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Preface

This PhD thesis entitled Mesoscopic Simulation of Multi-Modal Urban Traffic is submitted
to meet the requirements for obtaining a PhD degree at the Department of Management,
Technology and Economics, DTU Management, Technical University of Denmark. The
PhD project was supervised by Professor Otto Anker Nielsen and co-supervised by Asso-
ciate Professor Thomas Kjær Rasmussen, both from DTU Management. The thesis is
paper-based and consists of the chapters listed in the tables of content, including separate
chapters for each of the following papers:

Paper 1: M. Paulsen, T. K. Rasmussen, and O. A. Nielsen (2018). “Output
variability caused by random seeds in a multi-agent transport simulation
model”. In: Procedia Computer Science 130, pp. 850–857. DOI: 10.
1016/j.procs.2018.04.078. URL: https://linkinghub.elsevier.com/
retrieve/pii/S187705091830440X.

Paper 2: M. Paulsen, T. K. Rasmussen, and O. A. Nielsen (2020a). “Impacts
of real-time information levels in public transport: A large-scale case
study using an adaptive passenger path choice model”. Under review
at Transportation Research Part A: Policy and Practice.

Paper 3: M. Paulsen, T. K. Rasmussen, and O. A. Nielsen (2019). “Fast
or forced to follow: A speed heterogeneous approach to congested
multi-lane bicycle traffic simulation”. In: Transportation Research
Part B: Methodological 127, pp. 72–98. DOI: 10 . 1016 / j . trb .
2019.07 .002. URL: https :// linkinghub.elsevier .com/retrieve/pii/
S0191261518310336.

Paper 4: M. Paulsen and K. Nagel (2019). “Large-Scale Assignment of Con-
gested Bicycle Traffic Using Speed Heterogeneous Agents”. In: Pro-
cedia Computer Science 151, pp. 820–825. DOI: 10.1016/j .procs .
2019.04 .112. URL: https :// linkinghub.elsevier .com/retrieve/pii/
S1877050919305769.

Paper 5: M. Paulsen, T. K. Rasmussen, and O. A. Nielsen (2020b). “Includ-
ing right-of-way in a joint large-scale agent-based dynamic traffic as-
signment model for car and bicycle traffic”. Manuscript submitted to
Networks and Spatial Economics.

ii Mesoscopic Simulation of Multi-Modal Urban Traffic

https://doi.org/10.1016/j.procs.2018.04.078
https://doi.org/10.1016/j.procs.2018.04.078
https://linkinghub.elsevier.com/retrieve/pii/S187705091830440X
https://linkinghub.elsevier.com/retrieve/pii/S187705091830440X
https://doi.org/10.1016/j.trb.2019.07.002
https://doi.org/10.1016/j.trb.2019.07.002
https://linkinghub.elsevier.com/retrieve/pii/S0191261518310336
https://linkinghub.elsevier.com/retrieve/pii/S0191261518310336
https://doi.org/10.1016/j.procs.2019.04.112
https://doi.org/10.1016/j.procs.2019.04.112
https://linkinghub.elsevier.com/retrieve/pii/S1877050919305769
https://linkinghub.elsevier.com/retrieve/pii/S1877050919305769


Acknowledgements

Although I am the sole author of this PhD thesis, the thesis and the included papers
would not have been possible without the support of several persons and organisations.

Firstly, I would like to acknowledge my main supervisor Professor Otto Anker Nielsen
and my co-supervisor Associate Professor Thomas Kjær Rasmussen. The fortnightly
PhD meetings have helped me to stay on the right track and to guide my research in a
favourable direction. Furthermore, the feedback on article drafts has been a great help.
A special thanks to Thomas for being available between meetings for discussing ad-hoc
issues that arose along the way.

In this regard, I will also like to thank my colleagues at DTU, especially my fellow PhD
students in our division. Both for being helpful when reaching into your respective areas
of expertise, but also for always providing a joyful atmosphere in the building.

I spent 4.5 months visiting Professor Kai Nagel at Technische Universität Berlin from
October 2018 to March 2019. His assistance with implementing my methodology for
bicycle simulation in MATSim has been crucial for my research. The evenings with double
wall projection (occasionally with both feet on the table) were extremely beneficial, and
have given me invaluable knowledge on MATSim. On top of this, I am also highly grateful
for his hospitality during my stay. Likewise, I would also like to thank the remainder of
the staff at VSP.

A special thanks is deserved for Rasmus Albrink for introducing me to and collected the
video tracking data used in Paper 3. This data has severely increased the quality and
validity of my research.

Penultimately, I acknowledge the financial support for my PhD provided by the IPTOP
(Integrated Public Transport Optimisation and Planning) Project granted by Innovation
Fund Denmark (grant 4109-00005B).

I am very grateful for my friends who have taken the initiative to meet when I was not
able to. Special thanks to the board of Grundtvigselever for arranging the biannual alumni
reunion weekends at Grundtvigs Højskole where I truly disconnected from my PhD.

Most importantly, however, I am especially appreciative of my family for bearing with
me through the entirety of my PhD despite my endless mood swings. Although I owe
Inga so many hours of walking and belly rubs, she has never guilted me – not even when
forcing her to move to Berlin. What a natural born survivor she is ♡. Finally, I owe
Louise so many hours of mental presence and household duties, and – especially during
the COVID-19 crisis – just occasionally not being home.

Mads Paulsen, June 2020.

Mesoscopic Simulation of Multi-Modal Urban Traffic iii



Summary

Urbanisation is one of the most dominant global megatrends. As many metropolitan
transport networks are already under pressure, the prospect of having to fit even more
people into such often car dominated urban systems is disturbing. Not only does it result
in countless hours wasted in traffic, but also increasing local pollution and green house
gas emissions.

One way to relieve motorised traffic in urban areas is to provide appropriate alternatives
to car traffic. Public transport systems where passengers can reach their destinations
reliably and dedicated bicycle infrastructure allowing people to travel smoothly by bicycle
can for many be seen as sustainable and effective alternatives to car traffic in urban
areas. However, even in cities with a high share of cyclists, the models for evaluating
future projects and initiatives concerning bicycle traffic are of much lower quality than
their counterparts for car traffic, for instance regarding their ability to estimate travel
times. As such projects are regarded as socioeconomic investments with the return being
received in travel time savings, there is a risk that the lack of appropriate models is setting
back bicycle-friendly development.

In order to be able to evaluate transport policies with a higher level of detail, in the
past decade transport models have shifted towards agent-based models. Agent-based
models follow every individual of the population for the entire day, and makes it possible
to evaluate very detailed effects that macroscopic models cannot. Despite agent-based
models being capable of simulating very large areas in great detail, the aforementioned
capability gap between models for car traffic and other modes of transport persists, at
least when disregarding dedicated microscopic models limited to small geographical areas.

This PhD thesis aims at reducing this gap by modelling detailed individual behaviour
in large-scale agent-based transport simulation models. The trade-off between detail
level and computational performance is a vital focus point, as the developed models
are intended for application on a metropolitan scale. Even while doing so, the thesis
contributes diversely to the literature through five papers on agent-based modelling divided
into three parts: i) Output variability in agent-based simulation of transport systems
(Paper 1), ii) Agent-based passenger delay modelling with real-time information (Paper
2), and iii) Agent-based simulation of bicycle traffic and interaction with cars (Papers
3-5).

Part I deals with one of the downsides of most agent-based simulation models – the
strong dependence on pseudo-random numbers. Whereas most aggregated models can
get away with stating choices by their choice distribution, the individual constituents of
agent-based models require explicit choices to be made, either by resolving to completely
deterministic, rule-based setups or by using pseudo-random numbers to draw such choices
stochastically. However, as sequences of pseudo-random numbers are entirely determined
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by their random seed, changing the seed will also change modelled choices, eventually
alter the final model output. As such, the output of stochastic agent-based models can
be considered as samples from – extremely complex – random distributions.

The first paper of the thesis investigates the variability of such outputs by conducting an
experiment in MATSim with a large-scale scenario of Santiago de Chile using 100 different
runs – each using a different random seed. The corresponding link flows are analysed,
and the between-seed variation is generally found to be small with tolerable coefficients of
variation. However, for some links the relative error is occasionally serious when compared
to other random seeds, indicating that the results based on a single seed may be deceiving.
Finally, it is found that the variation between the last and penultimate iteration is almost
entirely dominated by the variation across the different seeds, suggesting the need for
using multiple random seeds when analysis results.

Part II of the thesis is concerned with agent-based passenger delay modelling under
consideration of real-time information. Public transport systems are often uncertain, and
automated vehicle location (AVL) data of their vehicles can be used to measure vehicle
punctuality. Although being extremely relevant, evaluating how such delays influence
passenger travel times is rarely done, presumably because doing so is inherently tricky as
passengers may adapt to changes along the way, especially when real-time information is
present.

The objective of the second paper of the thesis is to formulate a simulation model that
based on recorded vehicle delays from AVL data can determine the corresponding passen-
ger delays at a large scale under different levels of real-time information prevalence. The
model lets its passengers search for new alternatives every two and a half minutes while
they travel through the system based on the at any time accessible real-time information.
The model is applied to the public transport system of Metropolitan Copenhagen and
812,359 daily trips are modelled for 65 days where real-life AVL data from the rail and
bus network was collected. The study shows how a particularly irregular railway line causes
many passengers to pursue alternative routes, and that information of better alternatives
often occur at stations with many high-classed options. In line with existing literature it
is found that despite some trips arriving earlier than expected, on average the passenger
delays are far larger than the vehicle delays that cause them. The study further discovers
that passenger delays can be reduced considerably by using real-time information obtained
at the beginning of the trip and even further when acquiring information en-route.

Part III consists of three papers that successively develop a novel, tailor-made methodology
for simulating bicycle traffic and interaction with car traffic at a metropolitan scale. The
first paper of the part – the third paper of the thesis – develops a computationally
fast methodology for realistically simulating congestion in separated bicycle traffic. As
the heterogeneity of cyclists is profound, taking overtaking into account is essential for
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being able to simulate bicycle traffic appropriately. The research uses video tracking data
of low intensity bicycle traffic to investigate how desired speeds and preferred headway
distances vary across cyclists, and estimates appropriate probability distributions for these
cyclist characteristics used as input for the developed model. The model is based on
simple assumptions, and allows overtaking by having cyclists explicitly choosing lanes when
entering a link. A bottleneck network is used for testing the methodology under a wide
spectrum of traffic intensities. As designed for, the model is shown to be more likely to
pose excess travel time on cyclists with high desired speeds, whereas high traffic intensities
are required to consistently delay cyclists with preferences for slower speeds. Still, the
derived fundamental diagrams of the small-scale experiments are validated with observed
video tracking data of 3,763 cyclists from a morning peak hour at Queen Louise’s Bridge
in Central Copenhagen. The research carried out in the paper exposes that recognising
cyclist heterogeneity is essential for realistic simulation of bicycle traffic.

The fourth paper is a natural extension of the previous paper. Before this paper, no ded-
icated bicycle traffic assignment models with feedback between route choice and travel
times were present in the literature. The paper alters this by using the methodology from
the third paper to simulate bicycle traffic and integrates it in a traffic assignment model
with meaningful feedback between supply and demand. The method is implemented
in MATSim and applied to a large-scale case study of Metropolitan Copenhagen with
1,082,958 bicycle trips. Although the excess travel time of cyclists is low compared to
other modes, through scenarios using better and worse bicycle infrastructure the study
shows that this can to a large degree be contributed to the high level of bicycle infrastruc-
ture in Copenhagen. Still, it is shown that flows differ significantly between the initial and
final iterations, demonstrating that feedback from the network is needed when modelling
bicycle traffic in cities with a high share of cyclists – even more so if the infrastructure is
insufficient.

Whereas the two preceding papers focus on simulated bicycle traffic on links, the fifth
and final paper addresses how to model the intersections of the network. In cities with a
high level of separated bicycle traffic, intersections are of particular interest as practically
all interactions between bicycles and motorised traffic occur here. The paper formulates
a joint car and bicycle traffic assignment model capable of modelling right-of-way at
every network node, ensuring that conflicting moves do not take place simultaneously.
The agent-based model is implemented in MATSim and applied to the same large-scale
case study of Metropolitan Copenhagen as the fourth paper, but with the addition of
3,210,685 car trips, 299,416 truck trips, and a car network increasing the network size
to 572,935 links and 144,060 nodes. Simulations are run with the right-of-way node
model and the original node model of MATSim for setups with car/truck, bicycle, and all
three modes, respectively. Without increasing computation times notably, the study shows
that omitting to include yielding due to right-of-way at intersections underestimates travel
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times and causes too much traffic to be led through the city centre. It is furthermore shown
that inter-modal conflicts between bicycle traffic and motorised traffic at intersections
delay traffic more than the intra-modal conflicts, emphasising the need for joint modelling
of multi-modality.

In summary, this PhD thesis has contributed to the literature on large-scale agent-based
simulation of urban transport systems, spanning across output variability, public trans-
port passenger delay modelling, and dynamic traffic assignment of bicycle traffic. This
includes recommendations for future practices when dealing with agent-based modelling,
but also in terms of developing methodologies for new types of models for detailed large-
scale modelling of passenger delays and congested bicycle traffic, allowing estimating
effects that were previously ignored when planning and evaluating metropolitan transport
systems. Although there are still additional steps to be taken within each of the topics
covered by the five papers of the PhD thesis, their contributions constitute considerable
improvements to, not only the understanding, but also the capabilities of agent-based
transport simulation models for multi-modal urban traffic.
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Resumé (Danish sumary)

Urbanisering er en af de mest dominerende globale megatrends. Transportnetværk er
allerede under pres i mange storbyer, hvorfor udsigten til at skulle presse endnu flere
mennesker ind i sådanne ofte bildominerede urbane systemer er foruroligende. Det fører
ikke alene til talrige timer spildt i trafikken, men også til øget lokalforurening og udledning
af drivhusgasser.

En måde at aflaste trængslen i byområder er ved at tilbyde hensigtsmæssige alternativer til
biler. Kollektive transportsystemer, hvor passagerer kan nå deres destinationer pålideligt,
og cykelinfrastruktur, der tillader folk at cykle gnidningsfrit, kan for mange ses som
bæredygtige og effektfulde alternativer til biltrafikken i byområder. Imidlertid, selv for
byer med en høj andel af cyklister er modellerne til at evaluere fremtidige projekter og
initiativer målrettet cykeltrafik af langt lavere kvalitet end deres pendanter for biltrafik,
fx angående deres evne til at estimere rejsetider. Da sådanne projekter betragtes som
samfundsøkonomiske investeringer, hvor afkastet tilbagebetales i rejsetidsbesparelser, er
der en risiko for, at manglen på egnede modeller bremser cykelvenlig udvikling.

For at være i stand til at evaluere transporttiltag med en højere detaljeringsgrad, er der
i det forgangne årti sket et skifte mod agentbaserede modeller. Agentbaserede modeller
følger hver enkelt individ i populationen hele døgnet, og gør det muligt at evaluere de-
taljerede effekter som makroskopiske modeller ikke kan. Selvom agentbaserede modeller
er i stand til at simulere store områder detaljeret, eksisterer det førnævnte gab i formåen
mellem modeller for biltrafik og øvrige transportformer stadig, i hvert fald når man ser
bort fra mikroskopiske modeller begrænset til et lille geografisk område.

Denne ph.d.-afhandling sigter mod at reducere dette gab ved at modellere detaljeret indi-
viduel adfærd i storskalaagentbaserede transportsimuleringmodeller. Afvejningen mellem
detaljeringsgrad og beregningmæssig ydeevne er et vitalt fokuspunkt, da de udviklede
modeller er tiltænkt anvendelse på storbyniveau. Selv med dette in mente, bidrager afhan-
dlingen alsidigt til litteraturen gennem fem artikler vedrørende agentbaseret modellering
indelt i tre dele: i) Outputvariabilitet i agentbaseret simulering af transportsystemer, ii)
Agentbaseret passagerforsinkelsesmodellering med realtidsinformation og iii) Agentbaseret
simulering af cykeltrafik og interaktion med biler.

Del I omhandler en af ulemperne ved de fleste agentbaserede simuleringsmodeller – deres
store afhængighed af pseudo-tilfældige tal. Hvor de fleste aggregerede modeller kan
slippe afsted med at angive valg gennem deres valgsandsynligheder, kræver de individuelle
bestanddele af agentbaserede modeller, at eksplicitte valg træffes enten ved at benytte
fuldt ud deterministiske, regelbaserede opsætninger eller ved at anvende pseudo-tilfældige
tal til at udtrække sådanne valg stokastisk. Imidlertid, idet rækker af pseudo-tilfældige tal
afgøres fuldtstændigt af deres initialiseringsværdier, vil en ændring af initialiseringsværdien
føre til ændringer i modellerede valg og i sidste ende også ændre det endelige modeloutput.
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Såldedes kan outputtet fra stokastiske agentbaserede modeller betragtes som stikprøver
fra – meget komplekse – sandsynlighedsfordelinger.

Den første artikel i afhandlingen undersøger variabilititen af sådanne outputs ved at fore-
tage et eksperiment i MATSim med et storskalascenarie for Santiago, Chile med 100
forskellige kørsler baseret på 100 forskellige initialiseringsværdier. De resulterende daglige
trafikmængder på netværkskanter analyseres, og det fremgår at variationen mellem ini-
tialiseringsværdier generelt er lav med tolerable variationskoefficienter. Dog er den relative
forskel lejlighedsvis alvorlig sammenholdt med andre initialiseringsværdier, hvilket indik-
erer, at resultater baseret på en enkelt initialiseringværdi kan være misvisende. Endeligt
finder studiet, at variationen mellem den sidste og næstsidste iteration er næsten fuld-
stændigt domineret af variationen på tværs af initialiseringsværdier pegende i retning af,
at der bør bruges mere end en enkelt initialiseringsværdi, når resultater skal analyseres.

Del II af afhandlingen beskæftiger sig med agentbaseret passagerforsinkelsesmodellering
når realtidsinformation er til stede. Kollektive transportsystemer er ofte upålidelige, og
data fra tog og bussers positioner i realtid (AVL-data) kan bruges til at måle køretøjs-
punktligheden. På trods af at være ekstremt relevant bliver det sjældent evalueret,
hvordan sådanne forsinkelser influererer passagerrejsetider, formentligt fordi opgaven er
vanskelig, da passagerer har mulighed for at adaptere deres valg hen ad vejen, i særlig
grad når realtidsinformation er tilgængelig.

Formålet med afhandlings anden artikel er at udarbejde en simuleringmodel, som baseret
på faktiske køretøjsforsinkelse fra AVL-data kan beregne dertilhørende passagerforsinkelser
i stor skala under forskellige niveauer af realtidsinformationstilgængelighed. Modellen
lader passagerer søge efter nye alternativer hvert 150. sekund, mens de rejser gennem
systemet, baseret på den til enhver tid tilgængelige realtidsinformation. Modellen er
anvendt på det kollektive transportsystem for Hovedstadsområdet, og 812,359 daglige
ture er modelleret for 65 dage, hvor AVL-data blev indsamlet for tog- og busnetvær-
ket. Studiet viser, hvordan den særligt irregulære jernbanelinje Kystbanen resulterer i,
at mange passagerer til forfølger alternativer ruter, og at information om bedre alterna-
tiver ofte forekommer på stationer med mange højklassede muligheder. I tråd med den
eksisterende litteratur, vises det, at på trods af at nogle passagerer ankommer før tid, er
passagerforsinkelser gennemsnitligt set langt større end de køretøjsforsinkelser, der skaber
dem. Studiet finder yderligere, at passagerforsinkelser kan reduceres betragteligt ved at
anvende realtidsinformation ved turens start og endnu mere ved løbende at anskaffe sig
sådan information undervejs.

Del III består af tre artikler, der successivt udvikler en skræddersyet metodologi til at
simulere cykeltrafik og interaktion med biltrafik på storbyniveu. Delens første artikel –
afhandlingens tredje artikel – udvikler en beregningsmæssig hurtig metodolgi til realis-
tisk at simulere trængsel på cykelstier. Da heterogenitet blandt cycklister er udtalt, er
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det essentielt at tage overhalinger med i betragtning for at være i stand til at simulere
cykeltrafik hensigtsmæssigt. Artiklen benytter videodata af lavintens cykeltrafik til at un-
dersøge, hvordan ønskede hastigheder og præferencer for afstand til forankørende varierer
på tværs af cyklister og estimerer passende sandsynlighedsfordelinger disse cyklistkarak-
teristika, der anvendes som input til modellen. Modellen er baseret på simple antagelser
og tillader overhalinger ved at cyklister eksplicit vælger bane, når de ankommer til en
netværkskant. Et flaskehalsnetværk er brugt til at teste metoden under et bredt spektrum
at trafikintensiteter. I tråd med modellens hensigt viser det sig, at modellen er mere
tilbøjelig til at påføre cyklister med høje ønskede hastigheder forøget rejsetid, hvorimod
højere trafikintensiteter er nødvendige for konsekvent at forsinke cyklister med præference
for lavere hastigheder. Alligevel kan fundamentaldiagrammerne udledt af småskalaeksper-
imenterne valideres af videodata af 3,763 cyklister fra Dronning Louises Bro i en mor-
genmyldretidstime. Forskningen foretaget i artiklen klarlægger, at det er essentielt at
anerkende cyklistheterogenitet for at simulere cykeltrafik realistisk.

Den fjerde artikel er en naturlig udvidelse af den den foregående artikel. Før denne
artikel var der ingen eksempler på dedikerede vejvalgsmodeller for cykeltrafik med feed-
back mellem rutevalg of rejsetider i litteraturen. Det gør artiklen op med ved at bruge
metodologien fra den tredje artikel til at simulere cykeltrafik og integrere den i en ve-
jvalgsmodel med meningsfyldt feedback mellem udbud og efterspørgsel. Metoden er
implementeret i MATSim og anvendt på et storskalacasestudie for Hovedstadsområdet
med 1,082,958 cykelture. Selvom den øgede rejsetid er lav for cyklister sammenlignet med
andre køretøjstyper, viser studiet gennem scenarier med værre og bedre infrastruktur, at
dette i høj grad kan tilskrives den gode københavnske cykelinfrastruktur. Stadigvæk vises
det, at forskelle i trafikmængder afviger signifikant fra hinanden i første og sidste iter-
ation, hvilket demonstrerer, at det er nødvendigt med feedback fra netværket, når man
modellerer cykeltrafik i byer med en høj andel af cyklister – og i endnu højere grad hvis
infrastrukturen er utilstrækkelig.

Hvor de to forudgående artilker fokuserer på at simulere cykeltrafik på netværkskanter,
adresserer den femte og sidste artikel, hvordan man modellerer netværkets kryds. I byer
med en høj grad af separeret cykeltrafik er krydsene af særlig interesse, idet praktisk talt
alle interaktioner mellem cykeltrafikken og motoriserede køretøjer finder sted heri. Ar-
tiklen formulerer en fælles vejvalgsmodel for bil- og cykeltrafik, der evner at modellere
vigepligt i alle netværksknuder, og sikrer sig at ingen konfliktende bevægelser kan finde
sted samtidigt. Den agentbaserede model er implementeret i MATSim og anvendt på
det samme storskalacasestudie som den fjerde artikel, men med tilføjelsen af 3,210,685
bilture, 299,416 lastbilsture og et bilnetværk, der øger netværkstørrelsen til 572,935 kan-
ter og 144,060 knuder, Simulationskørsler med vigepligtsnodemodellen og den originale
MATSim-nodemodel er foretaget med tre forskellige opsætninger med bil- og lastbilstrafik,
cykeltrafik og med alle tre køretøjstyper. Uden at at øge beregningstider nævneværdigt,
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viser studiet, at rejsetider undervurderes, og at for meget trafik ledes ind gennem byen,
når vigepligt i kryds ikke inkluderes. Det vises ydermere, at intermodale konflikter mellem
cykeltrafik og motoriseret trafik i kryds forsinker trafikken mere end intramodale konflikter,
hvilket understreger nødvendigheden af at modellere multi-modalitet samlet.

Sammenfattende har denne ph.d.-afhandling bidraget til litteraturen inden for agent-
baseret simulation af urbane transportsystemer, strækkende sig over outputvariabilitet,
passagerforsinkelser i kollektiv transport samt dynamisk vejvalgsmodellering af cykeltrafik
og interaktioner med biltrafik. Dette inkluderer anbefalinger til fremtidig praksis ved an-
vendelse af agentbaseret modellering, men også ved at udvikle metodologier for nye typer
af modeller for storskalamodellering af passagerforsinkelser og højintens cykeltrafik, som
tillader at estimere effekter, der tidligere er blevet ignoreret, når transportsystemer for
storbyer skulle planlægges og evalueres. Selvom der stadig er yderligere skridt at tage
inden for alle de emner, der berøres af afhandlingens fem artikler, udgør deres bidrag
betydelige forbedringer af ikke bare forståelsen men også den modelmæssige formåen af
agentbaserede transportsimuleringsmodeller for multimodal urban trafik.
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1 Introduction

This introductory chapter begins by an overall motivation of the PhD thesis in Section
1.1. Section 1.2 divides the thesis into three parts, and presents the motivation, aim and
main contributions for each of the parts and associated papers. Finally, an outline of the
remainder of thesis is provided in Section 1.3.

1.1 Background

Transport systems are complex systems where choices of users and network performance
are highly interdependent. Urban transport systems have additional complexity due to
their traffic generally consisting of a more diverse range of transport modes and more
alternatives are available.

However, even in cities like Copenhagen that are praised for theirs high market shares
of cyclists, car traffic still constitutes a serious part of the overall traffic. As cars are
tremendously space inefficient, even a moderate proportion of the overall number of trips
is enough to cause severe congestion. Congested time in Metropolitan Copenhagen is
projected to reach 18.4 millions hours in 2025 (The Danish Commission on Congestion,
2013), and with the global and national urbanisation in mind projecting two thirds of
the world’s population to live in cities by 2050 (United Nations, 2019) and a growth
in the number citizens in The City of Copenhagen of 24.1% since 2005 (The City of
Copenhagen, 2020), there is no reason to believe that these numbers will drop without
serious interventions.

Car traffic does not only cause congestion, though. It also contributes to green house
gas emissions and local pollution, particularly undesirable in cities where the population
density is higher. Despite having a large share of cyclists, urban road traffic is still a
primary source of local pollution in cities like Copenhagen, as it was exemplified at the
2011 UCI World Championships where the concentration of ultrafine particles dropped by
30% during the seven day restriction on cars in central Copenhagen (Colville-Andersen,
2011; Miljøpunkt Indre By-Christianshavn, 2011).

To circumvent these tendencies, and as a means to facilitate sustainable development and
preserve efficient transport systems, many cities have adopted strategies for increasing the
use of bicycles and public transport (Giles-Corti et al., 2016). As an example, The City
of Copenhagen (2012) has targeted having at least 75% of trips to, from or within the
municipality to be conducted by bicycle, public transport or by walking.

Whereas the travel time effects of interventions targeting car traffic are reasonably under-
stood in the literature through decades of research in transport models centred around car
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traffic, equivalent models focusing on public transport users and cyclists in particular have
received much less attention, especially concerning the bicycle traffic and the movements
of cyclists within such (Twaddle et al., 2014). This is problematic, as when asked why
they travel by bicycle 46% of cyclists in Copenhagen mention the bicycle being the faster
option, only exceeded by being the easier option (55%) (The City of Copenhagen, 2019).

Furthermore, the lack of appropriate bicycle transport models is specifically pointed out
as a barrier among stakeholders according to Aldred et al. (2019), who further highlights
the importance of closing the gap allowing backing cycling projects with transport model
predictions. Whereas the studies of long and short term effects on public health (Pucher
and Dijkstra, 2003; Oja et al., 2011; Garrard et al., 2012; Götschi et al., 2016) and equity
(Goodman et al., 2013) can also be used to advocate cycling, such effects are much
harder to include in cost benefit analyses, especially since existing models do not fully
manage to determine the hours and kilometres bicycled.

In parallel, there has been a tendency towards developing continuously more disaggregate
models, to a point where – due to methodological and computational development – entire
metropolitan areas can now be modelled in high detail agent-based simulation models (Lin
et al., 2008; Wegener, 2011; Bazzan and Klügl, 2014; Wise et al., 2017). Although the
principles of such models have existed for more than a quarter of a century (Jones, 1979;
Axhausen and Gärling, 1992), the development of such models have intensified in the
past decade (Bazzan and Klügl, 2014).

The motivation for agent-based simulation solutions approaching the microscopic level
has been multifaceted and includes their suitability for modelling heterogeneous systems
and interactions between agents (Bazzan and Klügl, 2014). However, there are still plenty
of challenges that need to be addressed within the field. According to Bazzan and Klügl
(2014), the main challenge of agent-based transport models is whether such models are
reliable or chaotic. Similarly, Wegener (2011) points out the stochastic nature of the
outputs as being a particular challenge for agent-based models.

One of the widely used agent-based traffic simulators is the open-source model MATSim
(Horni et al., 2016) which has been used in a wide range of applications and case studies
around the world. All of the papers in this PhD thesis are either explicitly using MATSim
(Paper 1, Paper 4, and Paper 5), utilising elements of MATSim (Paper 2) or proposing
a methodology suited for implementation in MATSim (Paper 3).

Whereas MATSim originally only allowed agents to make decisions between iterations,
recent applications concerning e.g. autonomous taxis (Maciejewski and Bischoff, 2018),
parking search (Bischoff et al., 2019), and rerouting in car traffic (Kaddoura and Nagel,
2018) and public transport (Leng and Corman, 2020) in case of incidents, have also
allowed within-day decisions to be made.
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This PhD thesis contributes to the development of microscopic individual on-the-go deci-
sions within large-scale agent-based simulation by developing models for two very differ-
ent applications – passenger delay modelling and bicycle traffic simulation – and applying
them to large-scale case studies of Metropolitan Copenhagen. In addition, the stochastic
variation that is deemed as one of the main point of criticism for agent-based simulation
models is also studied.

1.2 Aim and main contributions

The overarching aim of this PhD thesis is through development of new methodologies
and case studies to test the capabilities of large-scale agent-based models when faced
with complex modelling tasks concerning multi-modal urban traffic. As opposed to most
existing multi-modal approaches where each mode is treated separately, the thesis aims
at also modelling inter-modal interactions through joint simulation. Striving for large-
scale applicability, careful selection of which aspects to model at the microscopic level
during the traffic simulation – and how to model them – is a cardinal point throughout
the thesis. The idea is to draw inspiration from microscopic simulation, further develop
and implement methodologies computationally efficiently, and apply them in large-scale
applications.

This is done across five papers categorised into one of three research areas that each
constitutes a part of the thesis:

I. Output variability in agent-based simulation of transport systems.

II. Agent-based passenger delay modelling with real-time information.

III. Agent-based simulation of bicycle traffic and interaction with cars.

The motivation and aim of each part and their associated papers are presented in the
following subsections.

1.2.1 Output variability in agent-based simulation of transport systems

Part I examines output uncertainty in agent-based transport simulation models caused by
using pseudo-random numbers to randomly perform explicit choices. Transport models
are generally prone to uncertainty as assumptions are often simplified or the required
input is uncertain or downright flawed (Manzo et al., 2015). However, models explicitly
utilising random numbers have additional variability caused by the choice of the random
seed that completely determines the sequence of random numbers. As opposed to the
input and model assumptions, the random seed has no unique correct value why intrinsic
uncertainty is unavoidable. The aim of this part is to investigate how the output of an
agent-based transport simulation model varies across different sequences of such random
numbers.
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The part includes a single paper, Output variability caused by random seeds in a multi-
agent transport simulation model published in Procedia Computer Science 130, 2018 (Pa-
per 1), that performs a variability analysis of outputs of a large-scale case study of MAT-
Sim (Horni et al., 2016) based on the open data scenario of Santiago de Chile (Kickhöfer
et al., 2016). The downscaled scenario with more than 650,000 agents is run 100 times
with different random seeds but otherwise same settings in each run. The large number
of repetitions is much larger than previous studies on the subject, allowing for a detailed
analysis of variation within each run but – more importantly – also between different
runs. This allows to answer whether the output of a single random seed is reliable or
supplementary runs with other random seeds should be used when analysing results of
such models.

The study has been presented at the 7th International Workshop on Agent-based Mobility,
Traffic and Transportation Models, Methodologies and Applications (ABMTRANS 2018)
in conjunction with the 9th International Conference on Ambient Systems, Networks and
Technologies (ANT 2018) in Porto, Portugal.

1.2.2 Agent-based passenger delay modelling with real-time information

The second paper, Impacts of real-time information levels in public transport: A large-scale
case study using an adaptive passenger path choice model under review at Transporta-
tion Research Part A: Policy and Practice (Paper 2), constitutes Part II of the thesis.
As opposed to the easily measurable vehicle delays that have been studied intensively,
passenger delays and other passenger perspectives are generally underrepresented in the
literature (Parbo et al., 2016). For instance, despite an increasing presence of real-time
information, its impact on passenger delays is not thoroughly understood in large-scale
transport systems (Brakewood and Watkins, 2019). Remarkable, as operating public
transport systems in a way that allows passengers to travel through the system fast and
reliably should be a main objective for transport operators and authorities, and tools
for determining passenger travel times and delays would be a helpful tool for evaluating
current performances in this regard.

The aim of this part is to develop a model that based on Automated Vehicle Location
(AVL) data can model corresponding real-time information and adaptive passenger re-
sponses, such that delays for all passengers in a metropolitan multi-modal public transport
system can be determined while taken the level of real-time information into account.

The paper builds on top of Paulsen et al. (2018) – a conference paper presented at the 4th
Conference on Advanced Systems in Public Transport (CASPT) and Transit Data 2018
in Brisbane, Australia – but corrects several shortcomings. The old, heuristic, iterative
approach was rejected in favour of a new, adaptive one-shot passenger path choice model
considering various levels of real-time information that is sufficiently computationally ef-
ficient to model all 801,719 daily trips of every passenger in Metropolitan Copenhagen.
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Modelling adaptive passenger path choices is generally important as intended paths may
become infeasible along the way, and is a downright necessity when considering real-time
information to which passengers may react en-route. The size of the case study in terms
of network and trips is much larger than any existing multi-modal studies, and the inclu-
sion of the entire public transport system provide passengers with a variety of possible
alternatives through transfers. The paper also contributes to literature by modelling pas-
senger delays of actual days in a large-scale multi-modal network by including 65 days of
observed AVL data of trains and buses in the area, whereas earlier studies on the sub-
ject applying real-life AVL data only dealt with railways and few transfers (Nielsen et al.,
2009; Lijesen, 2014). The study models passenger responses to five levels of real-time
information and analyses the overall and marginal effects on the corresponding passenger
delays.

An extended abstract using the improved methodology has been accepted for presenta-
tion at the 9th Symposium of the European Association for Research in Transportation
(hEART 2020) in Lyon, France.

1.2.3 Agent-based simulation of bicycle traffic and interaction with cars

The final part of the thesis, Part III, is concerned with large-scale simulation of bicycle
traffic and consists of Papers 3, 4, and 5. Even though some cities such as Copenhagen
have high shares of cyclists, bicycle traffic is still modelled way too simplistically in existing
models. Demand unresponsive route choice effects such as gradient (Menghini et al.,
2010), land-use (Prato et al., 2018), and surface (Prato et al., 2018), are decently covered
in the literature, and can be estimated independent on the size of bicycle flows. Estimating
demand sensitive modelling of travel times, on the other hand, requires data from the
entirety of a bicycle traffic stream, and has received much less attention in the literature
(Twaddle et al., 2014). Consequently, projects designed for improving bicycle traffic have
a disadvantage when being evaluated due to important effects such as travel time savings
being neglected.

In three successive stages, Part III of the thesis develops a novel large-scale traffic as-
signment model capable of simulating bicycle traffic realistically and computationally
efficiently (Paper 3) and applies it in two large-scale case studies (Papers 4, and 5),
one of which also includes joint modelling of car traffic and inter-modal interactions at
intersections (Paper 5).

The first of these papers, Fast or forced to follow: A speed heterogeneous approach to
congested multi-lane bicycle traffic simulation published in Transportation Research Part
B: Methodological 127, 2019 (Paper 3), takes on the task of developing a methodology
specially designed for simulating bicycle traffic on dedicated infrastructure. The absence
of existing transport simulators capable of modelling congestion for such bicycle traf-
fic means that traffic assignment models including cyclists have predominantly omitted
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congestion effects altogether, assigning constant, demand independent travel times for
cyclists. Flow-based methods designed for car traffic are not a viable solution either as
they do not accommodate the high heterogeneity across cyclists and the good opportuni-
ties to overtake in bicycle traffic. Instead, this paper develops a tailor-made agent-based
simulation model for bicycle traffic on dedicated infrastructure based on assumptions and
characteristics more appropriate for bicycle traffic, and that can be estimated on low in-
tensity bicycle traffic data. As opposed to very detailed microscopic models, the model
should still be sufficiently computationally efficient to be used within a traffic assignment
model for an entire metropolitan area.

An initial version of the methodology was presented at the 7th Symposium of the European
Association for Research in Transportation (hEART 2018) in Athens, Greece.

The second paper of this part, Large-scale assignment of congested bicycle traffic using
speed heterogeneous agents published in Procedia Computer Science 151, 2019 (Paper
4), builds on top of the methodology from Paper 3. The bicycle traffic simulation model
from Paper 3 is integrated with an individualised route choice model and implemented
in MATSim (Horni et al., 2016). The resulting model is the first ever dedicated bicycle
traffic assignment model with proper feedback capabilities between supply and demand.
Three illustrative scenarios are designed for testing the model on a large-scale case study
of Metropolitan Copenhagen with 1,082,958 trips assigned to a detailed bicycle network.
The formulated model is intended for evaluating travel time effects of large interventions
targeting bicycle traffic.

The study was presented at the 8th International Workshop on Agent-based Mobility,
Traffic and Transportation Models, Methodologies and Applications (ABMTRANS 2019)
in conjunction with the 10th International Conference on Ambient Systems, Networks
and Technologies (ANT 2019) in Leuven, Belgium,

Paper 5 entitled Including right-of-way in a joint large-scale agent-based dynamic traffic
assignment model for car and bicycle traffic submitted to Networks and Spatial Eco-
nomics further develops the research by extending the model to simulate interactions at
intersections in a joint large-scale simulation model for car and bicycle traffic. Although
some cities such as Copenhagen to a large degree separate bicycle traffic from the re-
maining traffic, interactions are bound to happen at intersections. Despite right-of-way
being designed to favour cyclists, delays can still occur when cyclists have to turn left or
cross larger roads, whereas turning car traffic has to yield for dense streams of bicycle
traffic. The study contributes to literature by formulating and implementing in MATSim
(Horni et al., 2016) an efficient method for simulating intra- and extra-modal interactions
at intersections in a joint agent-based traffic assignment model for car and bicycle traffic,
as well as analysing the impacts of multi-modal right-of-way in a large scale case study of
Metropolitan Copenhagen with 4,593,059 daily trips on a network of 572,935 links and
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144,060 nodes.

An extended abstract on the subject has been accepted for presentation at the now
postponed 8th International Symposium on Dynamic Traffic Assignment (DTA 2020) in
Seattle, WA, USA.

1.3 Outline

The remainder of the PhD thesis consists of the three introduced parts and their papers
as well as final concluding chapter. Part I on output variability of agent-based models
contains Paper 1 in Chapter 2. Paper 2 found in Chapter 3 constitutes Part II concerning
passenger delay modelling. Papers regarding agent-based simulation of congested bicycle
traffic are found in Chapters 4-6 of Part III. Finally, Chapter 7 sums up the individual
and mutual contributions and major takeaways from the five papers and points towards
relevant research directions and policy implications outlined by the thesis.
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Dynamic transport simulators are intended to support decision makers in transport-related issues, and as such it is valuable that the
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1. Introduction

Uncertainty in transport models is a well-known problem that needs to be addressed when using their outputs1.
Whereas the uncertainty of traditional analytical transport models is caused by uncertainty of input parameters, models
that rely on simulation have additional variability in their output due to the stochasticity of the series of pseudo-random
numbers that are drawn. These series are determined by the so-called random seed.

Although some types of transport models use stochasticity/simulation for choice set generation, it is most widely
used in dedicated transport simulators. The open-source software MATSim2 is one example of such large-scale
transport simulator used for analysing transport scenarios all across the world. As transport simulators are generally
intended to facilitate policy support, it is of great interest to examine the output variability caused by random seeds
in MATSim in order to determine whether this can potentially overshadow the impacts of suggested infrastructure
investments under consideration.

This paper investigates the variability in output caused by random seeds for an open-data scenario of Santiago
de Chile3,4,5. This is done by running the model repeatedly with different seeds using otherwise the same default
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configurations and inputs. In the remainder of the paper, some additional background is initially given in section 2,
followed by an introduction to the applied methodology in section 3. Section 4 presents how random numbers are
generated in MATSim, while the case study and results are presented in sections 5 and 6, respectively. Section 7
discusses the findings and gives suggestions for further work.

2. Background

While a lot of studies have dealt with uncertainties in transport models in general — in particular uncertainties due
to uncertainties of input – only a few studies have previously focused on the pure stochastic variability caused by the
selection of random seeds in activity-based models.

Veldhuisen et al. 6 concluded that Monte Carlo errors are negligible when considering aggregate results of the
microsimulation model RAMBLAS.

Castiglione et al. 7 used an approach where the partial mean of the first n seeds is compared to the final mean
(n = 100) for the so-called San Francisco Model. Although this is also interesting, the partial mean is dependent on
the order in which the seeds are used. Also it does not generally answer how large errors are when using a single seed,
as only one of such cases is investigated (the first partial mean).

Lawe et al. 8 investigated the sensitivity to variations in random seed based on five different random seeds in
TRANSIMS. Although based on a small sample, the coefficient of variation of link loads were small on average for
all investigated links.

Also with TRANSIMS, Ziems et al. 9 follows the same approach as in Castiglione et al. 7 using 20 seeds, but
extends the analysis by changing and keeping the random seeds of different parts of the simulation. Coefficients of
variations of link loads for two investigated links were 1.7 % when changing the random seed of the entire model.

Cools et al. 10 investigated the variability of demand for each mode when using FEATHERS. Based on 200 different
seeds the coefficient of variation was generally below 1 %.

Bekhor et al. 11 investigates the variability that arises from random components of the model specifications of the
Tel Aviv Transportation Model. It also studies variability solely caused by random seeds by running various settings
with three different seeds. The number of different seeds used is too low to quantify the findings, though.

Several studies by Nagel (et al.) 12,13,14 touches upon the issue of simulation errors caused by selection of random
seeds. It is noted and visualised that such variability exists based on two different random seeds, but an in-depth
investigation of the variation has not been published, although unpublished work by Raney et al. is mentioned13.

One of the studies by Nagel et al. 14 mentions the need to further investigate the variability caused by random seeds
in MATSim specifically. This is supported by a chapter15 of the MATSim book2, stating that quantities of interest
from the output of the model can be found by averaging over a series of runs with different seeds. This is encouraged
due to the broken ergodicity16 of the model, meaning that once a random seed is selected some till then possible
outcomes of the model are no longer reachable15.

3. Methodology

In order to evaluate the variations caused by random seeds in a multi-agent transport simulator, a number of
measures will be applied in this study. The first is the coefficient of variation, cv, defined as the sample standard
deviation divided by the sample mean, both considered across all seeds s in the set of seeds S .

We also introduce two additional measures. With xl
s denoting the link load of link l within the set of links L when

using seed s ∈ S , we introduce the following notation with Iverson brackets to denote the empirical probability of the
link, l ∈ L, having a link load that is more than q times off its sample mean across all seeds, x̄l,

rl
q =

∑
s∈S

[ |xs
l−x̄l|
x̄l
> q
]

|S | , l ∈ L, q ≥ 0. (1)
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discusses the findings and gives suggestions for further work.

2. Background

While a lot of studies have dealt with uncertainties in transport models in general — in particular uncertainties due
to uncertainties of input – only a few studies have previously focused on the pure stochastic variability caused by the
selection of random seeds in activity-based models.

Veldhuisen et al. 6 concluded that Monte Carlo errors are negligible when considering aggregate results of the
microsimulation model RAMBLAS.

Castiglione et al. 7 used an approach where the partial mean of the first n seeds is compared to the final mean
(n = 100) for the so-called San Francisco Model. Although this is also interesting, the partial mean is dependent on
the order in which the seeds are used. Also it does not generally answer how large errors are when using a single seed,
as only one of such cases is investigated (the first partial mean).

Lawe et al. 8 investigated the sensitivity to variations in random seed based on five different random seeds in
TRANSIMS. Although based on a small sample, the coefficient of variation of link loads were small on average for
all investigated links.

Also with TRANSIMS, Ziems et al. 9 follows the same approach as in Castiglione et al. 7 using 20 seeds, but
extends the analysis by changing and keeping the random seeds of different parts of the simulation. Coefficients of
variations of link loads for two investigated links were 1.7 % when changing the random seed of the entire model.

Cools et al. 10 investigated the variability of demand for each mode when using FEATHERS. Based on 200 different
seeds the coefficient of variation was generally below 1 %.

Bekhor et al. 11 investigates the variability that arises from random components of the model specifications of the
Tel Aviv Transportation Model. It also studies variability solely caused by random seeds by running various settings
with three different seeds. The number of different seeds used is too low to quantify the findings, though.

Several studies by Nagel (et al.) 12,13,14 touches upon the issue of simulation errors caused by selection of random
seeds. It is noted and visualised that such variability exists based on two different random seeds, but an in-depth
investigation of the variation has not been published, although unpublished work by Raney et al. is mentioned13.

One of the studies by Nagel et al. 14 mentions the need to further investigate the variability caused by random seeds
in MATSim specifically. This is supported by a chapter15 of the MATSim book2, stating that quantities of interest
from the output of the model can be found by averaging over a series of runs with different seeds. This is encouraged
due to the broken ergodicity16 of the model, meaning that once a random seed is selected some till then possible
outcomes of the model are no longer reachable15.

3. Methodology

In order to evaluate the variations caused by random seeds in a multi-agent transport simulator, a number of
measures will be applied in this study. The first is the coefficient of variation, cv, defined as the sample standard
deviation divided by the sample mean, both considered across all seeds s in the set of seeds S .

We also introduce two additional measures. With xl
s denoting the link load of link l within the set of links L when

using seed s ∈ S , we introduce the following notation with Iverson brackets to denote the empirical probability of the
link, l ∈ L, having a link load that is more than q times off its sample mean across all seeds, x̄l,

rl
q =

∑
s∈S

[ |xs
l−x̄l|
x̄l
> q
]

|S | , l ∈ L, q ≥ 0. (1)

Mesoscopic Simulation of Multi-Modal Urban Traffic 15



852 Mads Paulsen  et al. / Procedia Computer Science 130 (2018) 850–857
M. Paulsen et al. / Procedia Computer Science 00 (2018) 000–000 3

Likewise, we denote the proportion of links having link loads further than q times away from their corresponding
empirical mean values when the seed, s ∈ S , was used by,

rs
q =

∑
l∈L

[ |xs
l−x̄l|
x̄l
> q
]

|L| , s ∈ S , q > 0. (2)

By considering rl
q and rs

q across all l ∈ L and s ∈ S , respectively, a series of values, rL
q and rS

q , is obtained.
Furthermore, we introduce the terms within-seed variation, Wl, and the between-seed variation, Bl, for a link l ∈ L,

Wl =
1
|S |
∑
s∈S

(
xs,|I|−1

l − xs,|I|
l

)2
, l ∈ L,

Bl =
1

|S | − 1

∑
s∈S

(
xs,|I|

l − x̄|I|l

)2
, l ∈ L.

The calculation of the within-seed variation utilises that the (ex post) expected value of iteration |I| − 1 is the value
obtained in the last iteration, |I|. For the between seed variation, we consider that each seed might converge to a
different solution, why the expected value is found as the mean across all seeds s ∈ S in iteration |I|, i.e. x̄|I|l =
1
|S |
∑

s∈S xs,|I|
l . We can compare Bl and Wl by calculating R̃l,

R̃l =

√
Bl +Wl

Wl
, l ∈ L.

If this is close to 1, then the between-seed variation is negligible, whereas the opposite is true for large values of R̃l.

4. MATSim: A Multi-Agent Transport Simulator

MATSim2 is an activity- and individual-based simulation model, where each agent aims at obtaining the highest
possible value of their scoring function. It uses a co-evolutionary algorithm (Algorithm 114) to reach its final output.

Algorithm 1 Co-evolutionary, population based search

1. Initiation: Generate at least one plan for every agent.

2. Iterations: Repeat the following many times.

(a) Plan Selection: Select one plan for every agent.

(b) Plan Scoring: Obtain a score for every agent’s selected plan by executing all selected plans simultaneously
in a mobility simulator and attach a performance measure (score) to each executed plan.

(c) Plan Innovation: Generate new plans for some of the agents by mutating existing plans or re-routing.

The algorithm utilises on random numbers on several occasions. Firstly, they are used to determine the order in
which to handle in-going links of each node in every time step of the mobility simulator. Here any link is chosen with
a probability proportional to its capacity.

Secondly, they are used to determine which agents use which plan mutation strategy and plan selection strategy in
each iteration. In each iteration 30 % of agents are selected to generate a new plan for their choice set – half of these
by re-routing (new shortest path searches), the other half by substituting the mode of a discrete-uniformly randomly
selected sub-tour by another mode from the pool of possible modes. If the generation of the plan forces the choice set
to exceed the maximum number of plans, the plan with the worst score is removed from the choice set.

Thirdly, the 70 % of agents who do not generate a new plan, draw a plan, P∗, from their choice set with discrete

uniform probability, and selects this plan with probability min
{
1, 0.01 · e

UP∗ −UPC
2

}
, where UP∗ and UPC are the latest
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Fig. 1. Empirical cumulative distribution functios of the coefficient of variation of link loads across all links l ∈ L.

scores of the drawn plan, P∗, and the currently selected plan, PC , respectively. If P∗ is not chosen, the agent will
execute the current plan again in the next iteration.

Finally, in order to have a larger diversity on the routes suggested when re-routing, the utility of money is drawn
from a log-normal distribution when initiating a router. 17

The random numbers are thus predominantly used for choosing between reasonable discrete alternatives. There-
fore, MATSim does not at seem to be particularly vulnerable to variability arising from random seeds a first glance.

With the role of random numbers in MATSim established, we now turn to discuss how pseudo-random numbers
are created in MATSim. They are to a large extent based on Java’s built-in Linear Congruential Generator (LCG). The
traditional LCG18 is of the form,

Xn+1 = aXn + c mod m,

where Xn is the latest draw, Xn+1 is the next draw, and a, c and m are parameters having the values m = 248, a =
25, 214, 903, 917, and c = 11 in Java. In order to get a uniformly distributed number Xn+1 is divided by m.

MATSim offers a few extensions to Java’s built-in random number generation. First of all, when a random number
generator is instantiated, it immediately draws and throws away the first 100 draws, as these are found not to be
sufficiently random.15 Secondly, whenever a new random number generator is created from an existing one, the value
of an internal counter is multiplied by 23 and added to the latest used seed before discarding the next 100 draws of the
newly created instance. The initial random number generator is established with the globally assigned random seed
as X0, meaning that this number completely determines the sequence of all other random numbers used in the run.

5. Case Study

The model has been run for 100 different initial global random seeds on the Santiago de Chile open data sce-
nario3,4,5. The scenario includes a toll system on selected roads, and schedule-based public transport running on
dedicated public transport links. The default “out-of-the-box” configurations set by the developers of the scenario
have been used, including a population sample of 10 % corresponding to 665,201 agents, a network consisting of
22,981 unidirectional links for car traffic, and 100 iterations per seed. Choice sets for every agent are locked after 80
iterations, at which point MSA is enabled for the (at most) five plans per agent. Considered modes for substitution of
a sub-tour are walk, public transport, and – if available to the agent – car.

6. Results

The results show that coefficients of variation of link loads (dedicated public transport links excluded), cxl
v , are

generally quite low with 65.7 % of the links not exceeding 5 % (see Figure 1). The distribution has a skewness of 16.7
and has some resemblance to a log-normal distribution, which is also shown in the figure.

The correlations between the mean (x̄l), the standard deviation (σ̂xl ), and the coefficient of variation
(
cxl

v
)

across
all links l ∈ L are shown in Table 1. It is seen that there is a strong correlation between x̄l and σ̂xl (0.849) indicating
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q , is obtained.
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The calculation of the within-seed variation utilises that the (ex post) expected value of iteration |I| − 1 is the value
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If this is close to 1, then the between-seed variation is negligible, whereas the opposite is true for large values of R̃l.

4. MATSim: A Multi-Agent Transport Simulator

MATSim2 is an activity- and individual-based simulation model, where each agent aims at obtaining the highest
possible value of their scoring function. It uses a co-evolutionary algorithm (Algorithm 114) to reach its final output.

Algorithm 1 Co-evolutionary, population based search

1. Initiation: Generate at least one plan for every agent.

2. Iterations: Repeat the following many times.

(a) Plan Selection: Select one plan for every agent.

(b) Plan Scoring: Obtain a score for every agent’s selected plan by executing all selected plans simultaneously
in a mobility simulator and attach a performance measure (score) to each executed plan.

(c) Plan Innovation: Generate new plans for some of the agents by mutating existing plans or re-routing.

The algorithm utilises on random numbers on several occasions. Firstly, they are used to determine the order in
which to handle in-going links of each node in every time step of the mobility simulator. Here any link is chosen with
a probability proportional to its capacity.

Secondly, they are used to determine which agents use which plan mutation strategy and plan selection strategy in
each iteration. In each iteration 30 % of agents are selected to generate a new plan for their choice set – half of these
by re-routing (new shortest path searches), the other half by substituting the mode of a discrete-uniformly randomly
selected sub-tour by another mode from the pool of possible modes. If the generation of the plan forces the choice set
to exceed the maximum number of plans, the plan with the worst score is removed from the choice set.

Thirdly, the 70 % of agents who do not generate a new plan, draw a plan, P∗, from their choice set with discrete

uniform probability, and selects this plan with probability min
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1, 0.01 · e

UP∗ −UPC
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}
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scores of the drawn plan, P∗, and the currently selected plan, PC , respectively. If P∗ is not chosen, the agent will
execute the current plan again in the next iteration.

Finally, in order to have a larger diversity on the routes suggested when re-routing, the utility of money is drawn
from a log-normal distribution when initiating a router. 17

The random numbers are thus predominantly used for choosing between reasonable discrete alternatives. There-
fore, MATSim does not at seem to be particularly vulnerable to variability arising from random seeds a first glance.

With the role of random numbers in MATSim established, we now turn to discuss how pseudo-random numbers
are created in MATSim. They are to a large extent based on Java’s built-in Linear Congruential Generator (LCG). The
traditional LCG18 is of the form,

Xn+1 = aXn + c mod m,

where Xn is the latest draw, Xn+1 is the next draw, and a, c and m are parameters having the values m = 248, a =
25, 214, 903, 917, and c = 11 in Java. In order to get a uniformly distributed number Xn+1 is divided by m.

MATSim offers a few extensions to Java’s built-in random number generation. First of all, when a random number
generator is instantiated, it immediately draws and throws away the first 100 draws, as these are found not to be
sufficiently random.15 Secondly, whenever a new random number generator is created from an existing one, the value
of an internal counter is multiplied by 23 and added to the latest used seed before discarding the next 100 draws of the
newly created instance. The initial random number generator is established with the globally assigned random seed
as X0, meaning that this number completely determines the sequence of all other random numbers used in the run.

5. Case Study

The model has been run for 100 different initial global random seeds on the Santiago de Chile open data sce-
nario3,4,5. The scenario includes a toll system on selected roads, and schedule-based public transport running on
dedicated public transport links. The default “out-of-the-box” configurations set by the developers of the scenario
have been used, including a population sample of 10 % corresponding to 665,201 agents, a network consisting of
22,981 unidirectional links for car traffic, and 100 iterations per seed. Choice sets for every agent are locked after 80
iterations, at which point MSA is enabled for the (at most) five plans per agent. Considered modes for substitution of
a sub-tour are walk, public transport, and – if available to the agent – car.

6. Results

The results show that coefficients of variation of link loads (dedicated public transport links excluded), cxl
v , are

generally quite low with 65.7 % of the links not exceeding 5 % (see Figure 1). The distribution has a skewness of 16.7
and has some resemblance to a log-normal distribution, which is also shown in the figure.

The correlations between the mean (x̄l), the standard deviation (σ̂xl ), and the coefficient of variation
(
cxl

v
)

across
all links l ∈ L are shown in Table 1. It is seen that there is a strong correlation between x̄l and σ̂xl (0.849) indicating
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Table 1. Sample Pearson correlation coefficient between the mean, the standard deviation, and the coefficient of variation of link loads.
Mean (x̄l) Standard Deviation (σ̂xl ) Coefficient of Variation

(
cxl

v

)

Mean (x̄l) 1 0.849 -0.113
Standard Deviation (σ̂xl ) 0.849 1 -0.115
Coefficient of Variation

(
cxl

v
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that using cxl
v as a measure seems valid. However, since the correlation between (x̄l) and cxl

v is negative (-0.113), cxl
v is

generally expected to be a little smaller for links with high flows.
In Figure 2 it is seen that the coefficient of variation generally is about 1 % for the 50 busiest links, but that some

links have a significantly higher cxl
v . The figure also shows that the ranges for individual links seem to be large,

indicating that for some seeds the error can be notably higher than a few percent.
As mentioned in section 3, rL

q holds the empirical probabilities of each link having a relative error larger than q
when using a single seed. The corresponding cumulative distribution function is found in Figure 3 for various values
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of q. Whereas very low errors [1 %, 2.5 %[ are frequent, relative errors of more than 50 % never occurred for 94.6 %
of the links. Still, it is seen that 17.9 % of the links had a relative error exceeding 5 % in at least half of the runs.

Figure 4, however, shows that the extreme errors are primarily seen for less busy links. An interesting phenomenon
occurs for links with a link load between 1,000 and 10,000, though, as the probabilities of 15 %, 10 %, and especially
5 % and 2.5 % errors seem to be larger than for the links with a mean link load just below 1,000.

In the above we have found that at the link level, there is a risk of getting relatively high deviations when only
using a single seed value. In Figure 5 we consider each seed as a whole across all links, and find the corresponding
proportion of links having a relative error larger than q, rS

q. It is seen that the seeds generally perform equally well,
but that about 24 % of links are expected to have a link load deviating at least 5 % from their empirical mean.

So far we have established that between-seed variation is in fact considerable, however, without comparing it to
other types of known variations. This is done by calculating R̃l as described in section 3. The empirical cumulative
distribution function of R̃l across all l ∈ L (Figure 6) shows that between seed variation greatly dominates the within
seed variation for almost every link. This trend is even more evident for larger links, as R̃l is at least 4 for 90.2 % of
links with a link load above 10 (see Figure 7).

Variability of mode markets shares has also been investigated, but was found to be negligible with the largest
coefficient of variation being 8 · 10−4. Variability of travel speeds, on the other hand, showed a pattern that was nearly
indistinguishable from that of link loads.
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of q. Whereas very low errors [1 %, 2.5 %[ are frequent, relative errors of more than 50 % never occurred for 94.6 %
of the links. Still, it is seen that 17.9 % of the links had a relative error exceeding 5 % in at least half of the runs.

Figure 4, however, shows that the extreme errors are primarily seen for less busy links. An interesting phenomenon
occurs for links with a link load between 1,000 and 10,000, though, as the probabilities of 15 %, 10 %, and especially
5 % and 2.5 % errors seem to be larger than for the links with a mean link load just below 1,000.

In the above we have found that at the link level, there is a risk of getting relatively high deviations when only
using a single seed value. In Figure 5 we consider each seed as a whole across all links, and find the corresponding
proportion of links having a relative error larger than q, rS

q. It is seen that the seeds generally perform equally well,
but that about 24 % of links are expected to have a link load deviating at least 5 % from their empirical mean.

So far we have established that between-seed variation is in fact considerable, however, without comparing it to
other types of known variations. This is done by calculating R̃l as described in section 3. The empirical cumulative
distribution function of R̃l across all l ∈ L (Figure 6) shows that between seed variation greatly dominates the within
seed variation for almost every link. This trend is even more evident for larger links, as R̃l is at least 4 for 90.2 % of
links with a link load above 10 (see Figure 7).

Variability of mode markets shares has also been investigated, but was found to be negligible with the largest
coefficient of variation being 8 · 10−4. Variability of travel speeds, on the other hand, showed a pattern that was nearly
indistinguishable from that of link loads.
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7. Discussion and Future Work

The results of this study indicate that the potential relative error when using a single seed is generally a decreasing
function of the amount of traffic on the link. However, among the largest links there seems to be a few links that
are particularly error-prone. This should give rise to some concern as in many cases such busy links are the most
interesting for policy support purposes. A geographical analysis of the links with a high coefficient of variation would
therefore be a natural extension of the current work.

The finding that the between-seed variations largely dominate the within-seed variations suggests that broken
ergodicity might in fact be a problem that needs to be addressed in transport simulators dealing with discrete choices
of agents. Especially, since the tests in this paper were conducted using a low number of iterations (it is not uncommon
for MATSim applications to use as much as 1,000 iterations) and thus were expected to have a relatively high level of
within-seed variation.

One way to overcome this problem could be to average the results across multiple runs with different seeds, however
at the theoretical risk that the resulting (averaged) solution is not an equilibrium solution. Alternatively, it may be
favourable to present the results as a distribution by running the model multiple times with different seeds as proposed
in the literature15. Especially since the results of this paper suggest that the information gained by such additional
runs exceeds that of running supplementary iterations of a single seed.

Representing results as distributions instead of point estimates would be of particular interest for project appraisal
purposes. Here the additional information would contribute to a further understanding of the uncertainty of the
responses to a proposed project. Potentially this could answer whether the effects of infrastructural changes risk
being overshadowed by between-seed variations. Running tests under such project appraisal-like circumstances with
a base network and an alternative network is thus recommended for future work.

Another method previously proposed in the literature19,20 aims at producing a more stable model outcome in the
first place. This is, however, beyond the scope of this paper.
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7. Discussion and Future Work

The results of this study indicate that the potential relative error when using a single seed is generally a decreasing
function of the amount of traffic on the link. However, among the largest links there seems to be a few links that
are particularly error-prone. This should give rise to some concern as in many cases such busy links are the most
interesting for policy support purposes. A geographical analysis of the links with a high coefficient of variation would
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ergodicity might in fact be a problem that needs to be addressed in transport simulators dealing with discrete choices
of agents. Especially, since the tests in this paper were conducted using a low number of iterations (it is not uncommon
for MATSim applications to use as much as 1,000 iterations) and thus were expected to have a relatively high level of
within-seed variation.

One way to overcome this problem could be to average the results across multiple runs with different seeds, however
at the theoretical risk that the resulting (averaged) solution is not an equilibrium solution. Alternatively, it may be
favourable to present the results as a distribution by running the model multiple times with different seeds as proposed
in the literature15. Especially since the results of this paper suggest that the information gained by such additional
runs exceeds that of running supplementary iterations of a single seed.

Representing results as distributions instead of point estimates would be of particular interest for project appraisal
purposes. Here the additional information would contribute to a further understanding of the uncertainty of the
responses to a proposed project. Potentially this could answer whether the effects of infrastructural changes risk
being overshadowed by between-seed variations. Running tests under such project appraisal-like circumstances with
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as well as the creators of MATSim, Kai Nagel and Kay Axhausen. Without the open access of the scenario and model
this study would not have been possible.

References

1. Rasouli, S., Timmermans, H.. Uncertainty in travel demand forecasting models: literature review and research agenda. Transportation Let-
ters 2012;4(1):55–73. URL: http://www.tandfonline.com/doi/full/10.3328/TL.2012.04.01.55-73. doi:10.3328/TL.2012.
04.01.55-73.

2. Horni, A., Nagel, K., Axhausen, K.W., editors. The Multi-Agent Transport Simulation MATSim. London: Ubiquity Press; 2016. URL:
https://www.ubiquitypress.com/site/books/10.5334/baw/. doi:10.5334/baw.
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Abstract

Public transport services are often uncertain, causing passengers’ travel times and routes to vary from day to day. How-

ever, since door-to-door passenger delays depends on both intended and realised routes, they are difficult to calculate,

as opposed to vehicle delays which can be derived directly from the widely available Automated Vehicle Location

(AVL) data of the public transport system. In this study we use three months of such historical AVL data to calculate

corresponding realised routes and passengers delays for more than 800,000 daily trips in a large-scale, multi-modal

transport network of the Metropolitan Area of Copenhagen by applying an adaptive passenger path choice model. The

proposed model allows analysing five different levels of real-time information provision, ranging from no information

at all to global real-time information being available everywhere. The results show that variability of passengers’

travel time is considerable and much larger than that of the public transport vehicles. It is also shown that obtaining

global real-time information at the beginning of the trip reduces passengers delay dramatically, although still being

inferior to receiving such along the trip. Additionally, being able to automatically obtain real-time passenger informa-

tion while walking and being on-board public transport services was found not to lead to considerable improvements

compared to acquiring such information manually while waiting at stops.
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1. Introduction

Public transport vehicles being delayed is a more or less an inherent part of operating a public transport system.

Obviously, it would make sense for public transport planners and operators to focus on reducing the door-to-door

passenger delays that passengers incur when travelling through the public transport system. However, despite oper-

ating vehicles in the public transport system is only a means to fulfil the overall task of allowing passengers to travel

through the system, the punctuality and reliability of vehicle delays is often the overshadowing focus for public trans-

port planners and operators when evaluating the performance of the system (Parbo et al., 2016). Vehicle delays can

be extracted directly from Automated Vehicle Location (AVL) data making them easily accessible and unambiguous.

Passenger delays, on the other hand, are inherently difficult to calculate as vehicle delays often affects passenger

delays in a non-linear fashion when passengers transfer between different services. In such cases, delays can even

lead to a travel time gain if an earlier departure is sufficiently delayed to depart after the passenger arrives at a stop

(Nielsen et al., 2009). They will, however, more often lead to increased travel times, naturally when the last leg of

the path is delayed, but also when delays cause passengers to arrive at a stop later than expected and thereby miss the

connection to an intended departure. This will cause the passenger to wait for the next departure or to search for an

alternative route. As such, it is very complicated to determine the travel time of public transport passengers, as not

only the public travel services but also the routes of passengers may deviate from what was initially intended – and

may be influenced by the information that is offered to them.

This means that in order to calculate passenger delays, an adaptive passenger path choice model that can determine

passengers’ intended paths as well as their path choices when faced with real-time information of current delays in

the system is required. Hickman (1993) was the first to introduce an adaptive passenger path choice model that

supported real-time passenger information. Although more advanced methodologies have since been developed, and

larger case studies have been carried out, no studies have calculated passenger delays of adaptive passengers for an

entire metropolitan area without the use of additional data sources such as Automated Fare Collection (AFC) (Antos

and Eichler, 2016; Sun et al., 2016b,a) or smartphone data (Carrel et al., 2015). Neither has the effects of real-

time information on passengers’ choices and travel times been evaluated on the basis of actual delays of an entire

metropolitan area in the 27 years that have passed.

This study introduces an adaptive passenger path choice model for a stochastic schedule-based public transport

network with no a-priori knowledge of the distributions of travel time uncertainties. The model is capable of handling

an entire metropolitan area in manageable time by exploiting the computational gains of restricting all passengers to

only be able to reconsider their options at the same moments in time (every 150 seconds). This allows the system to

be solved as a series of successive dynamic passenger path choice models where locations of passengers and public

transport vehicles are updated accordingly in between assignments.

The study will model five real-time information levels, and analyse the marginal effect of increasing the real-time

information offered to passengers from one level to the next.

2
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R0 No information: Agents will pursue their intended path, only allowing temporal adaptations.

R1 Pre-trip information: Agents search for the shortest path at the beginning of their trip using the real-time infor-

mation available at that point.

R2 Information at stops: In addition to potentially updating their path at the beginning of their trip (R1), agents can

also adapt to real-time information while waiting at stops/stations (but not on-board a service).

R3 Information everywhere: No restriction on where agents can adapt, meaning that they also search for better

alternatives using real-time information while walking and while on-board public transport services.

R∞∞∞ Perfect information: As opposed to the other real-time information levels, the passengers know all past, current,

and future delays in advance, allowing always choosing the optimal path a priori without en-route adaptation.

It may seem tedious to acquire the amount of information required by R3, but – as (Nökel and Wekeck, 2009;

Estrada et al., 2015; Zargayouna et al., 2018) suggest – is achievable if thought of as an app continuously performing

searches and providing notifications when better alternatives emerge. In this regard, R1 (Pre-trip) and R2 (At stops)

can be thought of as using a similar app, but where users manually have to search for new paths at the origin (R1,R2)

and at stops (R2). R∞ is obviously unrealistic, and would require the ability to predict all future delays accurately at

the beginning of the day. It is solely included in order to establish a hypothetical lower bound for the passenger delays

of each trip.

For each of the five real-time information levels we will use realised timetables constructed from 65 weekdays

of actual AVL data for trains and buses in the metropolitan area of Copenhagen, and combine them with an adaptive

passenger path choice model in order to determine realised routes and travel times for 801,719 trips daily trips in the

area. By comparing these to the corresponding intended routes and travel times based on the planned timetable, the

door-to-door passenger delays can be determined, see Figure 1.

Our contribution is threefold. Firstly, we model real-time information and door-to-door passenger delays for an

entire metropolitan area. Secondly, we simulate passenger behaviour of actual days by applying observed AVL data

of trains and buses. Finally, we model the impact of specific levels of real-time information that no prior studies have

been able to isolate.

The remainder of the paper is structured as follows. Section 2 contextualises our contributions by reviewing the

literature on adaptive passenger choice models with real-time information. Section 3 provides a detailed description

of our proposed methodology for adaptive passenger assignment model considering real-time information. Section

4 tests the methodology on a large-scale case study of the Copenhagen metropolitan area, focusing on the effect of

providing real-time information to passengers. Section 5 concludes and outlines directions for future work.

3
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Figure 1: The overall framework. Adapted from Paulsen et al. (2018).

2. Literature Review

In this section we provide a review of relevant studies using real-time information in a schedule-based path choice

context. Several studies deal with real-time information in frequency-based systems, e.g. stop-level real-time infor-

mation (Gentile et al., 2005; Shimamoto et al., 2005; Trozzi et al., 2013), real-time information comprehensiveness

(Nökel and Wekeck, 2009; Chen and Nie, 2015; Oliker and Bekhor, 2018), and crowding information (Fonzone and

Schmöcker, 2014). However, as frequency-based models are inappropriate in low-frequency areas – which our case

study will also cover – such models are not suitable for our problem at hand, and hence omitted from our review.

For studies on other matters of real-time information than its effect on passenger delays and/or path choice, we

refer to the reviews by Ben-Elia and Avineri (2015); Nuzzolo et al. (2016); Brakewood and Watkins (2019).

2.1. Real-time information and passenger path choice in schedule-based systems

The concept of a “clever” passenger that actively reconsiders which route to board while waiting at a stop dates

all the way back to Chriqui and Robillard (1975). The first adaptive passenger path choice model supporting such

behaviour was proposed by Hall (1983) with uncertain public transport services with known distributions. Passengers

could adapt en-route by utilising their (certain) time of arrival at a stop as information.

It took another ten years for real-time information about the public transport system to be considered in connection

with passenger path choice and passenger travel times in Hickman (1993), who allowed passengers to receive and
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adapt to real-time information of varying precision during their trip. The same methodology was applied in Hickman

and Wilson (1995), but with a case study where real-time information was only relevant at the origin stop.

Nuzzolo et al. (2001) allowed passengers to obtain stop-level real-time information when deciding which service

to board. The doubly stochastic model was applied to a morning peak hour of the 58 line schedule-based bus network

of the Italian town of Salerno.

Landex and Nielsen (2006) calculated station-to-station passenger delays for adaptive train passengers in the

suburban railway network of Copenhagen. Vehicle delays were micro-simulated, and passengers searched in a realised

timetable if their delay at the station was exceeded by a predefined threshold. The methodology was later applied in

Nielsen et al. (2009) using actual AVL data from the suburban railway network. Less than 10% of trips involved a

transfer, and perfect information was acquired if passengers had their threshold exceeded at transfer stations. Using

also real-life AVL data, Lijesen (2014) modelled station-to-station passenger delays in a subset of the Dutch railway

network with departure time adaptation. Passenger delays of 16 station pairs with direct connections were analysed.

Wahba (2008) evaluated four different levels of real-time provision using MILATRAS (Wahba and Shalaby, 2009).

Global pre-trip information based on the previous day, as well as various implementations of local real-time informa-

tion were evaluated in a case study of the 22 routes and 284 stops network of the city of Brampton, Ontario, Canada.

Although MILATRAS models real-time information internally and has since been applied in large scale, e.g. for

Toronto, Canada (Wahba and Shalaby, 2011), the effect of real-time information has not been studies since.

Coppola and Rosati (2009) applied an Advanced Public Transport Information System (APTIS) with information

on waiting times and vehicle bus occupancies on a nine line subnetwork of Naples, Italy. Comi et al. (2016); Nuzzolo

et al. (2016) extended this to include real-time predictive information of on-board crowding and travel time applied to

a single OD pair of a small network with less than 10 lines and stops.

Cats et al. (2011) proposed a dynamic agent-based station-to-station public transport simulator, BusMezzo, to

evaluate the impact of different levels of comprehensiveness of real-time information for the metro system of Stock-

holm. Providing global information about all trains of the network at platforms was found to reduce passenger travel

times compared to only doing so for trains using that particular platform or station (local information), especially

when reducing frequencies. Vehicle delays were drawn from statistical distributions. The same topic was studied for

similar sized Stockholm case studies using BusMezzo in Cats (2014); Cats and Jenelius (2014).

Estrada et al. (2015) simulated five levels of real-time information (none, at origin, at stops, always, and for a

single line) for a 13 line network of Rivera, Uruguay. However, transfers were not allowed. Zargayouna et al. (2018)

also dealt with omnipresent real-time information, but allowed transfers. The effect of having different proportions of

passengers connected to such information was evaluated in a case study of Toulouse, France.

Nuzzolo and Comi (2016) showed in two cases studies of at most six lines how an individualised travel planner

with real-time information improved the likelihood of a traveller choosing his/her preferred door-to-door route.

Rambha et al. (2016) proposed a Markov Decision Process supporting real-time information and applied it on four

lines of the Austin transit network. Nuzzolo and Comi (2019) applied the same methodology to a single line example

5
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from Rome, Italy whilst reducing dimensionality.

Yao et al. (2017) modelled passenger responses to real-time information for the metro system of Beijing for more

than a million station-to-station trips on a 344 stations and 18 lines network with 7,539 daily train runs. The analysis

did not involve comparing with a scenario without real-time information, though.

Paulsen et al. (2018) modelled door-to-door passenger delays for 1% of the population in the metropolitan area of

Copenhagen using real-life AVL-data. Based on an iterative approach implemented in MATSim (Horni et al., 2016),

agents could only react to information between iterations, and perfect information was assumed at some point during

their trips. Leng and Corman (2020) also modelled door-to-door passenger delays using MATSim, but with pre-trip

real-time information. The disruption model was applied to a large scenario of Zurich with a single disruption.

Zhu and Goverde (2019) also addressed disruptions, and proposed a station-to-station dynamic passenger assign-

ment model for major railway disruptions incorporating passenger responses to real-time information at stations or

both at stations and in trains. The model was applied for three hours to a small train network with 17 stations, and

was exposed to a one hour disruption, for which the passengers knew the end time once it occured.

2.2. Research gap

The literature review has identified several research gaps that will be addressed in this study. Firstly, no studies

have previously applied a multi-modal door-to-door passenger path choice model with real-time information on a

large scale. The study in Yao et al. (2017) was geographically large-scale, but modelled station-to-station paths in

uni-modal network. Paulsen et al. (2018); Leng and Corman (2020) modelled door-to-door passenger delays in large

model areas, but only considered 1% of trips in the areas. Furthermore, only perfect information (Paulsen et al., 2018)

or pre-trip information (Leng and Corman, 2020) were used.

Secondly, no studies have used real-life AVL data of both buses and trains to model passenger path choices and

corresponding delays. Nielsen and Frederiksen (2009) and Lijesen (2014) used AVL data of railway networks with

no or very few transfers, and Paulsen et al. (2018) did not include AVL data of buses.

Finally, none of the studies including transfers have been able to isolate the marginal effect of being able to use

global real-time information to search for alternatives while walking and on-board public transport services (R3), nor

being able to also adapt to global real-time information while waiting at stops (R2) as opposed to only doing so pre-

trip (R1). Estrada et al. (2015) did so, but disregarded transfers. Wahba (2008); Cats and Jenelius (2014); Oliker and

Bekhor (2018); Zargayouna et al. (2018) all included transfers and scenarios equivalent to R1 or R3, but the scenarios

most similar to R2 were based on local real-time information, i.e. passenger could only obtain arrival time predictions

concerning the stops they were currently at – in Cats and Jenelius (2014) all stops within 500m. Finally, Cats et al.

(2011) studied a scenario equivalent to R2 but only compared it to local information scenarios. Thus, there still is a

need to isolate the marginal effects of R2 and R3 in larger systems where transfers cannot be ignored.
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3. Methodology

3.1. Adaptive passenger path choice model

3.1.1. Simulation framework

This study proposes an agent-based adaptive passenger path choice model that allows en-route decisions of its

agents based on global real-time information. Figure 2 provides a graphical representation of the model, and shows

how our adaptive passenger assignment model takes agents adaptively through the public transport system. For every

day we are simulating we start by importing the realised timetable of that day. This is used to keep track of the actual

arrival and departure times of every service in the public transport system.

We then begin our simulation at t = ts, and continues in timesteps of size τ until we reach the the end-time of our

simulation, te. In each of such timesteps we import the real-time timetable for time t, which is a timetable enriched

with current delays at time t and estimations of future delays, and constructs the corresponding RAPTOR graph

(Delling et al., 2015). These RAPTOR graphs are used for the shortest path searches that the agents perform during

the simulation (see Section 3.1.3), but are always overruled by the fully realised timetables (actual operation) in terms

of when vehicles arrives and departs at/from stops. Although this study estimate future delays very simplistically (see

Section 4.1.3), the framework does allow for more advanced vehicle delay prediction methods.

In the following paragraphs the adaptive passenger path choice model will be introduced one module at the time,

beginning with the activity module.

Activity module. Each agent has a current time and a current location, which for any value of the current time gives

the current location of the agent. When the agent ends an activity, i.e. start a trip, the current location is set equal to

the activity location, the current time is updated to be the end time of the activity, and the destination of the agent is

determined. If the real-time information is at least R1 (Pre-trip info), the agent will use such real-time information to

search for the shortest path to the destination, or otherwise stick to the intended route based on the planned timetable.

The agent is subsequently passed on to the walking algorithm.

Walk module. Walking agents starts by finding out whether they should search for a new shortest path. They only do

so, if they have not previously searched for a shortest path in the timestep and the information level is R3 (Everywhere).

If so, they perform a shortest path from their current time and location to their destination. Once a shortest path has

been established, assuming walks being performed with constant speeds of 1m/s in straight lines in the plane, they

calculate whether they can reach their next location (activity or stop) before the next timestep. If they cannot, they

walk as far as possible towards their next location, and update their current location, before setting their current time

to t + τ and waiting for the next timestep. If they reach a location within the timestep, their current location is updated

accordingly and the elapsed time is added to the current time. If the location matches their destination, they are passed

on to the finished module, whereas the waiting module receive them if their location is now a stop/station.
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Finished module. If an agent at some point manages to reach its destination its status is set to FINISHED. The realised

route of the agent is exported, and the agent will no longer be processed. On the other hand, if an agent has not reached

its destination when the simulation clock runs out, the trip is considered as an incomplete trip and is left out of the

analysis of that particular day and real-time information level.

Figure 2: A graphical representation of the proposed adaptive passenger assignment algorithm.
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Wait module. Waiting agents start by searching for a new path if they have not done so in the timestep and the

information level is R2 (At stops) or R3 (Everywhere). It may happen that the new shortest path suggests walking to

a different stop/station or all the way to the destination. If this is the case, the agent enters the walking module.

If the agent remains at the stop/station the realised timetable is consulted in order to ensure that the desired service

has not already departed from the station, which may happen if the agent has arrived to the stop/station after time t

(but before t + τ). If it has already departed, the desired service of the agent is updated to be the next service serving

the previously desired alighting station. If no such service exists, i.e. the previously desired service was the last one

connecting the two stops/stations, the agent will be unable to complete the trip and will no longer be processed. In

reality this would correspond to taking a taxi, calling for a ride, etc, but modelling such behaviour, which is normally

more relevant in disruption models, have been deemed beyond the scope of this model.

Once the departure of the desired service is ensured to happen in the future (or now), it is determined whether it

does so before the next timestep. If this is the case the agent will board the service and enter the on-board module. If

it departs in a subsequent timestep, the agent waits until the next timestep.

We propose the model without capacity constraints, as denied boarding situations are extremely rare in the model

area in which the model will be applied the model. If needed in other case studies, the model can be extended to

comply to capacity constraints by adding passengers to a first-in-first-out queue instead of letting them board their

vehicle directly. Such queues would then be processed at the end of each timestep, and agents denied boarding would

then reconsider their options in the following timestep.

On-board module. The on-board module also starts by determining whether a new shortest path search is needed. A

modified shortest path search will be carried out if the information level is R3 (Everywhere) and it has not previously

been done in the timestep. The modified shortest path search differs slightly from the ordinary one by starting the

search from the next station of the current service at the time of arrival. Furthermore, whereas a boarding penalty

is normally incurred when boarding a service, no penalty is given when boarding the particular vehicle the agent is

already in. Once the shortest path has been determined, the agent will alight at his desired alighting stop/station if the

service reaches this stop/station before the end of the timestep. If so, the agent is moved onto the waiting module,

whereas the agent will simply wait until the following timestep otherwise.

Note that when using R2 (Info at stops), an alighting passenger will at some point be passed onto the wait module,

where it is possible for the agent to search for a route. However, there are still differences between R2 (At stops)

and R3 (Everywhere). Firstly, in this situation, under R2 the passenger has already alighted the service, causing a

boarding penalty to be incurred if the agent is to board the same train again. This means that even though the agent

might follow the same route in both cases, one of them will have a higher generalised cost. Secondly, in R3 it is

possible for the agent to receive a notification about an earlier alighting station being optimal. This can not happen in

R2 as the search is only carried out at the desired alighting stop of the previously performed shortest path search.
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3.1.2. Base and perfect information scenarios

For the base scenario where only the deterministic planned timetable is used, the algorithm would still work, but

it would be horribly inefficient. Instead, a full-day RAPTOR graph (Delling et al., 2015) is created using the planned

(for base) or fully realised timetable (for R∞) in which all agents search for the shortest path. In both cases the routes

and travel times of these shortest path searches can be extracted directly, as no deviations would happened during the

simulation.

3.1.3. Shortest path searches

The shortest path searches used in this study build on top of the RAPTOR graph (Delling et al., 2015) and shortest

path search implemented for MATSim (Horni et al., 2016) presented in Rieser et al. (2018) which allows applying

different utility to different submodes of the transport network, see Table 4. However, as that methodology does not

ensure finding the shortest path, several extensions have been added to the model to ensure correctness as well as for

speeding up computation time.

First of all, instead of only keeping the minimum cost at each node, all non-dominated alternatives are preserved

at each node. With ca denoting the cost of alternative a when departing from a node, alternative a dominates another

alternative, b, if and only if it leaves the node earlier, i.e. ta ≤ tb, and has a lower potential defined as,

ca − taw < cb − tbw

(tb − ta)w < cb − ca, (1)

where w is the highest possible marginal disutility (in our study the marginal disutility of waiting). The potential can

be seen as the worst-case time difference to cost conversion. If two alternatives leave the node at the same time, i.e.

ta = tb, then only the minimal cost alternative – which is also the minimal potential alternative – is kept.

All trips have fixed coordinates for origin and destinations, but the choice of the first and final stop of the passenger

path is included as part of the path choice model. We consider every stops within 3.6km of the origin as potential

initial access stops in the shortest path search, but have no restrictions regarding the distance between the final egress

stop and the destination. Passengers are allowed to walk directly to the destination from any stop, and are furthermore

allowed to walk directly from the origin to the destination if that is favourable. From any stop in the graph agents are

allowed to transfer to stops that are within 600 metres – corresponding to 10 minutes. However, in order to speed up

the searches, several transfers are eliminated in the pre-processing as explained in Rieser et al. (2018). In addition to

Rieser et al. (2018) we eliminate transfers that are locally dominated by transferring from the next stop of the current

service or to the previous stop of the receiving service, using the aforementioned rules of dominance. Hence, we also

accept travelling further than necessary in the opposite direction along the receiving line before making the transfer,

which is not allowed in Rieser et al. (2018), as this in some instances can provide higher utility than transferring at

the first intersection point between the two lines.
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When a shortest path search is initiated, the so far optimal cost, C∗, is initialised with the value of the cost

of walking directly between the origin (O) and the destination (D), denoted by c(O,D). With C(S ) denoting the

cumulative cost when reaching stop S , every time a stop is visited, C(S ) + c(S ,D) is calculated, and C∗ is updated if

C(S ) + c(S ,D) < C∗.

In order to eliminate paths as early as possible, we apply a goal-directed search with pre-processed minimum travel

costs between stops. These minimum but not necessarily obtainable minimum costs are found between all stops S and

T in the pre-processing stage by static searches in a condensed graph as proposed in Wagner and Willhalm (2007).

We denote such minimum cost by m(S ,T ). The first time a stop, S , is visited in the shortest path search, the minimum

distance to the destination, D, is determined by looping through all stops, T , within 3.6 km of the destination. With

d(T,D) denoting the distance between T and D, the minimum cost between S and D, denoted by h(S ,D), is then

found as,

h(S ,D) = min
T :d(T,D)≤3.6km

m(S ,T ) + c(T,D). (2)

Paths currently at stop, S , can be eliminated if C(S ) + h(S ,D) ≥ C∗.

3.2. Inverse Squared Distance Weighting

In the results section we will often have observations associated with geographical locations. In order to discover

patterns in such observations, we will make use of Inverse Squared Distance Weighting (ISDW) (Shepard, 1968) for

drawing surfaces. Let kp,i denote the rank of observation i ∈ I with respect to point p, such that i is the kp,i’th nearest

neighbour of p, let d(p, i) be the distance (measured in meters) from p to i, and vi be some value associated with

observation i. Then the Inverse Squared Distance Weighting is as,

vp =



1∑
j∈I
1[d(p, j)=0)]

∑
j∈I
1[d(p, j) = 0] v j, p ∈ I

1∑
i∈Ip

1
d(p,i)2

∑
i∈Ip

1
d(p,i)2 vi, p < I ∧ Ip , ∅

∅, p < I ∧ Ip = ∅

, (3)

with 1 denoting the indicator function, and Ip being the set containing the 1,000 nearest neighbours within 10km of

p, i.e.

Ip = { i ∈ I | d(p, i) ≤ 10,000 ∧ kp,i ≤ 1,000 }, p < I. (4)

Note that Ip = ∅ if no observations is within 10km of p.
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4. Case Study

In this section we present our case study of the metropolitan area of Copenhagen. Section 4.1 presents the data used

for the case study, Section 4.2 presents the model configuration and computation times, while results are presented

and analysed in Section 4.3.

4.1. Data

4.1.1. Public Transport Network

Our case study covers the entire public transport system within the metropolitan area of Copenhagen except for

ferries. It contains 433 lines which are distributed across submodes according to Table 1. The public transport

system consists of approximately two million daily events, i.e. occurrences of a public transport vehicle arriving at

or departing from a stop in the system. The majority of the events happens in the bus system, but is supported by

high-classed public transport lines which offers a large variety in options when travelling through the network.

The total number of stop facilities is 7,625 with 7,447 of them being bus stop groups, and 278 of them being

railway or metro stations.

Re/IC Trains S-Trains Local Trains Metro Bus Total
Lines 6 7 9 2 409 433
Runs 685 1,299 777 976 28,795 32,532

Stop visits 8,286 27,847 8,734 15,128 956,542 1,016,537

Table 1: Total number of lines as well as daily runs and stop visits for each submode of the public transport network in the case study.

4.1.2. Automated Vehicle Location (AVL) Data

The study uses AVL data from the Danish national railway manager, Rail Net Denmark, and the regional bus

company, Movia, for every weekday of September, October, and November 2014 – a total of 65 days.

The data was initially cleaned in order to secure consistency in the AVL data. The criteria used for consistency

were that realised times for each service were non-decreasing from stop to stop, and that the time difference between

two consecutive elements (i.e. a stop arrival or a stop departure) could not exceed two hours. For each departure, if at

least one inconsistency was found, this, the previous, and the next observation were updated using linear interpolation

of the delays based on their corresponding planned times. When extrapolation was needed, constant extrapolation of

delays was used. This eventually caused no inconsistencies or all of the delays to be undefined. In the latter case, the

observations were deemed too noisy to fix, and in lack of further information, the departure was assumed to follow

the published timetable for all stops.

A total of 4,414,658 observations of a train arriving or departing at a station were deemed consistent, correspond-

ing to approximately 67,918 observations per day, providing a coverage of almost 94%1 on the suburban and regional

train network, see Table 2.

156.60% if including local trains (8.734 daily arrivals) and metro (15,128 daily arrivals) in the calculation of coverage
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Figure 3: Map of standard deviation of vehicle arrivals at each stop/station for buses and trains. Interpolated surface estimates based on inverse
squared distance weighting.

Delay data was not available for local train and metro lines, see Figure 3. Luckily, the effect of lack of data from

local train and metro lines will most likely be limited as the local trains have a low demand (only 4.37% of trips use

it, see Table 3), and the metro has a high frequency (down to two minutes headway in peak periods), and both of the

services run on tracks with no or very few train conflicts.

For buses, delay information is spread across the entire model area but is less complete than the train data, as

the bus company only collected AVL data for some of their vehicles. The vehicles capable of collecting AVL data

were circulated between the different lines throughout the period. A total of 59,933,164 consistent observations were

present in the dataset, corresponding to roughly 929,049 observations per day.

Trains Buses
Arrivals Departures Arrivals Departures

Observations 2,207,329 2,207,329 29,966,582 29,966,582
Mean [min.] 0.18 0.31 1.98 2.13

Std. dev. [min.] 2.59 2.65 3.30 3.30
Mode [min.] -0.67 0.5 0.70 0.70

2.5% quantile [min.] -1.65 -1.52 -1.78 -1.57
Median [min.] -0.28 -0.20 1.33 1.45

97.5% quantile [min.] 5.15 5.50 9.83 10.02
Coverage 93.98% 48.20%

Table 2: Key statistical measures of delays for vehicle arrivals and departures for trains buses.
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Some aggregate statistics of vehicle arrivals and departures for train and buses can be found in Table 2. It is worth

noticing that the delays are generally lower for trains than for buses (which can also be seen in Figure 5). Furthermore,

the standard deviation is somewhat smaller too. On Figure 3 it is clear, that the S-train lines are generally reliable,

whereas the delays of the regional lines (found in the orange and yellow areas in south-western, south-eastern, and

north-eastern part of the figure) are more uncertain. For buses, the delays vary most in the City of Copenhagen, but

there also some small towns in the western part of the map where delays have high standard deviations.

4.1.3. Real-time timetables

Our methodology presented in Section 3.1 requires real-time timetables for every timestep. As the focus of this

study is not on the real-time predictions themselves we have opted for a very simple approach. Readers are pointed

towards Corman and Kecman (2018) and Petersen et al. (2019) for recent real-time prediction applications for trains

and buses, respectively. The real-time timetable for time t is constructed according to Algorithm 1 for any public

transport run with planned departure and arrival times t and recorded delays d.

Algorithm 1 CreateRealTimeTimetable(t, t,d)

1: n← |t|
2: if t1 + d1 > t + tb ∨ tn + dn < t then
3: return ∅
4: else if t ≤ t1 + min{d1, 0} then
5: return t
6: else
7: i∗ ← min{ i ∈ {1, ..., n} | ti + di ≥ t }

8: d∗ ← di∗-1 +
(ti∗ + di∗ ) − t

(ti∗ + di∗ ) − (ti∗-1 + di∗−1)
(di∗ − di∗-1)

9: for j← i∗ to n do
10: d j ← d∗

11: return t + d

This means that any run that has already finished is completely omitted from the timetable. For any run that was

not planned to start nor has started yet, the real-time timetable is just the planned timetable. For all other runs, the

estimated delay for all future stops is found by interpolating between the latest recorded delay and the next delay.

4.1.4. Demand

The demand is based on the Copenhagen Model for Person Activity Scheduling (COMPAS) (Prato et al., 2013)

and consists of 801,719 trips. The usage of the different submodes of the public transport system in the basis scenario

for these trips can be found in Table 3. It is seen that bus and S-train services are the most frequently used services,

whereas the metro, long distance trains, and especially the local trains are less frequently used.

Re/IC-Train S-Train Local Train Metro Bus
Use [%] 12.74 44.88 4.37 18.70 74.73

Table 3: Percentage of public transport trips using various submodes 2
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The time use of walking, waiting, and for each of the submodes as well as number of boardings are visualised in

Figure 4. It is noticed that the walking time distributions is fairly wide with about a third of the trips walking for more

than 20 minutes. The number of transfers are generally higher than for many previous studies on passenger delay

modelling such as Landex and Nielsen (2006); Nielsen et al. (2009); Lijesen (2014), with more than 60% trips having

at least one transfer (two boardings), 24% having at least two, and about 6% having more than three transfers.
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Figure 4: Empirical cumulative distribution function of number of boardings and time use in different submodes as well for waiting and walking.

4.2. Configuration and computation times

The model presented in Section 3.1 has been implemented in Java, and was built on top of the RAPTOR (Delling

et al., 2015) algorithm developed by the Swiss Federal Railway for MATSim (Horni et al., 2016) presented in Rieser

et al. (2018). We test the model using the data presented in Section 4.1 for all of the five information levels as well as

a base scenario. Our simulation days ran from 3am to 3am the following day using a timestep of τ = 150 seconds.

Table 4: Utilities for various modes, wait, and transfers.

Re/IC Train S-Train Local Train Metro Bus Wait Walk Boardings
Utility per minute -1.1 -0.9 -0.9 -0.85 -1.0 -1.3 -1.6 -
Utility per event - - - - - - - -4.0

For shortest path searches the utility parameters shown in Table 4 are based on previous studies in the area, e.g.

Eltved et al. (2018). When summing the generalised costs for a path, the resulting unit can be interpreted as bus

2Based on shortest paths in the published timetables using the parameters of Table 4.
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in-vehicle minute equivalents. As this is quite verbose we will instead use the term generalised cost units abbreviated

by gcu.

Although we only apply the model with a fixed parameter set in this case study, the model may relatively straight-

forwardly be extended to cover some taste heterogeneity, as previously pinpointed as being relevant by Nuzzolo and

Comi (2016). Since the model is run in parallel on ten separate threads, each keeping the same subpopulation in

every timestep and building identical raptor graphs, each thread could as well build separate graphs that corresponds

to separate utility parameter sets – one for each subpopulation. As such, it would be possible to account for some

heterogeneity by dividing the population into ten (or more) different categories, and running each of such categories

in a separate thread, even without increasing the computation time.

Average computation times across the 65 simulation days are found in Table 5. Obviously the model is fastest

when adaptivity can be disregarded completely (Base and R∞) or when paths only have to be updated if a connection

is missed (R0). In both cases only a single RAPTOR graph has to be created. Computation time increases when

RAPTOR graphs have to be created every τ seconds, and increases further as the number of shortest path searches

increases. Nevertheless, for all levels of information the model finishes in less than five hours on average showing that

the proposed methodology definitely is large-scale applicable.

Base R0 R1 R2 R3 R∞
Computation time [min.] 61.0 60.6 72.5 129.6 295.8 65.5

Table 5: Average computation time per day for various real-time information levels.

4.3. Results

4.3.1. Aggregate statistics

We begin the presentation of the results by comparing the similarity of trips in each of the information levels to

corresponding intended trips of passengers, see Table 6. Incomplete trips are trips that have to be abandoned prema-

turely, because the agent can no longer find a valid path to the destination given the level of real-time information, or

because the simulation time runs out. Even without real-time information this only happens for 0.89% of trips. The

number of incomplete trips can be heavily reduced by providing pre-trip information, and almost entirely eliminated

when applying even higher levels of real-time information.

For the no information configuration (R0) all complete trips have to use use the same stops, as the agent is not

allowed to spatially deviate from the intended path. Still, 40% of such trips deviate in the temporal dimension where

at least one different departure is used. This high proportion may be due to the fairly low penalties on transfers and

high disutility on waiting time, which to a large degree incentivise agents to convert waiting time – that also acts as

buffer time – to some sort of in-vehicle time or walking time.

When providing addtional information to agents, they are clearly seen to deviate further from their intended path,

both regarding, stops, lines, and departures. In R1 more than 40% of trips choose at least one different stop, showing
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that better alternative options may appear arly on. It seems as if the difference between R2 and R3 is mostly regarding

the stops being used, although agents also tend to deviate slightly more regarding lines and departures.

R0 R1 R2 R3 R∞
Complete trips 51,147,865 51,562,914 51,619,813 51,621,104 52,105,781

Incomplete trips [%] 0.93 0.13 0.02 0.01 0.01
Same stops [%] 100.00 56.04 43.43 36.31 39.59
Same lines [%] 89.48 61.87 53.84 49.94 51.13

Same departures [%] 60.18 44.70 40.24 37.05 38.66

Table 6: Similarities between intended route and modelled routes under different level of information. Incomplete trips are reported as percentage
of all attempted trips, remaining figures based on complete trips only.

We now turn to look at the passenger delays, for which key figures are given in Table 7 for each of the five

information levels. Key figures regarding vehicle arrivals are included in the table too for comparison.

First and foremost, it is seen that overall the passenger has a higher volatility than vehicle delays, which supports

the findings of several previous studies (Landex and Nielsen, 2006; Nielsen et al., 2009; Paulsen et al., 2018). Acquir-

ing pre-trip info reduces delays and their standard deviation considerably, even though such agents cannot spatially

update their path en-route. However, it is still inferior to also applying real-time information while waiting at stops

(R2) or everywhere (R3). Having the ability to apply real-time information everywhere (R3) reduces the mean delay

with a negligible amount and also slightly increases the standard deviation compared to R2. Perfect information (R∞)

almost reduces the average delay to zero, and also reduces the standard deviation by 50%, showing that both R2 and

R3 are quite far from this theoretical lower bound.

Vehicle arrivals Passengers delays with real-time information level
Trains Buses R0 R1 R2 R3 R∞

N 2,207,393 29,718,431 51,147,865 51,562,914 51,619,813 51,621,104 52,105,781
Mean 0.18 1.99 10.41 5.33 3.49 3.45 0.23

Std. dev. 2.59 3.30 27.98 18.75 12.88 13.06 6.13
2.5% quantile -1.65 -1.78 -1.49 -8.33 -9.33 -9.88 -13.96

Median -0.28 1.33 2.75 1.12 0.87 0.91 0.16
97.5% quantile 5.13 9.85 62.80 47.89 30.44 30.26 11.14

Table 7: Key statistical measures of delays for vehicle arrivals [minutes] and passengers [gcu].

The cumulative distribution functions of passenger delays for each of our five real-time information levels, as well

as the empirical distribution functions of train and bus arrivals can be found in Figure 5. It is quite clear, that without

acquiring any information agents are very unlikely to save lots of time, whereas many of such trips are considerably

delayed. The proportion of large delays can be reduced by acquiring pre-trip information which also facilitates decent

probabilities of achieving considerable travel time savings. Savings occur even more often for R2 and R3, while also

reducing the risk of large delays. Interestingly, R2 and R3 are almost indistinguishable.
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Figure 5: Empirical cumulative distribution function for bus and train arrivals [min.] and passenger delays [gcu] for the four information levels.
Negative values imply having lower generalised cost than predicted by the planned timetable for passengers, and arriving early for trains/buses.
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By comparing to R∞ (perfect information) instead of the intended route, see Figure 6, we can evaluate the remain-

ing potential of the information levels. Firstly, it is seen in the upper right part of the plot that the perfect information

(R∞) does not always perform better than R2 and R3. This happens because of the setup for shortest path searches,

and the fact that R2 and R3 can perform successive searches that artificially increase their maximal allowed walk dis-

tance between transfers if they use an intermediate stop, Section 3.1.3. R3 also has the potential to artificially prolong

walking legs by zig-zagging between optimal transfer stations, and in this way convert waiting time to walking time

which has a lower disutility. R∞ always dominate R0 and R1, though.

It is seen that about a third of trips choose the optimal route even if no real-time information is available. By

allowing the pre-trip information this number increases dramatically to almost 60%. Additional 5% of trips can be

performed optimally (or “superoptimally”) by increasing the level to R2 or R3. The remaining third of trips (those on

the the left-hand side of the figure) would need real-time information with better vehicle delay predictions in order to

be optimal. We return to the effect of R2 and R3 and how they differ in Section 4.3.4.

4.3.2. Geographical analysis

One of the features of the proposed door to door passenger assignment model is that we are able to analyse

variation in passenger delays across origins and destinations. This can also be done in stop to stops models, however

whilst ignoring the possibility of other first and last stops being optimal. In Figure 7 a inverse squared distance

weighting of trip delays departing between 6am and 9am towards Central Copenhagen can be found for each of the

four information levels. For each trip – which is repeated in at most 65 days – the mean of the delay of that trip has

been calculated and used as value in the inverse squared distance weighting, see Section 3.2.

A dramatic decrease in estimated mean delay is seen when applying information when waiting or everywhere.

The entire area seems to improve by receiving real-time information, even the northern part of the map that contain

local lines where no AVL data was available. This shows that real-time information is not only an advantage for the

urban core, but also for the less populated parts of the metropolitan area. In the Greater Copenhagen the real-time

information is even more effective, causing almost all trips to have a mean delay within half a minute.

We also analyse the variability of trips by using the standard deviation of trip delays in stead of mean trip delays.

The resulting maps can be found in Figure 8. We once again see that trips closer to central Copenhagen are generally

better off than trips starting further away, and that they improve a lot with increased information level. As the infor-

mation level increases a larger area can keep a low travel time variability. Notice, however, that the north western part

of the map (areas near Hundested and Tisvilde) have their travel time variability increased. As Figure 7 shows a drop

in mean passenger delay, the increase in variability stems from some trips with considerably lower travel time than

what is normally the case.

Plots equivalent to Figure 7 and 8, but for the afternoon rush hour can be found in the appendix, Figures A.1-A.2.
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Figure 7: Inverse squared distance weighting of the mean of delays of trips departing between 6am and 9am towards Central Copenhagen.
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Figure 8: Inverse squared distance weighting of the standard deviation of delays of trips departing between 6am and 9am towards Central Copen-
hagen.
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Figure 9: Difference in average daily movements (boardings and alightings) at stops w.r.t. base level. Interpolated surface estimates based on
inverse squared distance weighting.

4.3.3. Passenger flow redistribution: Kystbanen

Passenger flow redistribution is often a core aspect in disruption models, e.g. Li and Xu (2011); Hong et al. (2012);

De-Los-Santos et al. (2012); Rodríguez-Núñez and García-Palomares (2014); Adnan et al. (2017); Leng et al. (2018).

However, lines with poor punctuality may witness a similar – but less extreme – avoidance too.

22

Mesoscopic Simulation of Multi-Modal Urban Traffic 47



Kystbanen, running along the eastern coast of northern Zealand from Elsinore trough Copenhagen towards Swe-

den, had a poor punctuality in the period where AVL data was available (see Figure 3). In the following we will

investigate how real-time information of such delays influence the number of passenger movements (boardings and

alightings) and stations. The difference in the number of movements relative to the paths based on the planned

timetable are visualised and estimated through inverse squared distance weighting in Figure 9. Only trips that in-

tended to use Kystbanen when searching in the planned timetable are considered in this analysis. Thus, trips initially

intending a different path and rerouting onto Kystbanen are not included in the analysis.

As expected, no stops gain movements when no information is offered, as all passengers stick to their intended

stations - if they manage to complete their trip, that is. Some stations are seen to lose movements due to such

incomplete trips. Already when offering pre-trip information, we begin to see some alternatives in the bus, metro,

local railway, and suburban railway system being used more frequently, and that passengers avoid stations on the

regional coast line, with some of the southern stations losing more than 1,000 movements. For R2 and R3, we see

larger spatial deviation from Kystbanen, for instance with the suburban railway line from Hillerød (large dark green

spot in the northern part of the map) being used very frequently, as well as local train lines and bus lines leading to it.

Birkerød between Hillerød and Copenhagen shows a similar tendency. Stops served by bus 150S, which runs parallel

to Kystbanen but often a few kilometres to the west, also gets an increased number of passengers. Overall, the flow

redistributions seen in the maps seem behaviourally realistic.

4.3.4. Effect of en-route real-time passenger information

One of the contributions of this study is the ability to isolate the effect of acquiring global real-time information

while waiting at stops (R2) as opposed to only having it available at the origin (R1), and the additional effect of being

able to obtain it while walking and being onboard public transport services (R3). The remainder of this section is

dedicated to an aggregate as well as disaggregate geographical analysis of the effect of such real-time information.

Figure 10 contains the the empirical cumulative distribution functions of generalised cost differences between R3

and all other scenarios. Notice, therefore that the green and magenta lines are the reversed lines of those found in

Figure 5 and Figure 6, respectively. However, this plot also allows investigating in great detail the differences between

R2 and R3. It is seen that R3 is in fact beaten by the less informed R2 for 15% of trips. Similar proportions of more

costly trips are found when comparing to R1 and – perhaps more surprisingly – when receiving no information (R0).

This indicate that the R3 information level may be a little too aggresive in its guidance of passengers.

There are at least two likely scenarios where the automatic real-time will increase the passenger delay. Assume

that a passenger is on-board service A going towards a station T with a transfer to service B. Then the passenger

may get a notification at a station prior to T because the real-time prediction indicates that the passenger will miss the

transfer to B at T , making it more favourable to transfer to an alternative line on an earlier station instead. However, if

the passenger would have been able to make the transfer to B at T , then the passenger has possibly adapted to a worse

alternative. The converse can also be the case, in the sense that the passenger might be told that it is better to transfer
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at a different station than T . However, there is a risk that the passenger will end up not being able to make the transfer

at that station, yet again incurring a travel time loss (assuming the transfer at T was possible).

Looking on the left-hand side of Figure 10, on the other hand, it is immediately clear that the automatic real-time

information can also be very beneficial. Lastly, for some trips it does not matter how much information is available.

Either because there are no obvious alternatives, or because the planned shortest path remain the shortest path.
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Figure 10: Distribution of differences in generalised cost when offering trip specific real-time passenger information everywhere.

Finally, we analyse the geographical distribution of locations where passengers receive notifications about better

alternatives while being on-board a public transport service in R3, see Figure 11. The top 25 stations with more than

2,000 daily notifications are also listed in Table 8.

It is evident from Table 8 that the notifications are predominantly received at stations with a wide range of high

classed alternatives. Surprisingly, Dybbølsbro (Dbt) – a S-train only station – has the most daily notifications. The

reason for this is most likely that when arriving by S-train from the west or south, Dybbølsbro is the first available

transfer station, and generally serves as a transfer station for six S-train lines.

It is also seen that train stations with a connection to regional or InterCity trains, metro, or S buses are popular

locations for receiving notifications of better alternatives. This is even the case for some of the towns further away

from the city center such as the ones situated along bus 400S, i.e. Hundige (Und), Ishøj (Ih), Høje Taastrup (Htå),

Ballerup (Ba), and Lyngby (Ly), as well as for Ølby (Ølb) that has both a regional and a S-train line, see Figure 11.

The bus stop group with the highest number of daily notifications is located next to Copenhagen Central (Kh) and

is ranked as number 42 with 584.8 daily notifications.
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Figure 11: Geographical distribution of locations where on-board notifications of better alternatives are received in the full-adaptive setup. Inter-
polated surface estimates based on inverse squared distance weighting. Stations written in white are explicitly mentioned in the text.
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High classed lines serving station
Station Daily notifications Re/IC Train S Train Metro S Bus

Dybbølsbro (Dbt) 16,472.2 - A,B,Bx,C,E,H - -
Copenhagen Central (Kh) 15,266.3 40,40a,50,54,56 A,B,Bx,C,E,H - 250S,350S

Valby (Val) 9,963.3 40a,50,54,56 B,Bx,C,H - -
Nørreport (Kn) 9,076.0 40,40a,50,54,56 A,B,Bx,C,E,H M1,M2 150S,350S
Østerport (Kk) 8,920.8 40,40a,50,54,56 A,B,Bx,C,E,H - -

Vesterport (Vpt) 8,075.4 - A,B,Bx,C,E,H - -
Vanløse (Van) 7,148.7 - C,H M1,M2 -
Hellerup (Hl) 6,901.3 40,40a A,B,Bx,C,E,H - -

Svanemøllen (Sam) 6,304.1 - A,B,C,E - -
Høje Taastrup (Htå) 4,516.3 40a,50,54,56 B,Bx - 400S

Flintholm (Fl) 4,248.2 - C,H M1,M2 -
Ny Ellebjerg (Nel) 3,257.4 50,543 A,E,F - -

Sydhavn (Syv) 3,037.3 - A,E - -
Herlev (Her) 2,979.9 - C,H - 300S,350S

Friheden (Frh) 2,923.2 - A,E - 200S
Enghave (Av) 2,721.6 - B,Bx,C,H - -

Nordhavn (Nht) 2,681.0 - A,B,C,D,E - -
Holte (Hot) 2,643.8 - B,E - -

Ryparken (Ryt) 2,630.9 - A,F - -
Lyngby (Ly) 2,465.3 - B,E - 200S,300S,400S

Hundige (Und) 2,325.8 - A,E - 400S,600S
Danshøj (Dah) 2,315.6 - B,Bx, F - -

Ishøj (Ih) 2,193.7 - A, E - 300S,400S
Ølby (Ølb) 2,080.9 51 E - -

Ballerup (Ba) 2,065.9 - C,H - 350S,400S,500S

Table 8: An overview of the 25 stations with the highest number of daily on-board notifications and their supply of high classed public transport.

5. Conclusions and Future Work

This paper has proposed an adaptive passenger path choice model and a framework that allows large-scale eval-

uation of passenger delays while considering different levels of real-time information availability. The model was

applied to 65 realised days considering the entire public transport system of the metropolitan area of Copenhagen and

using real-life AVL data of trains and buses in the area. In each of the days the model was run with all five introduced

information levels for 801,719 daily public transport trips in with average computation times ranging between one

and five hours depending on the real-time information level. The computation times and size of the case study proves

that the proposed model is indeed large-scale applicable.

Passenger delays were found to be considerably more volatile than the vehicles delays recorded in the area. By

adapting to real-time information pre-trip passengers were shown to reduce their passenger delays noticeably, and even

more so when provided with real-time information en-route. Large deviations were seen compared to the intended

3The regional train lines 50 and 54 only serve Ny Ellebjerg once per day per direction.
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paths based on the planned timetable, with the configurations providing real-time information everywhere forcing

nearly 63% of trips to differ by at least one departure. The flow redistribution was illustrated for passengers intending

using a particularly unreliably line of the transport system, and the substitution patterns of passengers that explored

other parts of the network were found to be realistic. A decent correlation was found between the origin and the

corresponding passenger delays, with passengers beginning their trip in less serviced areas on average having larger

passenger delays and travel time variability.

The effect of acquiring global real-time information and rerouting based on such information at stops (R2) was

found to have a large effect compared to only being able to do so at the origin (R1). However, the net effect of being

able to also be able to do so while walking and while onboard public transport services (R3) was found to be virtually

zero. This was due to the fact that even though R3 outperformed the other real-time information scenarios for some

trips, R3 also caused a lot of passengers to opt for alternatives that ended up performing worse than all other scenarios.

This shows that R3 has potential to be beneficial, but will have to reduce the number of trips where passengers would

be better off not receiving information. Developing a better strategy for the agents or improving the vehicle delay

prediction methodology to reduce this number, would be an interesting direction for future research.

Another way of addressing the issue of receiving bad advice would be to adapt some day-to-day learning process

to the model, as done in models like MILATRAS (Wahba and Shalaby, 2009, 2011). Previous bad experiences with a

particular public transport lines or transfers could then be reflected in the utility functions, or by decreasing the trust

the agent has in the travel planner.

Modelling and investigating non-obeyance of suggestions, either by having some individuals not connected as in

Zargayouna et al. (2018) or by giving agents a non-zero probability of ignoring suggestions, would be interesting

future research. This could also overcome some of the herd behaviour that is bound to lead to denied boardings when

applying such type of model in more crowded case studies (Zargayouna et al., 2018). The model could also be adapted

to directly consider effects of crowding and taste heterogeneity (as discussed in Section 3.1.1 and Section 4.2).

The computation times of the model are low enough to run in real-time or to process the passenger delays of the

previous day overnight. In this way the model could be a part of an evaluation system, allowing the operators to gather

insights about how yesterday’s operation actually influenced the door-to-door trips of passengers. Furthermore, by

using the framework with artificial delays as in e.g. Landex and Nielsen (2006); Corman and Kecman (2018), rather

than historical delays, the model can be used to evaluate timetables that have not even been put into operation yet.

When used in this regard, the proposed model could be a relevant tool for public transport planners.
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Appendix A. Supplementary Figures
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Figure A.1: Inverse squared distance weighting of the mean of delays of trips departing between 3pm and 6pm from Central Copenhagen.
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Figure A.2: Inverse squared distance weighting of the standard deviation of delays of trips departing between 3pm and 6pm from Central Copen-
hagen.
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a b s t r a c t 

Copenhagen is world-known for its large proportion of cyclists, forming a diverse group 

with a large variation of equipment and physical abilities. This leads to a considerable 

speed heterogeneity which needs to be taken into account when modelling the traffic on 

dedicated bicycle paths. Nevertheless, existing studies on bicycle traffic simulation have 

either neglected such speed heterogeneity altogether or modelled it by dividing cyclists 

into a few discrete classes ignoring the entirety of the speed distribution. This paper pro- 

poses an efficient bicycle traffic simulation model with continuously speed heterogeneous 

cyclists and corresponding congestion effects. Based on individual-specific desired speeds 

and headway distance preferences, the model shows realistic speed-flow relationships val- 

idated with on-site observations while being capable of delaying rapid cyclists more often 

than slower ones in moderate traffic flows. The scalability of the model allows it to be 

large-scale applicable for network loading purposes, and thus suitable for evaluating im- 

pacts of cycling related infrastructure investments. 

© 2019 Elsevier Ltd. All rights reserved. 

1. Introduction 

The bicycle is a very space-efficient mode of transport, why major cities across the world are starting to promote bicy- 

cling as a means of relieving congestion in urban areas. However, in places where bicycles already hold a high market share 

of travellers – such as Copenhagen and the Netherlands – the number of bicycles have reached a level where congestion on 

dedicated bicycle paths can no longer be ignored. 

When modelling car traffic it is customary to consider all cars as a homogeneous mass where all cars traversing a link 

follow the same speed within a certain period of time. This assumption is more or less valid for car traffic as car drivers 

generally desire to go by the maximum allowed speed, alternatively by the highest speed possible given the congestion level. 

This is, however, not the case for cyclists for which higher speeds require a considerable increase in the wattage produced 

by the cyclist, limiting less physically fit cyclists from reaching high speeds. Furthermore, differences in equipment such as 

cargo bikes or racing bikes can significantly reduce or increase the desired speed of a cyclist. 

Another difference is that overtaking is predominantly unproblematic outside rush hours for cyclists in Copenhagen as all 

bicycle paths are wide enough to fit at least two bicycles. However, due to the high frequency of overtakings, it may occur 

that the overtaking lane is occupied by a relatively slow cyclist overtaking an even slower cyclist. This makes it possible for 
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other cyclists to cause delays to fellow cyclists even at moderate traffic intensities. Including such bicycle interactions within 

a fast bicycle simulation model is the primary aim of this paper. 

The current literature on explicit modelling of bicycle traffic can be divided into two main categories: Heterogeneous and 

homogeneous modelling. 

The literature on modelling of heterogeneous bicycle traffic has had a strong dominance of Cellular Automata (CA) 

( Wolfram, 1986 ) based approaches. Whereas original CA applications on traffic simulation such as Nagel and Schrecken- 

berg (1992) only allowed simulation of homogeneous traffic, newer multi-value CA approaches have allowed simultaneous 

simulation of inhomogeneous traffic through discrete classes with different maximum speeds. Initially proposed for mixed 

traffic of cars and motorcycles in Lan and Chang (2005) , it was later applied to mixed bicycle traffic by Jia et al. (2007) . 

Since then a whole range of studies have considered mixed bicycle traffic ( Gould and Karner, 2009; Zhao et al., 2013; Jin 

et al., 2015a; Shan et al., 2015; Zhou et al., 2015; Li and Fang, 2017; Xue et al., 2017 ) or mixed traffic with bicycles alongside 

other modes ( Vasic and Ruskin, 2012; Luo et al., 2015 ) using similar and extended CA approaches. 

Although the CA approaches are capable of modelling different classes, the discrete nature of the methodology hinders 

including the entirety of the speed distribution. The CA methodology partitions links into cells with a minimum size re- 

quiring fully containing any of the simulated vehicles – cyclists in our case. Since a cyclist have to stay in the same cell or 

move an integer number of cells per time step, different cyclist types either have to be assumed equal or differing rather 

considerably in order to be simulated using such approach. Thus, CA is only a suitable approach for modelling heterogeneity 

when dealing with traffic that can be divided into a few clearly distinguishable classes where intra-class heterogeneity can 

be ignored completely. This inherently restricts the potential of such models for the purpose of our study. 

Three methodologies for simulation of continuous heterogeneous bicycle traffic exist in the literature. 

Shen et al. (2011) proposed a cell-stream flow model, Liang et al. (2012, 2018) developed psychological-physiological 

force models, whereas Osowski and Waterson (2017) applied a social force model. These approaches are capable of real- 

istically simulating heterogeneous bicycle traffic in great detail but are, however, computationally infeasible for full-scale 

applications as explicitly stated in Osowski and Waterson (2017) . Although none of the other studies touch upon computa- 

tion time, the detail level of these models strongly indicates that none of them would have the computational efficiency to 

be suitable for traffic assignment purposes. 

As a side note, heterogeneous traffic has also been modelled without focusing (solely) on bicycle traffic. Multi-class 

heterogeneous highway traffic was modelled in Wong and Wong (2002) using an extended Lighthill–Whitham–Richards 

(LWR) model ( Lighthill and Whitham, 1955; Richards, 1956 ), whereas Tang et al. (2011) applied a macroscopic following 

model with honk effects to a mix of bicycle and pedestrian traffic. 

The second main category of bicycle traffic modelling is homogeneous simulation of bicycle traffic. This has also been 

explored with CA approaches ( Jiang et al., 2004; Liu et al., 2008; Jiang et al., 2017; Tang et al., 2018 ), but has more inter- 

estingly also received some attention with alternative methodologies. Zhang et al. (2013b) combined CA with gas dynamics 

models for high densities to model speed-density relationships for bicycle traffic. Zhao and Zhang (2017) introduced a robust 

unified follow-the-leader model framework capable of modelling homogeneous traffic of either pedestrians, bicycles, or cars. 

Although these studies generally benefit from more advanced continuous methods, they have the drawback of completely 

ignoring the inherent speed heterogeneity of cyclists. 

Regarding data, some studies ( Mai et al., 2013; Zhang et al., 2013a; Rui et al., 2014 ) have been analysing single-file 

controlled experiments to explain cyclists’ behaviours. Additionally, some of the aforementioned bicycle models have been 

calibrated/validated by them ( Liang et al., 2012; Xue et al., 2017; Zhao and Zhang, 2017 ), potentially leading to undesired 

biases as such experiments arguably differ from everyday bicycle traffic. First of all because overtaking is not considered 

in such controlled experiments. Secondly, because the cyclists have to ride in a circular or oval curve. Thirdly, since the 

cyclists of the controlled experiments are aware that they are participating in an experiment, and as such they might un- 

consciously behave differently from what they normally would in an uncontrolled environment. Collectively, these biases 

lead to experiments that are usually carried out using much lower speeds than the real-life counterparts they are seeking 

to model. 

Hence, although calibrating a model using controlled experimental data is superior to no calibration, it still has some 

drawbacks compared to observed, uncontrolled data. Unfortunately, high quality data of observed, uncontrolled bicycle traffic 

is limited, although a few studies ( Gould and Karner, 2009; Zhang et al., 2013b; Jin et al., 2015a; Li and Fang, 2017; Liang 

et al., 2018 ) have been able to collect such for calibrating their models. 

Whereas forming fundamental diagrams require reliant aggregate data of very high traffic intensities, some characteristics 

of bicycling may, on the other hand, be derived by analysing bicycle traffic under low traffic intensities. Establishing a 

consistent bicycle simulation model based on assumptions that can be analysed at low traffic intensities is one of the aims 

of this study. 

The study contributes to the literature by modelling explicit desired speeds for each cyclist drawn from a continuous dis- 

tribution. Bicycle-to-bicycle interactions and overtaking are modelled implicitly using individualised speed-dependent head- 

ways for each cyclist and an intelligent lane choice mechanism. Furthermore, the implemented model is fast enough to be 

large-scale applicable, and thus has the potential to simulate the entirety of bicycle traffic within a metropolitan area. 

The remainder of the paper is structured as follows. Bicycle traffic characteristics including speed and headway distance 

heterogeneity are analysed based on observed data in Section 2 . Section 3 formulates the underlying assumptions for a 

bicycle simulation model capable of modelling inter-vehicular interactions of heterogeneous cyclists. Section 4 contains the 
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Fig. 1. An overview of the data area at Smallegade in Frederiksberg, Capital Region, Denmark. 

design and results of small-scale experiments focusing on speed heterogeneity as well as aggregate fundamental diagrams 

accompanied by sensitivity analyses and data validation. Finally, a discussion of model limitations as well as directions for 

future work are found alongside the final conclusions in Section 5 . 

2. Characteristics of bicycle traffic 

This section describes some key characteristics of bicycle traffic important for the later implementation of the bicycle 

traffic simulation model. The analysis is based on aerial video data from COWI Ltd. 1 processed using DataFromSky ( RCE Sys- 

tems R.S.O., 2014 ). The video was shot from the tower of Frederiksberg Town Hall situated in the Copenhagen enclave 

Frederiksberg, with the original purpose of evaluating the use of the large parking lot next to the town hall. Still, the video 

data includes all east-going (towards the camera) bicycle traffic of the street Smallegade from 2 p.m. to 5 p.m. with a total 

of 1168 cyclists. Their speed and acceleration for every cyclists have been calculated along 18 transversal gates each divided 

into a inner right (from the perspective of the cyclists) and an outer left part, see Fig. 1 . 

The average flow along this stretch is less than 390 cyclists per hour why the traffic intensity is not high enough for 

congestion effects to be relevant. This is on purpose though, as one of the key parameters that will be estimated in the 

following sub-sections (desired speed) would not be possible to estimate using congested data. 

2.1. Speed heterogeneity 

For each cyclist in the aerial video data the 90th percentile speed was used for determining their desired speed. Fig. 2 

shows the distribution of the desired speeds across cyclists, alongside best-fit estimations of 11 candidate distributions. The 

mean value and median of the empirical distribution are 6.29 m/s and 6.21 m/s, respectively. Furthermore, the distribution 

has a variance of 1.23, an excess kurtosis of 1.26, and a skewness equal to 0.55, the latter two indicating that a normal 

disitribution may not be suitable. 

The data reveals relatively high speeds compared to many other studies seen in the literature from other parts of 

the world. Allen et al. (1998) reviews several older studies from across the world, and shows that the majority of these 

lie between 12 km/h (3.33 m/s) and 20 km/h (5.5 m/s). Jensen et al. (2010) analysed bicycle speeds of shared bicycles 

in Lyon, France, and showed an average speed of 14.5 km/h (4.03 m/s). Bernardi and Rupi (2015) measured the aver- 

age speed on three segregated bicycle lanes in Bologna, Italy, to be ranging from 14.6–18.9 km/h (4.1–5.3 m/s). Li and 

Fang (2017) showed an average speed of 2.67 m/s for cyclists at the Nanhu campus of Wuhan University of Technology, 

China. Finally, Flügel et al. (2017) found the average cycling speed in Oslo, Norway to be 16.85 km/h (4.68 m/s). 

However, Buch and Greibe (2015) did a study in Copenhagen, Denmark, and found an average speed of 21.7 km/h 

(6.02 m/s) which is reasonably close to the data obtained for this study. 

In order to obtain a continuous distribution with known probability density function, we proceed by searching for a the- 

oretical distribution that matches the empirical distribution well. This is done by assessing 11 continuous candidate distri- 

butions for which best fit estimates have been found for every parameter in their parameter set using maximum likelihood 

1 https://www.cowi.com . 
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Fig. 2. Distribution of observed desired speeds and best-fit estimations of candidate distributions. 

Table 1 

Log-likelihoods ( � ) as well as test statistics ( D ) and p - 

values for the Kolmogorov–Smirnov test for various can- 

didate distributions. 

Distribution � D p 

Johnson’s S U −1750.9 0.022 0.606 

Johnson’s S L −1756.8 0.029 0.286 

Johnson’s S B −1756.9 0.029 0.279 

Logistic −1757.7 0.028 0.310 

Beta −1758.4 0.031 0.200 

Gamma −1758.4 0.030 0.254 

Hyperbolic Secant −1760.9 0.032 0.181 

Log-Normal −1761.7 0.030 0.235 

Normal −1775.6 0.052 0.004 

Laplace −1782.5 0.042 0.032 

Weibull −1851.0 0.077 < 0.001 

estimation. Table 1 contains the 11 distributions alongside their log-likelihood values ( � ) and results from the Kolmogorov–

Smirnov test ( D and p ). 

Based on the log-likelihood, the Johnson’s S U distribution ( Johnson, 1949 ) performs best, having a considerably higher 

log-likelihood than the following seven distributions which, on the other hand, do no differ much from each other. The final 

three distributions (Normal, Laplace, and Weibull) are clearly worse than the top eight distributions based on log-likelihood. 

The Kolmogorov–Smirnov test calculates the largest vertical deviation ( D ) between the empirical and theoretical cumu- 

lative distribution function. Combined with the number of observations this number can be used to directly determine 

the p -value, i.e. the probability of the largest vertical deviation exceeding D , assuming that the empirical distribution was 

actually drawn from the theoretical distribution under consideration. 

Results from the test shows that eight of the theoretical distributions do not deviate significantly from the empirical 

distribution when using a significance level of 5 %. The Johnson’s S U distribution gives the best results, but a simpler dis- 

tribution such as the logistic distribution would also be suitable according to the test. It is worth emphasising that based 

on the Kolmogorov–Smirnov test the normal distribution – as one of only two distributions – can be ruled out as being an 

appropriate choice for any significance level higher than 0.4%. 

Conclusively, as the Johnson’s S U both has the highest log-likelihood and performs the best in the Kolmogorov–Smirnov 

test, the analysis unanimously shows that it is the best suited distribution among the 11 candidate distributions. 

2.2. Lane behaviour 

The test street is a quite moderate Copenhagen bicycle path with a width of 1.85 m and a relatively low traffic intensity 

in the data collection period as stated earlier. We want to assess whether cyclists in the overtaking (left) lane on average 
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Fig. 3. Speed distribution of the right and left lane, respectively. 

go faster than those in the inner (right) lane, despite knowing that this difference will be more evident on segments with 

higher traffic intensities. To do this the aerial data has been divided into cyclists riding on the right and left half of the 

bicycle path, respectively, and the speeds of the cyclists have been grouped by the lane at which the cyclists rode. The 

empirical cumulative distribution function of the speeds in each lane can be found in Fig. 3 . It is seen that the two empirical 

distributions differ, and that the left lane seems to be the faster lane. 

Whether the difference in mean speed across the two lanes is statistically significant has been tested by performing a 

two-sample z -test for the difference between means. The resulting z -statistic exceeds 15, meaning that the difference in 

mean speed across lanes is strongly significant using any reasonable significance level with the corresponding p -value being 

less than 10 −50 . 

This is not to say that lane formation behaviour of cyclists only occur when overtaking. Group behaviour where cyclists 

ride alongside each other – as implemented in Tang et al. (2018) – is also likely to occur. However, such abreast riding 

can arguably be assumed not to influence other cyclists as long as the grouping behaviour stops once a faster cyclist rings 

his/her bell. 

2.3. Headways 

The capacities of bicycle paths are highly dependent on how close cyclists are willing to ride to each other: the closer 

they ride, the higher the capacity. Because of this, determination of bicycle headways has already received some attention 

in the literature. 

According to Andresen et al. (2014) – based on single-file track experiments – the headway distance, d ( v ), is a function 

of the speed, v , having the functional form, 

d(v ) = θ0 + θ1 v , (1) 

with parameters θ0 = 1 . 93 being the sum of the average length of a bicycle ( λc = 1 . 73 m) and an additional safety distance 

of λs = 0 . 2 m, and θ1 = 0 . 78 s being the assumed constant headway time between the front wheel of the following cyclist 

and the back wheel of the cyclist in front. 

Hoogendoorn and Daamen (2016) investigated headways on a bicycle path in Delft in the Netherlands from photo-finish 

data. They use the approach of Wasielewski (1979) and Hoogendoorn (2005) and found that 54.1% of bicycles are constrained 

by the cyclist in front of them, and that the average headway time of these cyclists is 0.784 s with a standard deviation of 

0.660 s. 

In our video data we have supplementary information, as we can not only measure the headway distance but also the 

speed of every cyclist. This is helpful when identifying whether a cyclist is driving freely or being constrained, since large 

speed differences would indicate the former. 

We filter the data such that we only consider data from cyclists that reasonably can be assumed to be following the 

bicycle in front of them. Since it is difficult to keep the exact same speed as the cyclist in front, in this analysis we allow 
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Fig. 4. Headway distances plotted against speed with three candidate trend lines and a line based on Andresen et al. (2014) . 

Table 2 

Three linear regression models for headway distances based on speed with 

t -values in brackets compared to Andresen et al. (2014) . 

Model 1 Model 2 Model 3 Andresen et al. (2014) 

Intercept 1.234 −4.590 −4.221 1.930 

(1.398) ( −1.367) ( −2.473) (–) √ 

Speed – – 4.602 –

(–) (–) (6.468) (–) 

Speed 0.965 3.065 – 0.780 

(6.355) (2.603) (–) (–) 

Speed 2 – −0.185 – –

(–) ( −1.798) (–) (–) 

σ ε 3.114 3.108 3.110 –

R 2 0.063 0.068 0.065 –

for an absolute speed difference threshold of 0.2 m/s above which cyclists are assumed to ride freely. This corresponds to 

riding freely if the difference in distance per second is larger than the desired longitudinal distance between two stationary 

bicycles (0.2 m) found in Andresen et al. (2014) . Mohammed et al. (2019) identified a cluster characterised as following 

cyclists revealing an average speed difference of 0.93 m/s in the raw data and 0.76 m/s after bootstrapping, indicating that 

the value of 0.2 m/s indeed is quite strict. 

Furthermore, as in Hoogendoorn and Daamen (2016) , all observations with a headway time above a certain threshold are 

assumed to be freely moving why such observations are also discarded. In Hoogendoorn and Daamen (2016) the method 

incentivised not choosing a (too) low number, whereas doing such in this case would bias the analysis. A threshold of 2.3 s 

– as opposed to 3 s in Hoogendoorn and Daamen (2016) and 5 s in Mohammed et al. (2019) – has been used based on a 

flattening trend of the distribution of all headways in our dataset. 

Finally, since observations of the same cyclist pair (at different gates) are highly correlated, only the median headway 

distance of all accepted instances of a cyclist pair is used. The final dataset consists of 607 headway distance observations 

from unique cyclist pairs. Due to the conservative thresholds of both speed differences and headway times we are rather 

confident that all non-following situations have been removed by the filtration. 

Besides using the speeds to filter the headway observations, it can also be used to investigate the effect the speed has 

on the headway distance. Fig. 4 shows a scatter plot where the headway distance is plotted against the speed of the behind 

cyclist. Headway distances are found by multiplying the headway time with the speed of the cyclist. 

In addition we fit a first and a second order polynomial as well as a square root model, see Table 2 . Besides the parameter 

estimates and t -statistics, the table also contains the residual standard error ( σ ε ) and coefficient of determination ( R 2 ) for 

the proposed models. For comparison, the table also contains results found in Andresen et al. (2014) . 
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The model obtained by using a first order polynomial has a steeper slope (headway time of 0.965 s) than in 

Andresen et al. (2014) . However, the t -statistic of the null hypothesis that the true slope is equal to 0.780 s is 1.220, resulting 

in a two-sided p -value of 0.223 indicating that it is reasonably likely that the values from Andresen et al. (2014) could be 

true. 

Intuitively, the headway distance should have a negative curvature as faster cyclists most likely are more experienced 

cyclists and as such would keep a lower headway time. In fact, this is partially supported by the second order polynomial 

fit which shows a negative second order term with a t -statistic of -1.80 corresponding to a one-sided p -value of 0.04. The 

square root model only provides a slight increase in R 2 compared to the first order polynomial from 0.063 to 0.068. 

As the second order term in the second order polynomial is barely significant on a 5 % significance level, and the slope of 

the first order polynomial is not significantly different from the slope of Andresen et al. (2014) , the choice is really between 

using the square root model or the originally proposed model by Andresen et al. (2014) . Although relatively weak, there is 

some evidence towards the headway distance having a negative curvature, why the square root model seems to be the most 

appropriate headway distance function. It also has a slightly higher R 2 than the first order polynomial despite having the 

same number of parameters. 

2.3.1. Headway heterogeneity 

In order to account for the large heterogeneity in headway distances, the model is extended further to not only fit the 

mean value associated with a given a speed, but also the corresponding standard deviation. As the variation of the headway 

distances seems to be increasing for higher speeds, see Fig. 4 , the standard deviation has to be modelled explicitly using a 

speed-dependent function. In a first model, letting N (μ , σ 2 ) denote the normal distribution with mean μ and variance σ 2 , 

we maintain normally distributed residuals and model the headway distances in the following way, 

d(v ) ∼ N 

(
θ0 + θ1 

√ 

v , 
(
ζ0 + ζ1 

√ 

v 
)2 

)
= θ0 + θ1 

√ 

v + 

(
ζ0 + ζ1 

√ 

v 
)
N 

(
0 , 1 

2 
)
. (2) 

With this formulation the mean values are kept constant, whereas the standard deviation of the residuals is a first 

order polynomial of 
√ 

v parameterised by ζ 0 and ζ 1 . This model, however, has no bounds on the headways as the normal 

distribution has infinite tails, which may provide unrealistic headway preferences when sampling from the distribution. In 

order to deal with this, two additional models based on beta distributed residuals are proposed. 

The generalised beta distribution, which we denote by B g (α, β, a, b) , is a regular beta distribution, B(α, β) , that is trans- 

lated and scaled to have compact support [ a, b ]. This means that for a stochastic variable X ∼ B g (α, β, a, b) the stan- 

dardised variable Z B = 

X−a 
b−a 

∼ B(α, β) . Using the notation f ( x | α, β) for the probability density function of B(α, β) and 


(z) = 

∫ ∞ 

0 x z−1 e −x dx, the probability density function of the generalised beta distribution, B g (α, β, a, b) , is given by, 

f g (x | α, β, a, b) = 

{
1 

b−a 
× f 

(
x −a 
b−a 

∣∣α, β
)

= 

1 
b−a 


(α+ β) 

(α)
(β) 

(
x −a 
b−a 

)α−1 (
1 − x −a 

b−a 

)β−1 
, x ∈ [ a, b] 

0 , x / ∈ [ a, b] . 
. (3) 

It is customary to require the expected value of the residuals to be 0. The easiest way to secure this, is to require the 

distribution to be symmetrical around 0. This can be achieved by requiring α = β, α > 0 , and −a = b = h, h > 0 . Since we 

still want to allow larger residuals for higher expected values of d ( v ), h is parametrised by h = ζ0 + ζ1 

√ 

v . We will denote 

such generalised symmetric beta distribution by B s (α, h ) . Its probability density function, f s , is given by, 

f s (x | α, h ) = f g (x | α, α, −h, h ) = 

1 

2 h 

× f 

(
x + h 

2 h 

∣∣∣∣α, α

)
, ∀ x ∈ R , (4) 

Having introduced the above, three additional models focusing on modelling the residuals can be presented. Model 4 

that uses the formulation from Eq. (2) as well as two models using Beta-distributed residuals; A symmetric Model 5 and a 

potentially asymmetric Model 6 defined by Eqs. (5) and (6) , respectively, 

d(v ) ∼ θ0 + θ1 

√ 

v + B s (α, h ) = θ0 + θ1 

√ 

v + 2 h 

(
B(α, α) − 1 

2 

)
, (5) 

d(v ) ∼ θ0 + θ1 

√ 

v + B g (α, β, −h, h ) = θ0 + θ1 

√ 

v + 2 h 

(
B(α, β) − 1 

2 

)
. (6) 

For Model 4, 5, and 6 the parameters are estimated simultaneously using the L-BFGS-B algorithm ( Byrd et al., 1995 ) 

in R ( R Core Team, 2018 ). In order to secure positive standard deviations for the entire range of speeds in the headway 

data, 
√ 

2 θ1 ≥ −θ0 and 

√ 

2 ζ1 ≥ −ζ0 as well as negative values for θ0 and ζ 0 were applied as constraints for the algorithm. 

Furthermore, Model 5 and 6 required α ≥ 1, and Model 6 additionally constrained β ≥ 1. 

For all of the models the parameters, their log-likelihood ( � ), and Akaike Information Criterion (AIC) ( Akaike, 1973 ) are 

presented in Table 3 . Notice that ζ 0 of Model 3 is the previously implicitly estimated σ ε from Table 2 . 

Firstly, it is seen that regarding the parameters concerned with the expected value of the headway distance, i.e. θ0 and 

θ1 , the changes are almost indistinguishable when going from Model 3 to Model 4. When going onto Model 5 and Model 6 

the changes persist to stay relatively minor. 

Looking at the log-likelihood, it is seen that there is a considerable improvement when switching from a constant (Model 

3) to a parameterised (Model 4) standard deviation. However, as such switch will always have a non-negative effect, it is 

68 Mesoscopic Simulation of Multi-Modal Urban Traffic



M. Paulsen, T.K. Rasmussen and O.A. Nielsen / Transportation Research Part B 127 (2019) 72–98 79 

Table 3 

Parameters, log-likelihoods ( � ), and Akaike Information Crite- 

ria (AIC) of four models for headway distances using different 

functional forms for residuals. 

Model 3 Model 4 Model 5 Model 6 

θ 0 −4.221 −4.234 −4.357 −4.539 

θ 1 4.602 4.602 4.713 4.840 

ζ 0 3.110 −4.397 −9.674 −0.841 

ζ 1 – 3.109 6.841 6.959 

α – – 1.865 1.910 

β – – – 2.033 

� −1549.04 −1522.88 −1497.87 −1497.45 

AIC 3104.08 3053.77 3005.74 3006.90 

necessary to use some kind of measure to assess whether the improvement caused by the inclusion of the ζ 1 -parameter 

is worthwhile. For nested models, as it is the case here, applying Wilks’ theorem ( Wilks, 1938 ), commonly known as a 

likelihood ratio test, is a frequently used method to assess improvements in likelihood. Letting � denote the likelihood ratio 

between Model 3 and Model 4, the test statistic can be calculated as follows, 

D � = −2 ln � = −2 × (−1549 . 04 + 1522 . 88) = 52 . 32 . 

Comparing that to a χ2 -distribution with one degree of freedom yields a p -value < 10 −12 , showing that the improvement 

in likelihood is significant at any reasonable significance level. 

When comparing Model 5 to Model 4, it is no longer possible to apply Wilks’ theorem as neither model is a special 

instance of the other model. In such cases the Akaike Information Criterion (AIC) ( Akaike, 1973 ) can be used instead. With 

k denoting the number of estimated parameters the AIC is defined as, 

AIC = 2 k − 2 �, (7) 

and thus becomes higher when either the log-likelihood ( � ) decreases or when the number of parameter increases. The 

AIC thus discourages overfitting, and the model with the lower AIC is considered the better option. We can easily see that 

Model 5 has a much lower AIC (3005.74) than Model 4 (3053.77), why Model 5 is superior to Model 4 based on AIC. The 

improvement is very similar to that when going from Model 3 to Model 4. 

Comparing Model 5 to Model 6 we can see that without constraining β it is estimated to be a little larger than α, 

although the differences are rather small. We can once again apply Wilks’ theorem, as Model 5 is a particular instance of 

Model 6 where β = α. The test statistic D � = 0 . 835 yields a p -value of 0.361, meaning that the improvement in likelihood 

is only significant when using a significance level above 36.1%. That Model 5 seems to be the better model is also supported 

by the AIC which is lower for Model 5. As such, there seems to be no statistical evidence against assuming α = β when 

modelling our residuals with a beta distribution with support [ −h, h ] , h > 0 . 

However, since all of the above model assessments are purely relative measures, it is sensible to test Model 5 against 

a baseline model. Only by doing so is it possible to evaluate whether Model 5 is actually a reasonable model, or just the 

best among a candidate set of models. A null model only containing the average value of headways, θ0 = 6 . 788 and a 

constant residual standard deviation ζ0 = 3 . 211 of the assumed normally distributed residual yields an AIC of 4211.66. The 

improvement in AIC of 1205.92 when going to Model 5 strongly suggests that adding the parameters used in Model 5 makes 

statistical sense. 

Thus, Model 5 is chosen as the best suitable model for modelling headway distances; It has the best statistical measures, 

but also because it makes sense from a behavioural point of view to use one of the two bounded models (5 or 6), as using 

an unbounded model (3 or 4) theoretically allows extreme headway distances. This is particularly an issue when sampling 

from the distribution. Whereas the actual sampling procedure shall be explained in Section 3.3 , for the sake of the argument 

Fig. 5 is presented here to show how the unbounded models 3 and 4 differs fundamentally from model 5 and 6. 

The figure shows a surface plot illustrating the probability of obtaining a value that is further away from the expected 

value in the same direction as the value on the y -axis given some speed, v . In a more formal explanation, let D v be the 

stochastic variable of the headway distance based on the speed v according to one of our proposed models, and let F D 
be the theoretical cumulative distribution function of said stochastic variable. We then introduce the following measure, p , 

indicating the probability of getting a value that is larger/smaller than d given v , 

p(d| v ) = min { F D (d| v ) , 1 − F D (d| v ) } = 

1 

2 

× P 
(
D v > | d − E(D v ) | 

∣∣ v 
)
, ∀ d ∈ R , ∀ v ≥ 2 . (8) 

It is readily seen that Model 5 and 6 are almost indistinguishable, and that they are bounded very close to the empirical 

observations. This also means that sampling from such distribution will almost always provide reasonable values, although 

very small negative values can occur. Model 3 and 4, on the other hand, have substantial risks of sampling quite extreme 

negative as well as positive values. A probability of e.g. 10 −5 might seem very small, but since the model is meant to be 

large-scale applicable and able to simulate several hundred thousands of cyclists, such probabilities will eventually come 
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Fig. 5. Surface plots showing the probability of sampling more extreme values (see Eq. (8) ) on a log-scale for Model 3 through 6. 
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into play. Finally, it can be seen that Model 3 does not take the increasing variance into account at all, and as such seems 

way off when sampling headway distances at low speeds. 

Using Model 5 and the space mean speed v̄ 0 = 6 . 104 , the expected headway time is 
d( ̄v 0 ) −λc 

v̄ 0 
= 0 . 910 s. This seems rea- 

sonable although slightly above the headway times of 0.78 and 0.784 s found in Andresen et al. (2014) and Hoogendoorn and 

Daamen (2016) , respectively. 

3. Model 

Whereas Section 2 was devoted to extracting certain characteristics of bicycle data from field data, this section aims at 

establishing a simulation framework for heterogeneous bicycle traffic into which such findings can be used as input. The 

proposed framework is based on the set of assumptions found below. 

1. Every cyclist has an individual desired speed. 

2. Bicycle paths can be divided into a number of pseudo-lanes. 

3. Cyclists keep a headway distance to the cyclist in front of them. 

4. Cyclists use the right-most pseudo-lane that can accommodate their desired speed. 

a. If no such pseudo-lane exists, they use the fastest possible pseudo-lane. 

5. Cyclists stay in the same pseudo-lane for the entirety of the link. 

6. Cyclists cannot enter a link if its area is fully occupied. 

The remainder of this section is devoted to discussing each of the assumptions individually, before Section 3.7 sum- 

marises the input needed for the framework. 

3.1. Desired speeds 

The first assumption is that every cyclist has an individual desired speed. The desired speed can be interpreted as the 

speed a cyclist would ride by under free-flow conditions. In that sense it can also be understood as a personal maximum 

speed for that individual. 

In accordance with findings in Section 2.1 , we assume that cyclists’ desired speeds follow a Johnson’s S U distribution 

which by denoting the inverse hyperbolic sine function by arsinh (x ) = ln (x + 

√ 

x 2 + 1 ) is defined as, 

v c 0 ∼ D = 

δ

λ
√ 

2 π

√ 

1 + ( 
v c 

0 
−ξ

λ
) 2 

e −
1 
2 (γ + δ arsinh ( 

v c 
0 

−ξ

λ
)) 2 , v c 0 ≥ 2 , (9) 

with parameters γ = −2 . 75 , ξ = 3 . 67 , δ = 4 . 07 , and λ = 3 . 49 . Notice that the superscript c is used because any desired 

speed v c 
0 

is associated with and specific to one particular cyclist, c . 

A uniform value for each cyclist, u c ∈ U (0, 1), can be transformed into a desired speed by the following modification of 

the quantile from the standard normal distribution q u c , u c ∈ ]0 , 1[ readily available in most programming software, 

v c 0 = λ sinh 

(
q u c − γ

δ

)
+ ξ , u c ∈ ]0 , 1[ , ∀ c ∈ C, (10) 

making the sampling of such values straightforward. 

It is seen from Eq. (9) that we truncate the distribution at v min 
0 = 2 m/s in order to avoid desired speed that are too low 

(Johnson’s S U distribution has a natural lower bound at 0). In practice such values are rejected and replaced by a resampled 

value. The truncation is necessary because there exists a speed below which it is virtually impossible to keep the balance 

on a bicycle, but also because having too low values can almost shut down links entirely with the proposed model (see 

Section 3.4 ). It is worth noting that none of the estimations of the (fully) bounded distributions (Johnson’s S B and Beta) 

resulted in a non-negative lower bound, meaning that the value used for truncation had to be determined manually. The 

value of 2 m/s seems reasonable based on our data, as no cyclists were observed riding below this speed with the minimum 

observation being 2.67 m/s. 

In the proposed model the desired speed is constant across links for each individual. However, the framework can easily 

be extended to have link specific desired speeds that for instance take the gradient, surface, or wind into account. 

3.2. Infrastructure 

The second assumption requires that every link of bicycle path, l , has an array of pseudo-lanes, � l . The number of 

pseudo-lanes, | � l |, contained in this array is based on the width of the bicycle path ω 

l . The elements of � l are enumerated 

from right to left, i.e. from ψ 

l 
1 

to ψ 

l 
| � l | . In our model such pseudo-lanes are strictly obeyed in the sense that no interaction 

is assumed across pseudo-lanes. 

Any function f : R 

+ → N 

+ can be used for partitioning the link into lanes. We propose using a formula from an existing 

study ( Buch and Greibe, 2015 ) who found the number of effective lanes – corresponding to | � l | – on bicycle paths in 
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Copenhagen to be, ∣∣� l 
∣∣ = 1 + 

⌊
ω 

l − 0 . 4 m 

1 . 25 m 

⌋
. (11) 

The formula states that a new effective lane is obtained for every 1.25 m of width exceeding 0.4 m. Again this can easily be 

extended from a constant formula to also include link characteristics such as the gradient, wind, or surface type. 

In the current implementation, however, the only additional attribute of a link of bicycle path is its length, λl . This is in 

contrast to traditional models for car traffic where for instance the capacity of the link has to be defined explicitly. 

3.3. Headway distances 

The third assumption assures that cyclists cannot overlap each other as they move through traffic. In fact, they even have 

to keep a minimum headway distance to the cyclist in front of them. The headway distance implemented in the model is 

based on the findings of Section 2.3 , specifically Eq. (5) . 

Assuming that the residuals of the distance model arise from inter-personal preferences regarding the predefined head- 

way distance, it makes sense to have the same cyclists consistently having a relatively short or long headway distance. This 

can be done by rewriting Eq. (5) by using the beta-distributed variable Z B ∼ B(α, α) , 

d(v ) ∼ θ0 + θ1 

√ 

v + 2 

(
Z B − 1 

2 

)
× (ζ0 + ζ1 

√ 

v ) , v ≥ 2 . (12) 

Individual values of z c B ∼ Z B can then be drawn for each cyclist c ∈ C to find the cyclist-specific distance functions, 

d c (v ) = θ c 
0 + θ c 

1 

√ 

v , v ≥ 2 , (13) 

where θ c 
0 

= θ0 + 2 ζ0 (z c B − 1 
2 ) and θ c 

1 
= θ1 + 2 ζ1 (z c B − 1 

2 ) are the individual-specific distance-function parameters. In this way, 

the population across all cyclists c ∈ C approaches the distribution from Eq. (12) as | C | gets large. 

In order to sample from Z B , we use a rejection sampling algorithm where we for all cyclists c ∈ C first draw a value from 

a uniform proposal distribution, i.e. u c ∼ U (0, 1). We subsequently draw another uniform value ú c ∼ U(0 , 1) , and assign u c 
to z c B with probability p a , i.e. if ú c < p a . The acceptance probability p a can – by denoting the probability density function of 

B(α, β) by f – be found to be, 

p a ( u c | α, α) = 

f ( u c | α, α) 

f 
(

1 
2 

∣∣α, α
) = 

u 

α−1 
c ( 1 − u c ) 

α−1 (
1 
2 

)α−1 (
1 − 1 

2 

)α−1 
= ( 4 u c ( 1 − u c ) ) 

α−1 
, u c ∈ [0 , 1] . (14) 

If ú c ≥ p a , on the other hand, the algorithm starts over until at some point ú c < p a and z c B is assigned the latest value of 

u c . It can be seen that the acceptance probability is exactly 1 at u c = 

1 
2 , 0 at u c ∈ {0, 1}, and that it is positive and strictly 

less than 1 all other places within the support, i.e. p a (.u c | α, α) ∈ ]0 , 1[ , ∀ u c ∈ ]0 , 1[ \ 1 2 , ∀ α > 0 , ∀ c ∈ C. 

For the minimum desired speed, the corresponding expected headway distance is E[ d c (v min 
0 )] = 2 . 31 m, whereas the 

mean speed provides an expected distance of E[ d c ( ̄v c 
0 
)] = 7 . 29 m. The number obtained by the formula is the headway 

distance including the length of a bicycle, which Andresen et al. (2014) found to be λc = 1 . 73 m on average. 

The headway distance creates an inherent expected upper limit of the outgoing flow on a link as long as cyclists have 

finite speeds. By assuming no heterogeneity, i.e. θ c 
0 

= θ0 and θ c 
1 

= θ1 for all c ∈ C , Eq. (13) can be used to determine the 

theoretical expected maximum flow per lane at the mean speed, 

C l = 

∣∣� l 
∣∣ × 3600 

E[ d c ( ̄v 0 )] 
v̄ 0 

= 

∣∣� l 
∣∣ × 3015 . 75 , l ∈ L, (15) 

meaning that in theory almost 3016 cyclists per lane can pass a cross section of the network per hour. The heterogeneity of 

cyclists will most likely reduce this number noticeably in practice, though. 

3.4. Lane choice and speed determination 

Section 3.1 described that every cyclist has a desired speed that he/she will ride by if the traffic conditions allow 

him/her to, whereas Section 3.2 introduced the concept of pseudo-lanes into which the traffic is assumed to be divided. 

Section 3.3 determined the distance needed between two consecutive cyclists in the same pseudo-lane. Combining all this 

allow us to specify the speed at which a cyclist will traverse a link. Apart from the desired speed of the cyclist the speed is 

solely a function of the arrival time and speed of the most recent cyclist that has entered the pseudo-lane that the cyclist 

choose to use. 

As such the speed is a direct consequence of the lane choice which in the model is assumed to be performed at the 

moment the cyclist enters the link, see Section 3.5 . A cyclist ( c ) starts considering the right-most lane (i = 1) , and searches 

leftwards (increasing i ’s) in order to find a pseudo-lane (ψ 

l 
i 
) where he/she can go by his/her desired speed (v c 

0 
) . He/she will 

choose the rightmost satisfactory lane; alternatively – if no lanes allow going by his/her desired speed – he/she chooses the 

lane with the highest possible speed (ψ 

l 
i max ) . 
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Let t l s denote the time at which a cyclist reaches link l . A formal formulation of the lane choice process can then be 

described by Algorithm 1 . 

Algorithm 1 LaneChoice( c, l , t l s ). 

˜ v max ← 0 ;
for i in 1 to | � l | do 

if ˜ v c 
ψ 

l 
i 

(
t l s 
)

≥ v c 
0 

then return ψ 

l 
i 
;

else if ˜ v c 
ψ 

l 
i 

(t l s ) > ̃

 v max then 

˜ v max ← ̃

 v c 
ψ 

l 
i 

(
t l s 
)
;

i max ← i ;
return ψ 

l 
i max ;

Here ˜ v c 
ψ 

l 
i 

(t l s ) denotes the speed that the cyclist c would go by, if he/she chooses pseudo-lane ψ 

l 
i 

at time t l s . Notice that 

this expression is cyclist specific due to individualised desired speed and headway preferences explaining the superscript 

c . ˜ v max is the highest possible speed among the pseudo-lanes, and can be obtained at i max ’th pseudo-lane from the right, 

ψ 

l 
i max . Strictly speaking both of these should have an associated c in the notation, but this is omitted since they are only 

used locally. 

The cyclist may choose a slower pseudo-lane, though. The speed assigned to a cyclist when entering link l at time t l s 
denoted by ˜ v c 

l 
(t l s ) internally includes the lane choice described in Algorithm 1 . This speed will be equal to the desired speed 

if at least one of the pseudo-lanes allows such speed, but will be lower if none of the pseudo-lanes can accommodate the 

desired speed. In both cases ˜ v c 
l 
(t l s ) can be described by, 

˜ v c l 
(
t l s 
)

= min 

{ 

max 
i ∈ 1 , . . . , 

∣∣� l 
∣∣
{ 

˜ v c 
ψ 

l 
i 

(
t l s 
)} 

, v c 0 

} 

, (16) 

with 

˜ v c 
ψ 

l 
i 

(t l s ) still denoting the highest possible speed of pseudo-lane ψ 

l 
i 

at time t l s for cyclist c . 

Let τ c ( v ) be the speed dependent headway time from cyclist c to the cyclist in front of cyclist c . This can be derived 

using the headway distance function ( Eq. (13) ), 

τ c (v ) = 

d c (v ) − λc 

v 
= 

θ c 
0 + θ c 

1 

√ 

v − λc 

v 
. (17) 

Notice that v in Eq. (17) can denote any speed of cyclist c , and that any of such time, link, or pseudo-lane specific speeds 

will have more elaborate notation. Arguments with such detailed notation will be seen frequently as input for τ c ( · ) in the 

following. 

Having introduced the above, we are now ready to present an explicit functional expression for the value of ˜ v c 
ψ 

l 
i 

(t l s ) , 

arising directly by finding the maximum speed enforcing the headway time of Eq. (17) at the downstream end of the link. 

Let t 
ψ 

l 
i 

e be the time at which the back wheel of the previous entrant of the i ’th pseudo-lane of link l will leave the link 2 and 

let t l s denote the time at which the tip of the front wheel of the current cyclist reaches the start of link l . Then the current 

cyclist can at earliest reach the downstream end of the link at t 
ψ 

l 
i 

e + τ c ( ̃ v c 
ψ 

l 
i 

(t l s )) as any earlier exit time would violate the 

headway time constraint. As speed is defined as the quotient between the distance travelled and the elapsed time, the 

maximum possible speed of pseudo-lane ψ 

l 
i 

for cyclist c can be found to be, 

˜ v c 
ψ 

l 
i 

(t l s ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

λl 

t 
ψ 

l 
i 

e + τ c ( ̃ v c 
ψ 

l 
i 

(t l s )) − t l s 

, t l s < t 
ψ 

l 
i 

e + τ c ( ̃ v c 
ψ 

l 
i 

(t l s )) 

∞ , t l s ≥ t 
ψ 

l 
i 

e + τ c ( ̃ v c 
ψ 

l 
i 

(t l s )) 

(18) 

It is worth noting that although the headway constraint will always be enforced at the downstream end of the link, it 

can be violated at the upstream end of the link if the cyclist arrives shortly after the previous cyclist. However, we find it 

behaviourally realistic that the cyclist will accept such violation and adapt his/her speed so that the preferred headway dis- 

tance is met at the downstream end of the link (the next point of evaluation, see Section 3.5 ) as opposed to instantaneously 

braking heavily to a full stop or an extremely low speed. 

2 When calculating this number, it is necessary to assume that the previous cyclist will maintain the same speed at the first part (a distance of λc = 

1 . 73 m) on the following link. However, the actual speed that the previous cyclist will travel on this link may differ. 
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As both the function value and domain boundary of ˜ v c 
ψ 

l 
i 

(t l s ) are functions of ˜ v c 
ψ 

l 
i 

(t l s ) itself, it turns out that it is beneficial 

to split Eq. (18) into three separate cases as closed-form expressions with constant domain boundaries can be found when 

dealing with each case separately. The cases are unified in Section 3.4.4 . 

The general restricted case 

When t l s < t 
ψ 

l 
i 

e + τ c ( ̃ v c 
ψ 

l 
i 

(t l s )) it is necessary to expand τ c ( ̃ v c 
ψ 

l 
i 

(t l s )) by inserting Eq. (17) into Eq. (18) , 

0 = 

(t 
ψ 

l 
i 

e − t l s ) 
2 

θ c 2 

1 

˜ v c 
ψ 

l 
i 

(t l s ) 
2 + 

2(t 
ψ 

l 
i 

e − t l s )(θ
c 
0 − λc − λl ) − θ c 2 

1 

θ c 2 

1 

˜ v c 
ψ 

l 
i 

(t l s ) + 

(θ c 
0 − λc − λl ) 2 

θ c 2 

1 

. (19) 

This is a second order polynomial of ˜ v c 
ψ 

l 
i 

(t l s ) with the following solution for θ c 2 

1 
+ 4(t 

ψ 

l 
i 

e − t l s )(λ
c + λl − θ c 

0 
) ≥ 0 and t 

ψ 

l 
i 

e � = 

t l s , 

˜ v c 
ψ 

l 
i 

(t l s ) = 

θ c 2 

1 + 2(t 
ψ 

l 
i 

e − t l s )(λ
c + λl − θ c 

0 ) − θ c 
1 

√ 

θ c 2 

1 
+ 4(t 

ψ 

l 
i 

e − t l s )(λc + λl − θ c 
0 
) 

2(t 
ψ 

l 
i 

e − t l s ) 
2 

. (20) 

As mentioned, for this to be valid it is necessary but not sufficient for the radicant of the square-root to be non-negative, 

i.e. 

θ c 2 

1 + 4 

(
t 
ψ 

l 
i 

e − t l s 

)(
λc + λl − θ c 

0 

)
≥ 0 , 

which by assuming positive λc + λl − θ c 
0 

can be rewritten as, 

t l s ≤ t 
ψ 

l 
i 

e + 

θ c 2 

1 

4 

(
λc + λl − θ c 

0 

) . (21) 

In the two following cases we will determine what happens when t l s = t 
ψ 

l 
i 

e and t l s > t 
ψ 

l 
i 

e + 

θ c 2 

1 

4(λc + λl −θ c 
0 
) 
. 

The singularity case 

When t l s = t 
ψ 

l 
i 

e , the main denominator of Eq. (21) becomes zero. In this case we need to insert t l s = t 
ψ 

l 
i 

e directly into the 

first subfunction of Eq. (18) which yields, 

˜ v c 
ψ 

l 
i 

(t l s ) = 

λl 

τ c ( ̃ v c 
ψ 

l 
i 

(t l s )) 
= 

λl 

θ c 
0 + θ c 

1 

√ 

˜ v c 
ψ 

l 
i 

(t l s ) − λc 

˜ v c 
ψ 

l 
i 

(t l s ) 

, t l s = t 
ψ 

l 
i 

e . 

This can be solved straightforwardly to obtain, 

˜ v c 
ψ 

l 
i 

(
t l s 
)

= 

(
λl + λc − θ c 

0 

θ c 
1 

)2 

, t l s = t 
ψ 

l 
i 

e . (22) 

The practically unrestricted case 

We now turn to the cases in which Eq. (21) is not fulfilled, i.e. Eq. (20) have no real solutions. It turns out that if we 

insert the upper bound from Eq. (21) into Eq. (20) we can obtain a lower bound of ˜ v c 
ψ 

l 
i 

(t l s ) for t l s > t 
ψ 

l 
i 

e + 

θ c 2 

1 

4(λc + λl −θ c 
0 
) 
, 

˜ v c 
ψ 

l 
i 

(
t l s 
)

≥ 4 

(
λc + λl − θ c 

0 

θ c 
1 

)2 

, t l s > t 
ψ 

l 
i 

e + 

θ c 2 

1 

4(λc + λl − θ c 
0 
) 
. (23) 

This can be shown to be large enough to largely exceed any reasonable desired speed for realistic values of λc , λl , θ c 
0 
, 

and θ c 
1 

. In worst case, the cyclist has drawn and accepted a z B = 1 in Eq. (13) , resulting in the parameters θ c 
0 

= −14 . 03 and 

θ c 
1 

= 11 . 55 . Then using the smallest link length λl that will be presented in this study, 20 m, and the constant λc = 1 . 73 , the 

obtained value will be, 

˜ v c 
ψ 

l 
i 

(
t l s 
)

= 4 

(
1 . 73 + 20 . 00 + 14 . 03 

11 . 55 

)2 

= 38 . 32 , 

corresponding to approximately 138 km/h, which clearly is way beyond any reasonable desired speed for a cyclist. Thus, for 

any t l s exceeding t 
ψ 

l 
i 

e + 

θ c 2 

1 

4(λc + λl −θ c 
0 
) 
, we can simply use the lower bound value obtained by Eq. (23) . 
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The situations where ˜ v c 
ψ 

l 
i 

(t l s ) would not be sufficiently high are if θ c 
1 

is very high or if the link length, λl , is very short. 

In such cases it would be necessary to look beyond the downstream end of the link to include the length of the headway 

distance. This is of course undesirable. However, having very short links or headway distance that increase immensely with 

increased speeds are in themselves inappropriate, why we consider this as a purely hypothetical limitation of the model. 

For all relevant practical purposes of the model the ˜ v c 
ψ 

l 
i 

(t l s ) from Eq. (23) will be higher than any reasonable desired speed 

of a cyclist. 

This means that although t l s may be so late that there is no restriction on speed, i.e. ˜ v c 
ψ 

l 
i 

(t l s ) = ∞ , we do not have to 

address such cases when using our model, as the value obtained by using the result from Eq. (23) will end up assigning the 

same speeds to cyclists in practice. This comes in handy as the domain of Eq. (23) is given through constants, whereas the 

domain of the last subfunction of Eq. (18) is a function of its value. 

Unified expression 

Summarising the results from the three cases, Eq. (18) can be expanded to the following piecewise function, 

˜ v c 
ψ 

l 
i 

(t l s ) = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

θ c 2 

1 +2(t 
ψ l 

i 
e −t l s )(λ

c + λl −θ c 
0 ) −θ c 

1 

√ 

θ c 2 

1 
+4(t 

ψ l 
i 

e −t l s )(λc + λl −θ c 
0 
) 

2(t 
ψ l 

i 
e −t l s ) 

2 

, t l s < t 
ψ 

l 
i 

e + 

θ c 2 

1 

4(λc + λl −θ c 
0 
) 
∧ t l s � = t 

ψ 

l 
i 

e 

( 
λc + λl −θ c 

0 

θ c 
1 

) 2 , t l s = t 
ψ 

l 
i 

e 

4( 
λc + λl −θ c 

0 

θ c 
1 

) 2 , t l s > t 
ψ 

l 
i 

e + 

θ c 2 

1 

4(λc + λl −θ c 
0 
) 

(24) 

Notice that contrary to Eq. (18) the domains and expressions of all three subfunctions are defined solely by constants. 

The function can be shown to be a monotonously increasing function of t l s over the domain of its first subfunction. It is also 

continuous across the singularity found in t l s = t 
ψ 

l 
i 

e . Finally it is continuous in the limit leading to the domain of the third 

function and constant in the remainder of the domain. As such, the function in Eq. (24) is a monotonously non-decreasing 

function of t l s . 

The speed assigned to a cyclist, ˜ v c 
l 
(t l s ) , is used for calculating when he/she is expected to leave the link, but is actually 

only an upper bound for the speed. The actual speed the cyclist had on the link ( v c 
l 
) can only be calculated retrospectively 

when it is known exactly when the cyclist has entered the next link, as this may occur later than expected if the next link 

is fully congested, see Eq. (26) in Section 3.6 . 

3.5. Longitudinal horizon 

As it was evident from Section 3.4 , the lane choices have a large influence on how a cyclist move through the network. 

The fifth assumption states that such choices are only made when entering a new link. This assumption is arguably the 

most behaviourally questionable. Normally lane choices will happen dynamically such that a cyclist will pull towards the 

right when finishing overtaking. 

Whereas choosing a lane at the beginning of every link may be behaviourally inappropriate, it allows for a very fast 

implementation as the model can be implemented in an event-based fashion with events only occurring when cyclists 

leaves or enters a link, making the model scale extremely well. 

Note that the lane choice frequency can be adjusted by transforming each link of the network into several smaller links. 

Although this does not make the longitudinal horizon of lane choices dynamic, it does allow it to have an upper bound as 

opposed to the fully link dependent horizon achieved by using the raw network. 

3.6. Spatial restrictions and spill-back 

So far the model has a limitation on the number of cyclists that can pass over a cross section due to the headway time 

between cyclists. However, until now there is no guarantee that the link can actually contain every bicycle that is allocated 

to the link. 

In order to prevent this a sixth and final assumption is added to the model. It secures that a cyclist, c , cannot enter any 

pseudo-lane of the link, if he/she would make the occupied length/area of the link exceed the actual length/area of the link, 

i.e. {
Can enter , d c ( ̃ v c 

l 
(t l s )) ≤ L l − �l 

Is denied , d c ( ̃ v c 
l 
(t l s )) > L l − �l 

, (25) 

with L l = | � l | λl being the product of the number of pseudo-lanes (| � l |) and the length of the link ( λl ), �l being the space 

occupied by cyclists on the link, d c (v c (l, t l s )) being the headway distance from Eq. (13) , and 

˜ v c 
l 
(t l s ) being the speed assigned 

to cyclist c when entering link l at time t l s as defined in Eq. (16) . By summing over d c ( ̃ v c 
l 
(t l s )) for all cyclists that are currently 

on the link, �l can be found. 
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Fig. 6. The toy-network used for small-scale experiments of the proposed model. 

When a cyclist is denied, the queue in which he/she is positioned will be processed once a cyclist has successfully left 

the downstream link. This phenomenon can of course move upstream and cause spill-back over multiple links if the traffic 

intensity is sufficiently high. 

Once the cyclist leaves a link the actual speed of a cyclist on a past link can be found by dividing the length of the link 

with the time spent on the link. The time waiting to enter a link counts as time spent on the previous link in this regard. 

This can be formulated mathematically as such: Let λl denote the length of link l , t c 
l 

denote the time at which a cyclist is 

allowed entrance at link l , and t c 
l + denote the time at which the cyclist is allowed to enter the following link, l + , then the 

actual speed at link l is, 

v c l = 

λl 

t c 
l + − t c 

l 

(26) 

This implies that the speed assigned by Eq. (16) is only upper bound of the actual speed the cyclists traverse the link 

with. The actual speed will be lower if the cyclist cannot enter the following link immediately, whereas the headway dis- 

tances are always based on the provisionally assigned speed computed by Eq. (16) . 

3.7. Model input 

One of the benefits of the proposed model is that it requires very little input. As any other model simulating a network 

it requires a set of links L . As opposed to other models, however, for any link l ∈ L it only requires the width ω 

l ∈ R 

+ and 

length λl ∈ R 

+ . 
In order to have traffic to simulate it also needs demand. It requires the path – an ordered subset of L – to be known for 

every cyclist c in the model population C . Every such path r c , c ∈ C must also have an associated starting time t r c ∈ R 

+ . 
Apart from this, the model requires three non-trivial things for input. The first is a lane partitioning formula | � l | : R 

+ → 

N 

+ which can divide any link l ∈ L into a positive integer value of pseudo-lanes. In our proposed implementation it is link 

indifferent, but it can easily be extended to include input of higher dimensions to account for additional link characteristics. 

The second is a desired speed distribution D : [0 , 1] → R 

+ , which can assign a desired speed v c to all cyclists c ∈ C based 

on a uniformly random number. Finally, the model requires a formula to define the headway distance d : R 

+ → R 

+ , which 

preferably should be a function of speed. Notice that the model also supports individualised headway distance as used in 

this paper, but that such specification is optional. 

4. Experiments 

This section is devoted to assessing the capability of the model to give meaningful results when faced with some small- 

scale experiments. The experimental design is introduced in Section 4.1 , before investigating the disaggregate and aggregate 

properties of the model in Section 4.2 . The most questionable assumption concerning the longitudinal horizon of lane choice 

(see Section 3.5 ) is analysed in Section 4.3 where simulations with a homogeneous setup are also analysed. Finally, the 

model is validated against real-life observations in Section 4.4 . 

4.1. Experiment design 

The network used for small-scale tests is the toy network presented in Fig. 6 . It consists of three 100 m long links in 

serial ( ω 

L = [100 , 100 , 100] ), which are three, three, and two metres wide, respectively, i.e. λL = [3 , 3 , 2] . Using | � l | as given 

by Eq. (11) , the number of pseudo-lanes are | �| L = [3 , 3 , 2] . All cyclists have to parse all three links, i.e. r c = (l 1 , l 2 , l 3 ) , ∀ c ∈ C. 

Such bottlenecks are quite common along major bicycle corridors in Copenhagen. Along these there are generally room 

for three efficient lanes, but sometimes, due to the street being especially narrow at some places, the bicycle path also 

has to narrow to two lanes. The bottleneck setup has been chosen because it is has been a frequently used example since 

Vickrey (1969) , but also since it can be difficult for bicycle traffic to reach a congested regime otherwise ( Agarwal et al., 

2015 ). 

In order to investigate the relationships between flows, speeds, and densities, simulations are conducted using varying 

levels of traffic intensity. The intensity is changed by controlling the number of cyclists (| C |) that have to ride through the 

network. A total of 199 experiments are run with in-flows on the first link ranging from | C| = 50 to | C| = 10 , 0 0 0 cyclists per 

hour with a constant increment between experiments of 50 cyclists per hour. 
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Fig. 7. Proportion of delayed cyclists on each of the three links as a function of outflow. 

Every cyclist is assigned a uniformly distributed arrival time between 0 and 3600 s ( t r c ∼ U(0 , 3600) , ∀ c ∈ C) using the 

same fixed seed for all experiments. Likewise, also with a fixed seed, every cyclist is given a desired speed drawn from the 

Johnson’s S U distribution from Eq. (10) , i.e. v c 
0 

∼ D, ∀ c ∈ C. 

In all experiments the network is simulated for 3600 s, meaning that all cyclists will have entered the beginning of the 

network. There is, however, no guarantee that the network is fully emptied when the simulation period ends. 

All small-scale experiments as well as the actual model implementation were carried out in Java. Concerning the compu- 

tational efficiency, the experiments showed that the running time was proportional to the number of times a cyclist entered 

a link, using approximately 1 microsecond ( 10 −6 s) per such event. This has also proven to hold in pseudo-large-scale ex- 

periments on random, spatially unfounded networks. Assuming link lengths of 100 m and an average trip length of 5 km, 

this corresponds to simulating 1 million bicycle trips per minute, indicating that the model is indeed fast enough to be 

large-scale applicable in a traffic assignment model. 

4.2. Results 

In this section we will take a look at the results of the small scale experiments. The section is twofold with the first 

focusing on the speed heterogeneous properties of the model. The second part focuses on aggregate verification and which 

patterns are seen in the corresponding fundamental diagrams. 

For all results figures, links are enumerated in increasing order from upstream to downstream, and each link keeps its 

own unique colour throughout the results section. 

4.2.1. Speed heterogeneous properties 

A central element in traffic simulation is the ability to delay users of the network. Fig. 7 shows the proportion of slowed 

down cyclists on each of the three links given various outflows. A cyclist is defined as being slowed down if he/she has an 

actual speed strictly lower than his/her desired speed on a link. Outflows are the actual empirical outflows found in the 

experiments, which often will be lower than the values of | C | under which the experiments were conducted. 

Firstly, it is seen that the model is in fact capable of causing delays for some cyclists under moderate traffic intensities, 

whereas other cyclists are not delayed. At flows of about one third of the capacity, more or less half of the cyclists will be 

delayed on the final narrow link. This is a feature that macroscopic models cannot include. 

Secondly, it is seen that for the first and second link, the proportion of delayed cyclists increases slower for than for the 

third link when considering low flows. However, since the curves for the two first links are convex, they eventually catch 

up and also reach a point where everyone will be delayed. 

Fig. 8 is constructed in order to show which kind of cyclists get delayed at different traffic intensities. The plots show 

10 0 0 actual speeds (from cyclists with ids 1 through 10 0 0) plotted against the desired speeds for four different experiments 

using different input flows (| C |) to the first link. 

Each of the four plots represent different phases. The plot based on 10 0 0 cyclists represent the first phase where delays 

are rare and only occurs for relatively fast cyclists. The delays of this phase happens most often on the third link, as this is 
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Fig. 8. Actual speeds of cyclists with id 1 through 10 0 0 as a function of desired speeds for various traffic intensities grouped by link. 

only has two lanes and thus a limited opportunity of overtaking. The traffic is not high enough for the bottleneck to be an 

issue. 

The second phase can be seen in the plot based on 30 0 0 cyclists. Under such conditions it is quite normal for cyclists 

of moderate and fast desired speeds to be delayed. In this phase the delays are frequents on all three links but with the 

slowest speeds still being found on the last link. 

In the third phase represented by 50 0 0 cyclists really high speeds are almost impossible to achieve. Furthermore, the 

bottleneck is starting to become a serious problem and many cyclist – even the ones with very low desired speeds – expe- 

rience delays. Finally, the scatters are also shifted downwards a bit (slower actual speeds) compared to the scatters using 

30 0 0 cyclists. 

In the fourth phase 70 0 0 cyclists are trying to get through the network. This is clearly more than the network can handle, 

and a serious breakdown occurs on the second and the first link due to the bottleneck. This shows that spill-back effects are 

clearly captured by the model. Although the traffic fully breaks down to a jam speed of approximate 2.5–4 m/s before the 

bottleneck, the speeds on the following third link seems almost indistinguishable from what was seen using 50 0 0 cyclists. 

To summarise the general effect of delays, the speed distribution for the third link for all experiments where | C | ≤ 7500 

can be found in Fig. 9 . Values above 7500 cyclists have not been included in the plot as no noteworthy changes occur 

beyond this point, probably due to the capacity being reached. It is clearly seen that the distribution becomes steeper, i.e. 

more homogeneous, as the traffic intensity increases. This is due to the fact that high speeds are no longer possible due 

to congestion, and that these cyclists have to go slower than they desire. However, even at the very large traffic intensities 

there is still some heterogeneity present. 

Overall the model seems to have the disaggregate properties that were expected from it regarding modelling of speed 

heterogeneous cyclists. 

4.2.2. Aggregate results 

We now move on to see how the model performs on an aggregate level. The disaggregate results of the experiments can 

be aggregated into well-known measures (fundamental diagrams) that are generally used for assessing traffic. 

We start off by presenting the speed-flow curves which can be found in Fig. 10 , where the individual measurements are 

enriched with a best fit BPR-curve ( Bureau of Public Roads, 1964 ). Normally the formula describes travel time, but it can be 
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Fig. 9. The cumulative speed distribution for the third link given input flows on the first link ranging from 50 to 7500 cyclists per hour. 

Fig. 10. Space mean speeds for each of the three links as a function of outflow and corresponding best fit BPR curves. 

transformed to determine the speed v l of a link l through the mean speed free flow travel time v̄ 0 , the flow q , the capacity 

parameter C l (a soft constraint which can be exceeded), as well as the remaining two parameters αl and β l , 

v l (q ) = 

v̄ 0 
1 + αl ( 

q 

C l 
) βl . 

(27) 

The fits are based on the monotonically non-decreasing part of the flows, i.e. for all | C |’s from 50 until an increasing | C | 

no longer provides an increase in the outflow of that link. The αl , β l , and C l parameters are estimated using ordinary least 

squares, and the parameters for the two relevant links - the first and the second - were found to be 0.43 and 0.74 for αl , 

5.19 and 4.99 for β l , and 6094.18 and 6155.59 for C l , respectively. 
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Fig. 11. Outflow for the three links as a function of density. 

It is seen that on the link following the bottleneck the measurements coincide surprisingly well with the BPR function. 

However, on the two constrained links leading to the bottleneck the speed-flow relation cannot reasonably be assumed to 

follow the same form as the BPR curve. Both curves have a long slightly decreasing linear beginning after which the speeds 

starts to drop rapidly with a more sudden change than predicted by the BPR curves. 

The maximum observed outflow of the third link (and thus also the two previous in this case) is found to be 5606 cyclists 

per hour, corresponding to 2803 cyclists per hour per pseudo-lane. This is equivalent to between 1933 and 3398 cyclists per 

hour per meter (in width), as two pseudo-lanes occur for bicycle paths with widths ranging from 1.65 m and 2.9 m using 

the number of efficient lanes of Buch and Greibe (2015) , i.e. Eq. (11) . 

Previous studies have also dealt with determining the maximum outflow of cyclists per hour per meter. Gould and 

Karner (2009) found capacities to be in the range from 1395 to 1641 cyclists per hour per meter through simulation. 

Jin et al. (2015b) and Zhou and Xu (2015) estimated capacities with mean values of 1800 and 2512 cyclists per hour per 

meter, respectively. Hoogendoorn and Daamen (2016) estimated the capacity to be 1531 cyclists per hour per meter, but 

emphasised that it was underestimated due to bidirectional traffic. Liang et al. (2018) found that the capacity is just above 

20 0 0 cyclists per hour per meter, and that the marginal effect of width is diminishing slightly. 

Even though the range of our capacity estimate is quite wide, the found capacity still seems to be comparable to what 

is seen elsewhere in the literature, although possibly in the high end. 

The flow-density relation is found in Fig. 11 . The concavity of the third link is barely visible, as opposed to the clear 

concave tendencies of the second and first links. The concave form is as expected, and it is seen that the flow of the second 

link greatly exceeds that of the third link until the maximum flow is reached. This will naturally lead to rapid increase in 

density on the second link, however without ever reaching the higher maximum density found for the third link. 

Earlier studies using on-site data ( Gould and Karner, 2009; Jin et al., 2015b; Liang et al., 2018 ) supports that the flow 

is a concave, increasing function of the density for low and medium densities. However, even though all three studies 

extrapolates these results to imply a decreasing part of the curve, the empirical evidence to support this claim is only 

convincing in Liang et al. (2018) . Our model seems to be monotonically non-decreasing for the entire observed range of 

densities, seemingly contradicting the Chinese field observations. It is still formally unknown how the real curve is supposed 

to look like for saturated bicycle traffic in a Danish context, although unsaturated Danish observations will be presented 

in Section 4.4 . It does however contradict with what is already known for other modes of transport ( Hoogendoorn and 

Knoop, 2013 ). 

Finally, in Fig. 12 we consider speed-density functions. Once again an almost straight and decreasing line is seen for the 

third link, whereas the other two links show some sign of negative curvature. This shows that the speed is less vulnerable 

at low densities, but that it is very volatile for medium to high densities. At jam density, however, the speed seems to be 

constant at about 3.6 m/s (12.8 km/h). This is significantly higher than in Liang et al. (2018) , where the jam speed from 

Chinese observed data is found to be approximately 0.8 m/s. However, Gould and Karner (2009) shows a jam speed of 

approximately 2.2 m/s which is somewhat closer to the values obtained in this study, indicating that the results could be 

plausible. Especially when keeping in mind that the speeds are generally faster in Denmark as outlined in Section 2.1 . 
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Fig. 12. Space mean speeds for each of the three links as a function of density. 

4.3. Sensitivity analyses 

In this section two different kinds of sensitivity analyses will be carried out. Section 4.3.1 runs simulation tests where 

heterogeneity is ignored, whereas Section 4.3.2 focuses on link lengths and the effect their inherent predefined longitudinal 

horizon of lane choices have. 

4.3.1. Ignoring heterogeneity 

One of the main drivers of the proposed methodology is its capability to include heterogeneity in desired speeds as 

well as for headway distances. This section seeks to investigate how the model reacts when assuming strictly homogeneous 

cyclists instead. 

In order to apply homogeneity, all cyclists have to be assigned the same desired speed and headway preference. The 

used desired speed is the space mean speed of the estimated Johnson S u distribution, see Section 2.1 , namely by v̄ 0 = 

6 . 104 m/s. The corresponding headway parameters are based on Model 5 ( Section 2.3.1 ), but whilst assuming z c B = 

1 
2 , ∀ c ∈ 

C, in Eq. (12) corresponding to assigning θ c 
0 

= θ0 and θ c 
1 

= θ1 for every cyclist c ∈ C . Running the model using the input 

parameters presented above results in the speed-flow curve presented in Fig. 13 . 

It can be seen that when using homogeneous input, the straight part of the speed flow curve becomes completely flat, 

and remains so until an average outflow of about 40 0 0 cyclists per hour. Above this, the congested regime is entered for 

the first two links, and the curvature fits very well with the best fit BPR-curves also drawn in the figure. In fact, the results 

obtained by the model could in this case easily and almost entirely without any loss of information be modelled through 

the corresponding BPR-curve. This is in contrast to the heterogeneous counterpart, Fig. 10 , where substituting the simulated 

results with a BPR curve would alter the results considerably. In the homogeneous case, the αl parameters of the BPR curve 

for the first and the second link – the two relevant links – are 14.17 and 56.19, respectively, the β l parameters are 56.19 and 

15.23, and the capacity parameters C l are 6303.98 and 6057.30. 

It should also be noted that even though we see the largest reduction of speed before the bottleneck in both the ho- 

mogeneous and heterogeneous case, the heterogeneity actually causes speed reductions after the bottleneck too. This is an 

important feature of the model – and of bicycle traffic in general – that is completely ignored when assuming homogeneity. 

Due to the homogeneity the cyclists can be “packed” more tightly than when dealing with heterogeneous cyclists and 

thus provide a higher max flow, equivalent to what is known for railway traffic for instance. Assuming homogeneity in- 

creases the maximum flow from 5717 to 5886, meaning that the realised capacity of bicycle paths would be overestimated 

when assuming homogeneity. It also increases the jam speed from 12.8 m/s to 14.5 m/s. 

Conclusively, when ignoring heterogeneity it seems as if the model behaves very similarly to traditional flow-based mod- 

els. This is a nice feature since the model then appropriately can be used on any distribution of desired speeds and headways 

– even when the variance of these are small. 

Mesoscopic Simulation of Multi-Modal Urban Traffic 81



92 M. Paulsen, T.K. Rasmussen and O.A. Nielsen / Transportation Research Part B 127 (2019) 72–98 

Fig. 13. Space mean speed as a function of outflow when assuming full homogeneity and corresponding best fit BPR curves. 

4.3.2. Link lengths 

The results presented so far have all arisen from a setup with 100 m long links. As introduced in Section 3.5 , in the 

proposed model the link length directly determines the longitudinal horizon for the choice of lanes which subsequently 

determines the speed. As an indirect consequence it also determines the frequency of lane choices and hence how often 

the speed can be changed. In this section, we will perform a sensitivity analysis that explores the consequences of adjusting 

this by repeating the experiments with links lengths of 20, 50, 200, and 500 m, respectively. 

We first evaluate how the proportions of delayed cyclists are affected by the link length. The relevant plots can be found 

in Fig. 14 . The model can be seen to keep its capability of delaying cyclists under moderate traffic intensities regardless of 

the link length. The curvature of the lines are influenced considerably by the link lengths though, with longer links leading 

to more concave functions and vice versa. The effect on the narrower third link is especially notable. Here the limited 

possibility of overtaking due to only having two lanes becomes paramount when the link lengths get very long, whereas 

the problem is minor when having a short link length. In fact, when having a very short link length of 20 m the proportion 

of delayed cyclists on the third link will never exceed 95 % as opposed to the other investigated link lengths. 

Fig. 15 shows the effect on the speed distributions for the last link. It generally shows that the longer the link, the 

prompter the effect kicks in. Using a very long link length (500 m) seems to be a little too extreme, causing a dramatic 

speed reduction even for low traffic intensities. Reducing the links to a very short length (20 m), on the other hand, seems to 

invoke a more speed heterogeneous (flatter) distribution where the effect of increased traffic intensity is somewhat smaller. 

Finally, we evaluate how the link length affects one of the fundamental diagrams, namely the speed-flow relation (see 

Fig. 16 ). When using a link length of 20 m or 50 m the curvature of the second link is rather soft, never allowing the flow 

to be large enough to force the curve to be really steep. In these two cases the corresponding BPR-curves fit tremendously 

well, with the parameters for the second link being ( α, β) = (0.91, 4.29) and (0.91, 6.30) for 20 m and 50 m, respectively. For 

the longer links, the final part of the curves are very steep, eventually curving inwards towards the y-axis as known from 

speed-flow diagrams of other modes. Interestingly, when having long links (200 m and 500 m) the effect of the restricted 

possibility to overtake exceeds that of the bottleneck right until the flow capacity is reached. For link lengths of 50 m 

this happens slightly before the capacity is reached, whereas it happens considerably earlier when using really short links 

lengths of 20 m where the bottleneck effect is more prominent and dominates the effect of restricted overtaking for high 

traffic intensities. 

Another interesting finding is that the maximum flow is slightly higher when using a link length of 50 or 200 m, than 

when using 20 m. This seems counter-intuitive at first, as having link lengths of 20 m would improve the conditions for 

overtaking as lane choices happen much more frequently. However, the links also becomes so small, that the surplus space 

that is not used – because adding another cyclist to the link would make the occupied area of the link exceed the actual 

area, see Section 3.6 – constitutes a considerable part of the area. This means that the links will be poorly utilised in such 

cases, which most likely can explain the surprisingly lower flows using very short links. This is supported by the fact that 

the maximum average density found in the experiments is much lower for these short links (133 cyclists per lane-km), as 

opposed to 141, 148, 155, and 162 cyclists per lane-km for links of length 50, 100, 200, and 500 m, respectively. 
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Fig. 14. Sensitivity analysis of slowed down proportion as a function of outflow for various link lengths. 

Although the model has been found to be rather sensitive to changes in link length, it seems to behave reasonably as long 

as the link lengths do not become too short or too long. In general, using λl = 50 , ∀ l ∈ L provide results which intuitively 

seem plausible. 

4.4. Model validation 

In order to validate the model, on-site observations have been collected from Queen Louise’s Bridge in central Copen- 

hagen, using the same video-approach as in Section 2 . Queen Louise’s Bridge is the street with the highest maximum bicycle 

flow in Copenhagen with 3763 cyclists between 8 a.m. and 9 a.m. in the direction towards the city centre according to City of 

Copenhagen (2018) . This has been the primary reason for choosing this particular street. A single frame of the video data 

that covered a time period from 7.30 a.m to 8.30 a.m. on a weekday morning can be found in Fig. 17 . 

The bicycle path on the street is 3.9 m wide, which corresponds to three efficient lanes according to Eq. (11) . As opposed 

to our test network there is no bottleneck following Queen Louise’s Bridge. Because of this, we have generated new simu- 

lation results using a modified network where all of the three links have three efficient lanes (the last link only had two 

lanes in the test network, see Fig. 6 ). Notice that according to Eq. (11) widths of both 3.0 and 3.9 m corresponds to three 

efficient lanes. This allows the results from the model to be compared directly with the empirically collected observations. 

The video data has been subdivided into time intervals of 30 s in which flows as well as average speeds and densities 

are calculated. Jin et al. (2015b) uses a temporal division of the collected data of 15 s but states that finding the optimal 

time interval is still a topic of further research. With our data we have found that using a time interval of 30 s, as also seen 

in Gould and Karner (2009) , seems as a reasonable interval. 

Two cross sections are drawn across the bicycle path 10 and 20 m away from the camera, respectively. Although a sample 

area length of 10 m may seem small, it is actually larger than all measurements used in Gould and Karner (2009) and 

Jin et al. (2015b) which use lengths down to 2.9 m. The flow is determined by the number of cyclists crossing the second 

cross section within the time interval, and adjusted to be in the unit cyclist per lane per hour. Speeds for every cyclist 

are calculated as the distance divided by the time between the two cross sections. The average speed are subsequently 

calculated by the harmonic mean of the speeds of all cyclists crossing the second cross section within the time interval. 

Mesoscopic Simulation of Multi-Modal Urban Traffic 83



94 M. Paulsen, T.K. Rasmussen and O.A. Nielsen / Transportation Research Part B 127 (2019) 72–98 

Fig. 15. Sensitivity analysis of the speed distribution for the last link as a function of cyclists inflows on the first link for various link lengths. 

For determining densities, each time interval is subdivided into slices of 0.1 s. In each of such slices, the number of cyclists 

between the two cross sections is counted, and the average density of a time interval is then defined as the average number 

of cyclists in the area per time slice divided by the distance between the two cross sections and the number of lanes. 

The corresponding fundamental diagrams emerging from the observed data and for the non-bottleneck simulations can 

be found in Fig. 18 . Firstly, the plots show that without the bottleneck setup it is very hard to reach the saturated regime of 

the curves. This is a general problem for bicycle traffic (as also mentioned in Agarwal et al., 2015 ), and we see the problem 

here for both the simulations and for the empirical data. However, as the street from which the data is collected is the street 

with the highest traffic intensity for bicycles in all of Copenhagen it probably still is the best obtainable data to compare 

against. 

The speed-flow and speed-density curves show that our simulations have speeds that are a little too high (roughly 10%) 

for low flows and densities compared to the observed data. This could indicate that there are some biases in either of the 

two video datasets that we have not corrected for, e.g. wind, gradient, or quality of the asphalt. Despite the starting point 

of the observations being a little too low for both the speed-flow and speed-density diagrams, we do observe a decreasing 

trend on the right half of the data that is very similar to that of the simulations. 

Regarding the flow-density diagram we see surprisingly similar results for the empirical data and the simulations across 

the entire spectrum of densities. However, on this part of the curve the tendency is almost strictly linear, and only the very 

beginning of a concave tendency can be seen from the data. This is in line with what is seen for low densities for empirical 

data of traffic that can be modelled appropriately by a BPR curve ( Nielsen and Jørgensen, 2008 ). The simulations do have a 

concave form although it is far less evident than when using the bottleneck setup, see Fig. 10 . 

Overall, although our model seems to predict a little too high speeds for freespeed-like situations the simulated results 

are very close to the observed data for high traffic intensities. This is in particular striking when keeping in mind that the 

model is calibrated using external data collected at lower traffic intensities and at a different location, i.e. it is not calibrated 

using the data it is compared against in contrast to most other models on bicycle traffic. This is a deliberate choice since one 

of the aims of this study is to model bicycle traffic at intensities exceeding what is currently observable at bicycle paths. As 

such, it is fully expected that our current model has some deviations relative to the empirical data. The deviations between 
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Fig. 16. Sensitivity analysis of speed-flow relations for varying link lengths. 

Fig. 17. A single frame from the video data collected at Queen Louise’s Bridge in Copenhagen. 
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Fig. 18. Fundamental diagrams of non-bottleneck simulations with three links each with three efficient lanes as well on-site observations from Queen 

Louise’s Bridge (QLB). 

the model and observations may later be minimised by a slight adjustment/recalibration of the input distributions, meaning 

that these minor discrepancies should not be considered as evidence against the proposed methodology as a whole. 

It has obviously not been possible to perform a fully disaggregate evaluation of on-site observations. The desired speed 

can only be revealed in uncongested situations and the fundamental diagrams require congestion to be established. As such 

there is no straightforward way to acquire both types of information simultaneously through the available video data. 

5. Conclusions and future work 

The purpose of this paper was to develop a bicycle traffic simulation model capable of handling cyclist speed hetero- 

geneity and its inherent interactions between cyclists. Individual desired speeds from Johnson’s S U distribution as well as 

individual beta-distributed headway distance parameters were assigned for each cyclist. Using simple assumptions on lane 

formation and choices on multi-lane bicycle paths, the simulation results of a bottleneck test network revealed that dif- 

ferences in desired speeds and headway distances are indeed one possible way to explain and model delays on bicycle 

paths. Even though the likelihood of such delays increases with the traffic intensity, delays also occur at moderate flow lev- 

els – especially for cyclists with high desired speeds due to the implicit modelling of overtaking restrictions. Although the 

assumptions underlying the model are simple, the resulting fundamental diagrams showed reasonable resemblance to pre- 

vious empirical analyses of bicycle traffic as well as existing simulation-based analyses found in literature. Also the resulting 

lane capacities of the model were reasonably close to what has previously been found in the literature. 

Furthermore, the model was also validated against data from the location with the highest possible bicycle traffic in- 

tensity in Copenhagen. However, it was found that under such non-bottleneck setup it is very difficult for bicycle traffic to 

reach a fully saturated regime. It neither happened in our model nor in the empirical data, why the model validation was 

only possible for the unsaturated part of the fundamental diagrams. Although the baseline speeds were a little too high in 

the simulation results compared to the empirical observations, simulation model resulted in fundamental diagrams that fit 

the real-life observations well for moderate and high traffic intensities. 
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It was also shown that accounting for heterogeneity altered the fundamental diagrams by causing speed reductions at 

an earlier stage than when using a fully homogeneous setup. This suggests that such heterogeneity should not be ignored 

when modelling bicycle traffic. 

The disaggregate aspects of the model that allow delays to occur under low traffic intensities could unfortunately not be 

validated using the acquired video data, since it is impossible to derive desired speeds of cyclists in congested situations. It 

could be interesting to look further into how to collect data to support such analysis in future work, for instance through 

providing GPS trackers to a small portion of the cyclists that are known to regularly pass through the video analysis area. 

Link lengths play an important role in the proposed model, as they determine the longitudinal horizon for lane choices. 

Therefore, a sensitivity analysis was carried out concerning the link lengths. Overall, it seemed as if the model behaved 

reasonably when varying the link lengths. It did, however, also show evident changes in the curves, and that it seemed as if 

having too short or too long links can make the model behave undesirably. The model was relatively stable in the interval 

from 50 m to 100 m, though, with both values providing appropriate results. 

Besides seemingly being theoretically well-founded, the proposed model also proved to scale well, with low running 

times increasing linearly with the number of cyclist/link interactions. This shows that the model is most likely large-scale 

applicable, and will be suitable for implementing in a traffic simulation for an entire metropolitan area. The current study 

only deals with link modelling, though. In order to have a model that also works realistically when cyclists have routes that 

cross each other and those of other modes, a proper intersection modelling that can be integrated with the model proposed 

in this study needs to be developed too. 

The model can be used for various performance and policy analysis purposes. For instance, it can be used to provide 

insight into determining at which point the current width of bicycle paths will no longer provide sufficient capacity for the 

traffic demand and hence should be extended to optimise traffic flow. It can also be used to investigate the consequences 

of the introduction of a new type of mode on the bicycle paths, e.g. a large share of high-speed pedelecs. This would make 

the desired speed distribution highly bipolar, making the model even more relevant to use and general methods based on 

averages even more inappropriate. The model would also be able to predict to which degree the pedelecs would be able to 

reach their full speed potential when riding on the bicycle paths. 

Most importantly, however, the theoretical foundation developed in this paper serves as an important step towards al- 

lowing bicycle traffic to be modelled at a similar level-of-detail to that of car traffic including detailed congestion patterns. 

This allows for the travel time of the two modes to be compared fairly in the analyses of future scenarios. Moreover, it 

would be possible to more accurately investigate the effects on major investments in bicycular infrastructure as a way to 

increase urban mobility in metropolitan areas. 
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Abstract

Despite requiring less space than most other modes of transport, bicycle traffic will also be prone to congestion when the traffic
volume is sufficiently large. Such congestion can eventually influence the route choices of cyclists using the network. In this study
we model bicycle congestion on a detailed network of the greater Copenhagen area by assigning an entire day of bicycle traffic
using a recently developed method for dynamic network loading of speed heterogeneous multi-lane bicycle traffic. The model
iteratively assigns appropriate routes for more than a million bicycle trips in the demand sensitive network, and with computation
times of less than 15 minutes per iteration the proposed model proves to be large-scale applicable. This makes it the first dedicated
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1. Introduction

Although congestion on bicycle tracks may seem unlikely many places in the world, in some cities (e.g. Copen-
hagen) the traffic level of bicycles has reached a level which leads to considerable bicycle congestion. The congestion
influences the travel time, and may also influence cyclists’ route choice.

For decades the literature1 has been concerned with how the level-of-service for cyclists is influenced by the car
traffic volume. However, including the flow of bicycles as a parameter of attractiveness of a route has only received
little attention in the literature. Two stated preferences studies2,3 found that cyclists generally have disutility towards
increasing bicycle flow on bicycle lanes in Nanjing, China. This indicates that the more cyclists using a link, the
less attractive the link will become. In traffic assignment for motorised traffic such disutility can be explained by
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increased travel time modelled with a flow-dependent travel time function for each link4. However, for bicycle traffic
assignment only a single model5 has so far incorporated a mechanism that makes links with high flows less attractive.

Primarily dealing with determining the static link characteristics influencing bicycle route choice, a wide range of
dedicated bicycle route choice models exist6 – some of which also perform one-shot assignments of bicycle flows7,8.
Other studies9,10,11,12,13 have focused on assigning bicycles traffic onto networks including various link characteristics,
but without any feedback from the network such as lowered safety or speeds influencing the route choice, although
one of the studies12 mentions it as a necessary extension. Another study14 solely dealing with route choice also argues
– as a suggestion for future research – that bicycle route choice models ought to incorporate congestion effects from
traffic assignment models with dedicated bicycle volume-delay functions.

Nevertheless, until now the literature only contains one example5 of such bicycle traffic assignment considering
congestion effects. That study focuses on mixed traffic in Patna, India and assigns mixed traffic onto a multi-modal,
shared network whilst taking the maximum speeds of trucks, cars, motorbikes, and bicycles into account. However,
due to the chaotic Indian traffic scheme with mixed traffic being far from what is seen in a city with plenty of dedicated
bicycle infrastructure, there still is a need for a dedicated bicycle traffic assignment model that can model congestion
in segregated bicycle traffic.

The aim of this study is to fill this gap by assigning bicycle traffic onto a network at a large scale using an iterative
feedback loop between the supply and the demand, as it is commonly known from motorised traffic. Based on a
recently developed network loading model for heterogeneous bicycle traffic15 this study includes detailed congestion
patterns on link level, and forms a complete agent-based traffic assignment model for bicycles by allowing every
cyclist to adjust his/her route according to the congested network.

The study does not deal with travel time delays caused by conflicting traffic at intersections nor traffic signals.
We acknowledge that such delays cause substantial added travel time for cyclists. However, in order to keep focus
on the large-scale applicability and consequences of the implemented network loading model such delays have been
considered to be beyond the scope of this paper.

The remainder of the paper is structured as follows. Section 2 contains the applied methodology including a brief
summary of the used network loading model15. The data used for the case study is described in Section 3, before
presenting the results of said case study in Section 4. Finally, a discussion of the realism and the limitations of the
model is found in Section 5 alongside suggestions for future research.

2. Methodology

In order to have an assignment model for bicycle traffic, it is necessary to be able to model how the demand
influences the supply and vice versa. Plenty of route choice models for bicycle traffic exist6, meaning that it is known
to a large extend how the supply influences the demand for any link in the network. Until recently, however, it has
been ignored how the supply is influenced by the demand predicted by such route choice models.

The network loading used in the assignment model of this study is a MATSim16-implementation of a recently
proposed methodology15 for dynamic, large-scale applicable network loading of bicycle traffic. The model is based on
individual desired speeds for every cyclist corresponding to an individualised free-flow speed. It supports multi-lane
links with each link having a predefined number of pseudo-lanes, allowing faster cyclists to overtake slower cyclists
by placing themselves in the outermost lane(s) as long as there is room. If a cyclist can no longer choose a pseudo-
lane that will satisfy his/her desired speed, the cyclist will choose the fastest available pseudo-lane. Furthermore, each
cyclist has an individualised, speed dependent headway distance, that he/she must keep to the cyclist in front.

The speed of a cyclist entering a lane can be determined at link entrance solely based on his/her desired speed
and headway preferences, as well as the time at which the previous entrant of the selected pseudo-lane is going to be
leaving and entered the link, as neither overtaking nor lane changing are allowed within a lane. Because delays are
based on the lack of opportunity to overtake, it also means that cyclists with high desired speeds have a higher tendency
to be delayed, whereas it is virtually impossible for the overall slowest cyclist to be delayed. The methodology yields
reasonable aggregate fundamental diagrams15 as long as there is sufficient speed heterogeneity, and as such is best
suited for agent-based transport modelling where individualised preferences can be assigned directly to each agent.

The route choice model used in this study is a simple multinomial logit model where the free flow travel time and
congested travel time of alternatives are the only two variables used in the disutility function. The congested travel

© 2019 The Authors. Published by Elsevier B.V.
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increased travel time modelled with a flow-dependent travel time function for each link4. However, for bicycle traffic
assignment only a single model5 has so far incorporated a mechanism that makes links with high flows less attractive.

Primarily dealing with determining the static link characteristics influencing bicycle route choice, a wide range of
dedicated bicycle route choice models exist6 – some of which also perform one-shot assignments of bicycle flows7,8.
Other studies9,10,11,12,13 have focused on assigning bicycles traffic onto networks including various link characteristics,
but without any feedback from the network such as lowered safety or speeds influencing the route choice, although
one of the studies12 mentions it as a necessary extension. Another study14 solely dealing with route choice also argues
– as a suggestion for future research – that bicycle route choice models ought to incorporate congestion effects from
traffic assignment models with dedicated bicycle volume-delay functions.

Nevertheless, until now the literature only contains one example5 of such bicycle traffic assignment considering
congestion effects. That study focuses on mixed traffic in Patna, India and assigns mixed traffic onto a multi-modal,
shared network whilst taking the maximum speeds of trucks, cars, motorbikes, and bicycles into account. However,
due to the chaotic Indian traffic scheme with mixed traffic being far from what is seen in a city with plenty of dedicated
bicycle infrastructure, there still is a need for a dedicated bicycle traffic assignment model that can model congestion
in segregated bicycle traffic.

The aim of this study is to fill this gap by assigning bicycle traffic onto a network at a large scale using an iterative
feedback loop between the supply and the demand, as it is commonly known from motorised traffic. Based on a
recently developed network loading model for heterogeneous bicycle traffic15 this study includes detailed congestion
patterns on link level, and forms a complete agent-based traffic assignment model for bicycles by allowing every
cyclist to adjust his/her route according to the congested network.

The study does not deal with travel time delays caused by conflicting traffic at intersections nor traffic signals.
We acknowledge that such delays cause substantial added travel time for cyclists. However, in order to keep focus
on the large-scale applicability and consequences of the implemented network loading model such delays have been
considered to be beyond the scope of this paper.

The remainder of the paper is structured as follows. Section 2 contains the applied methodology including a brief
summary of the used network loading model15. The data used for the case study is described in Section 3, before
presenting the results of said case study in Section 4. Finally, a discussion of the realism and the limitations of the
model is found in Section 5 alongside suggestions for future research.

2. Methodology

In order to have an assignment model for bicycle traffic, it is necessary to be able to model how the demand
influences the supply and vice versa. Plenty of route choice models for bicycle traffic exist6, meaning that it is known
to a large extend how the supply influences the demand for any link in the network. Until recently, however, it has
been ignored how the supply is influenced by the demand predicted by such route choice models.

The network loading used in the assignment model of this study is a MATSim16-implementation of a recently
proposed methodology15 for dynamic, large-scale applicable network loading of bicycle traffic. The model is based on
individual desired speeds for every cyclist corresponding to an individualised free-flow speed. It supports multi-lane
links with each link having a predefined number of pseudo-lanes, allowing faster cyclists to overtake slower cyclists
by placing themselves in the outermost lane(s) as long as there is room. If a cyclist can no longer choose a pseudo-
lane that will satisfy his/her desired speed, the cyclist will choose the fastest available pseudo-lane. Furthermore, each
cyclist has an individualised, speed dependent headway distance, that he/she must keep to the cyclist in front.

The speed of a cyclist entering a lane can be determined at link entrance solely based on his/her desired speed
and headway preferences, as well as the time at which the previous entrant of the selected pseudo-lane is going to be
leaving and entered the link, as neither overtaking nor lane changing are allowed within a lane. Because delays are
based on the lack of opportunity to overtake, it also means that cyclists with high desired speeds have a higher tendency
to be delayed, whereas it is virtually impossible for the overall slowest cyclist to be delayed. The methodology yields
reasonable aggregate fundamental diagrams15 as long as there is sufficient speed heterogeneity, and as such is best
suited for agent-based transport modelling where individualised preferences can be assigned directly to each agent.

The route choice model used in this study is a simple multinomial logit model where the free flow travel time and
congested travel time of alternatives are the only two variables used in the disutility function. The congested travel
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time, i.e. the difference between the actual travel time and the free flow travel time, is penalised 50 % harder than free
flow travel time, in line with previous findings for car users in the area17.

Each agent has a maximum number of five plans in his/her choice set, and after each iteration the performed plan
is assigned a score based on the obtained travel time in the previous iteration. New plans are added to the choice
set by performing a shortest path search in a network with empirical average travel times in time bins of 15 minutes
based on the previous iteration. However, during the shortest path search the link cost of every link is agent-specific
by using the maximum between the empirical (time binned) travel time and the free flow travel time based on that
agent’s desired speed.

Although the framework allows extension to include other link (to link) attributes previously seen in the literature
such as signals, slope, surface, and left/right turns, for the time being only travel time is used in order to focus on the
congestion caused by the network loading model.

The traffic assignment model has been implemented in the open-source and agent-based transport simulation soft-
ware MATSim16 by replacing parts of the default mobility simulator with the model from Paulsen et al. (2018)15,
alongside minor changes in the routing in order to account for individual desired speeds.

3. Case Study

In order to test the realism and the large-scale applicability of the model a case study for the greater Copenhagen
area is carried out. The demand is based on the Copenhagen Model for Person Activity Scheduling (COMPAS)18,
producing daily activity plans for a synthetic population of the area. Only persons with a bicycle trip during his/her
day have been used for this study, resulting in a population of 547,085 persons with daily activity plans forming a
total of 1,082,958 bicycle trips.

Based on aerial data of observed, uncongested bicycle traffic on Smallegade in Frederiksberg, every individual is
assigned a normally distributed headway distance parameter and a desired speed (v0 in m/s) based on Johnson’s S U

distribution19 with the estimated parameters γ = −2.75, ξ = 3.67, δ = 4.07, and λ = 3.49,15

v0 ∼
δ

λ
√

2π
√

1 +
(

v0−ξ
λ

)2 e
−1

2

(
γ + δ sinh−1

(v0 − ξ
λ

))2
, (1)

inferring a mean speed and standard deviation of roughly 22 km/h and 4 km/h, respectively. This distribution has the
highest likelihood and lowest Kolmogorov-Snirnov statistic among 11 candidate distributions with estimated parame-
ters, and does not deviate significantly from the empirical distribution from Smallegade according to the Kolmogorov-
Smirnov Goodness-of-Fit test (p-value above 0.6).15

The network is based on OpenStreetMap (OSM)20 and is included in MATSim by altering the default OSM network
reader21. All link types that generally allow bicycle traffic have been included in the model unless the road explicitly
stated that bicycle traffic was not allowed. Furthermore, any road where bicycle traffic is explicitly mentioned as
allowed or designated has also been included in the network.

The network loading model15 only needs the lengths and widths of the bicycle infrastructure of links. Lengths
are always available and can always be extracted directly from the OSM data. Widths also play a vital part for the
methodology, but are rarely available. On the few links where widths (ωl) were available, the number of lanes were
determined based on the widths according to a Danish study22, that found the number of efficient lanes (Ψl) of bicycle
traffic to be determined by,

Ψl = 1 +
⌊
ωl − 0.4 m

1.25 m

⌋
. (2)

Widths were manually added to crucial arterial roads of Copenhagen – especially the cycle superhighways – before
extracting the data from OSM. This was done in order to secure these links being capable of handing large amount of
bicycle traffic. Where widths were not available, the type of bicycle infrastructure determined the number of lanes.
Explicit cycleways where motorised traffic is not allowed, as well as roads with bicycles riding in lanes or tracks were
given two pseudo-lanes, since practically all of such infrastructure in Denmark would be wide enough to form two
efficient lanes. Roads with no information about cycleways and footpaths where bicycle traffic is allowed were only
given a single lane, as the presence of cars and pedestrians in such cases will limit the possibility to overtake.
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Table 1. Average travel time and congested time according to five different scenarios.

Scenario Avg. Travel Time Per Trip Avg. Congested Travel Time Per Trip

Unlimited Capacity (Desired Speed) 16.43 min 0.00 min
Actual Infrastructure (it. 0) 16.73 min 0.29 min
Actual Infrastructure (it. 200) 16.67 min 0.12 min
Single-Lane Infrastructure (it. 0) 18.76 min 2.33 min
Single-Lane Infrastructure (it. 200) 17.70 min 0.81 min

4. Results

The assignment model was run for the population and network described in Section 3 for a total of 200 iterations
with fixed choice sets after 160 iterations. The average computation time per iteration was 14.9 minutes on a single
node of a high performance computer with two 2.8 GHz deca-core processors with 120 GB RAM.

Table 1 shows the average travel time and congested travel time for five different scenarios. It is seen that in the
very first iteration, corresponding to no one adapting their routes according to the network performance, using the
actual infrastructure a cyclist would on an average get his/her average trip travel time prolonged by approximately 18
seconds of congested travel corresponding to just under 2 % of the total travel time. Due to the possibility to choose
alternative routes, this number is eventually reduced so that the average congested travel time is 7 seconds (roughly
1 %) while lowering the overall travel time by a similar amount.

This may be interpreted as bicycle congestion being a non-issue. On the other hand, it can also be seen as an
indication of how well the profound bicycle infrastructure found in Copenhagen is relieving congestion. This is
supported by the two final rows of Table 1, which are based on model runs where all links only have a single pseudo-
lane, thus radically reducing the possibility to overtake. With such an infrastructural setup, using distance based
shortest path for every cyclist results in a travel time that is prolonged by an average of 2.03 minutes per trip (12 %).
In such a scenario large benefits can be made by adapting the route, and eventually the excess travel time can be
reduced to 1.03 minutes (6.2 %) with 48 seconds of the travel time being congested time, more than six times as
much than with the actual infrastructure. It is worth noting that these numbers are average values across an area
larger than the entire Capital Region of Denmark which also covers a lot of smaller towns and rural areas where
bicycle congestion is practically non-existing. This means that the congested travel time of trips in the central parts of
Copenhagen will be considerably higher than the average values across the entire area presented in the table.

In order to investigate how the route choice is affected by congestion in the central part of Copenhagen, a differ-
ence map based on the morning peak hour from 7am to 8am between the actual congested network and a free-flow
assignment is presented in in Figure 1. At first it might be hard to see any clear patterns in the map, but including
some local knowledge lets the map be understood more easily. In the south-eastern part of the map it is seen that a
substantial amount of cyclists are avoiding Knippelsbro. More than 100 cyclists per direction deviate onto the Inner
Harbour bridge, and for the busy north-western direction the route across Langebro also becomes a reasonable alter-
native. This indeed seems plausible as Torvegade (the street linking to Knippelsbro from south-east) has a relatively
moderate bicycle infrastructure that only allows two efficient lanes per direction, although having one of the highest
daily bicycle counts. In the other end of the city centre, it is seen that Queen Louise’s Bridge is gaining cyclists due to
congestion from competing bridges. This seems intuitive as this bridge and Nørrebrogade (the street linking to Queen
Louise’s Bridge from north-west) forms a corridor that predominantly have three efficient lanes following a radical
renovation in 2011, and is considered as the main arterial road for bicycle traffic connecting westbound suburbs.

5. Conclusions & Future Work

In this study a traffic assignment model for bicycle traffic was proposed using a detailed, demand sensitive network
loading model15. A large-scale case study was conducted for the greater Copenhagen area with running times proving
that the presented methodology is in fact large-scale applicable.

The results have shown that based on the proposed model, congestion related route changes does seem to happen
in Copenhagen with some cyclists avoiding the most congested links in favour of links with particularly wide bicycle
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Fig. 1. Map with selected points of interests showing the difference in flow in the morning peak hour from 7 to 8 between modelled selected routes
and routes found by using a free-flow, distance-based assignment.

tracks. The results also showed that having a comprehensive, decent bicycle infrastructure can greatly reduce the
travel time of cyclists. However, this effect is likely overestimated with the current study as the single-lane scenario
implies no opportunity to overtake altogether. In reality cyclists do tend to find a way of overtaking, why the predicted
travel times will probably be pessimistic for the fastest cyclists.

Even though the travel time gains are possibly overestimated, the study only includes travel time as a parameter. In
reality, better infrastructure is inherently attractive for cyclists1, and will also improve the perceived safety of cyclists.
Parameters that this study do not deal with explicitly, although it would be interesting to include in future research.

Furthermore, the methodology applied in this study only deals with delays on the links themselves. However, the
majority of excess travel time for cyclists is possibly induced at intersections. In the morning peak hour certain core
links in Copenhagen have bicycle queues that are often longer than what can be emptied in a single signal cycle.
Delays can also happen when cyclists are waiting for through-going traffic when making a left turn.

Such delays can be included directly in the mobility simulation by concurrently simulating motor vehicles and
modelling right of way and signals at intersections. This would also capture how cyclists delay the remainder of
traffic, meaning that it would be very suitable for project appraisal purposes. Although relevant, implementing such
methodology would be a serious extension and possibly be on the limit on what is computationally feasible.

A pragmatic alternative could possibly be to include the number of turns and signals as parameters in the route
choice model23 and/or to apply fixed travel time penalties for every signal, left turn, and right turn, respectively.
The literature on bicycle route choice modelling also contains additional link-specific parameters such as land-use14,
surface14, and slope24, which straightforwardly can and should be added to the model in future work, although slope
is not a huge issue in the greater Copenhagen area.
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Fig. 1. Map with selected points of interests showing the difference in flow in the morning peak hour from 7 to 8 between modelled selected routes
and routes found by using a free-flow, distance-based assignment.

tracks. The results also showed that having a comprehensive, decent bicycle infrastructure can greatly reduce the
travel time of cyclists. However, this effect is likely overestimated with the current study as the single-lane scenario
implies no opportunity to overtake altogether. In reality cyclists do tend to find a way of overtaking, why the predicted
travel times will probably be pessimistic for the fastest cyclists.

Even though the travel time gains are possibly overestimated, the study only includes travel time as a parameter. In
reality, better infrastructure is inherently attractive for cyclists1, and will also improve the perceived safety of cyclists.
Parameters that this study do not deal with explicitly, although it would be interesting to include in future research.

Furthermore, the methodology applied in this study only deals with delays on the links themselves. However, the
majority of excess travel time for cyclists is possibly induced at intersections. In the morning peak hour certain core
links in Copenhagen have bicycle queues that are often longer than what can be emptied in a single signal cycle.
Delays can also happen when cyclists are waiting for through-going traffic when making a left turn.

Such delays can be included directly in the mobility simulation by concurrently simulating motor vehicles and
modelling right of way and signals at intersections. This would also capture how cyclists delay the remainder of
traffic, meaning that it would be very suitable for project appraisal purposes. Although relevant, implementing such
methodology would be a serious extension and possibly be on the limit on what is computationally feasible.

A pragmatic alternative could possibly be to include the number of turns and signals as parameters in the route
choice model23 and/or to apply fixed travel time penalties for every signal, left turn, and right turn, respectively.
The literature on bicycle route choice modelling also contains additional link-specific parameters such as land-use14,
surface14, and slope24, which straightforwardly can and should be added to the model in future work, although slope
is not a huge issue in the greater Copenhagen area.
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1 Introduction

One of the most important purposes of traffic assignment models is to give a realis-
tic representation of congestion for all relevant modes. As such, in urban contexts
it is relevant to include bicycle traffic, but due to fundamental differences between
car traffic and bicycle traffic, the underlying methodologies to model congestion for
these modes may differ (Paulsen et al., 2019). In cities with a high level of segre-
gation between modes, this may be dealt with by implementing separate methods
for modelling on-link travel times for car and bicycle traffic, respectively. However,
a joint model including both car and bicycle traffic is necessary when modelling
intersections, as using two separate models would ignore the considerable interac-
tions occurring between the two types of traffic due to yielding and right-of-way.
Proposing such a model and integrating it in a joint traffic assignment model for
otherwise separated car and bicycle traffic is the purpose of this paper.

In the past two decades, dynamic traffic assignment has been an important
topic in research (Peeta and Ziliaskopoulos, 2001; Chiu et al., 2011). However, until
recently neither static nor dynamic large-scale traffic assignment models have been
able to model congestion for dedicated bicycle traffic realistically. A few studies
have modelled congestion for bicycle traffic, but through congestion effects aris-
ing when sharing road infrastructure with motorised transport modes along links.
Agarwal et al. (2019) modelled congestion by agent-based simulation of mixed
traffic in the Indian city of Patna. Wierbos et al. (2019) proposed a flow-based ap-
proach for modelling mixed car and bicycle traffic suitable for integration in traffic
assignment models, however without doing so. Furthermore, neither methodolo-
gies are suitable for cities with a high level of segregation between bicycle and car
traffic as they do not model congestion on dedicated bicycle infrastructure.

Paulsen et al. (2019) introduced an agent-based network loading model for
large-scale modelling of congestion on bicycle paths based on speed heterogene-
ity. Later, Paulsen and Nagel (2019) integrated the methodology in a full traffic
assignment model with feedback mechanisms between demand and supply, and
applied it to a large-scale bicycle network of Metropolitan Copenhagen. However,
without modelling excess travel time arising from interactions between vehicles at
intersections.

Such delays at intersections typically constitute a considerable amount of the
total travel time in the network, especially for bicycle traffic where delays on
the links themselves are limited due to good opportunities to overtake. Modelling
intersections is particularly relevant in urban areas with a high concentration of
bicycle traffic, as the presence of bicycles does not only cause delays for other
bicycles, but also for turning car traffic. Likewise, car traffic also delays cyclists
having to cross larger roads. In cities with a high level of segregation between
modes, inter-modal delays can be ignored on links as the two traffic streams are
completely separated, but are still important to model at intersections in order to
obtain realistic travel times for both modes.

Microsimulation tools such as AIMSUN (Dandl et al., 2017), SUMO (Kra-
jzewicz et al., 2014), and VISSIM (Fellendorf, 1994) are capable of modelling
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delays at intersections for both car and bicycle traffic in great detail, but are not
large-scale applicable.

Large-scale flow-based car traffic assignment models have in the last twenty or
so years often included some form of intersection delays (Nielsen et al., 1998a).
Such models can indirectly include the effect of having to yield for bicycle traffic, by
reducing the capacity of relevant turn movements by applying relevant adjustment
factors. Estimating such adjustment factors for bicycle traffic have received quite
some attention in the literature (Allen et al., 1998; Brilon and Miltner, 2005;
Chen et al., 2007; Li et al., 2009, 2011; Guo et al., 2012; Chen et al., 2014; Preethi
and Ashalatha, 2018), and is a common way to include car travel time delays at
intersections caused by prioritised traffic in flow-based models. Similar adjustments
can be done for other types non-motorised traffic (Mondal and Gupta, 2020) such
as pedestrians (Niittymäki and Pursula, 1997; Milazzo et al., 1998; Chen et al.,
2008, 2015; Roshani and Bargegol, 2017).

Although such methods can be used for modelling car traffic delays caused
by bicycle traffic, they are not suitable for modelling the opposite case where
cyclists have to yield for car traffic, as the large heterogeneity among cyclists
makes flow-based approaches inappropriate (Paulsen et al., 2019). As such, using
flow-based methods is not a viable option when wanting to perform realistic traf-
fic assignment for both car and bicycle traffic while modelling their interaction at
intersections. The only existing large-scale applicable network loading model capa-
ble of modelling congestion on dedicated bicycle infrastructure, is the agent-based
methodology from Paulsen et al. (2019) applied in Paulsen and Nagel (2019). As
such, in order to be able to model on-link congestion, any proposed intersection
model that can capture the delays caused by yielding at intersections need also to
be agent-based for the two to be compatible.

This study contribute to literature by modelling delays caused by conflict-
ing movements at intersections directly in the mobility simulation of a large-scale
agent-based traffic assignment model for joint car and bicycle traffic. Modelling
such conflicts is not new in itself, e.g. Dandl et al. (2017), neither is it new to
model an entire metropolitan area in an agent-based transport simulation setup,
e.g. Raney et al. (2003). But doing both simultaneously, i.e. modelling conflicts
at intersections while also simulating and modelling on-link congestion as well as
route choices and traffic assignment of both bicycle and car traffic of an entire
metropolitan area is. The study does this by extending the open-source agent-
based transport simulator MATSim (Horni et al., 2016). As MATSim is already
capable of simulating a large geographical area in feasible time, the specific ob-
jective of this study is to replace the existing, simplistic intersection model (node
model) of MATSim with a detailed one obeying multi-modal right-of-way at inter-
sections, and apply it to large-scale case study with a large proportion of bicycle
traffic.

The remainder of the paper is structured as follows. Section 2 describes how the
nodes of network are classified into five different types, whereas Section 3 presents
how vehicles and bicycles are modelled when travelling across such nodes. A case
study of Metropolitan Copenhagen is presented in Section 4 alongside results.
Section 5 discusses the findings and outlines directions for future research. Finally,
the conclusions of the study is summarised in Section 6.
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2 Node classification

The node model that will be presented in Section 3, distinguishes between different
node types, see Figure 1. Therefore, in this section the method for classifying each
node of the network into each of the five node types is presented. In line with
earlier studies such as Nielsen et al. (1998b) this process is fully automated, and
is carried out in the pre-processing stage before the actual simulation.

Instead of basing the node types on each individual link of the node, this
method is based on link bundles in order to make the model less dependent on
the exact network digitalisation. A bundle, D, is defined as a direction from/to
the node which consists of up to four unidirectional links, but at most one of the
following listed in counterclockwise order: Bicycle out-link, car out-link, car in-
link, and bicycle in-link. If there is more than 15◦ between two consecutive links
in a bundle, the bundle is split into multiple bundles.

In the implementation of the present paper, we base our network on Open-
StreetMap (OpenStreetMap, 2020). The size of a bundle is based on the link of
the bundle with the largest OpenStreetMap highway type with the number of lanes
of this link as a potential tie breaker. However, these could as well have been based
on any (combination of) ordinal attribute(s) that could be a proxy for the size of
the road. Alternatively, a value could be assigned manually to (specific) links of the
network if needed. Notice that in our implementation, we have not distinguished
between highway types with a ” link” suffix (“motorway link”,“tertiary link”, etc.)
and their counterparts without such suffix (”motorway”, ”tertiary”, etc.) when de-
termining priorities nor when categorising the nodes.

By defining a bundle path as a possibly bi-directional path connecting two
different bundles across a node having their size determined by the smallest of the
two bundles, we formally define the five node types used in the study:

– Merging nodes: Two large one-way car in-links merge into a single large one-
way car out-link.

– Diverging nodes: A single large one-way car in-link diverges into two (or more)
large one-way car out-links.

– Right priority nodes: All bundle paths have the same size.
– Directed priority nodes: The size of a single bundle path dominates the size of

all other bundle paths.
– Anti-priority nodes: Bundle path sizes differ, but there is no single dominant

bundle path.

We again refer to Figure 1 for examples of each of the node types. A more
detailed description of each of the node types and how their categorisation is
determined is presented in the following paragraphs. Some node types distinguish
between primary and secondary bundles. How these are determined is also included
in the following when needed.

A requirement for being a merging or diverging node, respectively, is that the
smallest link leading to/from the node is of highway type ”primary link” or higher,
and that it only has a single out-link (merging node) or in-link (diverging node).
This means that they are almost exclusively used in conjunction with motorways,
where merging nodes often represent ramps leading into the motorway and diverg-
ing nodes often represent ramps leading away from the motorway. For merging
nodes the primary bundle is defined as the bundle including the largest of the two
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Fig. 1 Examples of each of the node types: a) Merging node, b) Diverging node, c) Right
priority node, d) Directed priority node, and e) Anti-priority node. Each line represents a
bundle with size proportional to the width of the line, and with arrowheads indicating the
possible travel directions within the bundle.

links based on highway type and number of lanes. If these are tied, the primary
bundle is selected arbitrarily among the bundles containing in-links. For diverging
nodes there is only one in-link and there is no distinction between the out-links as
none of the possible movements are conflicting.

Nodes that are neither merging nor diverging nodes and where all bundles
have the same size are categorised as right priority nodes. The vast majority of
these nodes occur when residential roads cross each other, but are also used when
larger roads of equal size intersect. A special case are dead-end nodes with only
one bundle – these are also categorised as right priority nodes.

If two bundles are larger than all the other bundles and the node is not a merg-
ing nor a diverging node, then the node is a directed priority node. The two bundles
of the dominant bundle path are declared as primary bundles. Consequently, all
other bundles are secondary bundles. A special case is nodes with exactly two bun-
dles. These are always categorised as directed priority nodes (with no secondary
bundles).

If none of the above criteria have been fulfilled, it means that at least two
bundle sizes differ but that the node has no single dominant bundle path, and it is
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neither a merging nor a diverging node. For these cases the anti-priority nodes are
used. Although the anti-priority node is much like a right priority node it also has
some elements of the directed priority node, as bundles are divided into priority
bundles and secondary bundles. The largest bundle and all other bundles sharing
the size of the largest bundle constitute the set of primary bundles, whereas the
remaining bundles are secondary bundles. The anti-priority nodes are often seen
in cases where removing the minimum bundle would cause the node to become a
right priority node.

3 Simulation model

In this section we will present the right-of-way node model developed for this study
for implementation in MATSim (Horni et al., 2016). The reason for implementing
the methodology in MATSim is threefold. Firstly, because the software is open
source, secondly it is widely used for a wide range of scenarios across the world,
and thirdly because the methodology for simulating bicycle traffic (Paulsen et al.,
2019) has previously been implemented in MATSim (Paulsen and Nagel, 2019).

Since the original node model of MATSim (Flötteröd, 2016) is used as baseline
in our study, we first introduce the original MATSim node model in Section 3.1,
before presenting our proposed right-of-way model in Section 3.2.

3.1 The original MATSim node model

The mobility simulation in MATSim (Horni et al., 2016) consists of two separate
models; a link model and a node model (Flötteröd, 2016). The link model deter-
mines at link entry at which time a vehicle will be ready to leave the link again,
at which point the vehicle is moved onto the buffer of the link. The node model,
on the other hand, is responsible for transferring vehicles from buffers and onto
subsequent links.

In each time step (typically of τ = 1 second) the node model process all links
that has vehicles ready to move, L ∈ LAN , of all active nodes, N ∈ NA. The
processing order is chosen at random, but with high capacity links having a larger
probability of being chosen first, as the probability of being chosen as the first (and
subsequent) link to be processed is proportional to the flow capacity of the link,
CFL . This means, that when going into a node from a link with a low capacity,
chances are that other links will be processed first, often causing vehicles from
low capacity links being placed behind vehicles from high capacity links on the
following link.

Once the link is selected, all of its buffers, B ∈ BL, are processed. It is worth
mentioning that although the basic setup of MATSim used in this study only has
a single buffer per link, MATSim does offer configurations with explicit use of
lanes (Grether, 2014; Grether and Thunig, 2016; Thunig et al., 2019), potentially
increasing the number of buffers for some links. The processing order of buffers
(links) is quite relevant in MATSim, as the node model offers no guarantee that
a vehicle can be moved over to the desired link, as the receiving link has to have
available space in order for this to happen. The storage capacity is simply defined
as the area the link (measured in lane metres), found by multiplying the length
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Algorithm 1 Original MATSim node model with spatial queue simulation

1: for all active nodes N ∈ Na do
2: Determine set of links remaining to be processed, LN .
3: while LN 6= ∅ do # Links left to process

4: Draw L∗ stochastically from LN with probability ∝ CFL∗ and remove it.
5: for B ∈ L∗ do # All buffers of link

6: while B 6= ∅ do # Buffer is not empty

7: V ← B.getFirstVehicle()

8: RV ← V .getNextLink() # Get receiving link

9: # Receiving link accepts vehicle

10: if RV .getSpareStorageCap() ∨ t > TB + ς then
11: B.removeFirst() # Remove vehicle from buffer

12: TB ← t # Update buffer time

13: RV .receive(V ) # Move vehicle to receiving link

14: else # Receiving link rejects vehicle

15: break # Move on to next buffer

of the link with its number of lanes. A standard car (one person car unit (pcu))
is assumed to take up 7.5 lane metres of space, which is subtracted/added to the
spare storage capacity of the link when a vehicle enters/leaves the link. The area
occupied by complex by cyclists is more complex and agent-specific, see Paulsen
et al. (2019) for details.

When using more advanced link transmission models than the spatial queue
model with link dependent back wave speed used here (Gawron, 1998), e.g. spatial
queues with backward-travelling holes (Agarwal et al., 2018) or a Newell (Newell,
1993) kinematic wave representation (Flötteröd, 2016), additional restrictions may
apply, but are not included in the present study.

Even when the restrictions for accepting a vehicle is not met by the receiving
link, i.e. when RV .getSpareStorageCap() ≤ 0, MATSim offers an alternative
opening for allowing vehicles to enter the link anyway. A processed vehicle is
allowed entry if it has been at the front of the buffer for more than a so-called
“stuck time” (or “squeeze time” (Axhausen et al., 2015)) in this paper denoted by
ς. This is included in MATSim in order to prevent persistent grid-lock situations
to occur (Charypar, 2008; Rieser and Nagel, 2008; Axhausen et al., 2015). By
denoting the time at which the vehicle became the front vehicle of the buffer by
TB , and the current simulation time as t, this can be formulated as t > TB + ς.

If neither of the conditions allowing the vehicle to move onto the receiving link
are met, the vehicle and all behind vehicles in the same buffer have to wait (at
least) until the next time step.

An algorithmic representation of the original node model with the most simple
configurations for MATSim is given Algorithm 1.

The bicycle simulation methodology from Paulsen et al. (2019) for simulated
bicycle traffic on dedicated bicycle infrastructure was implemented as an extension
to MATSim in Paulsen and Nagel (2019) using separate links for bicycles. Since
bicycle tracks are predominantly situated in conjunction with roads allowing car
traffic, the car and bicycle infrastructure share the vast majority of their nodes.
However, since only the sending links and receiving links are taken into account in
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the original node model, there will be no inter-modal interactions at intersections
as the sending and receiving links for bicycle traffic are completely disjoint.

As indicated, different versions of the node model can be achieved by using
explicit lanes (Grether, 2014; Grether and Thunig, 2016; Thunig et al., 2019) or
by using more advanced link transmission models (Agarwal et al., 2018; Flötteröd,
2016) than the spatial queue model used here. However, none of them makes it
possible to take into account conflicting movements at unsignalised intersections.
As such, although the original node model does have the potential to cause vehicle
delays at intersections, it does not take the specific turn movements into account,
meaning that there is no distinction between conflicting and non-conflicting move-
ments.

3.2 The right-of-way node model

We now turn to present the right-of-way node mode formulated for this study.
Section 3.2.1 presents the overall concept of the model, before proposed buffers
are introduced in Section 3.2.2, and the order in which they are processed for the
various node types are considered in Section 3.2.3 and following sections (3.2.4-
3.2.8. Finally, Section 3.2.9 deals with changes to MATSim (Horni et al., 2016)
that does not directly concern the mobility simulation.

3.2.1 Main algorithm

The node model proposed in this study is outlined in Algorithm 2. The model dif-
fers considerably from the original one (Algorithm 1), both regarding determining
the processing order of links, Ω, determined in line 2, but especially concerning
the actual mechanism for deciding whether vehicles are allowed to move across the
node (line 9). We first consider the latter, before sections 3.2.3-3.2.8 address the
former.

Whenever a buffer is processed, the corresponding movement, m, of the front
vehicle, V , is determined. A subscript V , i.e. mV , has been omitted in the notation
in order to avoid nested subscripts in other variables. Each of such movements,
m, has an associated time, tm, (with an initial value of -1) which needs to be
exceeded by the simulation time, t, before the movement can take place. As such,
for any potential movement, m, it is checked whether any previous movements
have temporarily disallowed m. Having t > tm is a necessary but not sufficient
requirement for the movement of m, as the requirements of the original node model
still applies. That is besides t > tm there has to be available space on the receiving
link, or the vehicle has to have been in front of the buffer for more than ς seconds,
see Section 3.1 and Algorithm 1.

Any conducted movement m, forces any conflicting move, n, to be unavailable
until a certain time denoted by tn. Formally, if m is conducted then for all con-
flicting moves, n ∈ Cm, tn is updated to the simulation time, i.e. tn ← t, ∀n ∈ Cm.
If t ≤ tm, m is disallowed and no more vehicles from that buffer are processed in
the time step.

Notice that cyclists may have to split up left turns in several partial steps. In
such cases the algorithms handles this internally through the getNextMove() com-
mand, which would then return the movement to the temporary location instead
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Algorithm 2 Proposed right-of-way node model

1: for all active nodes N ∈ Na do
2: Ω ← N.determineBufferOrder()

3: while Ω 6= ∅ do # Buffers left

4: B ← Ω.poll() # Extract next buffer

5: while B 6= ∅ do # Buffer is not empty

6: V ← B.getFirstVehicle()

7: m← V .getNextMove() # Determine move

8: # No conflicting moves and receiving link accepts vehicle

9: if t > tm ∧ (Rm.getSpareStorageCap() > 0 ∨ t > TB + ς) then
10: B.removeFirst() # Remove vehicle from buffer

11: TB ← t # Update buffer time

12: for n ∈ Cm do # Make all conflicting moves unavailable

13: tn ← t

14: Rm.receive(V) # Move vehicle to receiving link

15: else # Receiving link rejects vehicle

16: break # Move on to next buffer

of the full left turn movement. Whereas the receiving link, Rm, is normally an
out-link, in the case of initial steps of partial left turns for cyclists it is an in-link
for which the cyclist is placed at the front of the relevant buffer of the queue –
only changing TB if the buffer is empty.

There are slight variations/additions in the bottom part of Algorithm 2 for
different node types which if included in the general algorithm would make it
overly complicated and difficult to read. The discrepancies between the stated
algorithm and the actual code is clearly stated in the subsections concerning the
relevant node types, Sections 3.2.4-3.2.8.

However, before going into detail with the processing order of buffers. the
following subsection provides an overview of the buffer types used in the right-of-
way setup.

3.2.2 Buffers

In the right-of-way node model we distinguish between vehicles wanting to turn
left, and vehicles that do not. How left is defined is varies across node types.
Depending on the size of the link, left turning vehicles may potentially be placed
in another buffer than vehicles going elsewhere.

Three different types of buffers configurations are formulated:

– Single buffer: All vehicles regardless of movement is placed and stay in the
same main buffer until they leave the link.

– Two interacting buffers: All vehicles are initially places in the main buffer, but
left turning vehicles are eventually transferred to the left buffer when reaching
the front of the main buffer.

– Two separated buffers: Left turning vehicles are completely separated from the
other vehicles by being placed in a left buffer, whereas the other vehicles are
placed in the main buffer.
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The single buffer is used for all car links that only has a single lane and is of
lower ranked highway type than ”tertiary link”, whereas two interacting buffers
are used for single lane car links of higher types. When a car link has more than
two lanes the two separated buffers are used. For bicycles, the single buffer, two
interacting buffers, and two separated buffers are used when links have one, two,
and more than two lanes, respectively, where the number of lanes are determined
according to the width of the bicycle infrastructure, see Buch and Greibe (2015)
and Paulsen et al. (2019).

In-links of diverging nodes always have separated buffers, but will have as many
buffers as they have out-links, potentially leading to more than two buffers.

The first and third buffer types are simple, whereas the second (two interacting
buffers) needs further explanation. Like the third one, it consists of a main buffer
and a left buffer, but left turning vehicles have to be at the front of the main buffer
before they can be moved onto the left buffer. However, the left buffer has limited
capacity (2 for cars, and 3 for bicycles), which when reached prevents left turning
vehicles from being moved to the left buffer, potentially causing other vehicles to
be trapped behind the queue of left turning vehicles. The capacity mimics that
roads often widens a bit when approaching intersections, and that cars can then
overtake on the right when only a few left turning cars are in front. Notice that
a cyclists doing a partial left turn and being places at the front of the buffer is
allowed to make the buffer go above capacity, as in real-life such cyclists are placed
in the intersection rather than on the actual links.

In all cases the movement type (left turn or not left turn) is only determined
at initial buffer insertion and is stored in the vehicle in order to avoid determining
this redundantly at a later stage.

3.2.3 Buffer order determination

We now move on to how each of the node types determines the order in which the
buffers must be processed.

It is worth recapping that D denotes a bundle, and consists of up to four links
(in/out for car/bicycle) denoted by L ∈ D. However, when determining the buffer
order of a node, only the buffers containing in-links are relevant, as uni-directional
bundles leading away from the node has no way of leading traffic into the node.

For some node types the bundles are categorised into primary and secondary
bundles, denoted by DP and DS , see Section 2. Again, only bundles containing
in-links need to be considered.

Furthermore, each buffer has up to four buffers, see Section 3.2.2. To make the
algorithms easier to read, we assume that every bundle has get methods can access
any of the four buffers, i.e. getBicycleLeftBuffer(), getBicycleMainBuffer(),
getCarMainBuffer(), and getCarLeftBuffer(). The buffers are placed into the
list of buffers, Ω, in order with the addIfNotEmpty() command placing an element
at the end of the list, but only if the buffer is not empty.

3.2.4 Directed priority nodes

With the notation in place, we are ready to present how directed priority nodes
determine the order of its buffers, see Algorithm 3. Notice that the determination

Mesoscopic Simulation of Multi-Modal Urban Traffic 107



Right-of-Way in Agent-Based Traffic Assigmment of Car and Bicycle Traffic 11

Algorithm 3 determineBufferOrder() for directed priority nodes

1: Ω ← ∅ # Initialise buffer order

2: for D ∈ Dp do # Add bicycle buffers from primary bundles

3: Ω.addIfNotEmpty(D.getBicycleLeftBuffer())

4: Ω.addIfNotEmpty(D.getBicycleMainBuffer())

5: for D ∈ Dp do # Add car main buffers from primary bundles

6: Ω.addIfNotEmpty(D.getCarMainBuffer())

7: for D ∈ Dp do # Add car left buffers from primary bundles

8: Ω.addIfNotEmpty(D.getCarLeftBuffer())

9: for D ∈ Ds do # Add bicycle buffers from secondary bundles

10: Ω.addIfNotEmpty(D.getBicycleLeftBuffer())

11: Ω.addIfNotEmpty(D.getBicycleMainBuffer())

12: for D ∈ Ds do # Add car main buffers from secondary bundles

13: Ω.addIfNotEmpty(D.getCarMainBuffer())

14: for D ∈ Ds do # Add car left buffers from secondary bundles

15: Ω.addIfNotEmpty(D.getCarLeftBuffer())

16: return Ω

happens completely deterministically. Firstly, the bicycle buffers of the primary
bundles are processed. Secondly, the main buffers of the car links of the primary
bundles are added, before adding the corresponding left buffers. After this, the
same process is followed for the secondary buffers D ∈ DS .

Notice that in order to not make the algorithmic representation in Algorithm
2 overly complicated, we have neglected the fact that – as the name indicates –
bicycle links with two interacting buffers have buffers that interact. In the actual
code there is interaction between the two, making the matter slightly more ad-
vanced than indicated by Algorithm 2. For instance, if the main buffer suddenly
has a left turning cyclist the front while processing the main buffer, this cyclist
is moved onto the left buffer if there is available space. If its capacity is already
reached it will not process any more cyclists. However, it will then again try to
move cyclists from the left buffer, and subsequently from the main buffer again.
Thus, it is ensured that it processes as many cyclists as possible within the time
step as long as the two buffers are not blocking each other.

Instead of only moving to the in-link of the next (in counterclockwise direction)
bundle when performing partial left turns, cyclists at directed priority can proceed
across several bundles at once, as long as they do not cross the priority path
connecting the two primary bundles.

3.2.5 Right priority nodes

At right priority nodes no bundles have static priority over other bundles. However,
if priority was given to a bundle in the previous time step, then this bundle keeps
the priority in the following time step if it has any traffic that needs to be processed.
The remainder of the buffers are then added in counterclockwise order.

The full algorithm for determining the buffer order can be found in Algorithm
4, with Dp denoting the bundle that had priority in the previous time step. Notice,
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Algorithm 4 determineBufferOrder() for right priority nodes

1: Ω ← ∅ # Initialise buffer order

2: if Dp 6= ∅ then # Priority from previous time step passed on

3: D∗ ← Dp
4: Dp ← ∅
5: else # No priority to pass on

6: D∗ ← getRandomBundle() # Select priority at random

7: D ← D∗ # D is now prioritised in this time step

8: repeat # Traverse bundles counterclockwise

9: Ω.addIfNotEmpty(U.getBicycleLeftBuffer())
10: Ω.addIfNotEmpty(U.getBicycleMainBuffer())
11: Ω.addIfNotEmpty(U.getCarMainBuffer())
12: Ω.addIfNotEmpty(U.getCarLeftBuffer())
13: D ← getNextBundleCounterclockwise(D)

14: until D = D∗

15: return Ω

that for this to work the general algorithm for processing nodes (Algorithm 2) also
needs to be adjusted slightly following line 11 as Dp will be updated to be the
bundle in which the sending buffer belongs, but only if this has not already been
done in the time step.

In the case that the previous time step did not conduct any movements for
the node, i.e. Dp = ∅, there is no predetermined priority on which to base the
buffer order on. In such cases an initial bundle is randomly chosen before adding
the remaining bundles – still in counterclockwise order.

For this node type (and anti-priority nodes) links with two interacting buffers
are treated in the same way as explained for bicycle links with two interacting
buffers at in Section 3.2.4, i.e. more interactively than hinted in Algorithm 2.

3.2.6 Anti-priority nodes

The buffering order for anti-priority nodes are very similar to those of right priority
nodes, but the process falls in two parts as the bundles are grouped in primary
bundles and secondary bundles. The algorithm (Algorithm 5) is equivalent to
performing Algorithm 4 for right-priority nodes on the set of primary bundles first,
and adding the output of doing it on the set of secondary bundles afterwards.

3.2.7 Merging nodes

Merging nodes are special in the sense that although a priority is often present,
the merging situation is to some degree a mutual responsibility of the involved
vehicles; the vehicles on the prioritised part bundle, Dp, (often the motorway)
are supposed to make space for on-coming traffic from the secondary bundle, Ds
(often a ramp). As this is not possible when the prioritised part is fully occupied,
since the cars would have no possibility to make room for in-coming cars, when
this is the case incoming traffic from ramps is restricted from moving.
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Algorithm 5 determineBufferOrder() for anti-priority nodes

1: Ω ← ∅ # Initialise buffer order

2: if Dp 6= ∅ then # Priority from previous time step passed on

3: D∗ ← Dp
4: Dp ← ∅
5: else # No priority to pass on

6: D∗ ← getRandomBundle() # Select priority at random

7: D ← D∗ # D is now prioritised in this timestep

8: repeat # Traverse primary bundles counterclockwise

9: if D ∈ Dp then
10: Ω.addIfNotEmpty(U.getBicycleLeftBuffer())
11: Ω.addIfNotEmpty(U.getBicycleMainBuffer())
12: Ω.addIfNotEmpty(U.getCarMainBuffer())
13: Ω.addIfNotEmpty(U.getCarLeftBuffer())

14: D ← getNextBundleCounterclockwise(D)

15: until D = D∗

16: repeat # Traverse secondary bundles counterclockswise

17: if D ∈ Ds then
18: Ω.addIfNotEmpty(U.getBicycleLeftBuffer())
19: Ω.addIfNotEmpty(U.getBicycleMainBuffer())
20: Ω.addIfNotEmpty(U.getCarMainBuffer())
21: Ω.addIfNotEmpty(U.getCarLeftBuffer())

22: D ← getNextBundleCounterclockwise(D)

23: until D = D∗

24: return Ω

Algorithm 6 determineBufferOrder() for merging nodes

1: # Both buffers are empty

2: if Dp.getCarMainBuffer() = ∅ ∧Ds.getCarMainBuffer() = ∅ then
3: return ∅
4: else if Dp.getCarMainBuffer() = ∅ then # Primary buffer empty

5: return Ds.getCarMainBuffer() # Return secondary buffer

6: # Secondary buffer empty or primary link is fully occupied

7: else if Ds.getCarMainBuffer() = ∅ ∨Dp.getSpareStorageCap() ≤ 0 then
8: return Dp.getCarMainBuffer() # Return primary buffer

9: else
10: Ω ← ∅ # Initialise buffer order

11: u = rand() # Choose buffer order stochastically

12: if u < %p then # Probability equal to proportion of total capacity

13: Ω.add(Dp.getCarMainBuffer())
14: Ω.add(Ds.getCarMainBuffer())
15: else
16: Ω.add(Ds.getCarMainBuffer())
17: Ω.add(Dp.getCarMainBuffer())

18: return Ω
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When the prioritised part does have space, due to merging being a mutual
and cooperative tasks between the two streams of traffic, the first bundle to be
processed is – just like in the original MATSim node model – randomly drawn
with probability proportional to the flow capacity of the in-links of the bundles.

In Algorithm 6 the proportion of the total in-capacity (from in-links of Dp and
Ds) made up by the in-link of the primary bundle, is denoted by %p.

Although getSpareStorageCap() is defined as associated to links, in this case
we allow it to be used directly on the primary bundle, as the bundle is required
have exactly one link, making the notation unambiguous.

3.2.8 Diverging nodes

The buffer order for diverging nodes is quite special as only one bundle is available.
Furthermore, as no conflicting movements are possible, the buffer order does not
matter why each of the buffers B ∈ BD, are simply processed in the order they
are programmed, see Algorithm 7. As the only node, diverging nodes are – in the
special case where more than two out-links exist – allowed to have more than two
buffers.

Just like for merging nodes we do not have to consider bicycle links, as these
are not allowed on these node types.

Algorithm 7 determineBufferOrder() for diverging nodes

1: Ω ← ∅ # Initialise buffer order

2: for D ∈ D do # Trivial as there is only one in-bundle

3: for B ∈ BD do # Trivial as there is only one buffer

4: Ω.addIfNotEmpty(B)

5: return Ω

3.2.9 Replanning

Due to right-of way, the travel times of going straight through the prioritised
direction may differ considerably from a corresponding left turn for instance. Even
more so for a cyclist turning right along a prioritised road instead of crossing it
by turning left. In order to account for this, the normal shortest path searching
from node to node is no longer valid. Instead, a link-to-link routing where shortest
path searches are performed in an inverse network is used as suggested by Grether
(2014). In the inverse network, every link of the original network becomes a node
in the inverted network, and the links of the inverted network consists of all link-
to-link combinations that share a node in the original network. The average travel
times for each time bin stored of the new network is thus based on the travel times
from entering one link to entering a new one, as opposed to the original routing
where the travel time is the difference between time at link exit and link entry. This
study uses the same setup for routing when using the right-of-way node model,
and further discovers that in such case, all events of vehicles leaving links can be
completely disregarded, i.e. neither created nor processed, since they are not used
anyway. This gives a dramatic performance boost (see also Section 4.3.1).
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A special case is when an agent is routing along a link-to-link combination in
a time bin where there was no traffic in the previous iteration. Here the default
implementation (Grether, 2014) simply provides the fully uncongested travel time
of the in-link, but we have opted for a pessimistic approach, where the highest
travel time associated with the in-link among the link-to-link combinations is used
if such exist. This approach has been chosen in order to reduce the likelihood of
agents underestimating the time spent yielding at intersections.

As in Paulsen and Nagel (2019) routing is individualised such that an agent
never predicts the travel time between two links to be lower than the length of the
first link divided by the maximum speed of the agent. This is relevant for trucks
which are restricted to go at most 80 km/h, and for cyclists with low individual
desired speeds.

4 Case study

In this section concerning the large-scale case study of Metropolitan Copenhagen,
we first present the data used in the case study in Section 4.1. The configurations
of the runs are given in Section 4.2, before Section 4.3 presents the results, includ-
ing computational performance, aggregate statistics, and a spatial analysis of the
impact of right-of-way.

4.1 Data

The network used in the case study, see Figure 2, was based on OpenStreetMap
(2020), with the dedicated network reader from Zilske et al. (2011) used for creat-
ing car infrastructure, and a modified version of this for the bicycle infrastructure
(also used in Paulsen and Nagel (2019)). Network links were merged where pos-
sible, i.e. where consecutive links had identical attributes (except for length) and
the nodes connecting them did not connect any other links. As the methodology
from Paulsen et al. (2019) is sensitive to link lengths, bicycle links with length

λl > 60 metres were split into
⌈
λl

60

⌉
sublinks of equal length. With no bicycle

demand outside Metropolitan Copenhagen, all bicycle links outside this area were
removed. Likewise, for car and truck traffic the outside area only includes port
zone traffic, why all links with highway-type ”secondary” or lower were removed
to speed up computation but still allow port zone traffic to enter the area. The re-
sulting network (see Figure 2) consisted of 144,060 nodes and 572,935 links, when
counting bicycle links with multiple sublinks as a single link (see above).

The demand was based on two different but associated sources. The bicycle
demand of 1,082,958 bicycle trips per day comes from the Copenhagen Model for
Passenger Activity Scheduling (COMPAS) (Prato et al., 2013), whereas its suc-
cessor the Copenhagen Greater Area Model for Passenger Transport (COMPASS)
(Kjems and Paag, 2019) is the source of the 3,210,685 car trips and 299,416 truck
trips per day. Notice that the car and truck demands are based on OD-matrices,
why they are included as single trip agents, whereas the bicycle trips are associated
with agents with actual day plans, but where all other trips have been ignored. In
total the scenario consists of 4,593,059 trips.
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OSM Highway Type
<all other values>
Motorway
Trunk
Primary
Secondary
Tertiary

! Nodes

Fig. 2 Highway types and nodes for the part of the network in Greater Copenhagen where
cars are allowed.

4.2 Configuration

The node classification and the node model introduced in Sections 2 and 3 have
been implemented in MATSim (Horni et al., 2016). Existing approaches were used
for simulating vehicles on the links. For car traffic, the standard MATSim spatial
queue simulation (Gawron, 1998) was used. This simulation is a special instance
of the simplified kinematic wave theory of Newell (1993) where each link has a
backward wave speed such that the backward wave traverses the entire link in
exactly one second (Flötteröd, 2016). Bicycles were simulated according to the
methodology introduced in Paulsen et al. (2019) and implemented in MATSim in
Paulsen and Nagel (2019).

Population downscaling, where only a subset (e.g. 10%) of the population is
used, in turn reducing network capacities and letting each simulated entity repre-
sent multiple persons when analysing results, is often used in MATSim. It leads to
serious computation time reductions, and recent literature has found the impact on
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the final results to be minor (Llorca and Moeckel, 2019; Ben-Dor et al., 2020). In
this study, however we have not used downscaling, as the bicycle simulation model
from Paulsen et al. (2019) and the methodology we propose for right-of-way at
intersections are designed for each cyclist/vehicle representing a single entity.

A stuck time (see Section 3.1) of ς = 5 seconds has been chosen for this study.
Axhausen et al. (2015) argue for lowering the stuck time to 10 seconds in order
to circumvent large fluctuations in travel times between iterations, but as this
was found to be insufficient in the present application (for both the original node
model and the right-of-way node model), the parameter was additionally reduced
to 5 seconds.

The assignment model was run for 150 iterations with a 5% rerouting rate
between iterations, meaning that 5% of agents searched for a new shortest path in
each iteration, except for the initial iteration for which all agents searched for the
shortest path in the uncongested network. When agents search for a shortest path
in subsequent iterations, a new plan containing the found shortest paths of all
their trips is added to the choice set. The remaining 95% of agents were greedy in
the sense that they chose the plan with the highest recorded score in their choice
set.

Scores were solely based on travel times and consisted of a combination of in-
dividualised free-flow travel time, tf , and congested travel time, tc, with congested
travel time being defined as the difference between the actual travel time, ta and
tf , i.e. tc = ta − tf . The scoring function is identical to the one used in Paulsen
and Nagel (2019), with the score being a sum across all trips (legs) of the plan,
l ∈ `p,

Sp =
∑
l∈`p

βf t
l
f + βct

l
c. (1)

Note that individualised free-flow travel time varies across individuals when sim-
ulating cyclists, since these have desired speeds lower than the free-speed of the
corresponding links, but also for trucks being routed at motorways due to their
maximum allowed speed of 80 km/h. The chosen parameters for free flow travel
time and the congested travel time were βt = − 1

60 per second and βc = − 1
40 per

second, respectively.
After each iteration, the executed plan received a score based on eq. (1). As

always in MATSim, plans that are not executed do not get their scores updated,
as the exact values of travel times are unknown. Plans that were not executed,
and thus not updated, for 20 consecutive iterations were removed from the choice
set when choosing the plan for the next day. Likewise, plans with associated scores
more than 30% worse than the best score in the choice set were also removed.

4.3 Results

4.3.1 Computation time and convergence

All scenarios were run on a high performance computer with two 2.8 GHz deca-
core processors and 120 GB RAM using 20 threads. The computation times are
reported in Table 1.

As can be seen, the proposed right-of-way (RoW) node model implementation
only yields a slight increase in running time compared to the original node model.
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Table 1 Average computation times per iteration for combinations of node model and in-
cluded modes [min.]

Base RoW

5.15 5.42 + 5%

18.59 18.92 + 2%

21.77 25.19 +16%

The largest increase in computation time is seen for the tri-modal setup (16 %),
unsurprisingly, as the complexity of the processing of the intersections is higher
when both bicycles and motorised traffic are included. Albeit the total computation
times are large, they are still within the boundaries of what is manageable when
modelling metropolitan areas, considering the large number of trips included in
the case study.

It is worth mentioning that the right-of-way model saves a little time during the
traffic simulation due to not having to create nor handle events when vehicles leave
links, see Section 3.2.9. However, it uses considerably longer time on replanning,
i.e. finding new shortest paths, as i) the graph in which the searches are performed
is larger than for original node model, and ii) network inversion puts an additional
overhead on the time it takes to retrieve average travel times for links and time
bins of the previous iteration. This also means that if higher rerouting rates than
5% were used, the savings from omitting events when leaving links would no longer
be close to balancing the increased computation time for the replanning phase.

When only simulating bicycle trips, the computation times show a dramatic
improvement of 65 % compared to Paulsen and Nagel (2019). This is predominantly
due to the network simplification described in Section 4.2, and partly due to using
a lower rerouting rate.

Figures 3 and 4 show the convergence patterns for all scenarios, by plotting
the average score of executed plans across all agents on a logarithmic y-axis. In
order to do so, the average score across all agents in iteration i, S̄i < 0 has been
transformed by − log10(−S̄i) when plotting, but the axis labels have preserved the
original unit of Si.

It is clearly seen the absolute improvement from iteration 0 to 150 is is much
lower for cyclists than for cars, even though the scores for cyclists is based on
more than a single trip, which also causes their final scores to be lower than for
cars and trucks. Disregarding that they converge to different scores because agents
have different travel times, there seems to be no obvious differences between the
original model and the proposed right-of-way model in terms of convergence speeds
– except for the indirect effect of each iteration being computed faster.

The scores of the right-of-way model seems to have slightly larger variations
between iterations before disallowing new routes to enter the choice set after it-
eration 120, though. Such variation is normal in MATSim, even after scores have
more or less stabilised (Paulsen et al., 2018; Guggisberg, 2020). The fluctuations
seem to be negligible at the aggregate level for the last 30 iterations why this is
not deemed as a problem for the current study.
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Fig. 3 Average executed score of agents for scenarios including car traffic.

Fig. 4 Average executed score of agents for scenarios not including car traffic.

4.3.2 Aggregate statistics

The aggregate results of the simulations are summarised in Table 2. Each of the
columns represents separate scenarios defined by their included modes and the
applied node model. Notice that because bicycle traffic and car traffic are fully
independent when using the original node model (Base), only one column showing
the results of the simulation using all modes is needed for this model. Each of the
row triplets provides the average free-flow, congested, and total travel time for the
mode being shown at the left-hand side of the table.
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By comparing the first column to the second and third column, respectively,
the effect of the right-of-way (RoW) node model for isolated bicycle traffic and
isolated truck and car traffic can be investigated. For bicycle traffic only minor
increases in free-flow and total travel times are seen. On average cyclists, tends
to cycle slightly longer routes but the effect is more or less negligible. The added
total travel time corresponds to 20 % of the congested time of the original model,
which is only slightly lower than for cars (24 %).

However, for cars the absolute changes are much larger, and not only the free-
flow but also the congested travel time increases. This means that even though
cars travel further (or on links with lower freespeed) in order to avoid congestion,
they still end up spending more time in congestion that in the original node model.
Interestingly, for trucks only the congested (and total) travel time increases. Gen-
erally, the results indicate that using the original node model underestimates travel
times compared to the right-of-way model.

By comparing the second and third column, respectively, to the fourth column,
the marginal effects of including the other mode(s) in the simulation can be found.
The tendencies seems similar to those occurring when adding right-of-way to the
uni/bi-modal setup, but a few points are worth mentioning.

Firstly, for all of the modes, the added travel times from including competing
modes are less than or equal to the effect of including right-of-way without com-
peting modes. This shows that, on average, intra-modal conflicts at intersections
inflicts more added travel time than inter-modal conflicts. Secondly, it is found that
motorised traffic witness larger added travel times when adding bicycles, than cy-
clists do when adding cars. This could indicate that right-of-way, as intended, is
indeed favouring cyclists whenever practically possible.

Table 2 showed average travel time for the entire area across the entire day.
However, this includes large portions of the days and geographical areas where
congestion is rarely an issue. Instead, Table 3 provides the same measures, but
where only trips departing between 7am and 8am with destination in Copenhagen
or Frederiksberg Municipalities (the central most 95 square kilometres of the city)

Table 2 Average travel times per mode across all trips [min. / trip]

Included modes

Node model Base RoW RoW RoW

Free-flow travel time 15.12 15.15 — 15.17
Congested travel time 0.15 0.15 — 0.16

Total travel time 15.27 15.30 — 15.33

Free-flow travel time 11.71 — 11.78 11.80
Congested travel time 1.91 — 2.24 2.40

Total travel time 13.62 — 14.02 14.20

Free-flow travel time 13.79 — 13.78 13.80
Congested travel time 1.47 — 1.88 2.07

Total travel time 15.16 — 15.66 15.87
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Table 3 Travel times for trips with destination in Copenhagen or Frederiksberg Municipalities
departing between 8am and 9am – average across 60,202 bicycle trips, 40,082 car trips and
6,649 truck trips [min. / trip]

Included modes

Node model Base RoW RoW RoW

Free-flow travel time 13.87 13.92 — 13.97
Congested travel time 0.35 0.37 — 0.40

Total travel time 14.22 14.29 — 14.37

Free-flow travel time 12.50 — 12.58 12.67
Congested travel time 4.88 — 5.93 7.15

Total travel time 17.38 — 18.51 19.82

Free-flow travel time 8.87 — 8.90 8.98
Congested travel time 2.55 — 3.26 4.30

Total travel time 11.37 — 12.16 13.28

are included. Notice, that as opposed to the grand totals of Table 2 where car
trips largely outnumber trips for other modes, the majority of the subset of trips
used for calculating the numbers in Table 3 are bicycle trips (60,202 as opposed
to 40,082 car trips and 6,649 truck trips).

The effects are more profound than for the total averages. This is as expected
since the road network of the central municipalities is denser, and the traffic den-
sities are higher. Again, the changes for bicycle traffic is limited, although a small
increase in congested travel time is seen when adding right-of-way and cars to the
scenario. For the motorised traffic we see that the marginal effect of modelling
right-of-way is large even in the bi-modal setup. However, for all three modes the
marginal effect of adding competing modes is the larger of the two effects.

This is in contrast to the overall averages across the entire day and area (Table
2, where intra-modal interactions were found to have a larger impact than inter-
modal interactions. The findings highlight the importance of modelling conflicts of
intersections in the central part of cities, as they – to a much larger extend than
rural intersections – influence travel time considerably, especially when including
a large share of bicycle traffic.

The average travel times for bicycle trips to Copenhagen is in line with the
Danish National Travel Survey (Technical University of Denmark, 2020), while
the modelled average travel times for cars are somewhat below. This is could due
to having too short trips in the input demand, but may also be due to specific
parameters of the model requiring additional calibration. Truck trips with desti-
nation in Copenhagen are very short, which can possibly be explained by a large
proportion of short delivery trips.

4.3.3 Spatial analysis

Until now the focus has solely been the effects on average travel times. In this
spatial analysis, the differences in flow across the different scenarios are examined.
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In Figure 5, the link flow differences for cars and trucks between the run with the
original node model and right-of-way scenario without bicycles are shown. Ten-
dencies have been made more clear by using Inverse Squared Distance Weighting
(ISDW) (Shepard, 1968) to create an interpolation surface behind the network.
In order to uniquely determine locations of flows for the Inverse Squared Distance
Weighting, differences in the sum of in- and out-flows at node levels have been
used as input.

It is seen that traffic is generally attracted to larger roads with motorways (see
Figure 2) receiving the highest additional flows. This is both seen for the motorway
bypass, but also for the two motorways going through the western border of the
map. In the latter case, it is clearly seen that the added flows can be explained by
the parallel alternatives using parallel secondary road being less attractive.

Many tertiary roads gains higher flows by attracting traffic from nearby smaller
residential roads, with a prominent example being observed in the upper part of

ΔFlow
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201 - 500
501 - 1000
1001 - 2500
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-2.500 – -1.000
-1.000 – -250
-250 – -100
-100 – -25
-25 – 25
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100 – 250
250 – 1.000
1.000 – 2.500
2.500 – ∞

Fig. 5 Car flow differences between the original node model and the right-of-way model when
only including cars. Negative numbers imply lower car flows when using the right-of-way model.
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the central part of the map. Using the original node model, many agents found it
beneficial to use a shortcut of lower ranked links which is now no longer beneficial.

Another tendency is that traffic is more likely to avoid the central part of
the city, as the main arterial roads going towards the city – and the city centre
itself – are seen to have lower flows when modelling right-of-way. This shows that
neglecting to model right-of-way does not only underestimate travel time, it also
causes the flow distribution between urban roads and motorways to be biased
towards the urban roads going through the city centre.

These findings are in line with Nielsen et al. (1998a, 2002) and the expectations
of the impacts of the right-of-way model, as the right-of-way model is designed to
add excess travel times to vehicles passing through intersections via non-prioritised
roads.

Whereas the previous map showed the effect of including right-of-way for car
traffic, Figure 6, shows the car/truck flow differences between the car/truck right-
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Fig. 6 Car flow differences for the right-of-way model with and without bicycles. Negative
numbers imply lower car flows when including bicycle traffic.
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of-way scenario, and the joint tri-modal right-of-way scenario. In this regard, all
the flow changes are derived marginal effects from having to yield for bicycles.

A tendency seems to be that cars are more likely to avoid the city centre
when modelling right-of-way and including bicycle traffic. This makes sense as the
bicycle traffic is most profound in this area. Instead, some car users seem to avoid
the central part of the city altogether by using the motorway bypass, although to
a less extend that what is seen in Figure 5. The inner ring road (of type ”Primary”
in Figure 2) also gets higher flows when adding bicycles to the model.

This shows that traffic through the central part of the city will still be over-
estimated in models that only includes intersection delays caused by intra-modal
interactions, as there also is a marginal effect of inter-modal interactions caused
by conflicting bicycle traffic. In consequence, multi-modality in the case of bicycle
traffic and motorised traffic must be dealt with jointly, as treating them separately
would bias the resulting traffic flows.

A map showing the full car flow differences between using the original MATSim
node model and using the right-of-way node model while also simulating bicycle
traffic is included as a supplementary Figure 7 in Appendix A. As such, Figure 7
can be seen as the sum of the effects from Figures 5 and 6.

5 Discussion and future research

The previous sections showed that disregarding conflicts at intersections in traf-
fic assignment models will generally inflict a bias, in the sense that travel times
through the urban core are underestimated. This is in line with previous studies
on intersection modelling for car traffic such as Nielsen et al. (1998a, 2002). The
fact that bicycle traffic reduces the traffic through the city centre even further,
may have undesirable effects on how cities are formed. If transport models show
that cars are not willing to use bypasses, there is a risk that policy makers may
adopt the idea that cars have to go through the city centre, although it might
better to separate car and bicycle traffic by guiding a more cars around the city.

Travel times of bicycle traffic did not change much when adding car traffic to
the simulation – at least not in absolute terms. But even though the sheer added
travel time was low, waiting at intersections is still particular burdensome for
cyclists as even short waits requires braking, (partially) dismounting, and using
a lot of energy to regain speed. In this regard it would be relevant to add other
relevant attributes to the scoring functions as the current setup only includes
parameters for ”free flow” and congested travel time.

One of the reasons why excess travel time for cyclists is low in the current study,
could be due to traffic signals not being included in the model. Traffic signals often
causes waiting time at intersections, but on the other hand also frequently allow
traffic to cross busy roads. Although traffic signals in Copenhagen are coordinated
so that cyclists face green waves, including traffic signals to the model would most
likely increase the time of bicycle traffic. The implementation of traffic lights is
methodologically straightforward, as it can be done by simply updating tm of all
movements facing a red light, and would have practically zero impact on the com-
putation times of the model. Determining the phases, offsets, and which nodes
and links to include in each signalised intersection would, however, require a lot
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of manual work as such information is not available in OpenStreetMap (Open-
StreetMap, 2020), and no previous models of the region utilising such information
are based on OpenStreetMap.

The proposed methodology still fulfils a valuable task, although traffic lights
are not included in the study. Firstly, because it is very relevant in applications
where signalised intersections are included, since omitting to do so could cause
travellers to avoid traffic lights, as the excess travel time from a small detour
around the traffic signal will be lower – when allowing passing through conflicting
traffic – than corresponding the waiting time the traveller would have to incur
at the traffic light. Secondly, particularly for appraisal purposes concerning major
changes in the network, the model could be a pragmatic solution to capture some
of the delays at intersections without having to deal with the cumbersome task
of manually configuring traffic signals for such scenarios. As such, comparing the
differences between results of the proposed method and scenarios with traffic lights
implemented would be relevant for future research.

In addition to being a well-suited method for evaluating projects believed to
have a large multi-modal impact, the model would be particularly relevant to
evaluate the effects of changes in right-of-way laws, such as lowered/increased
prioritisation of bicycle traffic. Using the model to investigate the effect of such
policies would also be an interesting research topic for future research. Finally, it
would also be relevant to investigate how increased demand for cars and bicycles
influence congested travel time with and without modelling of right-of-way.

6 Conclusions

This study formulated and applied a method for simulating cars and bicycles sepa-
rately along links while modelling in great detail the delays caused by intra-modal
as well as inter-modal conflicts at intersections. Intersection delays have never
been included in a dynamic traffic assignment models with realistic simulation of
bicycle traffic, and a model for inter-modal conflicts at intersections has never in-
tegrated in a large-scale agent-based traffic assignment model. The network nodes
were initially categorised into one of five different node types, allowing each of the
nodes to process crossing traffic differently while taking multi-modal right-of-way
into account. The methodology was implemented in MATSim (Horni et al., 2016),
and applied to a large-scale case study of Metropolitan Copenhagen with a total
of 4,593,059 trips of bicycles, cars, and trucks assigned to a network of 572,935
links and 144,060 nodes. The case study showed that despite increasing the com-
putation time slightly (2-16 %), the suggested node modelling methodology still
allows large-scale scenarios to be simulated within feasible computation time.

The results demonstrated that the marginal effects on bicycle traffic when
adding right-of-way and cars to the simulation was almost negligible, although a
travel time increase equivalent to a noteworthy part of the congested time was
found for bicycles in Copenhagen in the morning rush hour.

However, right-of-way had substantial impact on motorised traffic. Firstly, it
was shown that travel times were considerably underestimated when neglecting
to include travel time delays caused by conflicts at intersections, especially in the
central part of the city when also including bicycle traffic. Secondly, car flows were
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seen to be reduced in the central part of the city, whereas bypasses, especially the
bypass motorway, received additional flow compared to the baseline scenario.

Although no previous studies have investigated the effect of multi-modal right-
of-way in agent-based transport simulation, these findings seem intuitive and in
line with somewhat similar studies such as Nielsen et al. (1998a, 2002), who also
found that turn delays caused by other motorised traffic would deviate traffic
towards alternatives avoiding the city centre. But this study further underlines
that the effect of bicycle traffic most also be included, as the inter-modal conflicts
account for the majority of the intersection delays for cars travelling in the urban
core and has considerable impact on flow distribution.

The study has shown that it is possible to model intersections in agent-based
traffic simulation in much greater detail and much more realistically than what
is normally done without causing noteworthy overhead in computation times. It
further highlights the importance of treating multi-modality jointly rather than
separated in urban traffic assignment models, even in cities with a high level of
segregation between transport modes as the impact of inter-modal conflicts at
intersections are too influential to ignore.
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Fig. 7 Car flow differences between the uni-modal car scenario with the original node model
and the tri-modal right-of-way model scenario. Negative numbers imply lower car flows in the
latter.

Mesoscopic Simulation of Multi-Modal Urban Traffic 127



128 Mesoscopic Simulation of Multi-Modal Urban Traffic



7 Conclusions

The PhD thesis has led to a further understanding of how agent-based modelling can
be used for various types of mesoscopic simulation of multi-modal urban traffic. The
contributions across three topics presented in this thesis are important to researchers for
further development of such models, but also gives rise to more general implications in
transport planning, for instance regarding how to prioritise urban spaces in a way that
facilitates efficient transport in cities.

The following sections (Sections 7.1-7.3) present the main conclusions within the three
research areas of the thesis: i) Output variability in agent-based simulation of transport
systems, ii) Agent-based passenger delay modelling with real-time information, and iii)
Agent-based simulation of bicycle traffic and interaction with cars. Section 7.4 summarises
the policy implications spawned by the five articles and the PhD thesis as a whole, whereas
the final Section 7.5 outlines directions for future research.

7.1 Output variability in agent-based simulation of transport
systems

Part I of the thesis consisting of Paper 1 raises the question of the how much the output of
agent-based transport simulation models differ when changing the random seed. Whereas
other sources of uncertainties can be limited by providing better model assumptions or
input, the variability originating from the choice of random seeds is a fully inherent
part of such models. Although the phenomenon has previously been documented in
the literature for decades (Nagel, 1997), no previous studies has taken on the task of
scrutinising whether the variability of disaggregate measures such as individual link flow
is a problem of real concern or simply an academic curiosity.

The paper examines link flow variability in depth through a large-scale MATSim (Horni
et al., 2016) case study of Santiago de Chile (Kickhöfer et al., 2016) with 665,201 agents.
Using out-of-the-box configurations the scenario is run 100 times with a different random
seed in each run. In line with existing literature (Lawe et al., 2009; Ziems et al., 2011),
the analysis based on the variability in daily flows across the 100 seeds for each of the
22,981 links finds that the coefficients of variation were below 5% for the majority of
links. However, despite the low average coefficients of variation, some links – primarily
links with low traffic volumes but also some with high – deviate more than 15% from their
grand total average daily traffic flow for certain seeds. Luckily, this effect is found to be
almost fully independent of the selected random seed on an aggregate level, meaning that
the study does not find any seeds that are systematically closer to or further from the
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mean of the distribution. Finally, it is shown that the variation across runs with different
seeds is generally much higher than variation between the last and penultimate iteration
of each seed. This is interesting as it provides empirical support for the suggestion of
Flötteröd (2016) to recognise that the output of a single run should not be regarded as a
unique solution, but rather a single realisation from the set of possible solutions, why it
is more appropriate to base analyses on outputs across several model runs using different
seeds. The paper goes even further by recommending doing so even if it comes at the
expense of reducing the number of iterations per seed.

7.2 Agent-based passenger delay modelling with real-time
information

Paper 2 forming Part II of the thesis focuses on passenger delays in public transport
systems. Whereas the literature has an abundance of studies on vehicle delays, the
extend of literature on passenger-oriented perspectives leaves much to be desired (Parbo
et al., 2016). This is somewhat remarkable, as the experiences of the users ideally should
be central when determining whether a transport system is successful.

The paper formulates an agent-based, adaptive passenger path choice model for simu-
lating the en-route decisions of public transport passengers as they travel through the
network while receiving real-time information about the public transport system. The
paper differentiates itself from other similar studies by using 65 days of actual Automated
Vehicle Location (AVL) data for trains and buses as direct input for vehicles delays, pre-
viously only done for uni-modal train networks in Nielsen et al. (2009); Lijesen (2014)
and the in many ways inadequate study by Paulsen et al. (2018). For each of the 65 days
with available data corresponding paths are modelled for all 801,719 public transport
trips in the public transport system of Metropolitan Copenhagen offering a wide range of
alternatives through transfers.

The computation times of the model are kept low due to several methodological and
technical optimisations, making it fast enough to be large-scale operational on a day-to-
day basis or in real-time. An analysis of occurrences of on-board notifications of better
alternatives emerging shows that such a system is generally most useful at stations with
a variety of high-classed alternatives. However, the paper does not find it particularly
favourable to be able to also search for better alternatives while walking or being on
board public transport vehicles, as although the mean passenger delay can be reduced
marginally, it comes at the expense of slightly increasing the standard deviation and
often leads to what eventually turns out to be suboptimal paths. Spatial effects are also
investigated, showing that passenger delays are generally lower when travelling to or from
the central parts of Copenhagen, and that passenger redistribution away from a particular
unreliable railway line (Kystbanen) is substantial. The study finds that receiving real-time
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information, either pre-trip but ideally during the trip is key to keeping passenger delays
at a reasonable level, as average delays are reduced from 10.4 minutes to 5.3 (pre-trip)
or 3.5 (en-route) minutes by doing so. In all cases, passenger delays are still way above
the corresponding vehicle delays, stressing that using vehicle delays as a measure of the
performance of the system is insufficient from a passenger perspective.

7.3 Agent-based simulation of bicycle traffic and interaction with
cars

Part III containing Papers 3, 4, and 5 is the final and largest part of the thesis. It develops
a methodology for realistic and efficient simulation of high intense bicycle traffic based on
heterogeneity across cyclists, and integrates it in a dedicated bicycle traffic assignment
model as well as a joint traffic assignment model for bicycle and car traffic, both applied
in large-scale case studies of Metropolitan Copenhagen. The contributions and main
findings of each of the three associated papers are summarised in the following.

The first of these papers (Paper 3) is in many ways the underlying theoretical foundation
for the two subsequent papers. In line with Twaddle et al. (2014) the literature review
finds that previous bicycle simulation approaches were either too simple to be realistic
or too computationally demanding to be feasible in large-scale applications. As such,
the paper develops a computational efficient agent-based simulation model dedicated for
bicycle traffic based on a set of simple assumptions. The assumptions are all tailor made
for bicycle traffic and acknowledges the large heterogeneity among cyclists and the need
for explicit modelling of overtaking. Two of the defining assumptions concerning desired
speed and preferred headway distances. These are assumed to vary across cyclists, and
suitable distributions – Johnson’s SU Distribution for desired speeds and a speed dependent
symmetric Beta Distribution for headway distances – are estimated accordingly based on
observed bicycle traffic data from low intensity traffic. Another important assumption is
that bicycle links can be divided into pseudolanes among which agents explicitly have to
choose between on-the-go when entering links.

The model is put to the test through small scale experiments of one simulation hour on
two networks of three serial links with traffic intensities varying between 50 and 10,000
cyclists per hour. As intended, the model has the ability to often delay cyclists with
high desired speeds, who are delayed even at moderate traffic flows, whereas cyclists with
lower desired speeds generally require larger traffic flows to be witness excess travel time.
The corresponding fundamental diagrams are compared to those from observed bicycle
traffic of 3,763 cyclists on the very busy Queen Louise’s Bridge collected through one
hour of state-of-the-art video tracking data, and are found to coincide extremely well
with the fundamental diagrams of the simulation experiments. The research highlights
the importance of recognising and explicitly modelling overtaking and speed heterogeneity
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when simulating congested bicycle traffic, and demonstrates that such a model can be
computationally efficient and estimated entirely based on low volume bicycle traffic data.

Whereas Paper 3 presumes that its simulation model is large-scale applicable based on
running times of small scale experiments, this is eventually proven in Paper 4 (and again
in Paper 5 with even lower running times) where the methodology is implemented in
MATSim (Horni et al., 2016). The paper (Paper 4) begins by exposing the literature
gap regarding proper traffic assignment of dedicated bicycle traffic, and closes the gap
by combining aforementioned methodology with a route choice model in a framework
where travel times are influenced by the demand and route choices respond to the travel
times. The resulting model is applied to a large-scale case study of Metropolitan Copen-
hagen with 1,082,958 bicycle trips spread across 547,085 agents with individualised desired
speeds and headway distance preferences. The study shows that an iterative approach
with a feedback is in fact necessary as some cyclists end up choosing different routes
than in the initial iteration – avoiding busy corridors with few lanes, and being attracted
to corridors with many lanes. Excess travel times are found to be small (0.12 minutes
on average), which can be partially explained by excess capacity in the network when
rerouting. Although a fictitious scenario with single-lane infrastructure shows congestion
would be considerable if the infrastructure was poor, the study backs that bicycle traffic
is highly resistant to congestion.

The final paper, Paper 5, extends the methodology of the two previous papers by in-
cluding car traffic and multi-modal intersection modelling. The paper formulates a node
model that simulates traffic in accordance with right-of-way laws, ensuring that vehicles
and cyclists must yield for intra-modal and inter-modal conflicting movements of higher
priority. The model categorises every node of the network into one of five overall node
types which processes incoming traffic in different ways. The method is applied to a
large-scale scenario of Metropolitan Copenhagen with more than 4.5 million trips spread
across cars (3,210,685), trucks (299,416), and bicycles (1,082,958) and a network con-
sisting of 572,935 and 144,060 nodes. Scenarios with the original MATSim node model
as well as the right-of-way model formulated in the paper are each run with three differ-
ent populations: Cyclists only, cars and trucks only, and all of the three. The model is
demonstrated to be large-scale applicable with running times only slightly higher (2-16 %)
than the original model. The aggregated travel times show that including right-of-way
at nodes increases travel times considerably for car and truck traffic, especially within
the city where conflicting bicycle traffic is frequent and inter-modal conflicts is a larger
source of added travel time at intersections than the intra-modal conflicts from other
cars. Furthermore, a spatial analysis of flow differences illustrates that neglecting to
model right-of-way at intersections not only underestimates travel times but also over-
estimates the traffic going through the city centre. As such, the study underlines the
importance of modelling multi-modality in urban areas jointly.
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7.4 Policy implications

The PhD thesis has contributed within three different areas of agent-based transport
simulation. A selection of the most relevant associated policy implications is given below.

Firstly, the findings of Paper 1 can be used as important guidelines concerning how to use
agent-based transport models when performing project appraisal. Given that the results
can be generalised, the conclusions discourage analysing results on the basis of a single
model run, unless only evaluating very aggregate measures. Instead, from a transport
modelling perspective it seems to be favourable to run several seeds with fewer iterations
than many iterations with a single seed, and then present outputs as distributions. This
may, however, have undesired implications as model predictions with uncertain outcomes
to a large degree have a risk of being disregarded by decision makers that deem them
incomprehensible (te Brömmelstroet et al., 2017). Alternatively, in order to still be able
to present results as a single number, using the mean across different seeds instead
of the output of a single run as suggested by Wegener (2011); Flötteröd (2016) could
become customary. It may also indicate that such models, in general, are better suited for
evaluating wider policy actions such as road pricing than for instance appraising projects
expected to only influence a limited geographical area, and where the appraisal requires
exact disaggregate estimations. This issue and how to proceed with this topic in a research
perspective is discussed further in Section 7.5.

Secondly, Paper 2 contributes to a better understanding of the importance of passenger
real-time information in public transport networks with a large number of alternatives. In
line with previous studies such as Nuzzolo et al. (2001); Cats et al. (2011); Zargayouna
et al. (2018), it is shown that providing sufficient real-time information to passengers is
a useful means for lowering passenger delays, in turn, increasing passenger satisfaction
in metropolitan public transport systems. Previous findings of Nielsen et al. (2009) that
passenger delays are generally much larger than vehicle delays were confirmed in a large-
scale multi-modal setting by the study, suggesting that there is a large potential in this
regard. However, the paper also showed that there is a limit to how much passengers can
benefit from retrieving real-time information more frequently – at least with the simple
real-time predictions used in the study, see also Section 7.5.

Thirdly, the research on simulation of bicycle traffic has underlined the importance of
acknowledging and modelling cyclists as a heterogeneous group. As such, although traffic
on dedicated bicycle tracks has very large capacities (Paper 3), Paper 4 shows that if the
infrastructure is not built to accommodate overtaking, even bicycle traffic may be subject
to significant congestion. In order to ease overtaking even further, it may be beneficial – as
it is already done on some bicycle tracks in Copenhagen - to mark a lane on the left hand
side of infrastructure intended for overtaking. Having in mind how space efficient bicycle
traffic is and how small a proportion of the road space it requires to provide excellent
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facilities compared to car lanes, on-street parking, etc., wide bicycle tracks is an easy and
affordable way to future-proof reliable and sustainable transport in otherwise congested
urban environments. As such, it is highly recommended to ensure that cyclists have such
high quality infrastructure available for more or less the entirety of their journeys.

Fourthly, Paper 5 underlines the importance of modelling multi-modality jointly when
evaluating projects that are expected to influence the central part of cities where the share
of cyclists is high. Bicycle traffic is shown to have serious impacts on the accessibility of
car traffic in such areas why failing to include such inter-modal interactions biases traffic
flows by overestimating urban car traffic. Such bias is problematic as it may cause policy
makers to believe that there is no alternative to car traffic in central parts of the cities.
The findings also show that taking additional measures towards a higher separation of
car and bicycle traffic, e.g. by providing isolated bicycle tracks that shortcut through
the city, would not only benefit cyclists, but would also eliminate the number of shared
intersections, hence allowing car traffic to run smoother.

However, the largest policy implication has a more abstract nature. The thesis has
developed a bicycle traffic assignment simulation model capable of modelling realistic
travel times for bicycle traffic at a metropolitan scale. This means that for any projected
intervention that may be suspected to influence the bicycle traffic, the impacts on bicycle
traffic should no longer fly under the radar, but instead be evaluated and included in the
appraisal of the project.

7.5 Future research

Directions for future research have already been outlined in the individual papers of the
thesis. However, a few areas are worth highlighting.

As pointed out in Paper 1 and earlier in reviews by Wegener (2011); Bazzan and Klügl
(2014), the stochastic and interdependent nature of such models is a challenge that
need to be addressed thoroughly. There has already been some progress within the field
since publication of Paper 1, as Guggisberg (2020) investigated between-run variability
and related topics in MATSim (Horni et al., 2016). The study is yet another important
step towards understanding the variability of MATSim (and agent-based traffic simula-
tion models in general), and points towards using different approaches from Fourie et
al. (2013); Flötteröd (2019) for reaching more consistent final states. Although such ap-
proaches might reduce variability, the outputs of stochastic simulations are still inherently
stochastic for most scenarios. How to deal with such uncertainty in a way that allows
uncertain results to be comprehended and interpreted by non-researchers is a matter that
should receive much more attention than it has had so far. A more tangible but still rele-
vant topic, is whether the effects of local infrastructure projects are able to shine through
the variability when consistently evaluating the same project using different seeds.

134 Mesoscopic Simulation of Multi-Modal Urban Traffic



In terms of passenger delay modelling it would be very interesting to investigate to which
extent more advanced predictive real-time information methods such as Corman and
Kecman (2018); Petersen et al. (2019) could reduce passengers delays even further.
Although such have shown to predict vehicle arrivals more accurately, their effect on
door-to-door passenger delays still needs to be evaluated. The passenger delay model
formulated in Paper 2 would be an appropriate tool for doing so.

Even though this thesis has pioneered the topic of demand-sensitive bicycle traffic assign-
ment models (Papers 3, 4, and 5), it has barely scratched the surface. In order to close
the gap to the capabilities of equivalent models of car traffic, significant advances still
need to be made. For instance including wider set of variables in the route choice part
(e.g. gradient, land-use, and surface), exploring how desired speed is influenced by such
variables, influence by weather, etc. There is also a need for further understanding of the
underlying correlation and causation structures of trip length and desired speeds in order
to be fully able to model the impact of large network improvements such as bicycle super
highway projects.

Finally, the developed methodology is highly suited for evaluating the effects of increasing
penetration rates of other types of bicycles such as e-bikes and speed pedelecs, as these
can easily be included in the model. In this regard, it would be interesting to use the
model to determine to which extent such can reach their full potential when used on
congested bicycle networks, and whether they might be a space efficient and sustainable
alternative to car traffic in urban areas.
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Advanced transport models capable of estimating traffic patterns and travel times are important
tools when planning for sustainable mobility, especially in congested, urban contexts.

Through five papers, this thesis contributes to the field of large-scale agent-based traffic sim-
ulation by increasing the understanding of uncertainties of such models and developing new
methodologies for modelling detailed individual behaviour in a computationally efficient fashion.
Firstly, the inherent output variability caused by the dependence on pseudo-random numbers is
analysed through repeated large-scale experiments. Secondly, a model for simulating adaptive
passenger behaviour under presence of real-time information of public transport vehicle delays is
formulated and implemented for a large-scale case study of Metropolitan Copenhagen. Finally,
the thesis develops a methodology for realistic simulation of congested bicycle traffic based on
speed heterogeneity, which is later implemented in a large-scale agent-based traffic assignment
model allowing realistic simulation of bicycle as well as car traffic and their mutual interaction
at intersections for the entire Metropolitan Copenhagen.
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