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Hyperplane Sections of Determinantal Varieties

over Finite Fields and Linear Codes

Peter Beelen Sudhir R. Ghorpade

Abstract

We determine the number of Fq-rational points of hyperplane sections of classical deter-
minantal varieties defined by the vanishing of minors of a fixed size of a generic matrix, and
identify sections giving the maximum number of Fq-rational points. Further we consider
similar questions for sections by linear subvarieties of a fixed codimension in the ambient
projective space. This is closely related to the study of linear codes associated to determi-
nantal varieties, and the determination of their weight distribution, minimum distance and
generalized Hamming weights. The previously known results about these are generalized
and expanded significantly.

1 Introduction

The classical determinantal variety defined by the vanishing all minors of a fixed size in a generic
matrix is an object of considerable importance and ubiquity in algebra, combinatorics, algebraic
geometry, invariant theory and representation theory. The defining equations clearly have integer
coefficients and as such the variety can be defined over any finite field. The number of Fq-rational
points of this variety is classically known. We are mainly interested in a more challenging ques-
tion of determining the number of Fq-rational points of such a variety when intersected with
a hyperplane in the ambient projective space, or more generally, with a linear subvariety of a
fixed codimension in the ambient projective space. In particular, we wish to know which of these
sections have the maximum number of Fq-rational points. These questions are directly related
to determining the complete weight distribution and the generalized Hamming weights of the
associated linear codes, which are called determinantal codes. In this setting, the problem was
considered in [2] and a beginning was made by showing that the determination of the weight
distribution is related to the problem of computing the number of generic matrices of a given
rank with a nonzero “partial trace”. More definitive results were obtained in the special case
of varieties defined by the vanishing of all 2 × 2 minors of a generic matrix. Here we settle the
question of determination of the weight distribution and the minimum distance of determinan-
tal codes in complete generality. We also show that the determinantal code is generated by its
minimum weight codewords. Further, we determine some initial and terminal generalized Ham-
ming weights of determinantal codes. This is then used to show that the duals of determinantal
codes have minimum distance 3. Analogous problems have been considered for other classical
projective varieties such as Grassmannians, Schubert varieties, etc., leading to interesting classes
of linear codes which have been of some current interest; see, for example, [17], [13], [14], [22],
[12], [3], and the survey [16].

As was mentioned in [2] and further explained in the next section and Remark 3.8, the results
on the weight distribution of determinantal codes are also related to the work of Delsarte [10]
on eigenvalues of association schemes of bilinear forms using the rank metric as distance. Rav-
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agnani [18] has shown that these results by Delsarte can also be obtained using the MacWilliams
identities for certain rank-metric codes. We remark that a special case of these results was con-
sidered by Buckhiester [7]. However, none of these results readily imply a general formula for
the minimum distance of determinantal codes. Moreover, as far as we know, no results about
the generalized Hamming weights of determinantal codes were known except in a special case
that was considered in [2].

A more detailed description of the contents of this paper is given in the next section, while the
main results are proved in the two sections that follow the next section. An appendix contains
self-contained and alternative proofs of some results that were deduced from the work of Delsarte
and this might be of an independent interest.

2 Preliminaries

Fix throughout this paper a prime power q, positive integers `,m, and an `×m matrix X = (Xij)
whose entries are independent indeterminates over Fq, and a nonnegative integer t. We will
denote by Fq[X] the polynomial ring in the `m variables Xij (1 ≤ i ≤ `, 1 ≤ j ≤ m) with
coefficients in Fq. As usual, by a minor of size t or a t× t minor of X we mean the determinant
of a t × t submatrix of X, where t is a nonnegative integer ≤ min{`,m}. As per standard
conventions, the only 0× 0 minor of X is 1. We will be mostly interested in the class of minors
of a fixed size, and this class is unchanged if X is replaced by its transpose. With this in view,
we shall always assume, without loss of generality, that ` ≤ m. Given a field F, we denote by
M`×m(F) the set of all `×m matrices with entries in F. Often F = Fq and in this case we may
simply write M`×m for M`×m(Fq). Note that M`×m can be viewed as an affine space A`m over
Fq of dimension `m. For 0 ≤ t ≤ `, the corresponding classical determinantal variety (over Fq)
is denoted by Dt(`,m) and defined as the affine algebraic variety in A`m given by the vanishing
of all (t+ 1)× (t+ 1) minors of X; in other words

Dt(`,m) = {M ∈M`×m(Fq) : rank(M) ≤ t} .

Note that D0(`,m) only consists of the zero-matrix. For t = `, no (t+ 1)× (t+ 1) minors of X
exist. This means that D`(`,m) = M`×m, which is in agreement with the above description of
D`(`,m) as the set of all matrices of rank at most `. Further, we define

D̂t(`,m) := {P ∈ P`m−1(Fq) : rank(P ) ≤ t}

where P`m−1(Fq) = P(M`×m) and for P ∈ P`m−1(Fq), we denote by rank(P ), the rank of a
representative in M`×m(Fq) of P . Since the rank of a matrix is unaltered upon multiplication by

a nonzero scalar, the set D̂t(`,m) is well defined. Indeed, it corresponds to the set of Fq-rational
points of the projective algebraic variety defined by the homogeneous ideal It+1 generated by all
(t+ 1)× (t+ 1) minors of X.

It will also be convenient to define for 0 ≤ t ≤ `,

Dt(`,m) := {M ∈M`×m(Fq) : rank(M) = t} and µt(`,m) := |Dt(`,m)|.

A formula for µt(`,m) is classically known and goes back at least to Landsberg [15]. We state it
below for ease of reference. A proof is outlined in [2, Prop. 2], see also [18, Lem. 59].

µt(`,m) =

[
m

t

]
q

t−1∏
i=0

(q` − qi) = q(
t
2)
t−1∏
i=0

(
q`−i − 1

) (
qm−i − 1

)
qi+1 − 1

, (1)
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where
[
m
t

]
q

denotes the Gaussian binomial coefficient defined by

[
m

t

]
q

:=
[m]q!

[t]q![m− t]q!
, where [n]q! :=

n∏
i=1

(qi − 1), for any n ≥ 0.

Observe that µ0(`,m) = 1 and

µt(`,m) = q(
t
2)
[
m

t

]
q

[`]q!

[`− t]q!
= q(

t
2) [m]q![`]q!

[m− t]q![t]q![`− t]q!
= q(

t
2)
[
`

t

]
q

[m]q!

[m− t]q!
.

Next we define

νt(`,m) :=

t∑
s=0

µs(`,m) and ν̂t(`,m) :=
νt(`,m)− 1

q − 1
=

1

q − 1

t∑
s=1

µs(`,m).

It is clear that
|Dt(`,m)| = νt(`,m) and |D̂t(`,m)| = ν̂t(`,m). (2)

We are now ready to define the codes we wish to study. Let n̂ := |D̂t(`,m)| and choose an

ordering P1, · · · , Pn̂ of the elements of D̂t(`,m). Further choose representatives Mi ∈M`×m(Fq)
for Pi (1 ≤ i ≤ n̂). Then consider the evaluation map

Êv : Fq[X]1 → Fn̂q defined by Êv(f) := ĉf := (f(M1), . . . , f(Mn̂)) ,

where Fq[X]1 denotes the space of homogeneous polynomials in Fq[X] of degree 1 together

with the zero polynomial. We define Ĉdet(t; `,m) to be the image of Êv. A different choice of
representatives or a different ordering of these representatives gives in general a different code, but
basic quantities like minimum distance, weight distribution, and generalized Hamming weights
are independent on these choices. It is easy to see (cf. [2, Prop. 2]) that Ĉdet(t; `,m) is a q-ary

nondegenerate [n̂, k̂] code, where k̂ = `m. For t = 1, it was shown in [2] that Ĉdet(t; `,m) has
minimum distance q`+m−2. In fact the first m+ 1 generalized Hamming weights were computed
in [2, Thms. 2 and 3] for t = 1. In this article, we prove analogous results for arbitrary t.

The relation between counting Fq-rational points of linear sections of the determinantal vari-

ety D̂t(`,m) and the parameters of the determinantal code Ĉdet(t; `,m) is simply the following:

wH(ĉf ) = n̂− |D̂t(`,m) ∩Hf |,

where Hf is the hyperplane in P`m−1(Fq) corresponding to a nonzero f ∈ Fq[X]1. Hence, de-

noting by d(Ĉdet(t; `,m)) (resp. dr(Ĉdet(t; `,m))) the minimum distance (resp. rth generalized

Hamming weight) of Ĉdet(t; `,m):

n̂− d(Ĉdet(t; `,m)) = max{|D̂t(`,m) ∩H| : H hyperplane in P`m−1(Fq)}

and

n̂− dr(Ĉdet(t; `,m)) = max{|D̂t(`,m) ∩ L| : L codimension r linear subspace of P`m−1(Fq)}.

We collate below some basic facts shown in [2, Lem. 1, Cor. 1]:
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Fact 2.1 Let f =
∑`
i=1

∑m
j=1 fijXij ∈ Fq[X]1, and let F = (fij) be the coefficient matrix of

f . Then the Hamming weight of the corresponding codeword ĉf of Ĉdet(t; `,m) depends only on
rank(F ). Consequently, if r = rank(F ), then

wH(ĉf ) = wH(ĉτr ), where τr := X11 + · · ·+Xrr.

As a result, the code Ĉdet(t; `,m) has at most `+ 1 distinct weights, viz., wH(ĉτr ) for 0 ≤ r ≤ `.

We call the polynomial τr in Fact 2.1 the rth partial trace. Note that τ0 = 0. Next, we define

ŵr(t; `,m) := wH(ĉτr ) for r = 0, 1, . . . , `.

Note that ŵ0(t; `,m) = 0. To determine the other weights ŵr(t; `,m), one would need to count
the number of M ∈ M`×m(Fq) of rank at most t with nonzero rth partial trace. Delsarte [10]
used the theory of association schemes to solve an essentially equivalent problem of determining
the number wr(t; `,m) of M ∈ Dt(`,m) with τr(M) 6= 0, and showed:

wr(t; `,m) =
q − 1

q

(
µt(`,m)−

∑̀
i=0

(−1)t−iqim+(t−i
2 )
[
`− i
`− t

]
q

[
`− r
i

]
q

)
. (3)

The case r = ` = m was already dealt with by Buckhiester in [7]. More recently, an alternative
approach to Delsarte’s formula (3) was given by Ravagnani [18] using the MacWilliams identities
for suitable Delsarte rank metric codes. Thus in [18, Thm. 65], it is shown that the number of
`×m matrices M over Fq of rank t with τr(M) = 0 is given by

1

q

∑̀
i=0

(−1)t−iqmi+(t−i
2 )
[
`− i
`− t

]
q

([
`

i

]
q

+ (q − 1)

[
`− r
i

]
q

)
.

To see that this is equivalent to (3) it suffices to note that

µt(`,m) =
∑̀
i=0

(−1)t−iqmi+(t−i
2 )
[
`− i
`− t

]
q

[
`

i

]
q

. (4)

This follows, for instance by putting r = 0 in (3). An alternative proof of the equivalence of
(1) and (4) can be easily obtained using elementary properties of Gaussian binomial coefficients,
e.g., [1, Thm. 3.3].

In the appendix of this paper, we obtain using different methods an alternative formula for
wr(t; `,m), which may be of independent interest. For future use, we define

ŵr(t; `,m) :=
wr(t; `,m)

q − 1
for 0 ≤ r ≤ ` and 1 ≤ t ≤ `.

From Delsarte’s result it follows that

ŵr(t; `,m) =
1

q

(
µt(`,m)−

∑̀
i=0

(−1)t−iqim+(t−i
2 )
[
`− i
`− t

]
q

[
`− r
i

]
q

)
. (5)

Consequently, the nonzero weights of Ĉdet(t; `,m) are given by

ŵr(t; `,m) =

t∑
s=1

ŵr(s; `,m) =

t∑
s=1

1

q

(
µt(`,m)−

∑̀
i=0

(−1)t−iqim+(t−i
2 )
[
`− i
`− t

]
q

[
`− r
i

]
q

)
, (6)
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for r = 1, . . . , `. However, for a fixed t, it is not obvious how ŵ1(t; `,m), . . . , ŵ`(t; `,m) are ordered
or even which among them is the least. It is also not clear whether or not ŵ1(t; `,m), . . . , ŵ`(t; `,m)
are distinct.

Example 2.2 If t = 0 the code Cdet(t; `,m) is trivial (containing only the zero word), while the

code Ĉdet(t; `,m) is not defined. Therefore the easiest nontrivial case occurs for t = 1. This case
was considered in [2], where is was shown that

ŵr(1; `,m) = q`+m−2 + q`+m−3 + · · ·+ q`+m−r−1 = q`+m−r−1
qr − 1

q − 1
. (7)

These formulae also follow fairly directly from (5) and (6). It follows directly that ŵ1(1; `,m) <
ŵ2(1; `,m) < · · · < ŵ`(1; `,m) and that ŵ1(1; `,m) = q`+m−2 is the minimum distance of

Ĉdet(1; `,m).

Example 2.3 In this example we consider the determinantal code Ĉdet(t; 4, 5) in case q = 2 and
1 ≤ t ≤ 5. Using the formulae in (5) and (6), we find the following table:

r 1 2 3 4
ŵr(1; `,m) 128 192 224 240
ŵr(2; `,m) 13568 16256 16576 16480
ŵr(3; `,m) 201728 212480 211712 211840
ŵr(4; `,m) 524288 524288 524288 524288

One sees that it is not true in general that ŵr(t; `,m) < ŵs(t; `,m) whenever r < s. However, in
this example it is true that for a given t, the weight ŵ1(t; `,m) is the smallest among all nonzero
weights ŵr(t; `,m).

Example 2.4 In case t = ` in the previous example, all weights ŵ1, . . . , ŵ` were the same. This
holds in general: If t = `, then D̂t = P`m−1 and Ĉdet(t; `,m) is the simplex code of dimension
`m. All nonzero codewords in this code therefore have weight q`m−1. Note that combining this
with (5) and (6) we obtain for 1 ≤ r ≤ ` the following identity

q`m−1 =
∑̀
s=1

1

q

(
µs(`,m)−

∑̀
i=0

(−1)s−iqim+(s−i
2 )
[
`− i
`− s

]
q

[
`− r
i

]
q

)
.

Using (2) with t = `, we see that for 1 ≤ r ≤ ` apparently the following identity holds∑̀
s=1

∑̀
i=0

(−1)s−iqim+(s−i
2 )
[
`− i
`− s

]
q

[
`− r
i

]
q

= −1.

This identity may readily be shown using for example [1, Thm 3.3] after interchanging the sum-
mation order. In any case, it is clear that (5) and (6) may not always give the easiest possible
expression for the weights.

While for t = 1 and t = ` all weights ŵr(t; `,m) are easy to compare with one another, the
same cannot be said in case 1 < t < `. The following seems plausible.

Conjecture 2.5 Let ` ≤ m be positive integers and t an integer satisfying 1 < t < `. Then:

1. All weights ŵ1(t; `,m), . . . , ŵ`(t; `,m) are mutually distinct.

2. ŵ1(t; `,m) < ŵ2(t; `,m) < · · · < ŵ`−t+1(t; `,m).

3. For all `− t+ 2 ≤ r ≤ `, the weight ŵr(t; `,m) lies between ŵr−2(t; `,m) and ŵr−1(t; `,m).

5



3 Minimum distance of determinantal codes

Recall that in general for a linear code C of length n, i.e., for a linear subspace C of Fnq , the
Hamming weight of a codeword c = (c1, . . . , cn), denoted wH(c) is defined by

wH(c) := |{i : ci 6= 0}|.

The minimum distance of C, denoted d(C), is defined by

d(C) := min{wH(c) : c ∈ C, c 6= 0}.

A consequence of Conjecture 2.5 would also be that ŵ1(t; `,m) is the minimum distance of

Ĉdet(t; `,m). We will now show that this is indeed the case. We start by giving a rather compact
expression for ŵ1(t; `,m).

Proposition 3.1 Let t, `, and m be integers satisfying 1 ≤ t ≤ ` ≤ m. Then

ŵ1(t; `,m) = q`+m−2νt−1(`− 1,m− 1).

Proof. First suppose that t = 1. In this case Example 2.2 implies that ŵ1(1; `,m) = qm+`−2.
On the other hand, using (1) and (2), we see that |Dt−1(` − 1,m − 1)| = µ0(` − 1,m − 1) = 1.
So the proposition holds for t = 1.

From now on, we assume that t > 1 and consequently ` > 1. We will show that

ŵ1(t; `,m) = q`+m−2µt−1(`− 1,m− 1) = q`+m−2+(t−1
2 )

t−1∏
i=1

(
q`−i − 1

) (
qm−i − 1

)
qi − 1

. (8)

Once we have shown this, the proposition follows using (2) and (6). Let M = (mij) ∈ Dt(`,m)
and suppose τ1(M) = m11 6= 0. In that case, we may find uniquely determined square matrices

A =


1 0
a1 1
...

. . .

a`−1 0 1

 and B =


1 b1 · · · bm−1

1 0
. . .

0 1

 ,

such that

AMB =


m11 0 · · · 0

0

0 M̃
0

 . (9)

The matrices A and B are indeed uniquely determined, since for 2 ≤ i ≤ ` and 2 ≤ j ≤ m,

0 = (AMB)i1 = ai−1(MB)11 + (MB)i1 = ai−1m11 +mi1

and
0 = (AMB)1j = (AM)11bj−1 + (AM)1j = m11bj−1 +m1j .

These equations determine the values of a1, . . . , bm given the matrix M . The map

φ : {M ∈ Dt(`,m) |m11 6= 0} → Dt−1(`− 1,m− 1) given by φ(M) := M̃

6



is therefore well-defined. Moreover, φ is clearly surjective (one can for example choose M as in

the right hand side of (9)), while the preimage of any matrix M̃ ∈ Dt−1(`− 1,m− 1) consist of
the (q− 1)q`+m−2 matrices of the form A−1MB−1, with A and B as above and again M chosen
as in the right-hand-side of (9). Considering the fibers of the map φ, we see that

w1(t; `,m) = |{M ∈ Dt(`,m) |m11 6= 0}| =
∑
M̃

|φ−1(M̃)| = |Dt−1(`− 1,m− 1)|(q − 1)q`+m−2.

Equation (8), and hence the proposition, follows directly from this. 2

Note that the expression for ŵ1(t; `,m) from (5) is considerably more involved than that in
(8). We now turn our attention to proving that ŵ1(t; `,m) actually is the minimum distance of

the code Ĉdet(t; `,m). The proof involves several identities concerning ŵ(t; `,m) and ŵ(t; `,m).
The key is an alternative expression for ŵr(t; `,m) involving the quantity A(r, t) which is defined
as follows. For 1 ≤ r ≤ ` ≤ m, set A(r, 0) := 0 and further, for 0 ≤ t < `, set

A(r, t) := qtŵr−1(t; `− 1,m− 1) + qt−1 (µt(`− 1,m)− µt(`− 1,m− 1) ) .

Theorem 3.2 Suppose 1 ≤ r ≤ ` ≤ m and 1 ≤ t < `. Then

ŵr(t; `,m) = A(r, t)−A(r, t− 1) + qm−1µt−1(`− 1,m).

Proof. If t = 1, the theorem follows easily using (7). Now assume that 1 < t < `. Given a
matrix M = (mij) ∈ Dt(`,m), we denote by ψ(M) the matrix obtained from M by deleting
its rth row. Since either ψ(M) ∈ Dt(` − 1,m) or ψ(M) ∈ Dt−1(` − 1,m), this defines a map
ψ : Dt(`,m)→ Dt(`− 1,m)

∐
Dt−1(`− 1,m). It is not hard to see that ψ is surjective. In fact:

|ψ−1(N)| =
{
qt if N ∈ Dt(`− 1,m),
qm − qt−1 if N ∈ Dt−1(`− 1,m),

(10)

because if N ∈ Dt(` − 1,m), then we obtain all elements of ψ−1(N) by adding a row from the
rowspace of N , whereas if N ∈ Dt−1(`− 1,m), then we obtain all elements of ψ−1(N) by adding
any row not from the rowspace of N .

We will now prove the theorem by carefully counting the number of matrices M ∈ Dt(`,m)
in fibers of the map ψ such that τr(M) 6= 0, thus computing wr(t; `,m). Thus, fix N ∈ Dt(` −
1,m)

∐
Dt−1(`− 1,m) and consider M = (mij) ∈ ψ−1(N) such that τr(M) 6= 0. We distinguish

four mutually exclusive cases:

Case 1: N ∈ Dt(`− 1,m) and the rth column of N is zero.

In this case mrr = 0, since otherwise the rth row of M is not in the rowspace of N , con-
tradicting that rank(N) = rank(M). Thus M is effectively an ` × (m − 1) matrix and N and
(` − 1) × (m − 1) matrix. Also, τr(M) 6= 0 if and only if τr−1(N) 6= 0. Hence, by (10), we find
the following contribution to wr(t; `,m):

qtwr−1(t; `− 1,m− 1). (11)

Case 2: N ∈ Dt−1(`− 1,m) and the rth column of N is zero.

First, assume that mrr = 0. Then by a similar reasoning as in Case 1, we find a contribution
to wr(t; `,m) of magnitude

(qm−1 − qt−1)wr−1(t− 1; `− 1,m− 1). (12)

7



Next, assume that mrr 6= 0. To begin with, suppose τr−1(N) = 0. Then τr(M) 6= 0 if and only
if mrr 6= 0. Hence, determining M ∈ ψ−1(N) with τr(M) 6= 0 amounts to assigning arbitrary
values for mrj with mrr 6= 0. This gives a contribution to wr(t; `,m) of magnitude

qm−1(q − 1) (µt−1(`− 1,m− 1)−wr−1(t− 1; `− 1,m− 1)) . (13)

Suppose on the other hand, τr−1(N) 6= 0. Then τr(M) 6= 0 if and only if mrr 6= −τr−1(N). Since
we already assumed that mrr 6= 0, we find a contribution to wr(t; `,m) of magnitude

qm−1(q − 2)wr−1(t− 1; `− 1,m− 1). (14)

Case 3: N ∈ Dt(`− 1,m) and the rth column of N is nonzero.

Since the rth column of N is nonzero, the rth coordinates of elements from the row space of
N are distributed evenly over the elements of Fq. This implies that regardless of the value of
τr−1(N), a (q− 1)/q-th fraction of the matrices in ψ−1(N) contribute to wr(t; `,m). In total we
find the contribution:

qt−1(q − 1) (µt(`− 1,m)− µt(`− 1,m− 1)) . (15)

Case 4: N ∈ Dt−1(`− 1,m) and the rth column of N is nonzero.

Just as in Case 3, since the rth column of N is nonzero, the rth coordinates of elements
from the row space of N are distributed evenly over the elements of Fq. Therefore also the rth

coordinates of elements not from the row space of N are distributed evenly over the elements of
Fq. By a similar reasoning as in Case 3, we find a contribution to wr(t; `,m) of magnitude:

(qm−1 − qt−2)(q − 1) (µt−1(`− 1,m)− µt−1(`− 1,m− 1)) . (16)

Adding all contributions to wr(t; `,m) from (11), (12), (13), (14), (15), and (16), and noting that
wr(t; `,m) = (q − 1)ŵr(t; `,m), the theorem follows. 2

Corollary 3.3 Let 1 ≤ r ≤ ` ≤ m and 1 ≤ t < `. Then

ŵr(t; `,m) = A(r, t) + qm−1νt−1(`− 1,m).

Proof. By (6) and Theorem 3.2, we see that

ŵr(t; `,m) =

t∑
s=1

ŵr(s; `,m)

=

t∑
s=1

(
A(r, s)−A(r, s− 1) + qm−1µs−1(`− 1,m)

)
= A(r, t)−A(r, 0) + qm−1

t∑
s=1

µs−1(`− 1,m).

The corollary now follows from (2), since A(r, 0) = 0. 2

Corollary 3.4 Suppose 1 ≤ s ≤ r ≤ ` and 1 ≤ t < `. Then

ŵr(t; `,m)− ŵs(t; `,m) = qt
(
ŵr−1(t; `− 1,m− 1)− ŵs−1(t; `− 1,m− 1)

)
.

In particular,
ŵr(t; `,m)− ŵ1(t; `,m) = qtŵr−1(t; `− 1,m− 1).
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Proof. Using the previous corollary, we see that

ŵr(t; `,m)− ŵs(t; `,m) = A(r, t)−A(s, t)

= qt
(
ŵr−1(t; `− 1,m− 1)− ŵs−1(t; `− 1,m− 1)

)
.

This yields the first part of the corollary. The second part follows directly by choosing s = 1. 2

We are now ready to prove our main theorem on the minimum distance.

Theorem 3.5 Suppose 1 ≤ r ≤ ` and 1 ≤ t ≤ `. Then the minimum distance d̂ of the code
Ĉdet(t; `,m) is given by

d̂ = q`+m−2νt−1(`− 1,m− 1).

Proof. We already know that the only ` nonzero weights occurring in code Ĉdet(t; `,m) are
ŵ1(t; `,m), . . . , ŵ`(t; `,m). Moreover, in case t = `, we already know from Example 2.4 that the
minimum distance is given by

ŵ1(`; `,m) = q`m−1 = q`+m−2q(`−1)(m−1) = q`+m−2ν`−1(`− 1,m− 1).

Therefore we may assume t < `. However, in this case the second part of Corollary 3.4 implies
that ŵ1(t; `,m) cannot be larger than any of the other weights, since

ŵr(t; `,m)− ŵ1(t; `,m) = qtŵr−1(t; `− 1,m− 1) ≥ 0.

The theorem then follows from Proposition 3.1. 2

Remark 3.6 Comparing the formulae for d̂ = ŵ1(t; `,m) given by Corollary 3.3 and Theo-
rem 3.5, we obtain the following curious identity:

q`+m−2νt−1(`− 1,m− 1) = qm−1νt−1(`− 1,m) + qt−1 (µt(`− 1,m)− µt(`− 1,m− 1)) .

This is trivial if t = 1, whereas it can be verified directly for t ≥ 2 by noting that

νt−1(`− 1,m) = q`−1νt−2(`− 1,m− 1) + qt−1µt−1(`− 1,m− 1).

The last identity follows by counting fibers of the map Dt−1(`− 1,m)→ Dt−1(`− 1,m− 1) that
associates to a matrix, the matrix obtained by deleting its last column.

Exploring the methods used in proving Theorem 3.5, we can also gain some information about
codewords of minimum weight in Ĉdet(t; `,m).

Theorem 3.7 Suppose 1 < r ≤ ` and 1 ≤ t < `. Then ŵ1(t; `,m) < ŵr(t; `,m). Moreover,

the code Ĉdet(t; `,m) has exactly µ1(`,m) codewords of minimum weight and these codewords

generate the entire code. More precisely, any codeword in Ĉdet(t; `,m) is the sum of at most `
minimum weight codewords.

Proof. Choosing s = 1 in Corollary 3.4 and r ≥ 2, we obtain

ŵr(t; `,m)− ŵ1(t; `,m) = qtŵr−1(t; `− 1,m− 1),

so the first part of the theorem follows once we have shown that ŵr−1(t; ` − 1,m − 1) > 0.
In order to do this, it is sufficient to produce one (` − 1) × (m − 1) matrix M of rank t such
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that τr−1(M) 6= 0. However, this is easy to do: Let P = (pij) be a t × t permutation matrix
corresponding to a permutation of {1, . . . , t} that fixes 1, but does not have other fixed points.
Then p11 = 1, while any other diagonal element is zero. Now take M = (mij) to be the
(`− 1)× (m− 1) matrix such that mij = pij if i < ` and j < m, while mij = 0 otherwise. Then
rank(M) = t and τr−1(M) = 1, which is exactly what we wanted to show.

Now that we know that ŵ1(t; `,m) is strictly smaller than all other nonzero weights, the
minimum weight codewords are exactly those ĉf such that f has a coefficient matrix of rank

1. This gives exactly µ1(`,m) possibilities for f and hence for ĉf . Now let ĉ ∈ Ĉdet(t; `,m)
be given. Then ĉ = ĉg for some g ∈ Fq[X]1. Assume that g has coefficient matrix of rank r.
Since any matrix of rank r can be written as the sum of r matrices of rank 1, we can write
g = g1 + · · · + gr for certain g1, . . . , gr ∈ Fq[X]1 all having a coefficient matrix of rank 1. This
implies that ĉg = ĉg1 + · · ·+ ĉgr , implying the second part of the theorem. 2

The case t = ` is not covered by the above theorem. However, in that case it follows directly
from Example 2.4 that ŵ1(t; `,m) = ŵr(t; `,m) for any r ≥ 2. Hence nonzero codewords have
the same weight. This shows that the number of codewords of minimum weight is q`m − 1 and
they clearly generate the code.

Remark 3.8 If Conjecture 2.5 is true, then Corollary 3.4 implies that the quantities ŵr(t; `,m)
would have a behaviour similar to that of ŵr(t; `,m). More precisely, let 1 ≤ t ≤ `, then it would
hold that:

(i) All weights ŵ1(t; `,m), . . . , ŵ`(t; `,m) are mutually distinct.

(ii) ŵ1(t; `,m) < ŵ2(t; `,m) < · · · < ŵ`−t+1(t; `,m).

(iii) For `− t+ 2 ≤ r ≤ `, the weight ŵr(t; `,m) lies between ŵr−2(t; `,m) and ŵr−1(t; `,m).

We remark that these assertions have a bearing on the eigenvalues of the association scheme of
bilinear forms (using the rank metric as distance) [4, Section 9.5.A]. Indeed, the eigenvalues of
this association scheme are precisely given by the expressions

Pt(r) :=
∑̀
i=0

(−1)t−iqim+(t−i
2 )
[
`− i
`− t

]
q

[
`− r
i

]
q

(17)

occurring in (5). For a general association scheme, it is not known how its eigenvalues are ordered
or if they are all distinct. See [5] for a study of the nondistinctness of some such eigenvalues. It
is known in general that the eigenvalues exhibit sign changes (see for example [6, Prop. 11.6.2]),
which is in consonance with the conjectured behaviour of the ŵr(t; `,m) in part (iii) above.

4 Generalized Hamming weights of determinantal codes

We now turn our attention to the computation of several of the generalized Hamming weights
of the determinantal code Ĉdet(t; `,m). Given that it was not trivial to compute the minimum
distance, this may seem ambitious, but it turns out that we can use the work carried out in the
previous section to compute the first m generalized Hamming weights.

For a linear code C of length n and dimension k the support weight of any D ⊆ C, denoted
‖D‖, is defined by

‖D‖ := |{i : there exists c ∈ D with ci 6= 0}|.
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For 1 ≤ s ≤ k the sth generalized Hamming weight of C, denoted ds(C), is defined by

ds(C) := min{‖D‖ : D is a subcode of C with dimD = s}.

Clearly, d1(C) = d(C), the minimum distance of the code C, while dk(C) = n if the code C is
nondegenerate.

Theorem 4.1 For 1 ≤ s ≤ m, the sth generalized Hamming weight d̂s of Ĉdet(t; `,m) is given by

d̂s =
qs − 1

qs − qs−1
ŵ1(t; `,m) =

q`+m−1 − q`+m−s−1

q − 1
νt−1(`− 1,m− 1). (18)

Proof. Fix s ∈ {1, . . . ,m} and let Ls be the s-dimensional subspace of Fq[X]1 generated by

X11, . . . , X1s. Also let Ds = Ev(Ls) be the corresponding subcode of Ĉdet(t; `,m). Since Ev is
injective and linear, dimDs = s. Moreover, since the coefficient matrix of any f ∈ Ls different
from zero has rank one, it follows from Fact 2.1 that wH(ĉf ) = ŵ1(t; `,m). Using the formula for
the support weight of an s-dimensional subcode given in for example [11, Lemma 12], we obtain

‖Ds‖ =
1

qs − qs−1
∑
c∈Ds

wH(c) =
qs − 1

qs − qs−1
ŵ1(t; `,m).

On the other hand, since ŵ1(t; `,m) is the minimum distance of Ĉdet(t; `,m), it holds for any

subspace D ⊆ Ĉdet(t; `,m) of dimension s that

‖D‖ =
1

qs − qs−1
∑
c∈Ds

wH(c) ≥ qs − 1

qs − qs−1
ŵ1(t; `,m).

This yields the first equality in (18). The second equality in (18) follows from Theorem 3.5. 2

The first equality in (18) shows that the generalized Hamming weights d̂s of Ĉdet(t; `,m) meet
the Griesmer-Wei bound [20, Cor. 3.3], provided 1 ≤ s ≤ m. If s ≥ m+1, then the Griesmer-Wei
bound is not attained in general. This can be seen from the following.

Proposition 4.2 Suppose that ` ≥ 2, then the (m + 1)th generalized Hamming weight d̂m+1 of

Ĉdet(t; `,m) is given by

d̂m+1 = d̂m + q`−2νt−1(`− 1,m− 1) + (qm−1 − 1)q`+t−1µt−1(`− 1,m− 1).

Proof. Let Lm+1 ⊆ Fq[X]1 be the m + 1-dimensional space generated by X11, . . . , X1m, X21.
Write Dm+1 = Ev(Lm+1). As in the proof of [2, Lem. 2] one readily sees that Lm+1 contains one
function with coefficient matrix of rank 0 (namely the zero function), qm + q2 − q − 1 functions
with coefficient matrix of rank 1, and (q − 1)(qm − q) = qm+1 − qm + q2 + q functions with
coefficient matrix of rank 2. It follows that

d̂m+1 ≤ 1

qm+1 − qm
∑

c∈Dm+1

wH(c)

=
1

qm+1 − qm
(
(qm + q2 − q − 1)ŵ1(t; `,m) + (q − 1)(qm − q)ŵ2(t; `,m)

)
= d̂m +

ŵ1(t; `,m)

qm
+
qm−1 − 1

qm−1
(ŵ2(t; `,m)− ŵ1(t; `,m))

= d̂m + q`−2νt−1(`− 1,m− 1) + (qm−1 − 1)q`+t−1µt−1(`− 1,m− 1),
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where the penultimate equality follows from (18) and an elementary calculation, whereas the
last equality follows from Proposition 3.1, Corollary 3.4, and equation (8). On the other hand,
in [2, Lem. 4] it is shown that any (m + 1)-dimensional subspace of M`×m contains at most
qm+q2−q−1 matrices of rank 1 and at least (qm − q) (q−1) matrices of rank ≥ 2. This implies
the desired result. 2

Finally, we will determine the last tm generalized Hamming weights. While before, we have
mainly used the description of Ĉdet(t; `,m) as evaluation code, it turns out to be more convenient

now to use the geometric description of Ĉdet(t; `,m) as a projective system coming from D̂t. The
approach is similar to the one given Appendix A in [8], though there a completely different class
of codes was considered. The following lemma holds the key:

Lemma 4.3 The projective variety D̂t(`,m) ⊆ P`m−1 contains the projective space Ptm−1.

Proof. Since any matrix in M`×m with at most t nonzero rows is in Dt(`,m), we see that

{(mij) ∈M`×m |mij = 0 for 1 ≤ i ≤ `− t and 1 ≤ j ≤ m} ⊆ Dt(`,m).

Passing to homogeneous coordinates, the lemma follows. 2

In the language of projective systems, the sth Generalized Hamming weight can be described
rather elegantly. If C is a code of length n and dimension k described by a projective system
X ⊆ Pk−1, then

ds(C) = n− max
codimL=s

|X ∩ L|, (19)

where the maximum is taken over all projective linear subspaces L ⊆ Pk−1 of codimension s
(see [19, 20] for more details). This description, combined with the previous lemma, gives the
following result.

Theorem 4.4 Let t, s be positive integers such that t ≤ ` and (`− t)m ≤ s ≤ `m. Then d̂s, the

sth generalized Hamming weight of Ĉdet(t; `,m), is given by

d̂s = n̂−
`m−s−1∑
i=0

qi.

Proof. First of all note that if s = `m, then d̂s = n̂, since the code Ĉdet(t; `,m) is nondegenerate
(see Fact 2.1). Therefore, we assume that (`− t)m ≤ s < `m. Then 0 ≤ `m− s−1 ≤ tm−1 and
so by Lemma 4.3, there exists a projective linear subspace Ls of dimension `m− s− 1 contained
in D̂t(`,m). Clearly, codimLs = s and

max
codimL=s

|D̂t(`,m) ∩ L| = |D̂t(`,m) ∩ Ls| = |Ls| =
`m−s−1∑
i=0

qi.

In view of (19), this yields the desired expression for d̂s. 2

Corollary 4.5 The minimum distance of Ĉdet(t; `,m)⊥ equals 3.

Proof. From Theorem 4.4, we see that d`m−2 = n̂− q− 1, d`m−1 = n̂− 1, and d`m = n̂. By Wei

duality [21, Thm. 3], this implies that the first generalized Hamming weight of Ĉdet(t; `,m)⊥

(that is to say, its minimum distance) is given by 3. 2
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Remark 4.6 Taking t = ` in Theorem 4.4, we obtain all the generalized Hamming weights
of Ĉdet(t; `,m), or in other words ,we recover the well-known result about the complete weight
hierarchy of simplex codes. Similarly, Corollary 4.5 may be viewed as a generalization of the
well-known fact that the q-ary Hammming code has minimum distance 3.

We can also determine the complete weight hierarchy of determinantal codes corresponding
to determinantal ideals generated by the maximal minors of X.

Corollary 4.7 In case t = `−1 all generalized Hamming weights of Ĉdet(t; `,m) are known and
given by

ds =


q`+m−s−1ν`−2(`− 1,m− 1), if 1 ≤ s ≤ m,

n̂−
∑`m−s−1
i=0 qi, otherwise.

Proof. This follows by combining Theorems 4.1 and 4.4. 2
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Appendix

In this appendix we give a self-contained computation of the quantity wr(t; `,m). The method
we use is different from the one Delsarte used in [10] and consequently gives rise to an alternative
formula to the one Delsarte obtained. Essentially our methods concerns the study of a refined
description of the sets Dt(`,m) as the union of disjoint subsets. For M ∈M`×m, and 1 ≤ r ≤ `,
we denote by Mr the r ×m matrix obtained by taking the first r rows of M . We use this to
define the following quantities:

Definition 4.8 Let 1 ≤ t ≤ ` ≤ m, 1 ≤ r ≤ ` and 1 ≤ s ≤ t. Then we define

Dt(`,m; r, s) = {M ∈ Dt(`,m) | rank(Mr) = s}.

Further we define
w(s)
r (t; `,m) = wH((τr(M))M∈Dt(`,m;r,s)),

with as before τr = X11 + · · ·+Xrr.

Note that

wr(t; `,m) =

r∑
s=1

w(s)
r (t; `,m). (20)
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Proposition 4.9 Let r, s, t, `, and m be integers satisfying 1 ≤ t ≤ ` ≤ m, 1 ≤ r ≤ `, and
1 ≤ s ≤ t. Then we have

|Dt(`,m; r, s)| = [m]q!

[m− t]q!
qs(`−r)q(

s
2)q(

t−s
2 )
[
r

s

]
q

[
`− r
t− s

]
q

.

Proof. We choose r arbitrarily and treat it as a fixed constant from now on. If ` < r, then
|Dt(`,m; r, s)| = 0, which fits with the formula. Therefore we suppose from now on that ` ≥ r
and we will prove the proposition with induction on ` for values ` ≥ r.

Induction basis: If ` = r, then Dt(`,m; r, s) = Dt(`,m) if s = t, while otherwise Dt(`,m; r, s) =
∅. In the latter case the proposed formula gives the correct value 0, while if s = t also the correct
value from (1) is recovered. This completes the induction basis.

Induction step: Suppose ` > r. Let A ∈ Dt(`,m; r, s). Then A`−1 is an element of Dt(` −
1,m; r, s) or of Dt−1(`− 1,m; r, s). Conversely, a matrix from Dt(`− 1,m; r, s) can be extended
(by adding a row from the rowspace of the matrix) to an element of Dt(`,m; r, s) in exactly qt

ways, while a matrix from Dt−1(` − 1,m; r, s) can be extended (by adding a row not from the
rowspace of the matrix) to an element of Dt(`,m; r, s) in exactly qm − qt−1 ways. Therefore

|Dt(`,m; r, s)| = qt|Dt(`− 1,m; r, s)|+ (qm − qt−1)|Dt−1(`− 1,m; r, s)|.

Using the induction hypothesis, this equation implies:

|Dt(`,m; r, s)| =
[m]q!

[m− t]q!
qs(`−r)q(

s
2)q(

t−s
2 )
[
r

s

]
q

[
`− r
t− s

]
q

×
(
qtq−s

q`−r−t+s − 1

q`−r − 1
+ (qm − qt−1)

1

qm−t+1
q−sq−(t−1−s)

qt−s − 1

q`−r − 1

)
.

However, the term inside the large parentheses is easily seen to be equal to 1, concluding the
inductive proof. 2

The key argument in the induction step above can also be used to prove the following.

Lemma 4.10 Let r, s, t, `, and m be integers satisfying 1 ≤ t ≤ ` ≤ m, 1 ≤ r ≤ `, and 1 ≤ s ≤ t.
Then we have

w(s)
r (t; `,m) = qtw(s)

r (t; `− 1,m) + (qm − qt−1)w(s)
r (t− 1; `− 1,m), if ` > r

and
wr(t; `,m) = qtwr(t; `− 1,m) + (qm − qt−1)wr(t− 1; `− 1,m), if ` > r.

Proof. In the proof of Proposition 4.9, we have seen that any matrix from Dt(`−1,m; r, s) can be
extended to an element of Dt(`,m; r, s) in exactly qt ways, while a matrix from Dt−1(`−1,m; r, s)
can be extended to an element of Dt(`,m; r, s) in qm − qt−1 ways. If ` > r the value of τr is the
same for the original matrix and its extension. This immediately implies the first equation in
the lemma. The second one follows from the first one using (20). 2

Remark 4.11 By interchanging the roles of rows and columns, one can also show that

w(s)
r (t; `,m) = qtw(s)

r (t; `,m− 1) + (q` − qt−1)w(s)
r (t− 1; `,m− 1), if m > r,

and
wr(t; `,m) = qtwr(t; `− 1,m) + (q` − qt−1)wr(t− 1; `,m− 1), if m > r.
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We will now derive a closed expression for the quantities ws(r, t; `,m). Like in the proof of
Proposition 4.9, we will use an inductive argument with base r = `. This explains why we first
settle this case separately.

Proposition 4.12 Let s, t, `, and m be integers satisfying 1 ≤ ` ≤ m and 1 ≤ s ≤ t. Then we
have

w
(s)
` (t; `,m) = 0, if t 6= s,

while

w
(t)
` (t; `,m) = w`(t; `,m) =

q − 1

q

(
µt(`,m)− (−1)tq(

t
2)
[
`

t

]
q

)
.

Proof. We have already seen that Dt(`,m; r, s) = Dt(`,m) if s = t, while otherwise Dt(`,m; r, s) =

∅. Therefore the first part of the proposition follows, as well as the identity w
(t)
` (t; `,m) =

w`(t; `,m). Now we prove that

w`(t; `,m) =
q − 1

q

(
µt(`,m)− (−1)tq(

t
2)
[
`

t

]
q

)

with induction on `.

Induction basis: if ` = 1 (implying that t = 1 as well), Proposition 3.1 (or a direct computa-
tion) implies that w1(t; 1,m) = (q − 1)qm−1, which fits with the formula we wish to show.

Induction step: Assume that the formula holds for ` − 1. Using Theorem 3.2 in the special
case that r = `, we see that

w`(t; `,m) = qtw`−1(t; `− 1,m− 1)− qt−1w`−1(t− 1; `− 1,m− 1) +A,

where A is easily seen to be equal to

A =
q − 1

q

(
µt(`,m)− qtµt(`− 1,m− 1) + qt−1µt−1(`− 1,m− 1)

)
,

using the identity µt(`,m) = qtµt(`−1,m)+(qm−qt−1)µt−1(`−1,m). The induction hypothesis
now implies that

w`(t; `,m) =
q − 1

q

(
µt(`,m)− qt(−1)tq(

t
2)
[
`− 1

t

]
q

+ qt−1(−1)t−1q(
t−1
2 )
[
`− 1

t− 1

]
q

)

=
q − 1

q

(
µt(`,m)− (−1)tq(

t
2)

(
qt
[
`− 1

t

]
q

+

[
`− 1

t− 1

]
q

))

=
q − 1

q

(
µt(`,m)− (−1)tq(

t
2)
[
`

t

]
q

)
,

which is what we wanted to show. 2

Now that the case r = ` is settled, we deal with the general case.
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Theorem 4.13

w(s)
r (t; `,m) =

q − 1

q
q(

s
2)
(

[m]q!

[m− t]q!
− (−1)s

[m− s]q!
[m− t]q!

)
qs(`−r)q(

t−s
2 )
[
r

s

]
q

[
`− r
t− s

]
q

.

Proof. We prove the theorem by induction on `. If ` < r, w
(s)
r (t; `,m) = 0, which is consistent

with the formula. If ` = r, we have w
(s)
r (t; `,m) = 0 if s 6= t and w

(s)
r (t; `,m) = wr(t; `,m) if

s = t. Using Proposition 4.12 we see that the case ` = r of the theorem is valid.

Now suppose ` > r. We may then apply Lemma 4.10 and apply the induction hypothesis.
Performing very similar computations as in the proof of Proposition 4.9, the induction step
follows. 2

We can now state our alternative formula for wr(t; `,m).

Theorem 4.14 We have

wr(t; `,m) =
q − 1

q

r∑
s=1

q(
s
2)
(

[m]q!

[m− t]q!
− (−1)s

[m− s]q!
[m− t]q!

)
qs(`−r)q(

t−s
2 )
[
r

s

]
q

[
`− r
t− s

]
q

=
q − 1

q

(
µt(`,m)−

r∑
s=0

q(
s
2)(−1)s

[m− s]q!
[m− t]q!

qs(`−r)q(
t−s
2 )
[
r

s

]
q

[
`− r
t− s

]
q

)
.

Proof. The first equation is a direct consequence of (20) and Theorem 4.13. For the second
equation, note that

r∑
s=0

q(
s
2) [m]q!

[m− t]q!
qs(`−r)q(

t−s
2 )
[
r

s

]
q

[
`− r
t− s

]
q

=

r∑
s=0

|Dt(`,m; r, s)| = |Dt(`,m)|,

since Dt(`,m) is the disjoint union of the sets Dt(`,m; r, s), 0 ≤ s ≤ r. 2

The above theorem in particular implies that

Pt(r) =

r∑
s=0

q(
s
2)(−1)s

[m− s]q!
[m− t]q!

qs(`−r)q(
t−s
2 )
[
r

s

]
q

[
`− r
t− s

]
q

, (21)

where Pt(r) is the expression from (17). It is not immediately clear that these two expressions
for Pt(r) are in fact equal. However, in [9, Eq. (15)] the generalized Krawtchouk polynomial
F (x, k, n) is defined (involving parameters x, k, n as well as a parameter c). If one chooses
c = qm−`, n = `, k = t, and x = r one obtains the polynomial Pt(r) from (17). An alternative
expression for F (x, k, n) is then given in [9, p. 167]. Choosing the parameters n, k, x, and c as
before in this expression, we obtain (21).
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[15] G. Landsberg, Ueber eine Anzahlbestimmung und eine damit zusammenhängende Reihe,
J. Reine Angew. Math. 111 (1893), 87–88.

[16] J. B. Little, Algebraic geometry codes from higher dimensional varieties, in: Advances
in Algebraic Geometry Codes, pp. 257–294, World Scientific, Singapore, 2008.

[17] D. Yu. Nogin, Codes associated to Grassmannians, Arithmetic, Geometry and Coding
Theory (Luminy, 1993), pp. 145–154, Walter de Gruyter, Berlin/New York, 1996.

[18] A. Ravagnani, Rank-metric codes and their duality theory, Des. Codes Cryptogr. 80
(2016), 197–216.
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