high Q and compact footprint fabricated by a bottom-up method

Li, Gaoyuan; Fu, Meicheng; Zheng, Yi; Guan, Xiaowei

Published in:
Optics Letters

Link to article, DOI:
10.1364/OL.400644

Publication date:
2020

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
TiO$_2$ microring resonators with high Q and compact footprint fabricated by a bottom-up method

GAOYUAN LI,1 MEICHENG FU,1,2 Yi ZHENG,1 * and XIAOWEI GUAN1,*

1DTU Fotonik, Department of Photonics Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
2Department of Physics, National University of Defense Technology, 410073 Changsha, China
*Corresponding author: xgu@fotonik.dtu.dk

Received 18 June 2020; revised 5 August 2020; accepted 5 August 2020; posted 6 August 2020 (Doc. ID 400644); published 4 September 2020

Titanium dioxide (TiO$_2$) microring resonators (MRRs) with high quality factors (Qs) are demonstrated by using a new, to the best of our knowledge, bottom-up fabrication method. Pattern platforms with a T-shaped cross section are first defined by etching a thin top layer of silicon nitride and a thick bottom layer of silica and partially undercutting the silica. Then, TiO$_2$ is deposited on the platforms to form the TiO$_2$ waveguides and devices. TiO$_2$ MRRs with different bending radii, waveguide widths, and gaps in the bus waveguide are fabricated and measured. The intrinsic Q (Q_{int}) is achieved to be $\sim 1.1 \times 10^5$ at the telecommunication wavelengths, corresponding to a bend waveguide loss of 3.9 dB/cm while the compact MRR with a radius of 10 μm can still sustain a Q_{int} of $\sim 10^5$. These results not only unfold the feasibilities of the proposed bottom-up method for fabricating TiO$_2$ waveguides and MRRs with high Qs and compact footprints but also suggest a new approach for fabricating waveguides in other materials, of which direct etching is not easily accessible. © 2020 Optical Society of America

https://doi.org/10.1364/OL.400644

Provided under the terms of the OSA Open Access Publishing Agreement

Titanium dioxide (TiO$_2$) has recently evolved as a promising candidate for photonic integrated circuits (PICs) by possessing high linear and nonlinear indices, a large bandgap (>3 eV), a uniquely negative thermo-optic coefficient, and a large transparency window from visible to mid infrared wavelengths [1–18]. Besides, the possible compatibility with the mature silicon complementary metal oxide semiconductor (CMOS) fabrication process also endorses TiO$_2$–based PICs in terms of scalable manufacturing [19]. Among different PIC devices, the microring resonator (MRR) is a fundamental building block for many applications that enhances the local optical field intensity in a small area. TiO$_2$ MRRs have also been widely studied and play a vital role in applications like thermal optical filters [15] or Raman sensing [18].

Several methods have been demonstrated to pattern TiO$_2$ waveguides, including ion implantation [1], wet etching [2], dry etching [3–13], and lift-off [14,15]. Among them, the top-down method, in which TiO$_2$ film is first deposited and then selectively etched with a mask, has normally been used. However, different from selective etching of silicon, silica, and silicon nitride, which have been intensively optimized and easily accessible, selective etching of TiO$_2$ remains a challenge, especially for fabricating sub-μm-wide waveguides with dry etching like reactive-ion etching (RIE). This may be attributed to the fact that most of the Ti-contained etch products have a high boiling point and are not easily volatile during the ion etching [20], and that Ti/TiO$_2$ is a hard material itself that acts as the hard mask for etching other metals [21,22]. These not only challenge the mask selection for TiO$_2$ etching, but also produce rough sidewalls with residues. Whereas thick UV sensitive polymer resists could perform as the etch mask, the fabricated TiO$_2$ waveguide exhibited a high loss (5.5 dB/cm [3]) or possessed a very thin TiO$_2$ core of 140 nm despite a quite low loss of 0.68 dB/cm [4]. Meanwhile, the thick UV resists are not suitable for fabricating sub-μm structures, especially for the small gaps between an MRR and the bus waveguide. Sub-μm-wide TiO$_2$ waveguides could be fabricated with a metal mask, but the waveguide losses were usually high, which inevitably resulted in TiO$_2$ MRRs with moderate intrinsic Qs (e.g., 2.2 \times 104 at the wavelength of 635 nm [6], 8.9 \times 104 at 1550 nm [10], 7.35 \times 104 at 1550 nm [13]). In order to avoid TiO$_2$ etching, lift-off processes have been developed for high-Q TiO$_2$ MRRs $(2 \times 10^5 [14], 1.55 \times 10^5 [15]).$ However, limited by the weak confinement of TiO$_2$ waveguides fabricated with the lift-off process, MRRs usually had large footprints, e.g., with a radius of 150 μm [14] and 200 μm [15].

Here, we demonstrate a new bottom-up method for fabricating TiO$_2$ waveguides and MRRs. In this method, TiO$_2$ waveguides are formed by depositing TiO$_2$ on pattern platforms with a T-shaped cross-section profile, which is fabricated by deep etchings to the thin top layer of silicon nitride (Si$_3$N$_4$) and the thick bottom layer of silica (SiO$_2$) and an undercut etching with a hydrofluoric (HF) acid solution. Thus, the direct dry etching to the TiO$_2$ material is avoided and all the involved etching processes are indeed easily accessible in today’s laboratories or foundries. Measurements to the fabricated TiO$_2$ MRRs show intrinsic Qs of $\sim 1.1 \times 10^5$, comparable to that from the lift-off
processes, and MRRs with sub-μm waveguide widths or a small radius of 10 μm exhibit close Qs. These results not only verify the high feasibilities of our bottom-up method for fabricating high-Q TiO₂ MRRs, but also suggest a new approach for waveguide fabrication in other materials of great importance but few off-the-shelf fabrication processes.

The proposed bottom-up fabrication flow is illustrated in Fig. 1. Starting with a Si wafer with a 2.4-μm oxidized SiO₂ layer, a thin (50 nm) layer of Si₃N₄ is first deposited with a low-pressure chemical-vapor-deposition (LPCVD) method [Fig. 1(a)]. Then an 80-nm chromium (Cr) layer is deposited by electron beam evaporation [Fig. 1(b)]. Next, the waveguide patterns are defined by e-beam lithography, first on ZEP resist and then on Cr by dry etching [Fig. 1(c)]. The Cr etching is completed in a RIE machine with a gas mixture of chlorine (Cl₂, 50 sccm) and oxygen (O₂, 20 sccm) at a pressure of 500 mTorr, a power of 15 W, and a platen power of 1 W. With Cr as the hard mask, the thin Si₃N₄ layer is first dry-etched with a gas mixture of carbon tetrafluoride (CF₄, 100 sccm) and oxygen (O₂, 50 sccm) at a substrate temperature of 0°C, a pressure of 3 mTorr, and a platen power of 15 W [Fig. 1(d)]. Then a deep etching is carried out to etch through the 2.4-μm-thick SiO₂ layer with the Si substrate being a thin etched one [Fig. 1(e)]. A gas mixture of octafluorocyclobutane (C₈F₈, 40 sccm) and oxygen (O₂, 5 sccm) at a substrate temperature of 55°C, a pressure of 6 mTorr, and a platen power of 180 W is used for the deep etching after stripping the residual Cr in Etchant 18 solution, 5% HF solution is used to etch SiO₂ for 5 min with ∼130 nm cut on both sides. This leaves pattern platforms with a T-shaped cross section [Fig. 1(f)]. Then TiO₂ is deposited by ion-beam sputtering (IBS), as described in our previous work [13]. One can deposit as thick TiO₂ as needed, as long as the SiO₂/Si etching is deep enough. Here, a 350-nm-thick TiO₂ layer is deposited. Finally, the TiO₂ waveguides are polished by the 5% HF solution for 3 min with 250-nm-thick TiO₂ left.

Figure 2(a) shows the scanning electron microscopy (SEM) image of a TiO₂ waveguide after the TiO₂ deposition but prior to the HF polishing. From the SEM image, rough sidewalls are found. This is because the incident particle beam sputter out from the Ti target to the sample has an angle far beyond the optimal angle with the sidewall surfaces of the Si₃N₄/SiO₂ pattern platform and the TiO₂ core and, hence, yields TiO₂ with very low density [23] or even porosity grown on the sidewalls. Tremendous scattering loss would be introduced by such sidewalls, which, however, can be mitigated by the HF etching for 3 min, as shown by the SEM image in Fig. 2(b). Meanwhile, since there is more/wider low-density TiO₂ on the sidewalls towards the bottom and the HF etching is faster for such low-density TiO₂ than the denser TiO₂ on the top surface, the TiO₂ core is shaped to be inversely trapezoidal by the HF polishing. After polishing, the waveguides are narrowed down and gaps between the bus waveguide and the MRR are inevitably large, i.e., >260 nm. Racetrack structures are used to guarantee sufficient light coupling into the resonators, as shown by the SEM image in Fig. 2(c). Radius and straight length of the MRRs are denoted as R and L, respectively, and L is 20 μm for all our fabricated MRRs. Figure 2(d) shows the SEM image of the cross section of the straight coupling region of a fabricated TiO₂ MRR. In the figure, the T-shaped Si₃N₄/SiO₂ pattern platform and the inversely trapezoidal TiO₂ waveguide core can be more clearly recognized. The top and bottom widths of the waveguide core are denoted as w₁ and w₂, respectively. Moreover, the gap in the bus waveguide is defined as the distance between the upper borders of the two inversely trapezoidal TiO₂ waveguide cores.

We have fabricated TiO₂ MRRs with two different waveguide widths, i.e., w₁ = 1370 nm (w₂ = 1180 nm) and w₁ = 870 nm (w₂ = 680 nm). The narrower one is a single-mode waveguide while the wider one can support higher-order modes. Here, we only focus on the transverse-electric (TE) polarization. Figures 3(a) and 3(b) show the simulated electric field intensity distributions of the fundamental mode (TE₀) profiles for the wider and narrower waveguides, respectively, at the wavelength of 1550 nm. The effective refractive index is calculated to be 1.745 and the effective mode area is 0.51 μm² for the wider TiO₂ waveguide at 1550 nm, while they are 1.597 and 0.34 μm² for the narrower one. Meanwhile, power confinement ratios in the TiO₂ core are calculated to be 63.3% and 60.4% for the wider and the narrower waveguides, respectively. While the narrower waveguide may be preferred for, e.g., non-linear applications due to a smaller effective area [24], the wider one may exhibit a lower loss since the mode apparently overlaps less with the sidewalls, which couldn’t be perfectly smooth under current fabrication techniques.

Figure 4(a) shows the measured and normalized (to a straight TiO₂ waveguide) transmission spectra of the fabricated TiO₂
MRRs with $w_1 = 1370$ nm, $R = 130$ μm and gaps of 310 nm (red) and 360 nm (blue). The spectra show that the extinction ratios (ERs) increase with the increasing wavelength and the decreasing gap, both of which indicate a stronger light coupling to the MRR. Thus, it can be deduced that the MRRs are under-coupling. By using the same method as that in Ref. [14], we have used the Lorentzian curve to fit the spectrum around each resonance and extracted the loaded Q (Q_{load}) and intrinsic Q (Q_{int}) and calculated the bend waveguide loss at each resonant wavelength. Figure 4(b) shows the extracted Q_{int} (filled circles) and loss (filled triangular) of the two MRRs at each resonant wavelength. Q_{int} of both the two TiO$_2$ MRRs distributes around 1.1×10^5 (dashed blue line) in the whole investigated wavelength range from 1520 nm to 1620 nm. The waveguide loss can be attributed to scattering and absorption. We use a simple formula to fit the waveguide loss α as a function of the wavelength, as shown by

$$\alpha = \frac{a}{\lambda^4} + b, \quad (1)$$

where λ is the wavelength and a and b are coefficients to be fitted. The first part represents the Rayleigh scattering loss, which originates from the sidewall roughness or the scatters inside the TiO$_2$ core and is inversely proportional to the fourth power of λ [25]. The second part is a constant representing the TiO$_2$ absorption loss since the power confinements in the waveguide core are almost constant, i.e., from 64.3% at 1520 nm to 61.0% at 1620 nm. Thus, a and b are fitted to be 13.5×10^{12} nm4 dB/cm and 1.6 dB/cm, respectively, and, therefore, $\alpha = 3.9$ dB/cm at 1550 nm. The solid blue line in Fig. 4(a) shows the fitted curve.

The solid blue line in Fig. 5(a) shows the measured and normalized transmission spectrum of a fabricated TiO$_2$ MRR with $w_1 = 870$ nm, $R = 130$ μm, and gap = 460 nm. We have also calculated the coupling efficiency between the bus waveguide and the MRR, as shown by the solid red line in Fig. 5(a). The coupling efficiency increases from 0.08 to 0.25 as the wavelength increases from 1520 nm to 1620 nm. Around 1555 nm, the resonator is around the critical coupling, i.e., the coupling efficiency equals the single-round trip loss of the MRR (assuming no loss in the coupler [26]), showing the largest ERs more than 25 dB. The MRR is under-coupling at wavelengths shorter than 1555 nm and over-coupling at wavelengths longer than 1555 nm. With this, the Q_{int} of the MRR and the waveguide loss at each resonant wavelength are extracted and shown by the green dots and the red dots in Fig. 5(b), respectively. The Q_{int} around 1550 nm is about 0.9×10^5. We also use Eq. (1) to fit the loss as a function of wavelength, as shown by the solid blue line in Fig. 5(b), and a and b values are fitted to be 24×10^{12} nm4 dB/cm and 1.22 dB/cm, respectively. Thus, the total loss at 1550 nm is 5.4 dB/cm with scattering and absorption accounting for 77% and 23%, respectively. Partially due to less light being confined in the TiO$_2$ core, the absorption loss of the narrower waveguide is slightly smaller than that of the wider one. However, the contribution of the scattering to the total loss...
in the narrower waveguide is apparently larger since more field overlaps the sidewalls.

Thanks to the large refractive index of TiO$_2$, a TiO$_2$ MRR may confine light in a very compact dimension, which can considerably strengthen the light-matter interaction or boost the nonlinear effect. We have also used the proposed bottom-up method to fabricate TiO$_2$ MRRs with very compact footprints. Figure 6 shows the measured and normalized spectrum of a TiO$_2$ MRR with $w_1 = 1370$ nm, $R = 10$ µm, and gap = 360 nm. The free-spectral range (FSR) is measured to be 9.8 nm. The inset shows the close-up spectrum (blue dots) around the resonance at 1565.411 nm. Meanwhile, a Fano-like fitting (red line) is used to fit the measured spectrum by taking into account the influence of the Fabry–Perot (F-P) cavity formed between the two facets of the bus waveguide. From the fitting, one can extract a linewidth of 25 pm resulting in a Q_{int} of 1.006 \times 105 and a bend waveguide loss of \sim4.2 dB/cm, which are the same as that extracted from a pure Lorentzian fitting due to the very weak influence of the F-P cavity and at the same level as that of the large MRRs (i.e., $R = 130$ µm). This clearly shows the feasibility of our proposed bottom-up fabrication method for TiO$_2$ MRRs with very compact footprints.

In summary, by first fabricating pattern platforms with a T-shaped cross section and then depositing TiO$_2$ to form the waveguide, we have demonstrated a new bottom-up method for fabricating TiO$_2$ waveguides without direct dry etching to the TiO$_2$. With this method, TiO$_2$ MRRs are fabricated and intrinsic Q values of \sim1.1 \times 105 are achieved, comparable to the state-of-the-art results [14,15]. The fabricated TiO$_2$ MRR with a bending radius of 10 µm can sustain a Q value of \sim105, showing the strong confinement of the TiO$_2$ waveguide and the feasibility of the proposed bottom-up method for fabricating very compact TiO$_2$ MRRs. Measurements and analysis of an MRR with the TiO$_2$ single-mode waveguide suggest that the scattering loss is dominant while the absorption loss is still not negligible. The scattering loss may be further lowered down by optimizing the metal mask etching. Meanwhile, more optimization to the TiO$_2$ deposition, e.g., finer adjustment to the O$_2$ flow during the reactive sputtering, is needed to reduce the absorption loss [4]. Apart from being used for the fabrication of the TiO$_2$ waveguides and MRRs with high Qs and compact footprints, our method can also be seen as a simple way to validate the feasibility of waveguides with new materials, especially the ones whose etching is complex to optimize or contaminates the existing fabrication line.