Integrated personalized diabetes management goes Europe
A multi-disciplinary approach to innovating type 2 diabetes care in Europe

Jones, Allan; Bardram, Jakob Eyvind; Bækgaard, Per; Cramer-Petersen, Claus Lundgaard; Skinner, Timothy; Vrangbæk, Karsten; Starr, Laila; Nørgaard, Kirsten; Lind, Nanna; Bechmann Christensen, Merete

Total number of authors:
19

Published in:
Primary Care Diabetes

Link to article, DOI:
10.1016/j.pcd.2020.10.008

Publication date:
2021

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Review

Integrated personalized diabetes management goes Europe: A multi-disciplinary approach to innovating type 2 diabetes care in Europe

Allan Jones a,*, Jakob Eyvind Bardram b, Per Bækgaard b, Claus Lundgaard Cramer-Petersen b, Timothy Skinner c, Karsten Vrangbæk c, Laila Starr c, Kirsten Nørgaard d, Nanna Lind d, Merete Bechmann Christensen d, Charlotte Glümer e, Rui Wang-Sattler f,g, Michael Laxy f,g, Erik Brander h, Lutz Heinemann i, Tim Heise i, Freimut Schliess j, Katharina Ladewig j, Dagmar Kownatka a

a Roche Diabetes Care GmbH, Mannheim, Germany
b Technical University of Denmark, Lyngby, Denmark
c University of Copenhagen, Copenhagen, Denmark
d Steno Diabetes Center Copenhagen, Gentofte, Denmark
e Research Centre for Prevention and Health, Glostrup, Denmark
f German Research Centre for Environmental Health, Neuherberg, Germany
g German Center for Diabetes Research, Germany
h Region Sjælland, Søborg, Denmark
i Profil, Neuss, Germany
j EIT Health Germany, Germany

ARTICLE INFO

Article history:
Received 9 July 2020
Received in revised form 15 October 2020
Accepted 18 October 2020
Available online xxx

Keywords:
Delivery of health care, integrated
Value-based health insurance
Patient reported outcome measures
Artificial intelligence
Diabetes mellitus, type 2

ABSTRACT

Type 2 diabetes mellitus is a multi-dimensional challenge for European and global societies alike. Building on an iterative six-step disease management process that leverages feedback loops and utilizes commodity digital tools, the PDM-ProValue study program demonstrated that integrated personalized diabetes management, or iPDM, can improve the standard of care for persons living with diabetes in a sustainable way. The novel “iPDM Goes Europe” consortium strives to advance iPDM adoption by (1) implementing the concept in a value-based healthcare setting for the treatment of persons living with type 2 diabetes, (2) providing tools to assess the patient’s physical and mental health status, and (3) exploring new avenues to take advantage of emerging big data resources.

© 2020 The Authors. Published by Elsevier Ltd on behalf of Primary Care Diabetes Europe. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Contents

1. Integrated personalized diabetes management..00
2. Assembling an international consortium to implement and enhance iPDM ...00
3. iPDM-GO: a personalized approach to increase value in diabetes care ...00
4. EIT Health: an enabler of innovation ..00

Abbreviations: BMI, body mass index; CLOSE, automated glucose control at home for people with chronic disease; DT SQc, Diabetes Treatment Satisfaction Questionnaires for change; EIT, European Institute of Innovation and Technology; EU, European Union; ICHOM, International Consortium for Health Outcomes Measurement; IDF, International Diabetes Federation; HbA1c, hemoglobin A1c; iPDM, integrated personalized diabetes management; iPDM-GO, Integrated personalized diabetes management goes Europe; KIC, knowledge and innovation community; KORA, Kooperative Gesundheitsforschung in der Region Augsburg; PROM, patient reported outcome measure; SMBG, self-monitoring of blood glucose; T2DM, type 2 diabetes mellitus; VBHC, value-based healthcare.

* Corresponding author.
E-mail address: allan.jones@roche.com (A. Jones).

https://doi.org/10.1016/j.pcd.2020.10.008
1751-9918/© 2020 The Authors. Published by Elsevier Ltd on behalf of Primary Care Diabetes Europe. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Please cite this article as: A. Jones, et al., Integrated personalized diabetes management goes Europe: A multi-disciplinary approach to innovating type 2 diabetes care in Europe, Prim. Care Diab., https://doi.org/10.1016/j.pcd.2020.10.008
1. Integrated personalized diabetes management

In 2019, the International Diabetes Federation (IDF) estimated that worldwide approximately 463 million adults between 20 and 79 years of age were living with diabetes, (59 million in Europe), of whom roughly 90% had type 2 diabetes mellitus (T2DM) [1]. The IDF further estimated that in the same year diabetes resulted in a global healthcare expenditure exceeding 760 billion USD, comprising approximately 10% of the total healthcare expenditure for adults worldwide, again with a large proportion due to the burden of T2DM. One reason for the enormous costs associated with T2DM is that despite the availability of multiple therapeutic intervention strategies, many patients still fail to achieve their treatment targets [2–5]. This is at least partially due to a phenomenon known as clinical inertia, i.e. the ineffectiveness of treatment intensification to improve clinical outcomes among patients who do not achieve their treatment goals despite the availability of guideline compliant healthcare services [6–8]. Other barriers that undoubtedly also limit treatment success include insufficient therapy adherence and lack of patient empowerment, both of which are dependent on the applied approaches and therapies [9–12]. Together, these barriers point towards a need for the provision of evidence-based, patient-centered approaches to T2DM care if we want to improve outcomes for persons living with T2DM.

Integrated personalized diabetes management (iPDM) is an interventional approach consisting of a structured disease management process, which utilizes digital tools and aims at bringing together physicians and patients for collaborative, therapeutic decision-making. The process incorporates six defined steps that are repeated iteratively throughout the diabetes care process and are, ideally, adapted to an individual patient’s unique circumstances (Fig. 1) [13]. Specifically, the six steps include:

1. Structured assessment and training of each patient by the medical team;
2. Structured and therapy-adapted self-management of blood glucose levels (and other parameters) in a manner that is adapted to the individual patient’s therapy requirements and circumstances;
3. Structured documentation of clinical information including blood glucose levels and other data using digital tools;
4. Systematic analysis of patient generated data using digital tools in close collaboration between the patient and their treating healthcare professional on a regular basis;
5. Shared decision making and commitment about personalized treatment strategies based on individual circumstances and abilities; and
6. Regular treatment effectiveness assessments in which therapy is adjusted or adapted, if considered necessary.

Taken together, the iPDM approach leverages therapy-relevant data to inform treatment decisions while facilitating both shared decision-making and patient empowerment, all of which are important components of patient-centric care. Indeed, several aspects of the iPDM approach are in line with both the United States chronic care model, a structured approach to changing healthcare by involving communities in a primary care setting, and the European Association for the Study of Diabetes (EASD) and American Diabetes Association (ADA) consensus report for the management of hyperglycemia in T2DM [14,15].

In applying iPDM, the PDM-ProValue study program, which included 907 patients with insulin treated T2DM in Germany, demonstrated the impact iPDM can have upon outcome parameters including metabolic control and treatment satisfaction [16–18]. The iPDM intervention not only resulted in a greater reduction of haemoglobin A1c (HbA1c) from baseline compared to usual care, but also resulted in significantly higher patient treatment satisfaction, as measured by the Diabetes Treatment Satisfaction Questionnaires for change (DTSQc), and physician satisfaction after 12 months. A follow up report on the PDM-ProValue study program further demonstrated that both patients and physicians perceived a benefit in the utilization of digital tools in a structured manner [19]. In this respect, further personalization of each step encompassed within the iPDM cycle may have the potential to provide additional benefits as treatment is further tailored to the individual person living with T2DM’s unique needs in the future.

2. Assembling an international consortium to implement and enhance iPDM

The PDM-ProValue study program served as the foundation and starting point for ‘iPDM Goes Europe’ (iPDM-GO), a three-year innovation project curated by the European Institute of Innovation and Technology (EIT) Health, a public private partnership backed by the European Union (EU). The consortium behind the project includes organizations with key capabilities in healthcare service provision as well as in the clinical development of healthcare technologies, products and services. These skills are complemented by competencies in the fields of healthcare research and economic modelling as well as in the conceptualization and implementation of training and education. The collaborating consortium partners include a global healthcare corporation, a clinical contract research orga-
nization, leading universities, an academic diabetes centre at a
maximum care hospital, a municipal centre for diabetes care, and
a model region exploring the possibilities of value-based healthcare
(VBHC) remuneration schemes.

In brief, the project’s overarching goal is to systematically
explore options for implementing and enhancing iPDM in Euro-
pean healthcare systems by putting it into the context of VBHC.
Specifically, the consortium aims to enhance the iPDM process by
co-creating a novel digital, smartphone-based patient assessment
tool that both captures persons with T2DM’s physical and mental
health and disease traits and helps them address specific health
goals. The data collected from this smartphone-based tool will
be available for healthcare providers in a cloud-based data man-
agement and analysis platform, which will provide them with an
in-depth understanding of the patient’s individual needs, barriers
and circumstances. This may also enable healthcare providers to
adapt a person-centric viewpoint and integrate diverse dimensions
of the patients’ individual life situations. In parallel, the consor-
tium strives for a further enhancement of iPDM by developing
novel algorithms for early prediction of individual disease traits and
chances of treatment success. Robust health economic modelling
will be an essential component of this endeavour in order to mea-
sure the impact iPDM enhancement has on some of the main drivers
of diabetes-related costs, including hospitalisation and the occur-
rence of co-morbidities [20]. Importantly, the novel tools developed
in the iPDM-GO project will be co-created with continuous and iter-
ative input from all relevant stakeholder groups aiming to add real
value for persons with T2DM, healthcare professionals and health-
care providers alike.

3. iPDM-GO: a personalized approach to increase value in
diabetes care

There is substantial evidence indicating that digital tools and
telemedicine approaches can improve outcomes for persons liv-
ing with chronic diseases. Hu et al., for instance, analysed the
impact of telemedicine on hypoglycaemia in diabetes across 14
randomized controlled trials published between 2006 and 2017.
While the authors did not observe an effect on patients’ body
mass index (BMI), they did observe improvements in HbA1c and a
reduced occurrence of moderate hypoglycaemia [21]. Similarly,
the ValCronic telemonitoring program, which focused on high-risk
patients with at least one long-term condition including diabetes,
high blood pressure, heart failure and chronic obstructive pul-
mmonary disease treated in primary care, is also worth mentioning.
Among other things, the telemedicine intervention applied in this
study resulted in significant improvements in weight control, blood
pressure and HbA1c levels, as well a decrease in primary care
emergency service utilization after 12 months of intervention, pro-
viding further support for the potential of digital health solutions
[22]. Despite the aforementioned promising results, however, it
is important to note that sufficient clinical evidence is needed
when developing digital healthcare solutions, given that several
barriers need to be overcome for their broad and successful imple-
mentation. These barriers include challenges concerning long-term
engagement of different patient groups, socioeconomic aspects
and the so-called “digital divide”, an aging society and varying lev-
els of digital health literacy among different demographic groups
[23–27].

A key deliverable of the iPDM-GO project will be the delivery of
a clinically tested adaptive, smartphone-based patient assessment
tool to help monitor, tailor and prioritize individual patients’ T2DM
management plans, remotely as well as in the physician’s practice.
The tool, designed according to the Personal Health Technology
Model, will create individual profiles based on a psychosocial
assessment process, self-reported data on well-being and physical
and mental health, automatic collection of biomedical health infor-
mation, and real-world contextual information [28]. In doing so, the
tool aims to enable persons with T2DM, and their treating health-
care professionals to focus their limited clinical interaction time on
the most effective personalized diabetes management plans. The
objective is that the results of the longitudinal psychosocial assess-
ments will continuously improve the communication between patients
and their treating physicians and pinpoint relevant areas of
concern in order to improve outcomes for individual persons with
T2DM, for example via specified behavior change measures. By syn-
chronously collecting the most relevant patient reported outcome
measures (PROM) over time, including those proposed by the Inter-
national Consortium for Health Outcomes Measurement (ICROM),
the patient assessment tool will also provide an infrastructure to
help inform the design and execution of outcomes-based contracts
while enhancing different aspects of the iPDM cycle.

Beyond the aforementioned psychosocial assessment tool, the
iPDM-GO consortium is also working towards leveraging the
potential of population data in combination with robust health
economic modelling to enhance iPDM effectiveness and scalabil-
ity. By applying several machine learning approaches to multi-level
“omics” data from the ‘Cooperative Health Research in the Region
of Augsburg’ (KORA) cohort we aim to provide both diagnos-
tic and predictive algorithms assessing the individual risk for
co-morbidities in the area of diabetes [29]. In the future, such
algorithms may support an accurate assessment of each patient’s
unique health and disease signatures and refine the prognosis of
iPDM responsiveness and corresponding disease course scenarios.
This again would inform renewed shared decision–making and con-
tribute to gearing iPDM expansion towards diabetic complications.

Finally, to support an effective rollout of iPDM in Europe, the
iPDM-GO consortium is exploring concepts for value-based busi-
ness creation in different European healthcare systems starting in
a Danish community setting. In this regard, we believe, that a con-
certed effort by academic, administrative and industry partners to
co-create impactful new business models holds great potential for
changing the way healthcare is delivered and moving from volume
to VBHC. These efforts will be informed by economic modelling
approaches and an analysis of existing programs and best practices
compiled from a policy and operational perspective and supported
by multiple international experts in European healthcare [30].

4. EIT Health: an enabler of innovation

The EIT Health public–private partnership is one of the EIT’s
eight knowledge and innovation communities (KICs). It comprises
approximately 150 partner organizations from multiple sectors
and countries across Europe with the common ambition of tack-
ling some of Europe’s most pressing healthcare challenges while
delivering innovative products and services where they are needed
the most. In this respect, the EIT Health network connects a vast
number of renowned European organizations and stakeholder
associations from the fields of business, research and education
with the overarching goals of (1) strengthening healthcare sys-
tems in Europe, (2) promoting better health of citizens, and (3)
contributing to a sustainable health economy.

Placing iPDM-GO within the EIT Health innovation project
portfolio is thus an important lever supporting VBHC and the
sustainable enhancement of iPDM in Europe. Traditional funding
schemes often focus on the research and development of individual
products aimed at specific markets. In iPDM-GO, however, we strive
to implement a new and innovative healthcare model that requires
a holistic vision on processes, technology, and markets. To support
this, EIT Health provides easy access to co-creation communities,
living labs, test beds and multiple stakeholder organizations. Moreover, the EIT Health KIC exposes projects like iPDM-GO to the global start-up scenes, competitions for product and service ideas and innovative business models. The connection with EIT Health also facilitates the consistent integration of market-oriented research, education, and business creation, a concept that is referred to as the EIT “knowledge triangle” [31]. This triangle matches well with the iPDM-GO strategy of achieving a high market acceptance by connecting iPDM to VBHC remuneration principles. The iPDM-GO consortium will greatly benefit from an interactive feedback culture, matchmaking opportunities as well as the combined forces to tackle the implementation barriers to digital health solutions in Europe. Indeed, the European Commission has recognized that, if it is to overcome these barriers, future healthcare will require (1) secure access and exchange of health data, (2) pooling of health data for research and personalized medicine, and (3) digital tools and data for citizen empowerment and person-centered healthcare, all of which are aspects addressed in the EIT Health’s strategic agenda and the iPDM-GO initiative. Other EIT Health funded innovation projects in the area of chronic disease management include the pan-European consortium CLOSE (Automated Glucose Control at Home for People with Chronic Disease), which aims to develop artificial pancreas solutions for persons with T2DM dependent on homecare [32].

5. Limitations

Despite their potential to improve outcomes in diabetes care, as became particularly evident during the Covid-19 outbreak that disproportionately affected persons with diabetes [33,34], there remain several barriers still limiting the effective use of digital tools in diabetes care. Smartphone utilization and access to digital solutions, for example, are heavily dependent on age, socioeconomic status and the respective healthcare system. Even if access to the respective technology is achieved, long-term engagement and health literacy are among the challenges, which can be difficult to overcome [23–25]. User-centered design represents a promising approach to address some of these barriers by identifying the users’ preferences early on and tailoring solutions accordingly. To be most effective, however, co-creation should involve all relevant target groups, including elderly patients with their unique needs in managing T2DM [27]. Furthermore, evidence of sufficient quality is needed to assess the real-world effectiveness of any novel digital solution. Such broader investigations will be required to evaluate the viability of the digital, smartphone-based patient assessment tool during and beyond the iPDM-GO project phase, preferably in different cultural scenarios. Complimentary approaches to assess potential users’ health technology readiness and enablement may also help identify the patient segments that will benefit most from a given healthcare intervention like the one developed in iPDM-GO [35].

Regarding the implementation of VBHC, it is important to note that while there is willingness to embark on VBHC solutions within many European healthcare systems, there are also several barriers that need to be overcome in order to be successful. The healthcare sector has largely not been able to translate and scale local VBHC pilots to national or regional VBHC programs. Even if individual payment initiatives have demonstrated improved healthcare value, it is not simple to integrate them with a comprehensive and coherent system-wide care delivery and payment regime. A major unresolved issue is how to design payment schemes that support VBHC across multiple providers and organizational levels. In order to be successful, there is a need for a systematic collection of PROM data to support the clinical effect measures. It has proven to be particularly resource heavy to collect and maintain information on cost. At the administrative level, VBHC projects have been used to identify departments with improvement potential, where the clinical departments request individual data to make proper use of the VBHC solutions (Vrangbæk K. & Starr L., Working Paper).

While in iPDM-GO we have the ambition to design models of how VBHC solutions can be co-created locally and demonstrate the impact they can have on healthcare, the broader implementation of such solutions will require the continuous engagement and commitment of diverse stakeholders over many years, thus going beyond the scope of this project. Nevertheless, we believe that multi-stakeholder approaches like those facilitated by the EIT Health High Value Health Care Forum play an important part if we are to move towards a sustainable provision of high value healthcare [36].

6. Conclusion

In summary, by realizing and further enhancing iPDM in Europe, the iPDM-GO EIT Health innovation project strives to deliver a community-based care model that aims to improve outcomes that matter to persons with T2DM. In turn, this approach may contribute to the broader overarching goal of further reducing the rates of avoidable hospitalization for ambulatory care sensitive conditions and thus help save healthcare and societal costs, while also potentially offering additional opportunities in the area of prevention. Ultimately, iPDM-GO hopes to contribute to enabling persons with T2DM to live longer and healthier lives. In this respect, continuous and collaborative exchange across the various projects in the EIT Health portfolio holds the potential to recognize and exploit synergies to mutually drive innovation in European healthcare.

Ethics

Work with human subjects or data derived from human subjects, will be carried out in accordance with The Code of Ethics of the World Medical Association (Declaration of Helsinki). Informed consent will be ensured and the privacy rights of human subjects will be observed.

Conflict of interest

The author(s) declared the following potential conflicts of interest with respect to the research, authorship, and/or publication of this article: AJ and DK are full-time employees of Roche Diabetes Care GmbH. FS is a full-time employee at Profil GmbH. TH and LH are shareholders of Profil GmbH.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: iPDM-GO has received funding from the European Institute for Innovation and Technology (EIT) through its Knowledge and Innovation Community (KIC) EIT Health. The EIT is a body of the European Union which receives support from the European Union’s Horizon 2020 research and innovation programme.

Acknowledgments

The authors thank Annette Moritz from Roche Diabetes Care Deutschland GmbH and Bettina Blesse from EIT Health Germany GmbH for critical review and editorial assistance in developing the manuscript. We further acknowledge the management support from Claudia Schacht (Managing Director) and Julia Bühr (Project Manager) from LINQ Management GmbH.
References

