

IEA Wind Task 36 – An Overview

Giebel, Gregor

Publication date: 2020

Document Version Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA): Giebel, G. (Author). (2020). IEA Wind Task 36 – An Overview. Sound/Visual production (digital)

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

IEA Wind Task 36 – An Overview

Gregor Giebel, DTU Wind Energy W. Shaw, H. Frank, C. Möhrlen, C. Draxl, J. Zack, P. Pinson, G. Kariniotakis, R. Bessa Wind Integration Workshop Online 2020

Technology Collaboration Programme

Task Objectives & Expected Results

Task Objective is to encourage improvements in:

- 1) weather prediction
- 2) power conversion
- 3) use of forecasts

Task Organisation is to encourage international collaboration between:

- → Research organisations and projects
- → Forecast providers
- → Policy Makers
- → End-users and stakeholders

Task Work is divided into 3 work packages:

WP1: Weather Prediction Improvements WP2: Power and Uncertainty Forecasting WP3: Optimal Use of Forecasting Solutions

Current Term: 2019-2021 (First term 2016-2018)

05:15 New York // 07:15 Rio de Janeiro // 10:15 London // 15:45 New Delhi // 17:15 Jakarta // 18:15 Peking // 19:15 Tokio

11:15 – 13:00	SESSION 6A: IEA WIND TASK 36: RAISING THE BAR ON INFORMATION TRANSPARENCY AND
	RECOMMENDED PRACTICES FOR WIND POWER FORECASTING
> Session Chair	Gregor Giebel (DTU Wind Energy, Denmark)
11:15 - 12:45	Presentations (18 min. each)

IEA Wind Task 36 Forecasting – An Overview

G. Giebel (DTU Wind Energy, Denmark), W. Shaw (PNNL, United States), H. Frank (Deutscher Wetterdienst DWD,
Germany), C. Draxl (NREL, United States), J. Zack (UL Services Group, United States), P. Pinson (DTU Elektro, Denmark),
C. Möhrlen (WEPROG, Denmark), G. Kariniotakis (Mines ParisTech, France), R. J. Bessa (INESC TEC, Portugal) (Submission-ID WIW20-128)

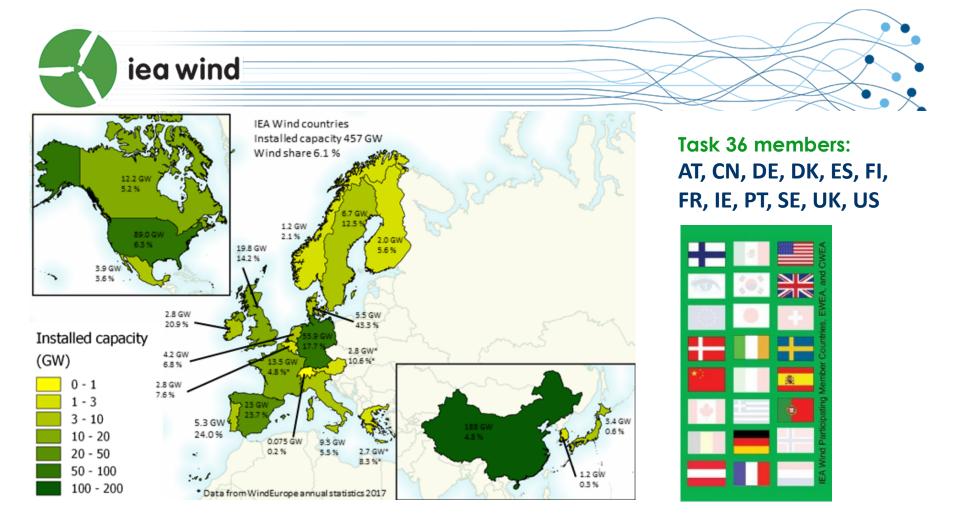
Validation of Numerical Model Improvements through Public Data Sets and Code

C. Draxl, J. Lee (National Renewable Energy Laboratory – NREL, United States), W. Shaw, L. Berg (Pacific Northwest National Laboratory, United States) (Submission-ID WIW20-124)

- IEA Wind Task 36: Practical Application Examples from the Recommended Practices for Forecast Solution Selection
 J. Zack (UL Services Group, United States), C. Möhrlen (WEPROG, Denmark) (Submission-ID WIW20-108)
- Wind Power Forecasting Data Definitions and Exchange Standards An Approach for a Recommended Practice Built upon International Standards and an Eye Towards the Future
 J. Lerner, M. Westenholz (ENFOR, Denmark) (Submission-ID WIW20-126)
- Insight on Human Decision-making from Probabilistic Forecast Games and Experience: an IEA Wind Task 36 initiative C. Möhrlen (WEPROG, Denmark), N. Fleischhut (Max-Planck Institute for Human Development, Germany), R. J. Bessa (INESC TEC, Portugal) (Submission-ID WIW20-98)
- 12:45 13:00 Discussions

International Energy Agency History

The IEA was founded in 1974 to help countries co-ordinate a collective response to major disruptions in the supply of oil.


Image source: dpa

Specific Technology Collaboration **Programs: Bioenergy TCP Concentrated Solar Power** (SolarPACES TCP) **Geothermal TCP** Hydrogen TCP Hydropower TCP **Ocean Energy Systems** (OES TCP) **Photovoltaic Power** Systems (PVPS TCP) Solar Heating and Cooling (SHC TCP) Wind Energy Systems (Wind TCP)

See iea.org!

Task 11 Base Technology Exchange Task 19 Wind Energy in Cold Climates Task 29 Mexnext III: Analysis of Wind Tunnel Measurements and Improvements of **Aerodynamic Models** Task 30 Offshore Code Comparison Collaboration, Continued, with Correlation (OC5)Task 39 Quiet Wind Turbine Technology Task 40 Downwind Turbines Task 41 Distributed Energy Task 42 Wind Turbine Lifetime Extension Task 44 Farm Flow Control

See ieawind.org!

Task 31 WAKEBENCH: Benchmarking Wind Farm Flow Models Task 32 LIDAR: Wind Lidar Systems for Wind **Energy Deployment** Task 36 Forecasting for Wind Energy Task 25 Design and Operation of Power Systems with Large Amounts of Wind Power Task 27 Small Wind Turbines in High Turbulence Sites Task 37 Wind Energy Systems Engineering Task 26 Cost of Wind Energy Task 28 Social Acceptance of Wind Energy Project Task 34 Working Together to Resolve the

Environmental Effects of Wind Energy (WREN)

Short-term prediction of wind power, quickly explained

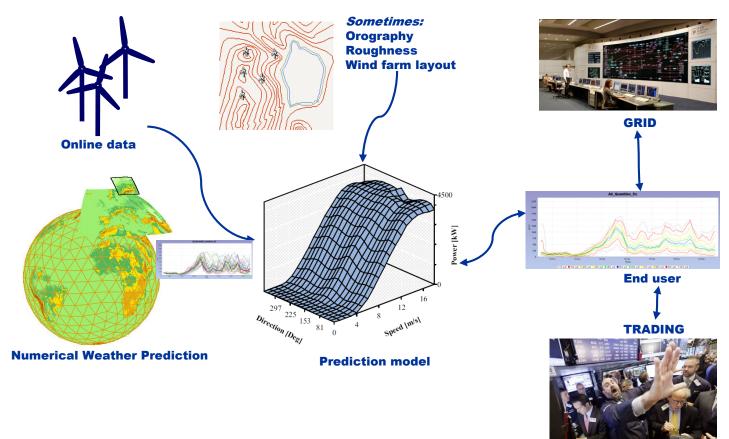


Image sources: DWD, WASP, Joensen/Nielsen/Madsen EWEC'97, Pittsburgh Post-Gazette, Red Electrica de España.

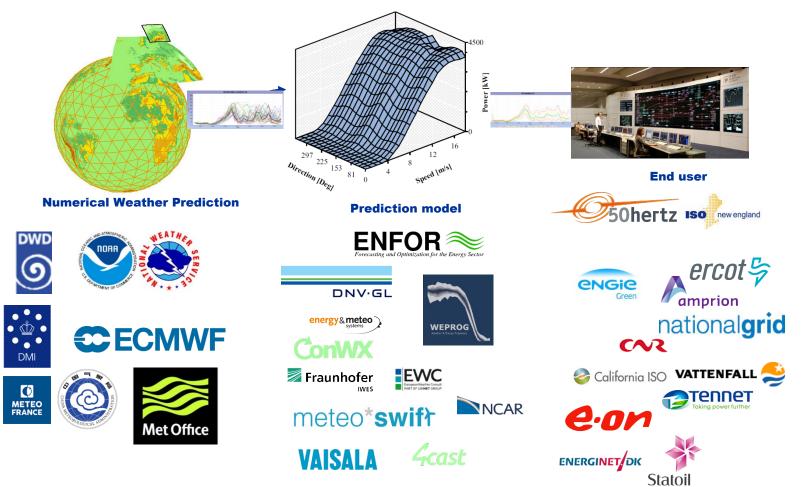
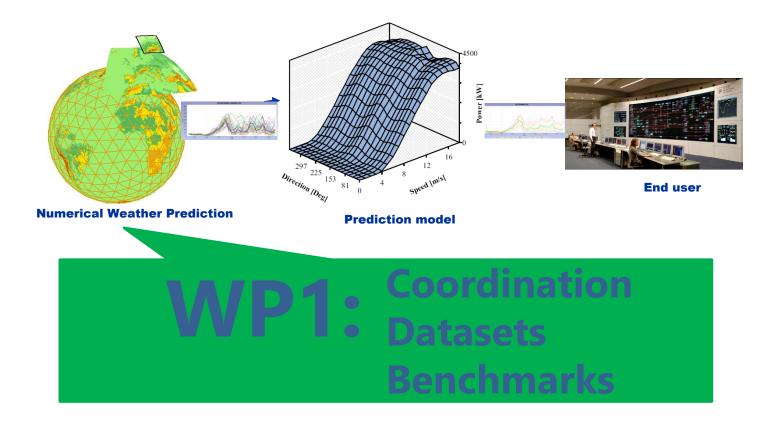



Image sources: DWD, WAsP, Joensen/Nielsen/Madsen EWEC'97, Red Electrica de España.

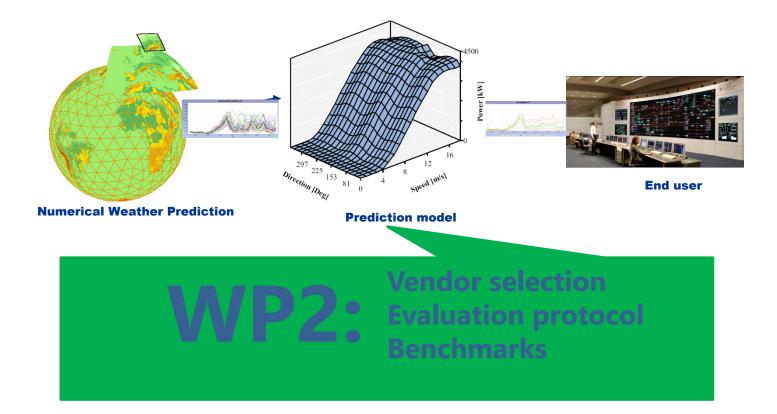
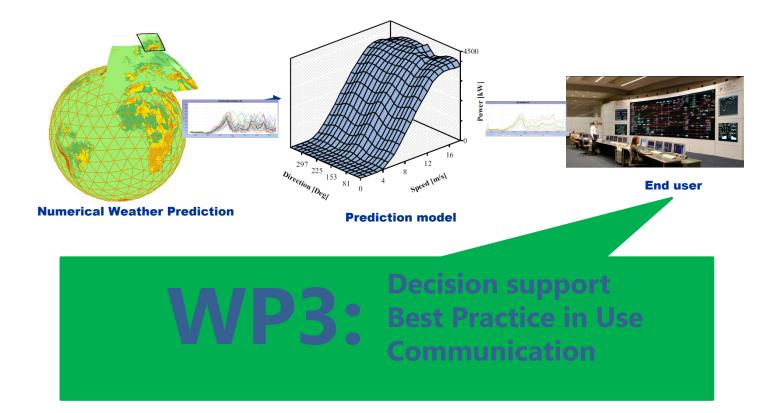
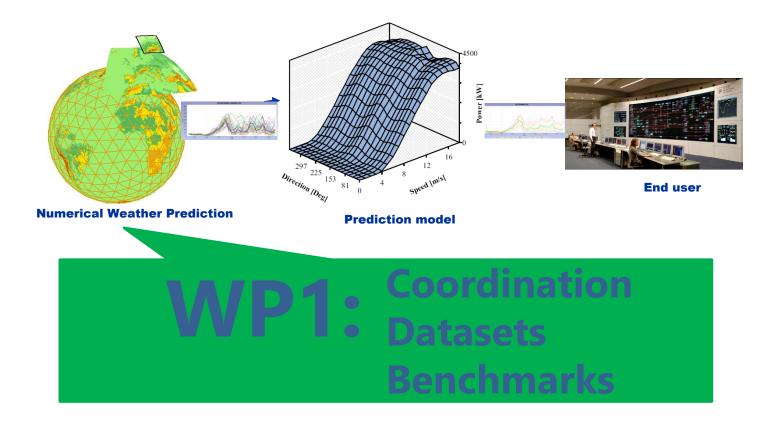




Image sources: DWD, WAsP, Joensen/Nielsen/Madsen EWEC'97, Red Electrica de España.

WP1 Meteorology

Lead:

- Helmut Frank, DWD
- Will Shaw, PNNL

Mission:

To coordinate NWP development for wind speed & power forecasting

WP1 Meteorology

- Task 1.1: Compile list of **available data sets**, especially from tall towers.
- Task 1.2: Creation of annual reports documenting and announcing **field measurement programs** and availability of data.
- Task 1.3: Verify and Validate the improvements through a **common data set** to test model results upon and discuss at IEA Task meetings

WP1 Meteorology Current state

- V&V benchmark defined (US results to be published end of June, benchmark to be published on A2E site)
- Continuously updating the list, and work underway to use the collected data sets for Numerical Weather Prediction

SITE NAME	COORDINATES	ALTITUDE ABOVE MSL	TOWER HEIGHT	URL	CONTACT	DATA POLICY	DATA FORMAT	OBS. PERIOD	OTHER
Cabauw, NL	4.926° E, 51.97° N	-0.7 m	200 m	www.cesar-observatory.nl/index.php	henk.klein.baltink@knmi.nl	<u>Cesar data policy</u>	netCDF	2000-04-01 to previous month	
IJmuiden, NL	3.436° N, 52.848° E	0 m	92 m	www.meteomastijmuiden.nl/en /measurement-campaign/	verhoef@ecn.nl			since 2012	offshore North Sea
Risø, DK	12.088° E, 55.694° N	0 m	125 m	rodeo.dtu.dk/rodeo /ProjectOverview.aspx?&Project=5& Rnd=975820	Allan Vesth	Ask nicely		1995-11-20 -	Data measured since 1958; some months break in 2008.
Østerild, DK	8.88080° E, 57.04888° N	9 m	250 m	rodeo.dtu.dk/rodeo /ProjectOverview.aspx?&Project=179& Rnd=975820	Yoram Eisenberg	Ask nicely		2015-01-28 -	Two 250m masts in 4.3 km distance, both instrumented. Additionally, 7 smaller masts


Minute scale forecasting

- How to use Lidars, Radars or SCADA for very short term forecasts
- 30 sec 15 min.
- Workshop with Task 32 Lidars at Risø 12/13 June 2018.
- Slides available from workshop website.
- Complete workshop on YouTube.
- Summary paper in Energies journal.

Minute scale forecasting

- How to use Lidars, Rada $_{\equiv}$
- 30 sec 15 min.
- Workshop with Task 32 I
- Slides available from wo
- Complete workshop on `
- Summary paper in Enerc

IEA Wind Forecasting

SUBSCRIBE

HOME

Uploads PLAY ALL

Second day of the IEA Wind Task 32/36 Workshop on

44 views • Streamed 6 days ago

First day of the IEA Wind Task 32/36 Workshop on

162 views • Streamed 1 week ago

Teaser for IEA Wind Lidar

Forecasting Workshop

Streamed 1 week ago

93 views •

Workshop Experiences and Gaps in Wind Power

294 views • Streamed 2 years ago

Minute scale forecasting

- How to use Lidars, Radars or SCADA for very short 1
- 30 sec 15 min.
- Workshop with Task 32 Lidars at Risø 12/13 June 20
- Slides available from workshop website.
- Complete workshop on YouTube.
- Summary paper in Energies journal.

Article

Minute-Scale Forecasting of Wind Power—Results from the Collaborative Workshop of IEA Wind Task 32 and 36

Ines Würth ^{1,*}, Laura Valldecabres ², Elliot Simon ³⁽⁰⁾, Corinna Möhrlen ⁴⁽⁰⁾, Bahri Uzunoğlu ^{5,6}, Ciaran Gilbert ⁷⁽⁰⁾, Gregor Giebel ³⁽⁰⁾, David Schlipf ⁸⁽¹⁾ and Anton Kaifel ⁹⁽¹⁾

- Stuttgart Wind Energy, University of Stuttgart, Allmandring 5b, 70569 Stuttgart, Germany
- ² ForWind-University of Oldenburg, Institute of Physics, Küpkersweg 70, 26129 Oldenburg, Germany; laura.valldecabres@forwind.de
- ³ DTU Wind Energy (Risø Campus), Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde, Denmark; ellsim@dtu.dk (E.S.); grgi@dtu.dk (G.G.)
- 4 WEPROG, Willemoesgade 15B, 5610 Assens, Denmark; com@weprog.com
- ⁵ Department of Engineering Sciences, Division of Electricity, Uppsala University, The Ångström Laboratory, Box 534, 751 21 Uppsala, Sweden; bahriuzunoglu@computationalrenewables.com
- Department of Mathematics, Florida State University, Tallahassee, FL 32310, USA
- ⁷ Department of Electronic and Electrical Engineering, University of Strathclyde, 204 George St, Glasgow G11XW, UK; ciaran.gilbert@strath.ac.uk
- ⁸ Wind Energy Technology Institute, Flensburg University of Applied Sciences, Kanzleistraße 91–93, 24943 Flensburg, Germany; david.schlipf@hs-flensburg.de
- ⁹ Zentrum f
 ür Sonnenenergie- und Wasserstoff-Forschung Baden-W
 ürttemberg, Meitnerstraße 1, 70563 Stuttgart, Germany; anton.kaifel@zsw-bw.de
- Correspondence: wuerth@ifb.uni-stuttgart.de; Tel.: +49-711-685-68285

Received: 14 December 2018; Accepted: 14 February 2019; Published: 21 February 2019

MDPI

Abstract: The demand for minute-scale forecasts of wind power is continuously increasing with the growing penetration of renewable energy into the power grid, as grid operators need to ensure grid stability in the presence of variable power generation. For this reason, IEA Wind Tasks 32 and 36 together organized a workshop on "Very Short-Term Forecasting of Wind Power" in 2018 to discuss different approaches for the implementation of minute-scale forecasts into the power industry. IEA Wind is an international platform for the research community and industry. Task 32 tries to identify and mitigate barriers to the use of lidars in wind energy applications, while IEA Wind Task 36 focuses on improving the value of wind energy forecasts to the wind energy industry. The workshop identified three applications that need minute-scale forecasts: (1) wind turbine and wind farm control, (2) power grid balancing, (3) energy trading and ancillary services. The forecasting horizons for these applications range from around 1s for turbine control to 60 min for energy market and grid control applications. The methods that can be applied to generate minute-scale forecasts rely on upstream data from remote sensing devices such as scanning lidars or radars, or are based on point measurements from met masts, turbines or profiling remote sensing devices. Upstream data needs to be propagated with advection models and point measurements can either be used in statistical time series models or assimilated into physical models. All methods have advantages but also shortcomings. The workshop's main conclusions were that there is a need for further investigations into the minute-scale forecasting methods for different use cases, and a cross-disciplinary exchange of different method experts should be established. Additionally, more efforts should be directed towards enhancing quality and reliability of the input measurement data.

Keywords: wind energy; minute-scale forecasting; forecasting horizon; Doppler lidar; Doppler radar; numerical weather prediction models

Task 1.2 List of Field Campaigns

Task 1.3 Common Test Data

Task 1.4 NWP Forecast Metrics

Meteorological data from tall towers The following list was compiled by IEA Wind Task 36 Forecasting for Wind Energy.

Another source is The Tall Tower Dataset at INDECIS Data portal. This is database of 222 tall towers around the world compiled with a common format (netCDF) and quality controlled. For some towers the latest data is from 2018. See The Tall Tower Dataset Technical Note for a description of the quality control, and a list of the towers in the appendix.

SITE NAME	COORDINATES	ALTITUDE ABOVE MSL	TOWER HEIGHT	URL	CONTACT	DATA POLICY	DATA FORMAT	OBS. PERIOD	OTHER
Cabauw, NL	4.926° E, 51.97° N	-0.7 m	200 m	www.cesar-observatory.nl/index.ohp	marcel.brinkenberg@knml.nl	<u>Cesar data policy</u>	netCDF	2000- 04-01 to previous month	
IJmuiden, NL	3.436° N, 52.848° E	0 m	92 m	www.windopzee.net/en/meteomast-iimuiden- mmij/	hans.verhoef@tno.nl. Registration for data	Ask <u>here for</u> permission		2012 - 2018	Offshore North Sea
Risø, DK	12.088° E, 55.694° N	0 m	125 m	rodeo.dtu.dtk/rodeo/ProjectOverview.aspx? &Project=5&Rnd=975820	Allan Vesth	Ask nicely	xlsx	1995- 11-20 -	Data measured since 1958; some months break in 2008.
Østerild, DK	8.88080° E, 57.04888° N	9 m	250 m	rodeo.dtu.dtk/rodeo/ProjectOverview.aspx? &Project=179&Rnd=975820	Yoram Eisenberg	Ask nicely	xlsx	2015- 01-28 -	Two 250m masts in 4.3 km distance, both instrumented. Additionally, 7 smaller masts up to turbine hub heights.
Taggen, SE	14.519° E, 55.8726° N	0 m	100 m	rodeo.dtu.dk/rodeo/ProjectOverview.aspx? &Project=174&Rnd=758000	Göran Loman			2014- 07-29 to	Offshore. Owned by

2017

Vattonfall

IEA WIND TASK 36

Helmut Frank (DWD), Irene Schicker (ZAMG), Will Shaw (PNNL)

Field measurement programs - Introduction

In IEA Wind Task 36 no experiments are made to compare Numerical Weather Prediction (NWP) models with observations. However, there are work packages trying to foster this comparison. Therefore, we compile a list of experiments which are particularly relevant for wind energy forecasting. We try to give a short description of the experiments and some information on the data

List of major field experiments in different years

2021/2022:

January 10, 2020

AWAKEN (USA)

2020

FESSTVaL (Germany)

2019:

NEWA - Alaiz Experiment (ALEX17) (Spain)

2018

NEWA - Perdigão Experiment (Portugal)

2017:

- WFIP 2
- NEWA Ferry Lidar Experiment (Baltic Sea)
- WIPAF (North Sea, Germany)

2016

- WFIP2 (USA)
- NEWA The coastal experiment RUNE (Denmark)

Co-lead

Long list of experiments, linking to a larger description. Includes older experiments with open data.

List of major field experiments in different vears

2021/2022

AWAKEN (USA)

2020

- FESSTVaL (Germany)
- 2019:
 - NEWA Alaiz Experiment (ALEX17) (Spain)

2018:

NEWA - Perdigão Experiment (Portugal)

2017:

- WFIP 2
- NEWA Ferry Lidar Experiment (Baltic Sea)
- WIPAF (North Sea, Germany)

2016:

- WFIP2 (USA)
- NEWA The coastal experiment RUNE (Denmark)
- NEWA Østerild: Flow over heterogeneous roughness (Denmark)
- · NEWA Hornamossen: flow over forested rolling hills (Sweden
- NEWA Kassel forested hill experiment (Germany
- OBLEX-F1 Offshore Boundary-Layer EXperiment at Fino1 (North Sea)
- WIPAFF (North Sea, Germany)

2015:

- WFIP2 (USA)
- OBLEX-F1 Offshore Boundary-Layer EXperiment at Fino1 (North Sea)
- MATERHORN-Fog 2 (USA)

2014:

ALNAP (Alps)

2013:

MATERHORN-Spring (USA)

2012 and older:

MATERHORN-Fall (USA)

Major field experiments AWAKEN

The American Wake Experiment (AWAKEN) is a landmark collaborative international wake observation and validation campaign. Wake interactions are among the least understood and most impactful physical interactions in wind plants today, leading to unexpected power losses and increased operations and maintenance costs. The AWAKEN campaign is designed to gather observational data to address the most pressing science questions about wind turbine wake interactions and aerodynamics and to further understand wake behavior and validate wind plant models. Simultaneously, the AWAKEN campaign will also focus on testing of wind farm control strategies that have been shown to increase wind plant power production. Leveraging the expertise and resources of a large body of National Laboratories, academic institutions, and industry partners will lead to improved wind farm layout with greater power production and improved reliability, ultimately leading to lower wind energy costs.

Objectives

Home > Project list

f 🌶 in

Wind power prediction project list

This list shows a large number of (mostly publically funded) research projects in short-term forecasting of wind power. The list is incomplete, as the emphasis was a) on current projects, and b) on projects collected from the Task participants. Even so, the list contains research projects from the last two decades worth 46 ME, with 32 ME public funding, hough not all of this can be attributed to forecasting (e.g. the IRP Wind or RAVE projects).

If you have additions or comments, please send them to the operating agent, Gregor Giebel (grgi /at/ dtu.dk).

Country	Project acronym	Full title	Sponsor	Total / Funded budget	Start - end date	Participants (IEA Task 36 members in bold)
DE	e-TWINS	Verbundvorhaben: e-TWINS ' Ganzheitliche digitale Zwillingstechnologie für das Energiesystem	BMWi (Bundesministerium für Wirtschaft und Energie)	1.96 M€ / 1.96 M€	Jan 2020 - Dec 2022	TU München Windenergie, Hochschule München, ZSW , Mesh Engineering
EU	Smart4RES	Next Generation Modelling and Forecasting of Variable Renewable Generation for Large-scale Integration in Energy Systems and Markets	EU Horizon2020	4 M€ / 4 M€	1 Nov 2019 - 30 Apr 2023	Armines, DTU, INESC TEC, EDP, Meteo- France, emsys, DNV GL, Whiffle, Dowel, ICCS, HEDNO, DLR
EU	EoCoE II	Energy Oriented Center of Excellence : toward exascale for energy	EU Horizon2020	9.2M€	1.1.2019- 31.12.2021	18 teams in 7 countries including Fraunhofer IEE
DK	[link]	IEA Wind Task 36 Phase II Danish Consortium	EUDP (national Danish funding)	500k€ / 300k€	1 Jan 2019 - 31 Dec 2021	DTU, ConWX, ENFOR, DNV, WEPROG, Ea Energianalyse, Energinet

IEA WIND TASK		PARTNERS	PUBLICATIO	NS MEMBE		WIND iea wir	nd	us	WFIP 2 (alternate lini)	Second Wind Forecast Improvement Project	U.S. Department of Energy	\$17M USD / \$17M USD	1 Oct 2015 - 30 Sep 2018	Vaisala, NOAA/ESRL, NOAA/ARL, NOAA/NWS, Argonne National Laboratory, Lawrence	ne	SOLAR		Savanan ministry for economy, EU infrastructure fund "Investments for the future"	10 ME / 6.3 ME	2012 - 2018	for Applied Energy Research (ZAE), 3 Fraunhofer institutes, 9 other partners and WEPROG
	This list shows a la short-term forecast was a) on current p	er prediction rige number of (most) ting of wind power. The projects, and b) on pro-	y publically funded) ie list is incomplete, sjects collected from	research projects in as the emphasis the Task				FIL	EoCoE	Energy criented	EU Horizon2020	~551061	Oct 2015 – Sep	Livermore National Laboratory, NREL, PNNL 21 teams in 8	т	P1	Renewable Energy Dispatch Tools	China Electric Power Research Institute (CEPRI); State Grid Corporation of China (SGCC)	2 M€/-	1 Jul 2013 - 31 Dec 2016	R&D NESTER (PT), REN (PT), CEPRI (CN)
	decades worth 46 attributed to foreca	so, the list contains re M€, with 32 M€ public isting (e.g. the IRP W	funding, though no ind or RAVE project	t all of this can be 8).						Centre of Excellence		~1.4 ME	2018	countries, lead by Maison de la Simulation,	ж	X-WIWa	Extreme winds and waves for		5.95 MDKK / 5.4 MDKK	1 Jun 2013 - 2017	DTU Wind Energy, DHI, Uni
	Gregor Glebel (grg													including Fraunhofer W/ES			offshore turbines				Research, Bergen University
	Country	Project acronym		Sponsor	Total / Funded budget	Start - end date	Participants (IEA Taok 36 members in bold)	EV	IRP Wind	Integrated EU R&D efforts on wind energy	EU 7th Framework Programme (Project ID:	~ 10 M€ / ~10 M€	Mar 2014 – Feb 2018	24 European teams (participants of the European	E	EWeLINE	Erstellung innovativer Wetter- und	Bundesministerium für Wirtschaft und Energie	7.06 M€ / 6.5 M€	Dec 2012 - Feb 2017	Fraunhofer IWES, DWD, Amprion, TenneT, 50Hertz
	DE	e-TWINS	Verbundvorhaben: e-TWINS ' Ganzheitliche digitale Zwillingstechnologie für das	BMWI (Bundesministeriun für Wirtschaft und Energie)	1.96 M€ / 1.96 n M€	Jan 2020 - Dec 2022	TU München Windenergie, Hochschule München, ZSW, Mosh Engineering				(P10j8Ctil) 609795)			Energy Research Alliance (EERA) Joint Programme on			Leistungsprognos für die Netzintegration wetterabhängiger Energieträger				
	EU	Smart4RES	Energiesystem Next Generation Modelling and	EU Horizon2020	4 ME/ 4 ME	1 Nov 2019 - 30 Apr 2023	Armines, DTU, INESC TEC,							Wind Energy) lead by DTU Wind Energy	E	PerduS	Photovoltaikertrag: durch Saharastaub	(Bundesministeriun für Wirtschaft und Energie)	962 kE / 952 kE	Nov 2012 - Feb 2017	Deutscher Wetterdienst, KIT, meteocontrol
			Forecasting of Variable Renewable Ganaration for Large-scale Integration in Energy Systems				EDP, Meteo- France, emsys, DNV GL, Whiffle, Dowel, ICCS, HEDNO, DLR	FRIDK	PriME HD-REStorecast	Innovative probabilistic methods for energy system technology	Ministry of Education and Research (BMBF)	~1 MC / ~1 MC	Jan 2015 – Dec 2017	University Kassel, FH WES, EnerginetDK, Netze BW	U	SafeWind	Multi-scale data assimilation, advanced wind modeling and forecasting with emphasis to	EU 7th Framework Programme (FP7-ENERGY, Project ID: 213740)	5.6 ME/3.98 ME	1 Sep 2008 - 31 Aug 2012	Armines, DTU, Risø, Uni Oldenburg, ENFOR, Overspeed, CFNFR.
	EU	EoCoE II	Center of	EU Horizon2020	9.2ME	1.1.2019- 31.12.2021	18 teams in 7 countries	FRIDK	HD-REStorecast	High-dimensional dynamical models for improving renewable	EDF	116 KE / 65 KE	Nov 2015 -	DTU Elektro, EDF			extreme weather situations for a notigracon	213140)			EnergineLdk and 13 other vedy
	DK	linki	Excellence : toward exascale for energy	EUDP (national	500kE / 300kE	1 Jan 2019 - 31	Including Fraunhofer IEE DTU, ConWX,			energy forecasting at distributed locations					ж	DEWEPS	Development and Evaluation of a new wind profile theory	Danish PSO Fund	480 kWE / 180 kWE	1 Apr 2009 - 31 Dec 2011	WEPROG
			36 Phase II Danish Consortium	Danish funding)		Dec 2021	ENFOR, DNV, WEPROG, Ea Energianalyse, Energinet	DE		design and operational	d for Economics and Technology	nomics	Oct 2017	ZSW - Center for Solar Energy and Hydrogen			with an Ensemble Prediction System				
	NO	NowWind	impact on the Danish power system Nowcasting for wind energy production - an	EUDP) The Research Council of	12 MNOK / 6.3 MNOK (1.3 / 0.7 ME)	2016 - 2019	Vattenfall MET Norway, Windsim A.S., Vestas Wind			management for hybrid power plants and energy storage technologies by means of wind and PV power				Research Baden- Württemberg (Project lead) SWE – Stuttgart Wind Energy @ Institute of	iU	ANEMOS.plus	Advanced Tools for the Management of Electricity Grids with Large-Scale Wind Generation	EU 6th Framework Programme (Project ID: 38592)	6.7 ME / 2.6 ME	1 Jan 2008 - 30 Jun 2011	Armines, DTU, Risø, ENFOR, Overspeed, CENER, INESC, and 14 other partners
			integrated modelling approach	(ENERGD()			Systems AS, TranderEnergi AS, Kjeller Vindteknikk AS			nowcasting (Optimierung der Auslegung und Betriebsführung				Aircraft Design, University of Stuttgart)E	RWE	Research at Alpha Ventus - Grid Integration of offshore wind	BMU, German ministry for the Environment	5 ME (50-80% funded)	2008 - 2011	Fraunhofer IWES, Forwind - University Oldenburg,
	FR	FOREWER	Modélisation, prévision et évaluation des risques pour la	Agence Nationale de la Recherche (French)	2160 kmE / 481 km	E 1 Oct 2014 - 31 Mar 2019	Université Paris 7, ENGIE Green, Ecole Polytechnique,	DE	SIMRT GRID SOLAR		Bavarian ministry for economy, EU intrastructure fund	10 ME / 6.3 ME	2012 - 2018	Bavarian Center for Applied Energy Research (ZAE),			farms				Deutscher Wetterdienst, WEPROG
	FR	meteo"swift	production d'énergie éolienne Development of	FEDER EU	~1 M€/~500 KE	Mar 2016 - Mar	EDF, RTE, CNRS				"investments for the future"			3 Fraunhofer institutes, 9 other partners and WEPROG	ж	HREnsembleHR	High-resolution Ensemble for Horns Reef	Danish PSO Fund (Contract No. 2006-1-6387)	700 ké / 400 ké	1 Apr 2006 - 31 Dec 2009	WEPROG, DTU IMM, DTU Risø, Fraunhofer IWES, DONG Energy,
			a short-term wind power forecasting tool based on adaptive multi-agent	funding & Occitania French region		2018	National Weather Research Cenh (part of Météo- France), Toulouse	PT	P1	Renewable Energy Dispatch Tools	China Electric Power Research Institute (CEPRI); State Grid Corporation of China (SGCC)	2 ME / -	1 Jul 2013 - 31 Dec 2016	R&D NESTER (PT), REN (PT), CEPRI (CN)	U	POWWOW	Prediction of Waves, Wakes and Offshore	EU 6h Framework Programme (Projec	1.05 ME/ 1.05 ME 1	1 Oct 2005 - 30 Mar 2009	Vattenfall Rise, DTU, Armines, CENER, Uni
			systems and ensemble weather forecasts				Computer Science Research Institute	DK	X-WIWa	Extreme winds and waves for offshore turbines	ForskEL (PSD)	5.96 MDKK / 5.4 MDKK	1 Jun 2013 - 2017	DTU Wind Energy, DHI, Uni Research,			Wind	ID 19898)			Oldenburg, Fraunhofer IWES, and 8 other partners including UFPE
	DK		IEA Wind Task 36 Forecasting Danish	EUDP (nationally Danish)	2.72 MDKK / 1.83 MDKK	Jan 2016 - Dec 2018	Energy, DTU Elektro, DTU	DE	EWeLINE	Erstellung	Bundesministeriu	im 7.06 M€/6.5 M€	Dec 2012 - Feb	Bergen University Fraunhofer	iu	ANEMOS	Development of a next generation	EU 5th	4.3 M€/2.5 M€	1 Oct 2002 - 30 Sep 2006	(BR) Armines, DTU, Uni Oldenburg,
			Consortium				Compute, DMI, ENFOR, DNV GL WEPROG, Vestas, Energinet.dk			innovativer Wetter- und Leistungsprognor für die Netzintegration	für Wirtschaft und Energie semodelle		2017	IWES, DWD, Amprion, TenneT, 50Hertz			a next generation wind resource forecasting system for the large-scale integration of	Programme (Projec ID: ENK5-CT- 2002-00665)	t	Ceb Sono	CENER, IASA, and 16 others from TSOs to meteorologists
	US		IEA Task on Development & Use of	Department of Energy USA	\$22,732	Sep 2016 - Sep 2017	NREL			wetterabhängiger Energieträger							onshore and offshore wind farms				
			Brahabilistic					μE	PerduS	Photovoltaikertrag	gsrædulidibn	962 KE / 962 KE	Nov 2012 - Feb	Deutscher							

05:15 New York // 07:15 Rio de Janeiro // 10:15 London // 15:45 New Delhi // 17:15 Jakarta // 18:15 Peking // 19:15 Tokio

11:15 – 13:00	SESSION 6A: IEA WIND TASK 36: RAISING THE BAR ON INFORMATION TRANSPARENCY AND
	RECOMMENDED PRACTICES FOR WIND POWER FORECASTING
> Session Chair	Gregor Giebel (DTU Wind Energy, Denmark)
11:15 - 12:45	Presentations (18 min. each)

IEA Wind Task 36 Forecasting – An Overview

G. Giebel (DTU Wind Energy, Denmark), W. Shaw (PNNL, United States), H. Frank (Deutscher Wetterdienst DWD,
Germany), C. Draxl (NREL, United States), J. Zack (UL Services Group, United States), P. Pinson (DTU Elektro, Denmark),
C. Möhrlen (WEPROG, Denmark), G. Kariniotakis (Mines ParisTech, France), R. J. Bessa (INESC TEC, Portugal) (Submission-ID WIW20-128)

Validation of Numerical Model Improvements through Public Data Sets and Code

C. Draxl, J. Lee (National Renewable Energy Laboratory - NREL, United States), W. Shaw, L. Berg (Pacific Northwest

National Laboratory, United States) (Submission-ID WIW20-124)

- IEA Wind Task 36: Practical Application Examples from the Recommended Practices for Forecast Solution Selection
 J. Zack (UL Services Group, United States), C. Möhrlen (WEPROG, Denmark) (Submission-ID WIW20-108)
- Wind Power Forecasting Data Definitions and Exchange Standards An Approach for a Recommended Practice Built upon International Standards and an Eye Towards the Future

J. Lerner, M. Westenholz (ENFOR, Denmark) (Submission-ID WIW20-126)

Insight on Human Decision-making from Probabilistic Forecast Games and Experience: an IEA Wind Task 36 initiative
 C. Möhrlen (WEPROG, Denmark), N. Fleischhut (Max-Planck Institute for Human Development, Germany), R. J. Bessa (INESC TEC, Portugal) (Submission-ID WIW20-98)

12:45 – 13:00 Discussions

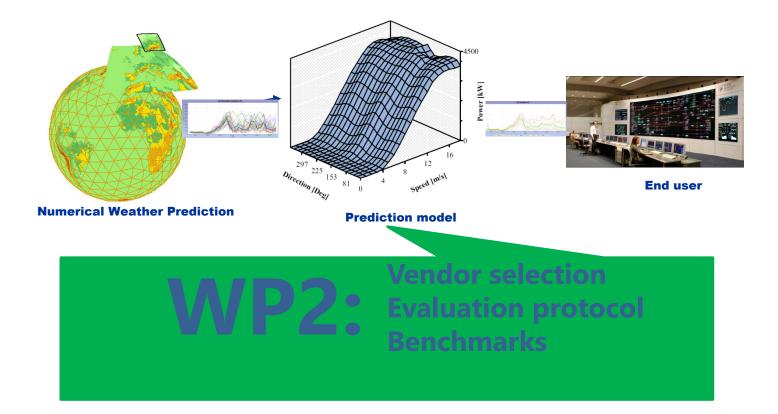


Image sources: DWD, WAsP, Joensen/Nielsen/Madsen EWEC'97, Red Electrica de España.

WP2 Benchmarks

Lead: Caroline Draxl, NREL John Zack, UL Pierre Pinson, DTU Elektro

IEA WIND TASK 36

INFORMATION PORTAL	WORK PACKAGES	PARTNERS	PUBLI	CATIONS	MEMBER SIT	IEA	iea wii WIND	nd
WP1 Weather Prediction Imp	rovements WP2 E	Benchmarks	WP3 Optimal	Use of Fore	casting Solutions			
Home 🌾 Work packages 👀 WP2 B	enchmarks) <u>Task 2.3 Test</u>	Cases					f ≯ in	
Task 2.1 Forecast Solution Selection	Task 2.3	Task 2.3 Test Cases Co-lead						
Task 2.2 Uncertainty	Set-up and diss	emination of benchm	ark test cases	s and data set	S.		Pierre Pinson Professor	
Task 2.3 Test Cases	•						DTU Electrical Engineering	
Task 2.4 Standardisation	Aim: Set	Aim: Set-up and dissemination of benchmarks. +45 45 25 35 41						
		: DTU Elektro, D tt, Prewind, PNNL.	TU Wind E	nergy, EDF,	INESC TEC,			
	Cinativa	a, r ronnia, r 1442.						
	NAME	TYPE OF DATA	AREA	PERIOD	TEMPORAL			

NAME	TYPE OF DATA	AREA	PERIOD	TEMPORAL
<u>RE-Europe</u>	Simulated aggregated generation and +1 to +91 hour forecasts for 1494 European regions based on ECMWF and COSMO analysis and ECMWF forecast data	Europe	2012-2014	1 hour
NREL WIND Toolkit	Simulated generation and 1, 4, 6, and 24- hour wind and power forecasts for 126000 US sites based on WRF	US	2007-2013	5 min

NREL Western and Eastern Wind Integration data sets	Simulated generation for 1326 (Eastern) + 32043 (Western) US sites based on MASS and WRF. For Eastern data set also 4 hour, 6 hour and day ahead forecasts	US	2004-2006	10 min
GEFCom 2012	Observed generation and +1 to +48 hour ECMWF wind forecasts for 7 wind farms	unknown	2009-2012	1 hour
GEFCom 2014	Observed generation and +1 to +48 hour ECMWF wind forecasts for 7 wind farms	unknown	2009-2012	1 hour
AEMO	Generation data from various Australian wind farms	Australia	2005-	5 min
La Haute Borne wind farm data	Many SCADA data from the 4 turbines of the La Haute Borne wind farm, ENGE's first open data wind farm.	Southwest of Nancy, France	2009-	10 min

Additional information:

RE-Europe:

Full data set can be downloaded as zip-file. Generation signals and forecasts and meta data on location and aggregation are stored in csv-files. Additional to wind power data the data set includes solar generation and power load data. More information can be found on <u>https://zenodo.org/record</u> /<u>35177#.WomNAccIFmB</u>. Data policy: <u>Creative Commons Attribution</u>: <u>NonCommercial 4.0</u>.

NREL WIND Toolkit:

Information and download links can be found on https://www.nrel.gow/grid/wind-integration-data.html. Data can be downloaded via the NREL Wind Prospector

IEA Best Practice Recommendations for the Selection of a Wind Forecasting Solution: Set of 3 Documents

iea wind	iea wind	iea wind
EXPERT GROUP REPORT ON RECOMMENDED PRACTICES FOR SELECTING RENEWABLE POWER FORECASTING SOLUTIONS	EXPERT GROUP REPORT ON IEA RECOMMENDED PRACTICE FOR SELECTING RENEWABLE POWER FORECASTING SOLUTIONS Part 2: DESIGNING AND EXECUTING FORECASTING BENCHMARKS AND TRIALS	EXPERT GROUP REPORT ON RECOMMENDED PRACTICES FOR SELECTING RENEWABLE POWER FORECASTING SOLUTIONS
Part 1: FORECAST SOLUTION SELECTION PROCESS 1. EDITION 2019	EDITION 2019 Submitted to the Executive Committee of the International Energy Agency Implementing Agreement on 1 ^{et} August 2019	Part 3: Evaluation of Forecasts and Forecast Solutions 1. EDITION 2019
Submitted to the Executive Committee of the International Energy Agneementing Agreement on 13 th August 2019		Submitted to the Executive Committee of the International Energy Agency Implementing Agreement on 13 th August 2019
 Part 1: Selection of an Optimal Forecast Solution 	 Part 2: Design and Execution of Benchmarks and Trials 	 Part 3: Evaluation of Forecasts and Forecast Solutions

05:15 New York // 07:15 Rio de Janeiro // 10:15 London // 15:45 New Delhi // 17:15 Jakarta // 18:15 Peking // 19:15 Tokio

11:15 - 13:00	SESSION 6A: IEA WIND TASK 36: RAISING THE BAR ON INFORMATION TRANSPARENCY AND
	RECOMMENDED PRACTICES FOR WIND POWER FORECASTING
> Session Chair	Gregor Giebel (DTU Wind Energy, Denmark)
11:15 - 12:45	Presentations (18 min. each)

IEA Wind Task 36 Forecasting – An Overview

G. Giebel (DTU Wind Energy, Denmark), W. Shaw (PNNL, United States), H. Frank (Deutscher Wetterdienst DWD,
Germany), C. Draxl (NREL, United States), J. Zack (UL Services Group, United States), P. Pinson (DTU Elektro, Denmark),
C. Möhrlen (WEPROG, Denmark), G. Kariniotakis (Mines ParisTech, France), R. J. Bessa (INESC TEC, Portugal) (Submission-ID WIW20-128)

Validation of Numerical Model Improvements through Public Data Sets and Code

C. Draxl, J. Lee (National Renewable Energy Laboratory – NREL, United States), W. Shaw, L. Berg (Pacific Northwest National Laboratory, United States) (Submission-ID WIW20-124)

- IEA Wind Task 36: Practical Application Examples from the Recommended Practices for Forecast Solution Selection
 J. Zack (UL Services Group, United States), C. Möhrlen (WEPROG, Denmark) (Submission-ID WIW20-108)
- Wind Power Forecasting Data Definitions and Exchange Standards An Approach for a Recommended Practice Built upon International Standards and an Eye Towards the Future

J. Lerner, M. Westenholz (ENFOR, Denmark) (Submission-ID WIW20-126)

 Insight on Human Decision-making from Probabilistic Forecast Games and Experience: an IEA Wind Task 36 initiative C. Möhrlen (WEPROG, Denmark), N. Fleischhut (Max-Planck Institute for Human Development, Germany), R. J. Bessa (INESC TEC, Portugal) (Submission-ID WIW20-98)

12:45 – 13:00 Discussions

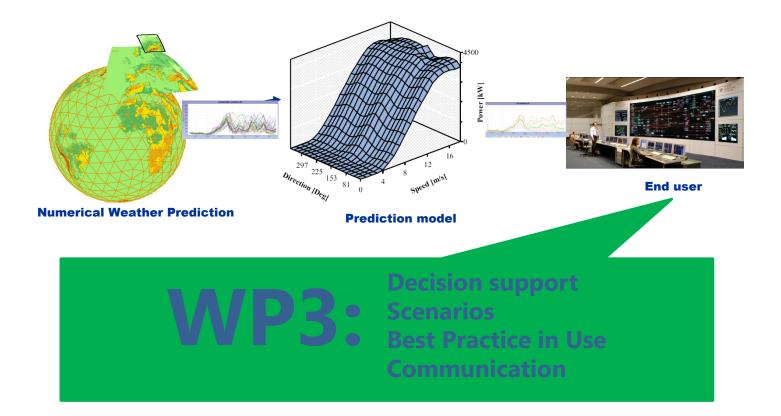


Image sources: DWD, WAsP, Joensen/Nielsen/Madsen EWEC'97, Red Electrica de España.

WP3 Advanced Usage

Lead: Corinna Möhrlen, WEPROG Ricardo Bessa, INESC TEC George Kariniotakis, Mines ParisTech

15th Int. Workshop on Large-Scale Integration of Wind Power into Power Systems as well as on Transmission Networks for Offshore Wind Farms, Vienna, 15 - 17 November, 2016

15th Int. Workshop on Large-Scale Integration of Wind Power into Power Systems, Vienna, Nov. 2016

Use of Forecast Uncertainties in the Power Sector: State-of-the–Art of Business Practices

C. Möhrlen*, R. J. Bessa[†], M. Barthod[‡], G. Goretti[§] and M. Siefert[¶] *WEPROG ApS, Assens, Denmark, Email: com@weprog.com [†]INESC TEC, Porto, Portugal, Email: ricardo.j.bessa@inesctec.pt [‡]meteo*swift, Toulouse, France, Email: morgane.barthod@meteoswift.com [§]Dublin Institute of Technology, Ireland, Email: gianni.goretti@mydit.ie [¶]Fraunhofer IWES, Kassel, Germany, Email: malte.siefert@iwes.fraunhofer.de

state-of-the-art use of forecast uncertainties in the business practices of actors in the power systems sector that is part of the "IEA Wind Task 36: Wind Power Forecasting". The purpose of this task is to get an overview of the current use and application of probabilistic forecasts by actors in the power industry and investigate how they estimate and deal with uncertainties. The authors with expertise in probabilistic forecasting have been gathering information from the industry in order to identify the areas, where progress is needed and where it is difficult to achieve further progress. For this purpose, interview questions were compiled for different branches in the power industry and interviews carried out all around the world in the first six months of 2016. At this stage, we present and discuss results from this first round of interviews and draw preliminary conclusions outlining gaps in current forecasting methodologies and their use in the industry. At the end we provide some recommendations for next steps and further development with the objective to formulate guidelines for the use of uncertainty forecasts in the power market at a later stage.

I. INTRODUCTION

The relevance of forecast uncertainties for wind power and other renewable energies grows as the penetration of these sources in the energy mix increases. Once a certain level of penetration is reached, ignoring the reliability of forecasts not only becomes expensive in terms of reserve

Abstract—The work we present is an investigation on the roughly goes with wind speed to the power of three, and small errors and uncertainties are thus amplified and have an even higher impact compared to wind speed uncertainties. Weather development associated with fronts moving over large areas where wind is increasing rapidly over a short time are the most critical situations for a balance responsible party or a transmission system operator (TSO): it is under these circumstances that a deterministic forecast may be strongly incorrect and suppress steep ramping that can cause system security issues as well as large imbalances. Translated in the market, it means that there can be a sudden lack of power during a down-ramping event or too little flexible power that can be down-regulated fast and efficiently, which then results in curtailment. As long as the penetration level of wind is below 20% of generation, such uncertainty can usually be dealt with with a reasonable amount of reserves. As penetration increases, or in the case of island grids or badly interconnected grids, reserves and ancillary services grow above a desirable level.

> In order to get an understanding of the current state of use of uncertainty forecasts and to find the gaps in the understanding of uncertainties and the associated forecasting tools and methods, we have been carrying out a study with a combination of questionnaires and interviews, which will

Use of probabilistic forecasting

Open Access journal paper 48 pages on the use of uncertainty forecasts in the power industry

Definition – Methods – Communication of Uncertainty – End User Cases – Pitfalls - Recommendations

Source: http://www.mdpi.com/1996-1073/10/9/1402/

MDPI

Review

Towards Improved Understanding of the Applicability of Uncertainty Forecasts in the Electric Power Industry

Ricardo J. Bessa ^{1,*} ⁽²⁾, Corinna Möhrlen ² ⁽²⁾, Vanessa Fundel ³, Malte Siefert ⁴, Jethro Browell ⁵ ⁽²⁾, Sebastian Haglund El Gaidi ⁶, Bri-Mathias Hodge ⁷, Umit Cali ⁸ and George Kariniotakis ⁹

- ¹ INESC Technology and Science (INESC TEC), 4200-465 Porto, Portugal
- ² WEPROG, 5610 Assens, Denmark; com@weprog.com
- ³ Deutscher Wetterdienst, 63067 Offenbach, Germany; vanessa.fundel@dwd.de
- ⁴ Fraunhofer Institute for Wind Energy and Energy System Technology (IWES), 34119 Kassel, Germany; malte.siefert@iwes.fraunhofer.de
- ⁵ University of Strathclyde, Department of Electronic and Electrical Engineering, Glasgow G1 1XQ, UK; jethro.browell@strath.ac.uk
- ⁶ Royal Institute of Technology, Department of Mechanics, SE-100 44 Stockholm, Sweden; sheg@kth.se
- ⁷ National Renewable Energy Laboratory, Golden, CO 80401, USA; bri-mathias.hodge@nrel.gov
- ⁸ University of North Carolina Charlotte, Dept. of Engineering Technology and Construction Management, Charlotte, NC 28223, USA; ucal@uncc.edu
- ⁹ MINES Paris Tech, PSL Research University, Centre for Processes, Renewable Energies and Energy Systems (PERSEE), 06904 Sophia Antipolis Cedex, France; georges.kariniotakis@mines-paristech.fr
- Correspondence: ricardo.j.bessa@inesctec.pt; TeL: +351-22209-4216

Academic Editor: David Wood

Received: 18 August 2017; Accepted: 8 September 2017; Published: 14 September 2017

Abstract: Around the world wind energy is starting to become a major energy provider in electricity markets, as well as participating in ancillary services markets to help maintain grid stability. The reliability of system operations and smooth integration of wind energy into electricity markets has been strongly supported by years of improvement in weather and wind power forecasting systems. Deterministic forecasts are still predominant in utility practice although truly optimal decisions and risk hedging are only possible with the adoption of uncertainty forecasts. One of the main barriers for the industrial adoption of uncertainty forecasts is the lack of understanding of its information content (e.g., its physical and statistical modeling) and standardization of uncertainty forecast products, which frequently leads to mistrust towards uncertainty forecasts and their applicability in practice. This paper aims at improving this understanding by establishing a common terminology and reviewing the methods to determine, estimate, and communicate the uncertainty in weather and wind power forecasts. This conceptual analysis of the state of the art highlights that: (i) end-users should start to look at the forecast's properties in order to map different uncertainty representations to specific wind energy-related user requirements; (ii) a multidisciplinary team is required to foster the integration of stochastic methods in the industry sector. A set of recommendations for standardization and improved training of operators are provided along with examples of best practices.

Broader paper on uncertainty forecasting

- Prediction Models Designed to Prevent Significant Errors
- By Jan Dobschinski, Ricardo Bessa, Pengwei Du, Kenneth Geisler, Sue Ellen Haupt, Matthias Lange, Corinna Möhrlen, Dora Nakafuji, and Miguel de la Torre Rodriguez

Uncertainty Forecasting in a Nutshell

DOI: 10.1109/MPE.2017.2729100

Digital Object Identifier 10.1169/MPE.2017.2729100 Date of publication: 18 October 2017

TTIS IN THE NATURE OF CHAOTIC ATMOspheric processes that weather forecasts will never be perfectly accurate. This natural fact poses challenges not only for private life, public safety, and traffic but also for electrical power systems with high shares of weather-dependent wind and solar power production.

To facilitate a secure and economic grid and market integration of renewable energy sources (RES), grid operators and electricity traders must know how much power RES within their systems will produce over the next hours and days. This is why RES forecast models have grown over the past decade to become indipensible tools for many stakeholders in the energy economy. Driven by increased grid stability requirements and market forces, forecast systems have become tailored to the end user's application and already perform reliably over long periods. Apart from a residually moderate forecast error, there are single extremeerror events that greatly affect grid operators.

Nevertheless, there are also forecast systems that provide additional information about the expected forecast uncertainty and estimations of both moderate and extreme errors in addition to the "best" single forecast. Such uncertainty forecasts warn the grid operator to prepare to take special actions to ensure grid stability.

The State of the Art in Forecast Generation

Today, some forecast systems have been developed specifically to predict the power production of single wind and solar units, differently sized portfolios, local transformer stations and subgrids, distribution and transmission grids, and entire countries. Nearly all forecast systems have one thing in common: they rely on numerical weather predictions (NWPs) to calculate the expected RES power production. The way to transform weather predictions into power forecasts depends crucially on the end user's application and the available plant configuration and measurement data. If historical measurements are available, forecast model developers often use statistical and machine-learning techniques to automatically find a relation between historical weather forecasts and simultaneously observed power measurements. If no historical measurement data are available, e.g., for new installations of RES units, the transformation of weather to power is often accomplished by physically based models that consider the unit's parameters to map the internal physical processes.

WP3 End use Workshop Glasgow

"Maximising Value from State-of-the-art Wind Power Forecasting Solutions" Strathclyde University, Glasgow, 21 Jan 2020

- Talks by academia and industry (e.g. UK National Grid)
- Open Space discussion on RP, data and forecast value
- Game on value of probabilistic forecasts (feel free to play it yourself!): https://mpib.eu.qualtrics.com/jfe/form/SV_d5aAY95q2mGl8El
- Streamed on YouTube: https://www.youtube.com/watch?v=1NOIr7jluXI

Topic: Meteorological Measurements and Instrumentation Standardization for Integration into Grid Codes

Results from 2 Workshops: ICEM 2019 & WIW 2019

Need for Industry Standard ?

→Need for best practices: BUT too strict standards are worse than non

- No standards leads to chaotic data management
- → Instrumentation without maintenance: data looses value
- → Maintenance schedules: once, twice per year ?
- Met instrumentation should be part of the turbine delivery/installation

Dissemination

- $\circ~$ No consensus on how to accomplish
- $\circ~$ ENTSO-E is a potential body for dissemination
- Forecasting still undervalued. Need more forecasters in TSOs.
- Need simple advice to give operators, especially in the developing world

Topic: Meteorological Measurements and Instrumentation Standardization for Integration into Grid Codes

Results from 2 Workshops: ICEM 2019 & WIW 2019

- General Agreement that Standards/RPs are Needed
 - $\circ~$ Grid codes vary from region to region
 - Concern about adopting WMO or similar standards, which may be expensive overkill for grid code purposes
 - Should reference traceability to standards but be instrument agnostic
 - Could suggest required measurements by IPPs at time of commissioning
 - $\circ~$ Need education on importance of data quality
 - $\circ~$ Need to address site selection for instrumentation
 - Need to tailor reporting interval to forecast model input needs

05:15 New York // 07:15 Rio de Janeiro // 10:15 London // 15:45 New Delhi // 17:15 Jakarta // 18:15 Peking // 19:15 Tokio

11:15 - 13:00	SESSION 6A: IEA WIND TASK 36: RAISING THE BAR ON INFORMATION TRANSPARENCY AND
	RECOMMENDED PRACTICES FOR WIND POWER FORECASTING
> Session Chair	Gregor Giebel (DTU Wind Energy, Denmark)
11:15 - 12:45	Presentations (18 min. each)

IEA Wind Task 36 Forecasting – An Overview

G. Giebel (DTU Wind Energy, Denmark), W. Shaw (PNNL, United States), H. Frank (Deutscher Wetterdienst DWD,
Germany), C. Draxl (NREL, United States), J. Zack (UL Services Group, United States), P. Pinson (DTU Elektro, Denmark),
C. Möhrlen (WEPROG, Denmark), G. Kariniotakis (Mines ParisTech, France), R. J. Bessa (INESC TEC, Portugal) (Submission-ID WIW20-128)

Validation of Numerical Model Improvements through Public Data Sets and Code

C. Draxl, J. Lee (National Renewable Energy Laboratory – NREL, United States), W. Shaw, L. Berg (Pacific Northwest National Laboratory, United States) (Submission-ID WIW20-124)

- IEA Wind Task 36: Practical Application Examples from the Recommended Practices for Forecast Solution Selection
 J. Zack (UL Services Group, United States), C. Möhrlen (WEPROG, Denmark) (Submission-ID WIW20-108)
- Wind Power Forecasting Data Definitions and Exchange Standards An Approach for a Recommended Practice Built upon International Standards and an Eye Towards the Future

J. Lerner, M. Westenholz (ENFOR, Denmark) (Submission-ID WIW20-126)

- Insight on Human Decision-making from Probabilistic Forecast Games and Experience: an IEA Wind Task 36 initiative C. Möhrlen (WEPROG, Denmark), N. Fleischhut (Max-Planck Institute for Human Development, Germany), R. J. Bessa (INESC TEC, Portugal) (Submission-ID WIW20-98)
- 12:45 13:00 Discussions

05:15 New York // 07:15 Rio de Janeiro // 10:15 London // 15:45 New Delhi // 17:15 Jakarta // 18:15 Peking // 19:15 Tokio

11:15 – 13:00	SESSION 6A: IEA WIND TASK 36: RAISING THE BAR ON INFORMATION TRANSPARENCY AND
	RECOMMENDED PRACTICES FOR WIND POWER FORECASTING
> Session Chair	Gregor Giebel (DTU Wind Energy, Denmark)
11:15 - 12:45	Presentations (18 min. each)

IEA Wind Task 36 Forecasting – An Overview

G. Giebel (DTU Wind Energy, Denmark), W. Shaw (PNNL, United States), H. Frank (Deutscher Wetterdienst DWD,
Germany), C. Draxl (NREL, United States), J. Zack (UL Services Group, United States), P. Pinson (DTU Elektro, Denmark),
C. Möhrlen (WEPROG, Denmark), G. Kariniotakis (Mines ParisTech, France), R. J. Bessa (INESC TEC, Portugal) (Submission-ID WIW20-128)

Validation of Numerical Model Improvements through Public Data Sets and Code

C. Draxl, J. Lee (National Renewable Energy Laboratory – NREL, United States), W. Shaw, L. Berg (Pacific Northwest National Laboratory, United States) (Submission-ID WIW20-124)

- IEA Wind Task 36: Practical Application Examples from the Recommended Practices for Forecast Solution Selection
 J. Zack (UL Services Group, United States), C. Möhrlen (WEPROG, Denmark) (Submission-ID WIW20-108)
- Wind Power Forecasting Data Definitions and Exchange Standards An Approach for a Recommended Practice Built upon International Standards and an Eye Towards the Future

J. Lerner, M. Westenholz (ENFOR, Denmark) (Submission-ID WIW20-126)

 Insight on Human Decision-making from Probabilistic Forecast Games and Experience: an IEA Wind Task 36 initiative C. Möhrlen (WEPROG, Denmark), N. Fleischhut (Max-Planck Institute for Human Development, Germany), R. J. Bessa (INESC TEC, Portugal) (Submission-ID WIW20-98)

12:45 – 13:00 Discussions

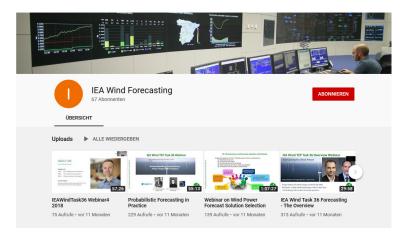
Task 36 Web Presence

Website

www.IEAWindForecasting.dk

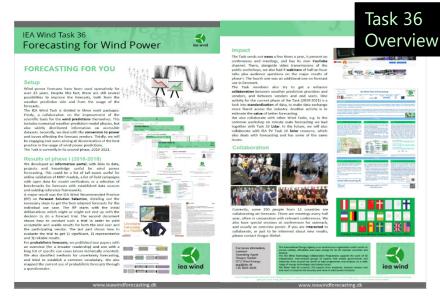
Source: Corinna Möhrlen, WEPROG

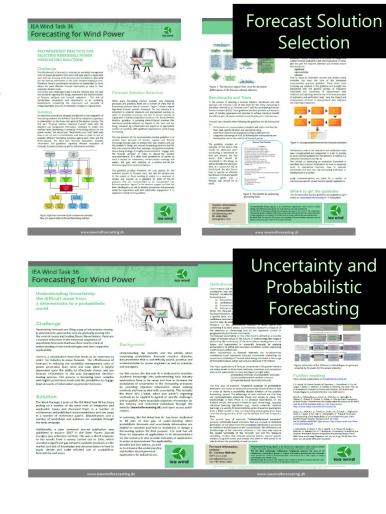
Wind power forecasts have been used operatively for over 20 years. Despite this fact, there are still several possibilities to improve the forecasts, both from the weather prediction side and from the usage of the forecasts. The new international tenergy Agency (EA) Task on Forecasting for Wind Energy thes to organise infernational collaboration, among antional weather centres with an infreest and/or large projects on wind forecast improvements (NDAA, DWD, ...), operational forecaster and forecastures.


The Task is divided in three work packages: Firstly, a collaboration on the improvement of the scientific basis for the wind predictions themselves. This includes numerical weather prediction model physics, but also widely distributed information on accessible dataset. Secondly, we will be aiming at an international pre-standard (an EK Recommended Practice) on benchmarking and company paiving hover forecasts, including probabilistic tech Task. WakeBench. Thirdy, we will be engaging and users aiming at dissemination of the best practice in the usage of wind power forecasts.

Visit the IEA Wind task 36

YouTube


www.youtube.com/c/IEAWindForecasting



Handouts

- 2-page handouts: quick overview of major results
- 3 currently available; can be obtained from:

http://www.ieawindforecasting.dk/publications/po sters-og-handouts

www.IEAWindForecasting.dk

Gregor Giebel

Frederiksborgvej 399, 4000 Roskilde, DK grgi@dtu.dk

Will Shaw, PNNL, Richland (WA), USA will.shaw@pnnl.gov

The IEA Wind TCP agreement, also known as the Implementing Agreement for Co-operation in the Research, Development, and Deployment of Wind Energy Systems, functions within a framework created by the International Energy Agency (IEA). Views, findings, and publications of IEA Wind do not necessarily represent the views or policies of the IEA Secretariat or of all its individual member countries.

05:15 New York // 07:15 Rio de Janeiro // 10:15 London // 15:45 New Delhi // 17:15 Jakarta // 18:15 Peking // 19:15 Tokio

11:15 – 13:00	SESSION 6A: IEA WIND TASK 36: RAISING THE BAR ON INFORMATION TRANSPARENCY AND
	RECOMMENDED PRACTICES FOR WIND POWER FORECASTING
> Session Chair	Gregor Giebel (DTU Wind Energy, Denmark)
11.15 - 12.45	Presentations (18 min_each)

IEA Wind Task 36 Forecasting – An Overview

G. Giebel (DTU Wind Energy, Denmark), W. Shaw (PNNL, United States), H. Frank (Deutscher Wetterdienst DWD,
Germany), C. Draxl (NREL, United States), J. Zack (UL Services Group, United States), P. Pinson (DTU Elektro, Denmark),
C. Möhrlen (WEPROG, Denmark), G. Kariniotakis (Mines ParisTech, France), R. J. Bessa (INESC TEC, Portugal) (Submission-ID WIW20-128)

Validation of Numerical Model Improvements through Public Data Sets and Code

C. Draxl, J. Lee (National Renewable Energy Laboratory – NREL, United States), W. Shaw, L. Berg (Pacific Northwest National Laboratory, United States) (Submission-ID WIW20-124)

- IEA Wind Task 36: Practical Application Examples from the Recommended Practices for Forecast Solution Selection
 J. Zack (UL Services Group, United States), C. Möhrlen (WEPROG, Denmark) (Submission-ID WIW20-108)
- Wind Power Forecasting Data Definitions and Exchange Standards An Approach for a Recommended Practice Built upon International Standards and an Eye Towards the Future
 - J. Lerner, M. Westenholz (ENFOR, Denmark) (Submission-ID WIW20-126)
- Insight on Human Decision-making from Probabilistic Forecast Games and Experience: an IEA Wind Task 36 initiative C. Möhrlen (WEPROG, Denmark), N. Fleischhut (Max-Planck Institute for Human Development, Germany), R. J. Bessa (INESC TEC, Portugal) (Submission-ID WIW20-98)
- 12:45 13:00 Discussions