Corrigendum: High throughput computational screening for 2D ferromagnetic materials: the critical role of anisotropy and local correlations (2D Mater. 6 045018)

Torelli, Daniele; Thygesen, Kristian S.; Olsen, Thomas

Published in:
2D materials

Link to article, DOI:
10.1088/2053-1583/ab7bf8

Publication date:
2020

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):
CORRIGENDUM

Corrigendum: High throughput computational screening for 2D ferromagnetic materials: the critical role of anisotropy and local correlations (2D Mater. 6 045018)

To cite this article: Daniele Torelli et al 2020 2D Mater. 7 049501

View the article online for updates and enhancements.
CORRIGENDUM

Corrigendum: High throughput computational screening for 2D ferromagnetic materials: the critical role of anisotropy and local correlations (2D Mater. 6 045018)

Daniele Torelli, Kristian S Thygesen,2 and Thomas Olsen

1 Computational Atomic-scale Materials Design (CAMD), Department of Physics, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
2 Center for Nanostructured Graphene (CNG), Department of Physics, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark

Keywords: 2D magnetism, high throughput calculations, first principles calculations

Table 1. List of 2D magnetic insulating materials with positive exchange coupling J and positive spinwave gap Δ. Structure denotes the prototypical crystal structure and S is the spin carried by each magnetic atom. The critical temperature T_C is obtained from equation 5 of the original manuscript. The top part of the table contains dynamically and thermodynamically stable materials. The lower part of the table contains materials that are not expected to be stable in their pristine form but exhibit high critical temperatures.

<table>
<thead>
<tr>
<th>Formula</th>
<th>Structure</th>
<th>J [meV]</th>
<th>Δ [meV]</th>
<th>S [\hbar]</th>
<th>T_C [K]</th>
</tr>
</thead>
<tbody>
<tr>
<td>FeCl$_2$</td>
<td>MoS$_2$</td>
<td>15.2</td>
<td>0.056</td>
<td>2.0</td>
<td>208</td>
</tr>
<tr>
<td>CuCl$_3$</td>
<td>BiI$_3$</td>
<td>15.3</td>
<td>0.058</td>
<td>1.0</td>
<td>37</td>
</tr>
<tr>
<td>CrI$_3$</td>
<td>BiI$_3$</td>
<td>2.3</td>
<td>0.96</td>
<td>1.5</td>
<td>35</td>
</tr>
<tr>
<td>CoCl$_2$</td>
<td>CdI$_2$</td>
<td>2.0</td>
<td>0.058</td>
<td>1.5</td>
<td>31</td>
</tr>
<tr>
<td>CrBr$_3$</td>
<td>BiI$_3$</td>
<td>2.0</td>
<td>0.23</td>
<td>1.5</td>
<td>23</td>
</tr>
<tr>
<td>MnO$_2$</td>
<td>CdI$_2$</td>
<td>0.54</td>
<td>0.31</td>
<td>1.5</td>
<td>19</td>
</tr>
<tr>
<td>NiCl$_2$</td>
<td>CdI$_2$</td>
<td>7.2</td>
<td>0.001</td>
<td>1.0</td>
<td>14</td>
</tr>
<tr>
<td>CrCl$_3$</td>
<td>BiI$_3$</td>
<td>1.4</td>
<td>0.033</td>
<td>1.5</td>
<td>13</td>
</tr>
<tr>
<td>RuCl$_2$</td>
<td>MoS$_2$</td>
<td>18.7</td>
<td>2.3</td>
<td>2.0</td>
<td>606</td>
</tr>
<tr>
<td>RuBr$_2$</td>
<td>MoS$_2$</td>
<td>16.1</td>
<td>1.77</td>
<td>2.0</td>
<td>509</td>
</tr>
</tbody>
</table>

In the original manuscript a small error in the calculation of exchange coupling constants was introduced due to different versions of the code being used for ferromagnetic and anti-ferromagnetic configurations. The error also propagated into the calculated spin-wave gaps and critical temperatures, which was summarized in Table 2 of the original manuscript. This only affected PBE calculations, but not the PBE+U calculations. In Table 1 we provide the corrected values. Except for MnO$_2$ all values are in close proximity to the ones reported in the original manuscript. For MnO$_2$ the corrected value for the critical temperature is 19 K, which is much lower than the value of 63 K reported previously.

ORCID iDs

Daniele Torelli https://orcid.org/0000-0001-6256-9284
Kristian S Thygesen https://orcid.org/0000-0002-4861-0268
Thomas Olsen https://orcid.org/0000-0001-5197-214X

© 2020 IOP Publishing Ltd