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Abstract—This paper investigates the impact of data integrity
attacks (DIAs) on cooperative economic dispatch of distributed
generators (DGs) in autonomous AC microgrids. To establish
resiliency against such attacks and ensure optimal operation,
a linear regression based control update is designed in this
paper. To improve the robustness against multiple points of
intrusion, the design of the resilient control update involves
local measurements. As a result, any maloperation due to DIA
is prevented from being propagated to the neighboring nodes.
The proposed strategy acts immediately upon detection of data
integrity attack to ensure maximization in the economic profit.

Index Terms—AC microgrids, Cyber security, Data integrity
attacks, Cyber attacks, Economic load dispatch

I. INTRODUCTION

Due to the flexibility of their application in both grid-

connected and islanded modes, microgrids were established as

key enablers for the integration of renewable energy sources

[1]. To facilitate its operation under transmission delay and

information failure, cooperative/distributed controllers with

robust performance towards cyber layer imperfections are

preferred in recent times [2]. Unlike operating in longer time

scales with static demand feedback in the centralized system,

cooperative dispatching often allows online actions for every

increase in load in real time [3]. As a result, it improves the

economic profile of the generators in a given duration.
Considerably less effort has gone into analyzing cyber

attacks in cooperative optimization. To name a few, Chow et.
al. [4] have designed a reputation-based detection algorithm

to detect attacks on the economic dispatch (ED) problem.

However, it is not fully cooperative, as the algorithm requires

a centralized control center. Since these mechanisms are

highly prone to single point of failure, the optimal operation

of the system can easily be disrupted [6]. To increase the

generation cost, any adversarial false data in the cooperative

ED optimization model is categorized as a data integrity attack

(DIA) in this paper. Such attacks alter the power flows with

respect to the optimal solution [7].
Further, data intrusion from stealth attacks is also possible,

as demonstrated in [8]-[12]. Such attacks are capable of

increasing the generation cost without causing any obvious

indications of power imbalance. To formulate an attack-

resilient mechanism, a two-hop neighboring information-based

verification algorithm to detect and restore the system from

DIAs is also reported in [5]. This algorithm is capable of

detecting non-optimal and non-feasible solutions simultane-

ously. Nevertheless, its performance is highly dependent on the

information from multiple neighbors, which may be a problem

in cases of a compromised link or link failure. Many event-

driven resilient strategies have also been proposed in [14]-[17],

which ensure the best resiliency measures in power electronics

even using a single trustworthy agent. In fact, the authors in

[13] have modeled DIA, which manipulates the power dispatch

of each generator to gain monetary benefits without de-

stabilizing the system. Further, they provide a localized event-

driven operation, which provides resilience against several

cyber-physical disturbances. However, the design can be a

complex approach.
To address these issues, this paper proposes:

1) a simple linear regression based resilient control update

against data integrity attacks in cooperative microgrids

to ensure optimality,

2) design of the resilient update only considering local

measurements to enhance the operational flexibility.

II. SYSTEM AND ATTACK MODEL

A. Control of Cooperative AC Microgrids
An autonomous AC microgrid with N inverter based DG

sources is shown in Fig. 1. The considered microgrid system

consists of three layer: the physical layer, control layer and cy-

ber communication layer. The physical layer comprises of the

entire microgrid network N inverters connected to a LCL filter.

Lk, Cf and Lg represent per phase inductance and capacitance

of the filter circuit and grid-side inductance, respectively. In

the system shown in Fig. 1 which comprises of N agents, each

communication graph is represented via edges to constitute an

adjacency matrix A = [akj ] ∈ RN×N , where the communi-

cation weights are given by: akj > 0, if (Ψk,Ψj) ∈ E, where

E is an edge connecting two nodes with Ψk and Ψj being

the local and neighboring node measurements, respectively.

Otherwise, akj = 0. Nk = {j|(Ψk,Ψj) ∈ E} denotes the

set of all neighbors of kth agent. Further, the in-degree matrix

Zin = diag{zin} is a diagonal matrix with its elements given

by zin =
∑

j∈Nk
akj . The Laplacian matrix L is defined as

L = Zin − A.978-1-7281-6990-3/20/$31.00 ©2020 IEEE
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Fig. 1. Single-line diagram of a cyber-physical AC microgrid consisting of
N DGs managed by a cooperative cyber topology. The data integrity attack
is highlighted in red to change the cost parameters, affecting the optimal
operation.

To improve their performance, neighboring inverters’ mea-

surements, which are transmitted to the local inverter and

vice-versa, are used in a cooperative secondary controller to

regulate their respective bus’ average voltage V̄k and frequency

ωk. The control objectives of the cooperative controller can be

mathematically represented as:

lim
t→∞ωk(t) = ω∗, lim

t→∞ V̄k(t) = V ∗, ∀ k ∈ N (1)

where ω∗ and V ∗ denote the global reference for frequency

and voltage, respectively. Detailed control equations of coop-

erative secondary controller in AC microgrids can be referred

from [2]. To achieve proportionate active power sharing along-

with frequency restoration, the primary layer droop control is

modified into:

ωk(t) = ω∗ −mk(Pk(t)− P ref
k (t)) (2)

where mk, Pk and P ref
k denote the active power droop

coefficient, measured active power and secondary control

active power reference in the kth agent, respectively. The

active power control in each DG is augmented with frequency

restoration to minimize the generation cost for economic

operation. To this end, we consider the general quadratic cost

function for each DG to provide the operational cost, given

by:

Ck(Pk) = akP
2
k + bkPk + ck (3)

where ak, bk and ck are the cost coefficients of the source

in kth DG. Following the generation-demand balance equality

constraint, the objective of optimal load sharing is to minimize

the total cost of all DGs using:

min C(P ) =

N∑
k=1

Ck(Pk) (4)

s.t.[

N∑
k=1

Pk = PD, Pmin
k < Pk < Pmax

k ] ∀k ∈ N

where PD, Pmin
k and Pmax

k denotes the total demand in the

microgrid, minimum and maximum active power for kth DG

respectively. Further, (4) can be solved using its associated

Lagrange function as:

Lλ =

N∑
k=1

Ck(Pk) + λk

N∑
k=1

(PD
k − Pk) (5)

where λk and PD
k denote the incremental cost and local active

power demand respectively. Differentiating (5) with respect to

Pk using the first-order optimality condition, we can initialize

the incremental cost using:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩
Pk(0) =

⎧⎪⎨
⎪⎩
Pmin
k , PD

k < Pmin
k

PD
k , Pmin

k < PD
k < Pmax

k

Pmax
k , PD

k > Pmax
k

λk(0) = 2akPk(0) + bk

ηk(0) = PD
k − Pk(0)

(6)

To minimize the total generation cost subjecting to the

equality constraints, it is required that the incremental cost

of each DG be equal [18], which is carried out using a power

correction term ΔPk, given by:

ΔṖk =
∑
j∈Nk

akj(λj − λk) (7)

Using (7), the active power reference for each DG with

regulation of the local frequency can be obtained using:

P ref
k = P initial

k + gk

∫ τ

0

(ω∗ − ωk(t))dτ +ΔPk. (8)

Substituting (8) into (2), the active power droop control law

operates to restore frequency of each bus to the rated value and

participates in the optimal load sharing. Hence using (2)-(8),

a unified cooperative control structure for economic dispatch

is devised for AC microgrid to achieve:

lim
t→∞λk = λopt, lim

t→∞Pk(t) = P opt ∀k ∈ N (9)

where λopt and P opt denote the optimal incremental cost

and corresponding active power generation from kth DG in

the absence of cyber attack. However, any change in cost

parameters or displacing of the incremental cost in (6) by an

adversary, denoted as a data integrity attack (DIA), will cause

the system to operate in an non-optimal state. As a result,

such attacks reduce the energy efficiency, which needs to be

identified and mitigated immediately.



B. Attack Modeling

Two types of DIAs have been considered in this paper.

These attacks are given by:

λf
k(i+ 1) = λk(k) +

∑
j∈Nk

wkj(λj(i)− λk(i)) + ζua
λk︸ ︷︷ ︸

DIA1

(10)

λf
k(i) = (1− ζ)λk(i) + ζλc

k︸ ︷︷ ︸
DIA2

(11)

where ua
λi

is an exogenous attack input in ith DG and ζ is a

binary variable which is equal to 1 in the presence of DIA,

or 0 otherwise. Moreover, λc
i denotes a constant valued attack

element, which does not update in an iterative manner.

In (10), the attack can be injected by changing the cost

parameters using:

ua
λk

=

{
−ΔakPk

−Δbk
(12)

where Δak and Δbk denote positive attack coefficients, when

added to the cost function in (3) increase the overall generation

cost. Hence, using (11), the consensus algorithm maloperates

during the update process, which converges to an arbitrary

value. Due to this maloperation, the control objectives in (9)

are altered to:

lim
t→∞λk(t) = λ∗, lim

t→∞Pk(t) = P ∗ ∀k ∈ N (13)

where λ∗ and P ∗ denote the optimal setpoints for incremental

cost and active power under the presence of DIA, respectively.

It should be noted that there lies a considerable steady-state

difference between λopt and λ∗, which has been theoretically

verified in [2]. Hence, λ∗ denotes the sub-optimal point of

economic operation for DGs in AC microgrids.

To provide a basic understanding, a case study is done

in a microgrid with N = 4 agents (the system and control

parameters can be found in Appendix) in Fig. 2 to study

the impact of change in cost parameters on the performance

of AC microgrids. The cost parameters of each DG are

provided in Table I. It can be seen that the system response

is almost similar under both cases until DIA1 is injected

into DG I at t = 1 sec. As soon as DIA1 is injected, the

dotted lines show the deviation from the actual output as the

incremental cost go up by a steady-state deviation of 0.6 $/kW.

Furthermore, this value will keep increasing as the power

dispatch from each generator change with the increase in

load. To counteract against these attacks, we propose a linear

regression technique which can effectively diminish the impact

of the modeled attacks by an artificial routing of the economic

model parameters and ensure resilient optimal operation.

III. PROPOSED RESILIENT MECHANISM

Considering x(i) = Pk(i) as input and y = λ̂k(i) as the

output, which is supposed to be predicted. A pair (x(i), y(i))
is called a training example for ith instant. Each training set

comprises of m pairs. To describe the supervised learning

Fig. 2. Comparative evaluation of active power and incremental cost under
the absence (solid lines) and presence (dotted lines) of DIA1 – even though
a steady-state solution is reached, a positive drift of 0.6 $/kW is seen thereby
increasing the generation cost and disturbing the optimal operation.

TABLE I
COST COEFFICIENTS OF DG

DG I II III IV

ak ($/kW2) 0.005 0.0025 0.004 0.006

bk ($/kW) 1 0.6 1.8 0.45

problem more formally, our goal is, given a training set, to

learn a hypothesis function h so that h(x) is a good predictor

for the corresponding value of y. When the output variable

that we’re trying to predict is continuous, we call the learning

problem a regression problem. To perform supervised learning,

we must decide how we’re going to represent the hypotheses

h. As an initial choice, we approximate y as a linear function

of x:

hθx(i) = x(i)T θ (14)

In (14), θ is a weight, which parameterizes the space of

linear functions mapping from x to y. One of the reasonable

objective is to bring h(x) close to y. To formalize this, we

define a cost function that maps the relationship between

h(x(i)) and y(i), given by:

J(θ) =
1

2

m∑
i=1

(hθx(i)− y(i))2 (15)

In (15), J is minimized without resorting to an iterative

algorithm. In fact, it is minimized explicitly by taking its

derivatives with respect to θ and setting them to zero.



Substituting (14) in (15), we get:

xθ − y =

⎡
⎢⎢⎢⎣

x(1)θ
x(2)θ

...

x(m)θ

⎤
⎥⎥⎥⎦−

⎡
⎢⎢⎢⎣

y(1)
y(2)

...

y(m)

⎤
⎥⎥⎥⎦ (16)

Thus, using the fact that for a vector z, we have that zT z =∑
i

z2i .

xθ − y =

⎡
⎢⎢⎢⎣

hθx(1)− y(1)
hθx(2)− y(2)

...

hθx(m)− y(m)

⎤
⎥⎥⎥⎦ (17)

Hence, the cost function can be obtained using:

J(θ) =
1

2
(xθ − y)T (xθ − y) =

1

2

m∑
i=1

(hθx(i)− y(i))2 (18)

Finally to minimize J , let’s find its derivative with respect to

θ. It is worth notifying that the derivative of J with respect to

θ is denoted as ΔθJ(θ).
The following properties of the trace operator tr(◦) are given

below. Here, A and B are square matrices, and a is a real

number:

• tr(A)=tr(AT )

• tr(A+B)=tr(A) + tr(B)

• tr(aA) = a.tr(A)

• tr(AB)=tr(BA)

Furthermore, the derivative output using the trace operator is

given by:

ΔAtr(AB) = BT (19)

ΔAT f(A) = (ΔAf(A))T (20)

ΔAtr(ABAT C) = CAB + CT ABT (21)

Combining (20) and (21), we get:

ΔAT tr(ABAT C) = BT AT CT + BAT C (22)

Using (22) to get the derivative of (18), we get:

ΔθJ(θ) = Δθ
1

2
(xθ − y)T (xθ − y)

=
1

2
Δθ(θ

TxTxθ − θTxT y − yTXθ + yT y)
(23)

ΔθJ(θ) =
1

2
Δθtr(θTxTxθ − θTxT y − yTxθ + yT y) (24)

It is worth notifying that the trace of a real number is just

the real number, given by tr(A) = tr(A)T . Considering this

postulate, (24) can be re-written as:

ΔθJ(θ) =
1

2
Δθ(tr(θTxTxθ)− 2tr(yTxθ)) (25)

Comparing equation (22) and (25), we conclude:

ΔθJ(θ) =
1

2
(xTxθ + xTxθ − 2xT y)

= xTxθ − xT y
(26)

Fig. 3. Control diagram of the proposed linear regression based resilient
controller for the modeled DIAs in cooperative AC microgrids.

To minimize J , we set its derivative to zero in order to obtain:

xTxθ = xT y (27)

Finally, the parameter θ that minimizes J(θ) can be given

by:

θ = (xTx)−1xT y (28)

With parameterization achieved to a certain degree using the

offline historic data from λk and Pk, the estimated cost

coefficients âk and b̂k are fed into the linear regression

model, as shown in Fig. 3, to formalize the presence of any

identification error. Finally, if an error is identified, the next

update is immediately switched using:

λf
k = (1− κ)λk + κ(âkPk + b̂k) (29)

Hence, the cooperative update of incremental cost is updated to

ensure resiliency under these conditions. A detailed schematic

of the control diagram is provided in Fig. 3.
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DG II DG III

DG IV
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R
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Fig. 4. Single line diagram of the cyber-physical AC microgrid with N = 4
DGs (agents).

IV. SIMULATION RESULTS

The proposed localized event based attack-resilient control

strategy is tested on an AC microgrid, as shown in Fig. 4,

with N = 4 DGs of equal capacity of 10 kVA. The nominal

frequency of the network is 60 Hz. All the system parameters

can be found in Appendix. The cost parameter of each DG

can be referred from Table I.

A case study on the considered system is carried out in Fig.

5(a), with DIA1 in (5) injected by the adversary at t = 0.5



(a)

(b)

Fig. 5. Performance of AC microgrid with N= 4 DGs : (a) in the absence
and, (b) in the presence of the proposed resilient controller when DIA1 and
DIA2 are launched at t = 0.5 and 1 sec, respectively.

s. Observations in Fig. 5(a) confirm that the incremental cost

of each DG start converging to a feasible solution. Further,

another attack is conducted at t = 1 s, where λc
1 = 6.5. It can

be seen that as soon as λ1 settles to 6.5, the remaining DGs

track the set-point as a reference using the consensus theory.

However as per the explained theory, it can be seen in Fig.

5(b) that λ1 immediately reverts back to the normal operating

conditions obeying the consensus theory using the proposed

resilient mechanism.

Fig. 6. Performance of AC microgrid with N =4 DGs when a ramp attack
element in the form of DIA1 is injected at t = 0.5 sec.

In Fig. 6, another case study is carried out where a ramp

attack element (using the DIA1 model in (10)) is injected into

the generation cost model of DG I. It can be seen that when

Δak = −0.005t is injected at t = 0.5 sec, the incremental

cost of each DG remain converged to the pre-attack value.

Particularly, the linear regression technique substitutes the

attacked signal with the estimated signal upon determination

of the error as shown in Fig. 5.

Fig. 7. Estimation by the proposed resilient mechanism under normal
operating conditions.

Further in Fig. 7, it can be seen that the estimated signal

follows the calculated incremental cost of DG II under normal

and dynamic conditions. This allows the proposed mechanism

to operate not only like a switching state (Refer to (29))

but it can always be used as a resilient controller to prevent

maloperation due to cyber attacks.

Fig. 8. Performance of AC microgrid with N= 4 DGs : (a) in the absence and,
(b) in the presence of the proposed resilient controller when DIA1 occurs
on all the agents simultaneously at t = 1 sec.

Another case study is carried out in Fig. 8 where DIA1

is conducted simultaneously at t = 1 sec. It can be seen in

Fig. 8(a) that when the cost coefficient bk of each DG (Refer

to Table I) is doubled, the incremental cost increases almost

by 1 $/kW, which disregards the optimal operation. Conse-

quently for any consecutive change in load, the incremental

cost always follows a non-optimal trajectory from here on.

However in the presence of the proposed controller, it can be

seen in Fig. 8(b) that the regression technique immediately

replaces all the attacked λk locally with λ̂k. As soon as it is

replaced, the pre-attack set-point is retained to ensure optimal

operation. This highlights the robustness of using a localized



resilient strategy in handling simultaneous attacks, which can

be the worse case scenario.

V. CONCLUSION

This paper presents a linear regression based resilient

controller to defend cooperative AC microgrids from data

integrity attacks (DIAs). As these attacks cause an increase in

the generation cost, the attack elements need to be removed

immediately from the control system to prevent divergent non-

optimal solutions. In this paper, we have considered two DIAs

namely DIA1 and DIA2, which supports and blocks the

consensus iterative theory, respectively. Hence, the proposed

scheme provides a faster elimination of the attacked signal

by understanding the intrinsic signal properties more closely

and providing an accurate estimation even under attacked

conditions. Moreover, it allows to deal with the correctness of

measurements in each DG locally without infringing neighbor

DG’s cost parameters. Due to its intrinsic localized resilient

feature, this strategy can be leveraged under worse-case dis-

turbances, such as simultaneous DIA attacks on every DG

in the microgrids. Due to the decentralization, it restricts

further cyber interactions to ensure the optimal operation of

AC microgrids.

APPENDIX

It is worth notifying that the control parameters are consis-

tent for each DG, unless stated otherwise.

Plant: R12= 0.23 ohms, L12= 0.000318 H , R23= 0.35 ohms,

L23= 0.001846 H, R34= 1 ohms, L34= 0.001846 H, Cv =

25μF, Lk = 1.8 mH, Lg = 1.8 mH

Controller: m = 0.00014, n = 0.0013, gk = 500, σ = 1.4,

Pmin = {0, 0, 0, 0} kW, Pmax = {4, 4, 4, 4} kW

Inner Current Loop: KpI = 0.7, KiI = 100

Inner Voltage Loop: KpV = 0.35, KiV = 400

Frequency Secondary Control: Kpf = 1, Kpf = 2

Voltage Secondary Control: KpE = 1, KpE = 2

Reactive Power Secondary Control: KpE = 0.0001, KpE = 0.2
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