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LINEAR CODES ASSOCIATED TO SKEW-SYMMETRIC

DETERMINANTAL VARIETIES

PETER BEELEN AND PRASANT SINGH

Abstract. In this article we consider linear codes coming from skew-symmetric

determinantal varieties, which are defined by the vanishing of minors of a cer-

tain fixed size in the space of skew-symmetric matrices. In odd characteristic,

the minimum distances of these codes are determined and a recursive formula

for the weight of a general codeword in these codes is given.

1. Introduction

Let Fq be the finite field with q elements. From a mathematical point of view,

an Fq-linear error-correcting code is a subspace of the vector space Fn
q . Algebraic

varieties V defined over Fq are a rich source of such codes and various constructions

of codes from a given variety exist. A very natural and much-studied construction

of codes uses the points in V (Fq), the set of Fq-rational points of V , as columns of a

matrix. A code is then obtained by considering this matrix as generator matrix of

the code. To construct the matrix, an order of the points will need to be chosen. In

case the variety V is contained in a projective space Pk−1, a choice of representatives

of the Fq-rational points also needs to be made. Allowing any family of Fq-rational

points of Pk−1 in this setup, leads to a more general construction of codes studied

in [21]. There, such a family of points was called a projective system. In the

setting of projective systems, it was observed that different choices of ordering

and representatives of the points, give rise to equivalent codes. In particular the

minimum distance and weight distribution of the resulting codes are independent

on these choices. Another observation from [21] is that if the projective system is

not contained in a hyperplane of Pk−1, then the dimension of the resulting code is

k.

Let C ⊂ Fn
q be an Fq-linear code arising in this way from a projective variety V ⊂

Pk−1 defined over Fq. The Hamming weight wH(c) of a codeword c = (c1, . . . , cn) ∈
C is defined as wH(c) := #{i : ci 6= 0}. However, by construction n−wH(c), then

equals the number of common Fq-rational points on the intersection of V and a

certain hyperplane H defined over Fq depending on c. Therefore questions about

the possible weights of codewords, can be rephrased in terms of intersections of Fq-

rational hyperplanes with V . Codes coming from the Grassmannian variety have
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been studied from this point of view in [18, 19, 15, 6, 4]. Similarly, toric varieties

were used to construct codes in [7, 17], flag varieties were used in [16], and so on.

For an overview see for example [12] and the references therein. Using classical

determinantal varieties of generic matrices, a class of codes called determinantal

codes were introduced and studied in [2, 3]. As was shown there, determinantal

codes have relatively few weights. More precisely, let ` ≤ m be natural numbers and

Det(t, `,m) be the projective variety consisting of `×m matrices with coefficients in

Fq of rank ≤ t. Then the corresponding code has at most ` weights. Apart from the

determinantal varieties of generic matrices, other classically studied determinantal

varieties are associated to for example symmetric and skew-symmetric matrices. For

more details about these varieties one may refer to [8, 9, 20]. Inspired by this, we

consider in this article codes associated to skew-symmetric determinantal varieties

DetA(2t,m) consisting of all m × m skew symmetric matrices with coefficients

in Fq. We will call these codes skew determinantal codes. The lengths and the

dimensions of these codes are easily determined, since the number of Fq-rational

points on DetA(2t,m) is well known and the variety is nondegenerately embedded

in P(m
2 )−1. However, the determination of the minimum distance requires some

work. In fact, we will compute all possible nonzero weights a codeword of a skew

determinantal code can have and then determine the least nonzero weight among

them. Equivalently, we determine the possible number of Fq-rational intersection

points that an Fq-rational hyperplane and DetA(2t,m) can have. It turns out that

like determinantal codes, only few possibilities can occur, namely at most bm/2c.

2. Preliminaries: Skew-symmetric Determinantal Varieties

We begin this section by recalling the definition of skew-symmetric determinantal

varieties. Let Fq be a finite field with q elements and let m be a positive integer. By

a skew-symmetric or anti-symmetric matrix A of size m over Fq, we always mean

that A is an m ×m matrix over Fq with all diagonal entries zero and AT = −A.

If the characteristic of the field Fq is not 2 then the condition AT = −A is enough

for A to be skew-symmetric. Let Am be the set of all skew-symmetric matrices of

size m over Fq. It is well known that Am is an Fq-vector space of dimension
(
m
2

)
and hence one can think of Am as the affine space A(Fq)(

m
2 ).

Let t be an integer satisfying t ≤ m. We define

A(t,m) := {A ∈ Am : 1 ≤ rank(A) ≤ t}

and

A(t,m) := {A ∈ Am : rank(A) = t}.

Note that A(t,m) = ∅ for t ≤ 0 and A(t,m) = A(t,m) \ A(t− 1,m) for t ≥ 1.

It is well known that the rank of a skew-symmetric matrix is even (see for ex-

ample [1]). Therefore we have, A(2t + 1,m) = ∅ for every nonnegative integer t.
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Consequently, we get A(2t,m) = A(2t+ 1,m). By definition we have

A(2t,m) =

t⋃
r=1

A(2r,m)

and the union is disjoint. If na(2r,m) and Na(2t,m) denote the cardinality of the

sets A(2r,m) and A(2t,m), then

(1) Na(2t,m) =

t∑
r=1

na(2r,m).

Explicit expressions for na(2r,m) in terms of r,m and q are well known in the

literature (for odd characteristic see Theorem 3 in [5], for even characteristic see

[13] or Chapt. 15, §2, Theorem 2 in [14]). Indeed na(0,m) = 1 and more generally

for any r ≥ 0

(2) na(2r,m) = qr(r−1)

2r−1∏
i=0

(qm−i − 1)

r−1∏
i=0

(q2(r−i) − 1)

.

Let P(Am) be the projective space over Am. Since Am is an
(
m
2

)
dimensional

vector space, we can write P(Am) = P(m
2 )−1. For any non-zero matrix A ∈ Am we

denote by [A] the corresponding homogeneous point of P(m
2 )−1. More precisely, if

A = (aij) ∈ Am \ {0}, then [A] = [a1 2 : · · · : am−1,m], with all aij such that i < j

occurring as coordinates in [A]. Let DetA(2t,m) be the image of the set A(2t,m)

under this natural map Am \ {0} → P(m
2 )−1. The set DetA(2t,m) ⊆ P(Am) is a

projective variety. More precisely, let X = (Xij)m×m be an m ×m matrix in m2

indeterminates Xij over Fq. Then DetA(2t,m) is given as the zero locus of all 2t+1

minors of X and linear polynomials Xij + Xji and Xii for every 1 ≤ i ≤ j ≤ m.

Note that this describes DetA(2t,m) as a subset of Pm2−1, but the linear equations

Xij +Xji and Xii determine an
(
m
2

)
− 1 dimensional projective subspace of Pm2−1,

which we previously had identified with P(Am). It is not hard to show that if t > 0,

then DetA(2t,m) is not contained in a hyperplane of P(m
2 )−1, or in other words

that DetA(2t,m) is nondegenerately embedded in P(m
2 )−1. Indeed let a pair (k, `)

be given such that 1 ≤ k < ` ≤ m. Then the skew-symmetric matrix A defined

by Ak,` = 1, A`,k = −1 and Aij = 0 otherwise, is mapped to the projective point

[A] = [0 : · · · : 0 : 1 : 0 : · · · : 0] ∈ P(m
2 )−1 with a 1 in the position corresponding

to the pair (k, `). Hence DetA(2t,m) contains
(
m
2

)
projective points in general

position, implying that it is not contained in a hyperplane.

We call DetA(2t,m) a skew-symmetric determinantal variety. One can indeed

show that it is a variety in the usual sense, but we will not need this fact here. Let

Λa(2t,m) denote the number of Fq-rational points of DetA(2t,m), then Λa(2t,m)



4 PETER BEELEN AND PRASANT SINGH

is given by

Λa(2t,m) =
Na(2t,m)

q − 1
,

where the value of Na(2t,m) is determined by equations (1) and (2).

3. Linear Codes Associated to the Determinantal Variety DetA(2t,m)

Using the Fq-rational points of DetA(2t,m) as a projective system, yields a

linear code CA(2t,m) which we call a skew determinantal code. In order to make

this precise, let N := Λa(2t,m) and let B1, . . . , BN be representatives of all the Fq-

rational points of DetA(2t,m). Note that for all i we have Bi ∈ F(m
2 )

q . An element

B = (bij)1≤i<j≤m ∈ F(m
2 )

q gives rise to a unique skew-symmetric matrix A = (aij)

by setting aij := bij if i < j, aii := 0, and aij := −bji if i > j. Therefore we will

with slight abuse of notation identify F(m
2 )

q with the space of skew-symmetric m×m
matrices.

By construction, the matrix G(2t,m) with columns B1, . . . , BN is a genera-

tor matrix of CA(2t,m). Clearly therefore, the length of CA(2t,m) equals N =

Λa(2t,m). Further, since from the previous section, we know that the Fq-rational

points of DetA(2t,m) are not contained in any hyperplane of P(m
2 )−1, the dimension

of CA(2t,m) equals
(
m
2

)
. In this section, we will determine the minimum distance

of CA(2t,m) in case q is odd. The case q is even seems more involved and could

be interesting for future work. For the remainder of this article m and t will be

assumed to be integers such that m > 0 and 0 ≤ 2t ≤ m.

Another way to describe CA(2t,m) is as the image of an evaluation map. Let

Fq[X]1 denotes the vector space of linear homogeneous polynomials in variables

Xij , 1 ≤ i < j ≤ m. Consider the evaluation map

Ev : Fq[X]1 → FN
q defined by f(X) =

∑
fijXij 7→ (f(B1), . . . , f(BN )).

The evaluation map Ev defined above is a linear map. Moreover, varying the pairs

(i, j) with 1 ≤ i < j ≤ m, Ev(Xij) are precisely the
(
m
2

)
rows of the matrixG(2t,m).

Therefore the image of Ev equals CA(2t,m). Since Fq[X]1 is an
(
m
2

)
-dimensional

vector space over Fq, the map Ev is a bijection. In order to determine the minimum

distance of CA(2t,m) we consider a related code ĈA(2t,m) defined as the image of

another evaluation map

Êv : Fq[X]1 → FNa(2t,m)
q defined by f(X)→ (f(A))A∈A(2t,m).

Note that in the definition of Êv we implicitely used the identification of elements

in F(m
2 )

q and m × m skew-symmetric matrices mentioned in the beginning of this

section. The weights of the codewords in CA(2t,m) and ĈA(2t,m) are directly

related to each other as the following easy lemma shows.
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Lemma 3.1. Let f ∈ Fq[X]1 be a polynomial. Then the Hamming weights of the

codewords Ev(f) and Êv(f) satisfy

wH(Êv(f)) = (q − 1) wH(Ev(f)).

Proof. The proof of the lemma is a simple consequence of the fact that for every

f ∈ Fq[X]1 and any A ∈ A(2t,m), we have

f(A) 6= 0 ⇐⇒ f(αA) 6= 0 for all α ∈ F∗q .

�

In view of the above lemma, in order to compute the minimum distance of

the code CA(2t,m), it is enough to calculate the minimum distance of the code

ĈA(2t,m).

To proceed further, let us write M := Na(2t,m) and A(2t,m) = {A1, . . . , AM}
in some fixed order. Note that codewords of ĈA(2t,m) are indexed by the set

A(2t,m) therefore, for every codeword c ∈ ĈA(2t,m) and any Ai ∈ A(2t,m) we

use the notation c(Ai) to denote the Ath
i coordinate of the codeword c. From now

on we always fix Fq as a finite field with characteristic of Fq not equal to 2.

Theorem 3.2. For any codeword (cA)A∈A(2t,m) ∈ ĈA(2t,m), there exist a unique

skew-symmetric matrix F ∈ Am such that

cA = − tr(FA) for every A ∈ A(2t,m).

Proof. Let c ∈ ĈA(2t,m) and let f ∈ Fq[X]1 be the linear polynomial such that

c = Êv(f). In particular cA = f(A). Writing f =
∑

i<j f
′
ijXij , define the m ×m

matrix F := (fij) by fij := f ′ij/2 if i < j, fii := 0 and fij := −f ′ji/2 if i > j. Note

that F is skew-symmetric. We claim that for any A = (aij) ∈ A(2t,m) it holds that

f(A) = − tr(FA), which would show the existence of the matrix F in the theorem.

Indeed, we have

f(A) =
∑
i<j

f ′ijaij =
∑
i<j

(fij − fji)aij =
∑
i<j

fijaij −
∑
i<j

fjiaij

= −
∑
i<j

fijaji −
∑
j>i

fjiaij = −
m∑
i=1

m∑
j=1

fijaji = − tr(FA).

Here we used aij = −aji in the fourth equality and aii = 0 in the fifth.

To show uniqueness, suppose that there exist two skew-symmetric matrices F =

(fij) and G = (gij) such that tr(FA) = tr(GA) for all A ∈ A(2t,m). For k < `,

define the matrix E(k, `) as the matrix with zero entries everywhere except for the

coordinates (k, `), respectively (`, k), where the matrix has entry 1, respectively −1.

Since t ≥ 1, we have E(k, `) ∈ A(2t,m). Moreover, tr(FE(k, `)) = −fk` + f`k =

−2fk` and similarly tr(FE(k, `)) = −2gk`. Hence F = G follows. �
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Note that the assumption that q is odd is crucial in the above theorem. Indeed, if

q is even the theorem is not true, since it is not hard to show that tr(FA) = 0 for any

two skew-symmetric matrices F and A. Also note that since both Fq[X]1 and the

space of skew-symmetric matrices Am, are vector spaces of the same dimension
(
m
2

)
,

any word of the form (− tr(FA))A is a codeword of ĈA(2t,m). As a consequence of

the theorem, we will see that the code ĈA(2t,m) (and hence CA(2t,m)) only can

have few weights.

Corollary 3.3. If c = (− tr(FA))A∈A(2t,m) ∈ ĈA(2t,m) for a skew-symmetric

matrix F , then the Hamming weight of c only depends on the rank of F . Moreover,

there are at most bm/2c possibilities for the Hamming weight of a nonzero codeword

c ∈ CA(2t,m).

Proof. Let c = (cA)A∈A(2t,m) ∈ ĈA(2t,m) be a nonzero codeword. By Theorem

3.2, there exists a nonzero skew-symmetric matrix F such that cA = −tr(FA) for

all A ∈ A(2t,m). By Theorem 4 in [1] or alternatively Chapter XV, Corollary 8.2

in [11], there exist a nonsingular m×m matrix L such that

LFLT =



E

E
. . .

E

. . . . . . . . . . . . . . . . . . .

0 0 0 . . . 0


, with E =

[
0 1

−1 0

]
.

The number of occurrences of the matrix E depends on the rank of F . Specifically,

if the rank of F , which necessarily is even, equals 2k for some 1 ≤ k ≤ m/2, then the

matrix E occurs k times. Since L is nonsingular, the mapping A 7→ LTAL is a per-

mutation of A(2t,m). For every matrix A, we have tr((LFLT )A) = tr(F (LTAL)).

Therefore, the Hamming weights of the codewords c and (tr((LFLT )A))A∈A(2t,m)

are the same. In particular, the Hamming weight of c only depends on the rank of

F . The first part of the corollary now follows.

Since k needs to be an integer satisfying 1 ≤ k ≤ m/2, we see that there are only

bm/2c possible ranks for F . This shows that there are at most bm/2c possibilities

for the Hamming weight of c. By Lemma 3.1, the second part of the corollary

follows. �

To determine the minimum distance of CA(2t,m), we need to determine which

of the possible bm/2c weights is the smallest. In order to do that, let us fix some

notations. If c = (− tr(FA))A∈A(2t,m) ∈ ĈA(2t,m) for a skew-symmetric matrix

F of rank 2k, we define W2k(2t,m) := wH(c). By Corollary 3.3, this is a valid

definition, since wH(c) does not depend on the choice of F . For 0 ≤ 2k ≤ m, define
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the skew-symmetric m×m matrix of rank 2k

(3) E2k :=



E

E
. . .

E

. . . . . . . . . . . . . . . . . . .

0 0 0 . . . 0


,

with E as in the proof of Corollary 3.3 occurring exactly k times. Then

W2k(2t,m) = |{A ∈ A(2t,m) : tr(E2kA) 6= 0}|.

If we define

S2k(2r,m) := {A ∈ A(2r,m) : tr(E2kA) 6= 0} and w2k(2r,m) := |S2k(2r,m)|,

then

(4) W2k(2t,m) =

t∑
r=1

w2k(2r,m).

Our next goal is to find recursive formulas for W2k(2t,m), that we will use as the

key ingredient to show which of the W2k(2t,m) is the smallest. Note that this

approach is inspired by [3], where a similar approach was developed to determine

the minimum distance of the determinantal code introduced in [2].

Theorem 3.4. Let m and 0 < 2k ≤ m be fixed. Let 0 < 2r ≤ m and w2k(2r,m)

be as defined above. Then

w2k(2r,m) = q2rw2k−2(2r,m− 2) + (q − 1)q2r−1 (na(2r,m− 1)− na(2r,m− 2))

+ (q − 1)qm−2na(2r − 2,m− 1)− q2r−2w2k−2(2r − 2,m− 2)

− (q − 1)q2r−3 (na(2r − 2,m− 1)− na(2r − 2,m− 2)) .

Proof. Given a matrix A ∈ A(2r,m), denote by A′ the matrix obtained by deleting

the (2k)th row and column of the matrix A. Then A′ is a skew-symmetric matrix

of rank between 2r− 2 and 2r. Since the rank of a skew-symmetric matrix is even,

the rank of A′ can be either 2r or 2r − 2. Now consider the map

φ : S2k(2r,m)→ A(2r,m− 1)
⋃
A(2r − 2,m− 1), defined by A 7→ A′.

We use this map to count the cardinality of the set S2k(2r,m) which is w2k(2r,m).

Using the map φ we get,

w2k(2r,m) =
∑

A′∈A(2r,m−1)

|φ−1(A′)| +
∑

A′∈A(2r−2,m−1)

|φ−1(A′)|.

For any matrix A′, let A′2k−1 denote the (2k − 1)th row of A′. We divide each

sum in the above expression in two different terms, depending on whether A′2k−1
is zero or non-zero. Rewriting the above expression, we get
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w2k(2r,m) =
∑

A′∈A(2r,m−1)
A′2k−1=0

|φ−1(A′)| +
∑

A′∈A(2r,m−1)
A′2k−1 6=0

|φ−1(A′)|

+
∑

A′∈A(2r−2,m−1)
A′2k−1=0

|φ−1(A′)| +
∑

A′∈A(2r−2,m−1)
A′2k−1 6=0

|φ−1(A′)|.
(5)

We divide the counting of the fibers φ−1(A′) in four different cases correspond-

ing to the four summations in this equation. Given a row or column vector

v = (v1, . . . , vm) ∈ Fm
q , we will use the phrase shortened row or column vector

for the vector v′ ∈ Fm−1
q obtained from v by deleting its (2k)th coordinate. In this

way, we can for example say that the rows of A′ are obtained by shortening rows of

the matrix A and likewise for columns. We will use the m×m matrix E2k defined

in equation (3), but whenever we write E2k−2 in the proof below, we will mean an

(m− 1)× (m− 1) matrix of rank 2k − 2 of the form as in equation (3).

Case 1: Let A′ ∈ A(2r,m − 1) and A′2k−1 = 0. Let A ∈ φ−1(A′). Since A and

A′ have the same rank 2r, we conclude that the shortened (2k)th column of A lies

in the column space of A′. This in particular means that the entry A2k−1,2k is a

linear combination of the entries in A′2k−1 and hence zero. Hence, tr(E2k−2A
′) =

tr(E2kA) 6= 0, where the inequality follows by our assumption that A ∈ S2k(2r,m).

Therefore, the first summation in equation (5) runs over w2k−2(2r,m − 2) many

matrices A′ and for any such A′ we get |φ−1(A′)|= q2r, since the dimension of the

column space of A′ equals 2r. Therefore in total, we get

(6)
∑

A′∈A(2r,m−1)
A′2k−1=0

|φ−1(A′)|= q2rw2k−2(2r,m− 2).

Case 2: Let A′ ∈ A(2r,m − 1) and A′2k−1 6= 0. As in the previous case, for any

A ∈ φ−1(A′) the shortened (2k)th column of A must lie in the column span of A′.

Moreover, we require that 2A2k−1,2k 6= tr(E2k−2A
′). Since A′2k−1 is assumed to

be non zero, the projection map from the column space of A′ to the (2k − 1)th

coordinate is nonzero. Since the column space of A′ has dimension 2r, we see that

for a given A′, there are exactly q2r−q2r−1 possibilities to choose the (2k)th column

of A such that 2A2k−1,2k 6= tr(E2k−2A
′). In other words: |φ−1(A′)|= q2r − q2r−1.

Further, the number of matrices A′ ∈ A(2r,m− 1) such that A′2k−1 6= 0 is given by

na(2r,m− 1)− na(2r,m− 2). In total we get

(7)
∑

A′∈A(2r,m−1)
A′2k−1 6=0

|φ−1(A′)|= (q − 1)q2r−1(na(2r,m− 1)− na(2r,m− 2)).

Case 3: Let A′ ∈ A(2r − 2,m − 1) and A′2k−1 = 0. This is the most complex case

therefore, we divide the counting in several subcases.



CODES ASSOCIATED TO SKEW-SYMMETRIC DETERMINANTAL VARIETIES 9

First, we count the number of A ∈ φ−1(A′) satisfying A2k−1,2k = 0. Since

A2k−1,2k = 0, we have m − 2 positions in the (2k)th column of A that are un-

determined. Moreover, the shortened (2k)th column of A can not be in the col-

umn span of A′. Since A′ is of rank 2r − 2 and A′2k−1 = 0, this leaves exactly

qm−2 − q2r−2 possibilities for the matrix A. Further, in all these cases we get

tr(E2k−2A
′) = tr(E2kA) 6= 0. Therefore, there are w2k−2(2r − 2,m − 2) many

possibilities for A′.

Second, we count the number of A ∈ φ−1(A′) satisfying A2k−1,2k 6= 0. We

further divide this in two parts depending on tr(E2k−2A
′) being zero or non-zero.

If tr(E2k−2A
′) = 0, then tr(E2kA) = −2A2k−1,2k 6= 0. Hence, the only restriction

we have is that the shortened (2k)th column of A can not be in the column span

of A′. However, since we assign a nonzero value to A2k−1,2k, this is guaranteed.

The remaining positions can be chosen arbitrarily. Therefore, in this case we get

na(2r − 2,m− 2)− w2k−2(2r − 2,m− 2) many matrices A′ with tr(E2k−2A
′) = 0

and for any such A′, the cardinality of the fiber is (q − 1)qm−2.

If tr(E2k−2A
′) 6= 0, then in addition to A2k−1,2k 6= 0 we require 2A2k−1,2k 6=

tr(E2k−2A
′), leaving q−2 possible values for A2k−1,2k. We have w2k−2(2r−2,m−2)

many possibilities for the matrix A′, since we assumed tr(E2k−2A
′) 6= 0. For a given

A′, we have (q−2)qm−2 many matrices A in the fiber φ−1(A′). Adding all together,

we obtain

∑
A′∈A(2r−2,m−1)

A′2k−1=0

|φ−1(A′)| = (qm−2 − q2r−2)w2k−2(2r − 2,m− 2)

+ (q − 1)qm−2 (na(2r − 2,m− 2)− w2k−2(2r − 2,m− 2))

+ (q − 2)qm−2w2k−2(2r − 2,m− 2).

(8)

Case 4: Finally, let A′ ∈ A(2r−2,m−1) and A′2k−1 6= 0. Since A′ is of rank 2r−2,

the shortened (2k)th column of A must not lie in the column span of A′. Further,

2A2k−1,2k 6= tr(E2k−2A
′). Like in Case 2, we consider the projection map on the

(2k − 1)th coordinate. First of all, we require 2A2k−1,2k 6= tr(E2k−2A
′), leaving

qm−1 − qm−2 a priori possibilities for the (2k)th column of A. However, since the

shortened (2k)th column of A cannot lie in the column span of A′, q2r−2 − q2r−3

many of these possibilities need to be excluded. This shows that for a given A′

as above, |φ−1(A′)|= (qm−1 − qm−2) − (q2r−2 − q2r−3). Also, there are na(2r −
2,m − 1) − na(2r − 2,m − 2) many matrices A′ satisfying A′ ∈ A(2r − 2,m − 1)

and A′2k−1 6= 0. All together, we get

(9) ∑
A′∈A(2r−2,m−1)

A′2k−1 6=0

|φ−1(A′)|= (q−1)(qm−2−q2r−3)(na(2r−2,m−1)−na(2r−2,m−2)).

Now the theorem follows from equations (5), (6), (7), (8), and (9). �
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We will use Theorem 3.4 to find expressions for the weights W2k(2t,m) of the

codewords in ĈA(2t,m). It will be convenient for every 0 ≤ r ≤ t to introduce the

quantity

(10)

Pm(2k, 2r) := q2rw2k−2(2r,m− 2) + (q − 1)q2r−1 (na(2r,m− 1)− na(2r,m− 2)) .

Note that by our conventions Pm(2k, 0) = 0. Theorem 3.4 has the following corol-

lary.

Corollary 3.5. Let t and k be integers such that 0 < 2t ≤ m and 0 < 2k ≤ m.

Then

W2k(2t,m) = Pm(2k, 2t) + (q − 1)qm−2Na(2t− 2,m− 1).

Proof. Using Theorem 3.4 and the quantity Pm(2k, 2r) defined in equation (10), a

direct computation shows that

w2k(2r,m) = Pm(2k, 2r)− Pm(2k, 2r − 2) + (q − 1)qm−2na(2r − 2,m− 1).

Then equation (4) implies that

W2k(2t,m) = Pm(2k, 2t)− Pm(2k, 0) + (q − 1)qm−2
t∑

r=1

na(2r − 2,m− 1).

The corollary now follows. �

Theorem 3.6. The minimum distance of the code CA(2t,m) is given by

W2(2t,m)

q − 1
= (qm−2t − 1)qm+2t−4na(2t− 2,m− 2) + qm−2Na(2t− 2,m− 1).

Proof. First we show that W2(2t,m) is the minimum distance of ĈA(2t,m). Lemma

3.1 then implies that W2(2t,m)/(q − 1) is the minimum distance of CA(2t,m).

We know that the weight of a non-zero codeword of ĈA(2t,m) is among W2k(2t,m)

where 1 ≤ k ≤
⌊
m
2

⌋
. From Corollary 3.5, we get

W2k(2t,m)−W2(2t,m) = Pm(2k, 2t)− Pm(2, 2t).

Using equation (10) and taking into account that w0(2t,m− 2) = 0, we get

(11) W2k(2t,m)−W2(2t,m) = q2tw2k−2(2t,m− 2).

In particular, we get W2k(2t,m) ≥ W2(2t,m) for every 1 ≤ k ≤
⌊
m
2

⌋
and hence

W2(2t,m) is the minimum distance of the code ĈA(2t,m).

To finish the proof, it is sufficient to show that

W2(2t,m) = (q−1)(qm−2t−1)qm+2t−4na(2t−2,m−2) + (q−1)qm−2Na(2t−2,m−1).

Corollary 3.5 implies that

W2(2t,m) = Pm(2, 2t) + (q − 1)qm−2Na(2t− 2,m− 1).
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Therefore, we only need to show that

Pm(2, 2t) = (q − 1)(qm−2t − 1)qm+2t−4na(2t− 2,m− 2).

From equation (10), we have

Pm(2, 2t) = q2tw0(2t,m− 2) + (q − 1)q2t−1 (na(2t,m− 1)− na(2t,m− 2)) .

Since w0(2t,m− 2) = 0, equation (2) implies

Pm(2, 2t) = (q − 1)q2t−1

qt(t−1)
2t−1∏
i=0

(qm−1−i − 1)

t−1∏
i=0

(q2(t−i) − 1)

− qt(t−1)

2t−1∏
i=0

(qm−2−i − 1)

t−1∏
i=0

(q2(t−i) − 1)


= (q − 1)q2t−1

qt(t−1)
2t−2∏
i=0

(qm−2−i − 1)

t−1∏
i=0

(q2(t−i) − 1)

(
qm−1 − qm−2t−1

)
= (q − 1)q2t−1

q
m−2t−1 (qm−2t − 1

)
qt(t−1)

2(t−1)−1∏
i=0

(qm−2−i − 1)

(t−1)−1∏
i=0

(q2(t−i) − 1)


= (q − 1)(qm−2t − 1)qm+2t−4q(t−1)(t−2)

2(t−1)−1∏
i=0

(qm−2−i − 1)

(t−1)−1∏
i=0

(q2(t−i) − 1)

= (q − 1)(qm−2t − 1)qm+2t−4na(2t− 2,m− 2).

This completes the proof of the theorem. �

Remark 3.7. Recall that 1 ≤ t ≤ bm/2c. In the extremal choices of t, the code

CA(2t,m) is equal to well known previously studied codes. For t = 1, the de-

terminantal variety DetA(2t,m) is simply the line Grassmann variety G(2,m).

Hence in this case the code CA(2t,m) is a particular instance of the Grassmann

codes studied in [15]. In fact from [15], the complete weight enumerator of the

code CA(2,m) can be obtained. From Nogin’s results it is easy to show that

W2(2,m) < · · · < W2bm/2c(2,m).

For t = bm2 c, we have DetA(2t,m) = P(m
2 )−1. Hence in this case CA(2t,m)

is a first order projective Reed–Muller code. Projective Reed–Muller codes were

introduced in [10]. It is well known that first order projective Reed–Muller codes

are constant weight codes. Indeed equation (11) implies that W2(2bm/2c,m) =

W2k(2bm/2c,m) for every k.
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It is in general not clear how the elements in the sequence W2k(2t,m), 2 ≤ 2k ≤
m are ordered. However, in case 1 < t < bm/2c, we are able to determine the

minimum among them.

Theorem 3.8. Suppose that 4 ≤ 2k ≤ m and 4 ≤ 2t ≤ m− 2. Then W2(2t,m) <

W2k(2t,m). Moreover, the number of minimum weight codeword in CA(2t,m) equals

(qm − 1)(qm−1 − 1)/(q2 − 1).

Proof. Using equation (11), the first part of the theorem follows once we show that

w2k−2(2t,m− 2) > 0. Equation (9) in the proof of Theorem 3.4 implies that

w2k−2(2t,m− 2) ≥ (q − 1)(qm−4 − q2t−3)(na(2t− 2,m− 3)− na(2t− 2,m− 4)).

Using a similar computation as in the proof of Theorem 3.6, we can rewrite the

right-hand side of this inequality and obtain that

w2k−2(2t,m− 2) ≥ (q − 1)(qm−2t−1 − 1)(qm−2t − 1)qm+2t−8na(2t− 4,m− 4).

Since t ≥ 2, equation (2) implies that w2k−2(2t,m− 2) > 0.

Since W2(2t,m) < W2k(2t,m), Theorem 3.2 implies that minimum weight code-

words bijectively correspond to matrices F ∈ A(2,m). Hence the number of mini-

mum weight codewords equals |A(2,m)|= na(2,m) = (qm − 1)(qm−1 − 1)/(q2 − 1).

In the last equality, we used equation (2). �
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