Draft Genome Sequences of Lactococcus lactis Strains MS22314, MS22333, MS22336, and MS22337, Isolated from Fermented Camel Milk in Ethiopia

Bragason, Esben; Svendsen, Christina Aaby; Guya, Mitiku Eshetu; Berhe, Tesfemariam; Hansen, Egon Bech

Published in:
Microbiology Resource Announcements

Link to article, DOI:
10.1128/MRA.00862-20

Publication date:
2020

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Draft Genome Sequences of *Lactococcus lactis* Strains MS22314, MS22333, MS22336, and MS22337, Isolated from Fermented Camel Milk in Ethiopia

Esben Bragason,a Christina Aaby Svendsen,a Mitiku Eshetu Guya,b Tesfemariam Berhe,b © Egon Bech Hansena

aNational Food Institute, Technical University of Denmark, Lyngby, Denmark
bHaramaya University, School of Animal and Range Sciences, Dire Dawa, Ethiopia

ABSTRACT The genome sequences of four *Lactococcus lactis* strains isolated from fermented camel milk were sequenced using paired-end Illumina MiSeq reads. The genome size of each strain was about 2.6 Mb, and three of the strains were annotated with *tet(S)* coding for tetracycline resistance.

Lactococcus lactis is a well-known acidifying Gram-positive bacterium, approved with qualified presumption of safety (QPS) status by the European Food Safety Authority and used in starter cultures to make dairy products (1). Here, we report the draft genome sequences of *L. lactis* strains MS22314, MS22333, MS22336, and MS22337. All strains were isolated from camel milk in Ethiopia. The new strains demonstrate superior fermentation qualities in camel milk of exponential cell growth, acidification, and decrease in redox potential, comparable to what other strains have shown in bovine milk (2). Starter cultures used for bovine-based products have shown poor fermentation results in camel milk (3, 4).

Camel milk samples (*n* = 29) were collected from several farms in the Babile area of Ethiopia and incubated at 30°C or 42°C for 48 h to stimulate fermentation. Samples with a pH of <5 after 48 h were plated and restreaked 5 times onto De Man, Rogosa, and Sharpe (MRS) agar, M17 agar containing 0.5% lactose, or Prussian blue agar, all containing 20 μg ml⁻¹ nataamycin for fungal inhibition (5, 6).

Single colonies from 114 isolates on one of the agar plates were chosen for 16S rRNA gene sequencing as described by Fugl et al. (2).

Based on phenotypic characterization (2), single colonies from each of four isolates, MS22314, MS22333, MS22336, and MS22337, were clean streaked at 30°C for whole-genome sequencing onto M17-lac agar plates. DNA was extracted following the manufacturer’s protocol (NORGEn milk bacterial DNA isolation kit 21550).

DNA concentrations were measured on the Qubit fluorometer using the double-stranded DNA (dsDNA) high-sensitivity (HS) assay kit (Invitrogen), Libraries for paired-end sequencing were constructed using the Nextera XT kit (Illumina, CA, USA) guide 15031942v01. The pooled Nextera XT libraries were loaded onto an Illumina MiSeq reagent cartridge using the MiSeq reagent kit v3 and 500 cycles with a standard flow cell. Sequencing was carried out using an Illumina MiSeq benchtop sequencer with an average read length of 210 bp, which yielded 1,868,468 to 2,187,598 reads. The coverages ranged between 130.2 x and 173.8 x.

The raw Illumina reads were filtered and trimmed using Assembler v1.0 (https://cge.cbs.dtu.dk/services/Assembler/) (7). The trimmed reads were assembled using Velvet v1.1.04 (8) with the standard quality control parameters included in the software. The genome statistics are reported in Table 1.

The contigs were annotated using the NCBI Prokaryotic Genome Annotation

Editor J. Cameron Thrash, University of Southern California

Copyright © 2020 Bragason et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

Address correspondence to Egon Bech Hansen, egbh@food.dtu.dk.

Received 24 July 2020
Accepted 21 October 2020
Published 19 November 2020
Pipeline (PGAP) v4.11. A Swiss-Prot (9) entry (accession number Q48712) was found to have 99.8% identity to a gene coding for tetracycline resistance tet(S) in MS22314, MS22336, and MS22337, which should be considered when developing starter cultures for camel dairy applications.

The draft genome sequences of *L. lactis* strains MS22314, MS22333, MS22336, and MS22337 are valuable for future manufacturing of effective and safe starter cultures specific to the camel dairy industry.

Data availability. The genome sequences of MS22314, MS22333, MS22336, and MS22337 have been deposited in DDBJ/ENA/GenBank under the BioSample numbers SAMN13701540, SAMN13701541, SAMN13701542, and SAMN13701543. The raw read data have been uploaded to the NCBI Sequence Read Archive (10) and can be found at GenBank under the accession numbers listed in Table 1, together with the Illumina paired-end contigs.

ACKNOWLEDGMENTS

We acknowledge financial support from the Danish Development Fund, Danida, through grant DFC 12-017DTU, and from Innovation Fund Denmark through grant 7045-00021.

We thank Bodil Madsen for expert technical assistance.

REFERENCES

TABLE 1 Characteristics and accession numbers of the *L. lactis* strains isolated from spontaneous fermented camel milk from Ethiopia

<table>
<thead>
<tr>
<th>Species and strain</th>
<th>Genome size (bp)</th>
<th>GC content (%)</th>
<th>No. of contigs</th>
<th>No. of CDS</th>
<th>N50 (bp)</th>
<th>No. of reads</th>
<th>Coverage (X)</th>
<th>GenBank accession no.</th>
<th>SRA accession no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. lactis MS22314</td>
<td>2,694,284</td>
<td>35.0</td>
<td>236</td>
<td>2,684</td>
<td>66,984</td>
<td>1,940,308</td>
<td>153.9</td>
<td>WWDH00000000</td>
<td>SRR11713472</td>
</tr>
<tr>
<td>L. lactis MS22333</td>
<td>2,689,322</td>
<td>35.1</td>
<td>240</td>
<td>2,669</td>
<td>34,236</td>
<td>2,187,598</td>
<td>173.8</td>
<td>WWDI00000000</td>
<td>SRR11713471</td>
</tr>
<tr>
<td>L. lactis MS22336</td>
<td>2,692,760</td>
<td>35.0</td>
<td>273</td>
<td>2,690</td>
<td>60,629</td>
<td>1,667,736</td>
<td>130.2</td>
<td>WWDJ00000000</td>
<td>SRR11713470</td>
</tr>
<tr>
<td>L. lactis MS22337</td>
<td>2,659,725</td>
<td>35.1</td>
<td>233</td>
<td>2,674</td>
<td>76,645</td>
<td>1,868,468</td>
<td>147.6</td>
<td>WWDK00000000</td>
<td>SRR11713469</td>
</tr>
</tbody>
</table>

CDS, coding DNA sequences.