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A B S T R A C T	   A R T I C L E   I N F O	

Dimensional	and	geometric	tolerances	affect	both	the	cost	and	the	functionali‐
ty	 of	 a	 given	 product.	 Finding	 the	 acceptable	 trade‐off	 between	 the	 two	 is	
among	 the	 common	engineering	 tasks.	Thus,	many	 tolerance	 analysis	meth‐
ods	 are	 developed	 to	 help	 engineers	 and	 assist	 in	 the	 decision‐making	 pro‐
cess.	In	this	article,	the	authors	have	assessed	four	tolerance	analysis	methods	
by	 applying	 them	 to	 the	 open‐loop	 assembly.	 The	 results	 obtained	 by	 the	
tolerance	 chart	 (worst‐case)	 method,	 Monte‐Carlo	 simulation,	 vector‐loop	
analysis,	and	the	Unified	Jacobian‐torsor	model	were	analysed	and	compared.	
Additionally,	the	overview	and	application	guidelines	are	included	for	each	of	
the	methods,	 aiming	 to	help	both	 researchers	and	practitioners.	The	 results	
have	confirmed	that	there	are	significant	variations	in	the	outputs	across	the	
observed	methods,	implying	the	need	for	informed	method	selection.	
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1. Introduction 

During	 the	 design	 phase,	 tolerances	 are	 assigned	 to	 nominal	 dimensions,	 ensuring	 successful	
assembly	while	 retaining	 the	manufacturing	 costs	 at	 an	acceptable	 level.	As	 the	 complexity	of	
mechanical	 design	 increases,	 keeping	 track	of	 the	 tolerances	becomes	harder.	To	mitigate	 the	
problem,	 tolerance	 analysis	methods	 of	 various	 complexity	 are	 available.	 The	methods	 range	
from	simple,	1D	tolerance	chart	analysis,	to	advanced	procedures	requiring	the	use	of	advanced	
mathematical	models.	Examples	 include	vector	 loop,	Unified	Jacobian‐torsor,	T‐maps,	and	Skin	
model	Shapes.	Furthermore,	 tolerance	analysis	methods	can	be	divided	by	 several	 criteria:	 an	
approach	to	the	analysis,	identification	process,	and	the	calculation	procedure	of	dependent	di‐
mensions	[1].		
	 Before	analysing,	tolerances	are	assigned	to	assembly	features	and	are	organised	into	stacks,	
easing	the	variation	analysis.	Stacks	are	then	used	to	analyse	the	assembly	by	reading	the	draw‐
ings	 or	 by	 assigning	 tolerances	 on	 computer‐aided	 drawing	 (CAD).	 The	 tolerances	 are	 then	
stacked	 into	 loops	 using	points,	 surfaces,	 vectors,	 or	 joints,	 among	others	 –	depending	 on	 the	
method	[1].	Manual	charting	is	frequently	used	when	solving	simple	problems	consisting	of	few	
dimensions.	As	the	number	of	dimensions	increases,	its	reliability	decreases	–	it	is	error‐prone	
and	tiresome.	Additionally,	manual	analysis	is	hard	to	perform	in	2D	and	3D	tolerancing	prob‐
lems.	
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	 The	 tolerancing	 problem	 complexity	 further	 increases	 when	 the	 geometric	 tolerances	 are	
necessary	 [2].	Geometric	 tolerances	 are	defined	by	3D	 tolerance	 zones,	 rendering	most	 of	 the	
simpler	methods	 unusable.	 Thus,	 computer‐aided	 tools	 (CAT)	were	 developed,	 increasing	 the	
capabilities	 in	 terms	 of	 the	 number	 of	 available	 approaches	 and	mathematical	 models.	 Many	
such	 tools	are	developed	and	successfully	applied	(VisVSA,	3DCS,	CETOL,	OpTol)	 [3]	 in	 the	 in‐
dustrial	environment.	Unfortunately,	various	proprietary	CAT	tools	use	different	mathematical	
models	to	define	and	analyse	tolerances,	meaning	that	the	obtained	results	may	differ	[4].	
	 State‐of‐the‐art	CAT	tools	allow	users	to	model	assembly	stacks	with	point‐to‐point	features.	
The	contributing	tolerances	are	identified	and	arranged	into	suitable	stacks	or	loops	[5]	as	each	
method	is	compatible	with	a	specific	stacking	procedure	to	build	the	stacking	equation.	In	recent	
papers,	many	researchers	have	studied	differences	and	similarities	of	tolerance	analysis	meth‐
ods.	 Studies	 considered	 the	 contributing	 tolerances	 from	multiple	 directions	 [6],	 the	 angular	
deviation	of	the	adjustable	element,	or	a	critical	assembly	feature	(functional	requirement)	[6].	
Also,	the	form	[1]	and	interaction	of	the	multiple	tolerances	in	the	3D	context	is	defined	by	the	
geometric	drawing	and	tolerancing	(GD&T)	standards	[1,	10].	Due	to	frequent	changes	in	GD&T	
standards	[7]	such	as	ISO	8015	[2]	and	ASME	Y14.5	[8,	9],	continuous	support	of	the	tolerance	
analysis	methods	is	needed.	
	 Various	 assembly	 applications	 are	 described	 as	 a	 system	 of	 open‐loop	 or	 closed‐loop	 that	
must	be	solved	together.	The	open‐loop	describes	a	dimension	stack	terminated	with	a	gap	or	a	
critical	assembly	feature.	The	closed‐loop	defines	a	closure	constraint	for	the	assembly,	implying	
that	adjustable	elements	are	in	the	assembly.	Thus,	the	critical	difference	between	the	open‐loop	
and	closed‐loop	assemblies	 is	 the	existence	of	gap;	 in	 the	open‐loop	assemblies,	we	anticipate	
that	gap	dimension	must	be	properly	toleranced	to	allow	us	to	form	an	engineering	fit	with	an‐
other	part	(for	the	schema	of	the	open‐loop	assembly,	(please	see	Fig.	3).	Those	elements,	gap	or	
functional	requirement,	are	the	result	of	part	tolerance	accumulation.	If	there	are	no	adjustable	
components,	there	is	no	need	for	closed‐loops	–	the	assembly	model	is	composed	only	of	open‐
loops	[2].	
	 In	recent	studies,	methods	for	tolerance	analysis	were	compared	using	the	closed‐loop	exam‐
ples.	The	aim	was	to	determine	the	advantages	and	shortcomings	of	each	method,	along	with	the	
differences	 in	output	 (e.g.	 [10‐15]).	To	 the	best	of	our	knowledge,	mentioned	research	studies	
have	not	considered	the	open‐loop	assemblies.	Hence,	the	contribution	of	the	article	at	hand	is	
the	evaluation	of	the	tolerance	analysis	methods	on	open‐loop	problems.	Furthermore,	besides	
the	scientific	contribution,	this	article	aims	to	provide	the	practitioners	with	a	simple	review	and	
guidelines	for	the	application	of	each	method.	To	achieve	this,	we	have	compared	four	different	
methods:	tolerance	chart	method,	Monte	Carlo	method,	vector	loop	model,	and	Unified	Jacobian‐
torsor	model.	Each	method	was	applied	to	an	open‐loop	assembly,	allowing	 for	comparison	 in	
performances	and	outcomes.	

2. Methods and materials 

In	this	research	study,	 four	tolerancing	methods	were	compared:	 tolerance	chart	method	[16],	
Monte	Carlo	method,	vector‐loop	model	[15],	and	Unified	Jacobian‐torsor	(see	Section	2.1).	Each	
method	is	described,	along	with	the	steps	necessary	to	apply	it.	Those	include	tolerancing	prob‐
lem	identification,	mathematical	modelling,	and	calculation	procedures.	

2.1 Used tolerance analysis methods 

Tolerance	chart	method	 is	the	most	 frequently	used	tolerance	analysis	method	in	the	industry	
[16],	mostly	due	to	its	simplicity.	It	is	widely	used	for	solving	problems	concerned	with	dimen‐
sional	tolerances,	although	the	recent	improvements	enabled	its	application	to	geometric	toler‐
ances	 [15].	The	method	 is	one‐dimensional;	 in	order	 to	apply	 it	 to	 the	multi‐dimensional	geo‐
metric	tolerances,	they	must	be	converted	to	1D	space	[15].		
	 Tolerance	chart	method	can	be	performed	on	both	the	part	and	assembly	level.	For	assembly	
level,	parts	included	in	the	tolerance	chain	represent	one	of	the	tolerance	end‐points	(maximum	
or	minimum).	Each	part	is	placed	against	its	mating	part	in	one	of	its	tolerance	end‐points.	As	a	
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result,	the	worst‐case	tolerance	chart	method	illustrates	the	minimal	and	maximal	variation	of	a	
functional	requirement	based	on	the	values	in	the	tolerance	chain	[9].	
	 When	performing	the	tolerance	chart	method	analysis,	the	first	step	is	to	set	a	goal	by	label‐
ling	the	chain	starting	and	ending	points	[16].	The	starting	point	is	selected	on	one	edge	and	the	
ending	 point	 on	 the	 opposite	 edge	 of	 the	 analysed	 feature	 (see	 Fig.	 1).	 The	 chain	 indicator	 is	
placed	to	determine	the	direction	of	the	dimension	vector	and	is	either	positive	or	negative	[17].	
The	vector	pointing	toward	the	chain	end‐point	is	marked	“⊕”,	and	the	vector	pointing	opposite	
of	the	end‐point	is	marked	“⊖“.	The	indicator	shows	whether	to	add	or	subtract	dimensions	and	
tolerances	during	the	stack	calculation.	Additionally,	it	simplifies	the	interpretation	of	tolerance	
chart	 results	 [16].	 The	 resulting	dimension	 chain	 is	 the	 shortest	 possible	 and	 consists	 only	 of	
known	dimensions	‐	dimensions	set	by	designers.	
	 Tolerance	chart	method	was	used	in	recent	studies	[5,	6,	9,	15‐17],	mostly	as	a	reference	for	
the	comparison	of	advanced	 tolerance	analysis	methods.	 Its	most	 important	advantage	 is	sim‐
plicity;	no	computational	tools	are	needed	as	it	can	be	carried	out	by	hand.	The	downside	is	that	
the	user	has	to	keep	in	mind	all	the	standard	rules	[2,	8]	for	creating	the	stacks,	making	the	pro‐
cess	error‐prone.	Besides,	the	tolerance	chart	method	creates	stacks	in	one	direction	and	ignores	
the	contributions	of	others,	possibly	providing	unsatisfactory	results.	
	

	

Description	 �	 �	 TOL

Dimension	1 50 ±1.5
Dimension	2 12 ±0.5
Dimension	3 14 ±0.7
Dimension	4 9 ±0.2
Sum 50 35 ±2.9

⊕ ⊖

										 50 35 15	
	

2.9	

	
Final	dimension:	

15 2.9	
Fig.	1	Tolerance	chart	method	

A	plethora	of	statistical	approaches	was	introduced	to	conduct	non‐linear	statistical	tolerance	
analysis.	A	 typical	example	 is	 the	Monte	Carlo	simulation	(MCS)	based	on	 the	algorithm	of	 the	
same	name.	It	utilises	random	sampling	input	values	to	calculate	the	output	results.	For	a	given	
input	vector	 ,	the	number	of	sampling	values	 	is	determined	 , , … , .	By	using	the	math‐
ematical	 model	 (transfer	 function)	 	 new	 output	 vector	 of	 same	 length	 is	 found	

, , … , .	 Finally,	 the	 output	 results	 	 are	 analysed	by	 calculating	 statistical	 data	 such	 as	
mean,	standard	deviation,	or	range.	
	 Monte	Carlo	simulation	(MCS)	is	a	beneficial	tool	for	tolerance	analysis	of	mechanical	assem‐
blies.	Its	main	advantage	is	flexibility	and	ability	to	use	various	non‐normal	input	or	output	dis‐
tributions	[18].	A	large	set	of	sample	parts	is	created	by	randomly	assigning	a	tolerance	value	to	
each	nominal	dimension.	Values	are	selected	within	the	tolerance	interval	to	simulate	the	manu‐
facturing	variation	[18].	The	process	is	repeated	until	enough	output	data	is	acquired	to	enable	
the	use	of	statistical	techniques.	It	allows	the	calculation	of	the	mean	value,	standard	deviation,	
range,	upper	and	lower	specification	limit,	and	share	of	rejected	samples	[19].	
	 	

Define	the	problem

Assign	the	expected	
tolerance	distribution	
to	each	dimension

Estimate	the	required	
number	of	runs

Analyse	the	data

Apply	transfer	function

Randomly	generate	
tolerances	(at	input) 	

Fig.	2	Monte	Carlo	simulation	for	implicit	assembly	constraints	
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In	this	article,	MCS	is	applied	as	an	extension	to	the	Tolerance	chart	method.	A	modified	form	
of	MCS	(McCATS)	accounting	for	the	implicit	assembly	variations	was	used,	as	suggested	in	[20].	
In	the	modified	simulation,	the	random	parts	are	sent	to	the	assembly	function,	which	iteratively	
solves	the	tolerance	chart	equations	for	the	dependent	assembly	variations	[20].	The	process	is	
repeated	 until	 a	 sample	 of	 a	 suitable	 size	 to	 produce	 the	 assembly	 histogram	 is	 created.	 The	
steps	necessary	to	carry	out	the	tolerance	analysis	using	the	MCS	are	shown	in	Fig.	2.	

The	vector	 loop	model	 is	a	stack‐up	technique	used	to	extend	the	stack	analysis	 to	 two	and	
three‐dimensional	 assemblies	 [1].	 The	 idea	of	 the	 vector	 loop	method	 is	 to	use	 vectors	 to	de‐
scribe	the	dimensions	and	associated	tolerances.	Vectors	are	arranged	in	loops	to	determine	the	
assembly	deviations.	Tolerance	analysis	problems	are	solved	using	the	kinematic	concept;	con‐
tact	points	are	set	as	kinematic	joints.	A	number	of	possible	motions	is	defined	for	each	joint	(i.e.	
degrees	of	 freedom),	along	with	the	 local	datum	reference	plane.	Three	types	of	variations	are	
described	 in	 vector	 loop	model:	 dimensional	 variations	 (lengths	 and	 angles),	 kinematic	 varia‐
tions	(small	adjustments	between	mating	points,	joints)	and	geometric/feature	variations	(posi‐
tion,	roundness,	angularity)	[1].	
	 Dimensional	and	geometric	tolerances	are	described	as	additional	degrees	of	freedom	on	the	
kinematic	 joints	 [1].	 Kinematic	 simplification	 is	 required	 to	 represent	 geometric	 tolerances	 in	
such	 way.	 Thus,	 in	 the	 vector	 loop	 model,	 geometric	 tolerances	 are	 included	 only	 at	 mating	
points,	 in	 the	direction	defined	by	 the	 type	of	kinematic	 joint	 [1].	They	are	described	as	addi‐
tional	 translational	 and	 rotational	 transformations	 (displacement	vectors,	 rotation	matrices)	–	
as	gaps	with	zero‐length	nominal	dimension	vectors.	
	 The	assembly	graph	is	a	diagram	that	represents	the	analysed	assembly,	including	its	parts,	
dimensions,	mating	conditions,	 functional	elements,	and	functional	requirements.	The	graph	is	
used	to	represent	any	linear	dimension	in	the	assembly	as	a	vector	(see	Fig.	3).	Vectors	are	con‐
nected	and	form	chains	or	loops,	reflecting	how	assembly	parts	stack‐up	together.	The	associat‐
ed	tolerance	is	included	as	a	small	kinematic	adjustment	of	such	a	vector	(gap)	[1,	12].	Such	rep‐
resentation	allows	us	to	determine	the	functional	requirements	of	an	assembly.	Stack‐up	func‐
tions	are	built	by	including	the	vector	variations	involved	in	each	chain	into	implicit	kinematic	
equations.	As	such,	they	can	then	be	solved	using	various	mathematical	approaches	[1,	6].	
	 For	each	part	in	the	tolerance	chain,	a	local	datum	reference	frame	(DRF)	is	added	to	identify	
the	relevant	features	of	a	part	for	tolerance	analysis.	DRFs	are	then	connected	using	datum	paths	
representing	geometric	 layouts,	which	define	 the	direction	and	orientation	of	 vectors	 forming	
the	 loop	[1].	They	are	created	by	stacking	and	chaining	the	dimensions	that	 locate	 the	contact	
point	between	two	parts.	After	creating	datum	paths,	the	vector	loops	can	be	created	by	connect‐
ing	datums.	Loops	can	be	open	or	closed,	depending	on	the	functional	requirement	of	the	toler‐
ance	analysis.	The	number	of	closed	loops	is	calculated	as	 1,	where	 	is	the	number	
of	the	mating	points,	and	 	the	number	of	parts.	
	

A
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Fig.	3	Assembly	graph	and	the	example	of	vector	loops	
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	 After	defining	 the	vector	 loops,	 the	 calculation	 is	 carried	out	 [1,	11].	When	considering	 the	
closed‐loop	 problem,	 the	 equations	 are	 often	 non‐linear;	 they	must	 be	 linearized	 using	 direct	
linearization	method	[1,	11],	producing	approximate	results.	Thus,	vector	 loop,	when	using	di‐
rect	 linearization,	 is	 unable	 to	 generate	 true	 worst‐case	 results	 [4,	 11].	 When	 the	 open‐loop	
problem	is	considered,	deviations	are	calculated	directly	using	explicit	equations	[11].	

Unified	Jacobian‐torsor	(JT)	method	[21]	is	a	3D	tolerance	analysis	method.	It	uses	the	Jaco‐
bian	matrix	 to	 relate	 the	 functional	 requirement	 (FR)	 and	 virtual	 joints	 displacements.	 JT	 ad‐
vances	the	punctual	small‐displacement	variables	of	 the	Jacobian	formulation	to	represent	tol‐
erance	zones	using	the	torsor	model	and	interval	arithmetic.	It	offers	more	output	information	
on	the	FR,	reducing	the	size	of	the	analysed	model	since	it	is	no	longer	point‐based	[21].	
	 Torsor	model	uses	small	displacement	screws	to	establish	tolerance	zones	of	points,	curves,	
and	surfaces	[21,	22].	Each	real	surface	is	modelled	by	a	substitution	surface	defined	by	a	set	of	
screw	parameters	that	are	modelling	the	deviations	from	nominal	geometry	[23].	Screw	param‐
eters	are	arranged	in	torsors	containing	translational	components	of	a	point	 , , 	and	 , , 	
as	rotational	components	with	respect	to	the	nominal	geometry:	

,	 (1)

where	 	is	DRF	used	to	evaluate	the	screw	components.	Torsor	model	can	fully	define	the	toler‐
ance	zones	due	to	its	ability	to	shape	spatial	volumes	within	which	the	surfaces	are	deviating	[10].	
	 The	procedure	of	Unified	Jacobian‐torsor	method	consists	of	4	steps	[24].	The	first	step	is	to	
identify	all	functional	elements	(FEs)	affecting	the	FR	by	distinguishing	kinematic	chains	involv‐
ing	the	functional	condition	or	part	under	study.	Functional	element	can	be	any	point,	curve	or	
surface	of	a	part	and	creates	internal	or	kinematic	pairs	[21].	The	second	step	is	to	associate	a	
torsor	or	 screw	parameter	 to	 each	 element	 (surface,	 axis)	 of	 the	kinematic	 chain.	Torsors	 ex‐
press	the	degrees	of	freedom	and	the	allowable	element	displacements	and	their	bounds.	Small	
displacements	are	applied	 to	parts’	 geometrical	 features	affecting	 the	FR	 [21],	 after	which	 the	
Jacobian	matrix	 is	 used	 to	 determine	 relative	 positions	 and	 orientations	 of	 torsors	within	 the	
chosen	 kinematic	 chain	 (step	 three)	 [22].	 The	 final	 step	 is	 to	 combine	 torsor	 and	 Jacobian	 to	
provide	a	matrix	equation.	Solving	a	resulting	matrix	using	 interval	algebra	provides	 the	 func‐
tional	condition	bounds.	

2.2 Assembly model for case study 

The	above‐described	methods	were	compared	by	analysing	a	3D	tolerancing	problem.	The	as‐
sembly	consisting	of	the	cantilever	and	the	rotating	handle	(open	loop)	was	used	as	an	example.	
Thus,	both	the	dimensional	and	geometric	tolerances	were	considered.	The	functional	require‐
ment	deviations	are	assessed	using	each	of	the	methods,	while	the	results	are	compared	in	Sec‐
tion	3.5.	The	nominal	dimension	(DIM),	upper	deviation	 limit	(UDL),	and	 lower	deviation	 limit	
(LDL)	were	 calculated.	The	comparison	 is	 focused	on	 the	 similarities	and	differences	between	
results	obtained	by	each	method.	Differences	in	procedures	and	calculation	approaches	are	also	
observed.	

A	simple	rotating	handle	assembly	consisting	of	four	parts	was	used	to	carry	out	the	compari‐
son	between	 the	methods	 (see	Fig.	4).	The	pole	 (2)	 is	 fixed	 to	 the	bottom	plate	 (1),	while	 the	
lever	 (3)	 is	mounted	onto	 the	 journal	 located	on	 the	pole.	The	handle	 (4)	 is	 installed	 into	 the	
bore	located	on	the	lever.	Tolerances	were	assigned	to	all	the	dimensions	apart	from	a	distance	
between	the	handle	(4)	and	the	base	plate	(1),	which	is	selected	as	a	functional	requirement).	
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Fig.	4	Case	study	model	

	 	 The	positional	tolerance	between	the	top	surface	of	the	base	and	its	cut‐out	was	includ‐
ed.	The	contact	between	 the	base	and	 the	cylindrical	base	of	 the	pole	 is	 considered	 ideal.	The	
parallelism	tolerance	between	the	axis	of	the	cylindrical	pin	located	on	the	pole	and	the	bottom	
surface	 of	 the	 pole	was	 also	 included.	 The	 lever	 is	mounted	 onto	 the	 pole	 pin	 (see	 Fig.	 4)	 by	
clearance	fit	⌀45	H8/g7.	On	the	opposite	side	of	the	lever,	the	handle	is	mounted	into	the	bore	
with	a	clearance	fit	⌀45	G6/h7.	Regarding	the	geometric	tolerances,	the	parallelism	between	two	
lever	 bores	 and	 perpendicularity	 between	 the	 handle	 and	 the	mounting	 sleeve	wall	were	 re‐
quired.	
	 Each	method	was	then	applied	to	the	above‐described	open‐loop	assembly.	The	results	were	
compared	according	to	three	criteria:	

 identification	of	the	contributing	tolerances,	
 calculation	of	the	dependent	dimension	(functional	requirement),		
 analysis	of	calculation	differences	compared	to	the	assemblies	with	closed	loops.		

	 An	assembly	graph	was	created	for	each	of	the	methods	except	for	the	Monte	Carlo	simula‐
tion,	as	it	is	based	on	Tolerance	chart	method.		

3. Results and discussion 

3.1 Tolerance chart results 

Tolerance	chart	method	is	mostly	used	for	dimensional	tolerances,	even	though	the	recent	modi‐
fications	have	enabled	the	analysis	of	geometric	tolerances	as	well	[15].	The	geometric	toleranc‐
es	are	to	be	transformed	into	their	dimensional	counterparts.	Yet,	such	transformation	does	not	
account	 for	the	angular	surface	deviation.	 In	this	article,	 the	tolerance	chart	method	is	applied	
only	to	dimensional	tolerances.	

Tolerance	chain	 consisting	of	base	plate	bore	depth	 (a),	 length	between	 the	pole	basis	and	
pole	 journal	 axis	 (b),	 tolerance	 fit	between	pole	 journal	 and	 lever	bore	 (c	 and	d),	distance	be‐
tween	lever	bore	axes	(e),	and	tolerance	fit	between	lower	lever	bore	and	handle	(f	and	g).	As	
mentioned,	 the	distance	between	the	top	surface	of	 the	base	plate	(part	1)	and	handle	(4)	 is	a	
functional	requirement.	Indices	U	and	L	were	included	to	denote	the	upper	and	lower	deviation	
limit,	respectively.	
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Dimension TOL.	
a 15 0	
b 317 0	
c 22.5 cut	=	–0.009/2;	clt	=	–0.034/2		
d 22.5 dut	=	0.039/2;	dlt	= 0
e 150 0	
f 22.5 fut	=	0.025/2;	dlt	=	0.006/2
g 22.5 gut	=	0/2;	glt	=	‐0.025/2	

Sum 362 210 	
	

Nominal	functional	requirement	dimension:	
152	mm	

	

Stack	equation	for	the	upper	deviation	limit:	
0.008	mm	

	

Stack	equation	for	the	lower	deviation	limit:	
0.062 mm	

	

Fig.	5	Application	of	tolerance	chart	method	

	 The	 tolerance	 stack	 coordinate	 system	 is	 defined	next;	 the	 starting	point	 is	 set	 at	 the	 base	
plate	surface	(1).	The	upward	dimension	 is	shown	in	Fig.	5	 is	selected	as	positive	and	marked	
with	the	indicator	“⊕”,	while	the	downward	is	negative	and	marked	with	“⊖”.	The	direction	of	
the	 tolerance	 chain	 is	 chosen	 arbitrarily,	 but	 it	 is	 important	 to	 respect	 the	 specified	direction	
along	 the	 chain.	 Finally,	 the	 results	 are	 calculated	by	 adding	 and	 subtracting	 values	 along	 the	
tolerance	chain	and	shown	in	Fig.	5.	

3.2 Monte Carlo simulation results 

Monte	Carlo	simulation	was	applied	following	the	procedure	explained	in	Section	2.1.	Determin‐
ing	the	appropriate	distribution	to	each	of	 the	 tolerances	was	 the	crucial	step,	as	 it	affects	 the	
results.	The	distribution	of	geometric	tolerances	along	with	the	interval	between	the	upper	and	
lower	deviation	limit	most	frequently	follows	the	normal	distribution.	
	 Tolerance	 fits	 are	 asymmetrical,	 requiring	 the	 use	 of	 the	 skewed	 distribution	 according	 to	
[19].	Distribution	of	 input	values	 is	described	using	±	3 	process	range	(6 ).	Since	data	about	
the	manufacturing	process	was	not	available,	3DCS	CATS	software	was	used	 to	determine	 the	
distribution	models	of	tolerance	fits.	According	to	3DCS,	tolerance	fits	have	unimodal	continuous	
probability	distribution	called	Pearson	1.	Since	tolerance	limits	assigned	to	dimension	c	are	neg‐
ative,	the	distribution	model	is	skewed	left	from	the	nominal	dimension.	The	same	can	be	con‐
cluded	for	the	tolerance	assigned	to	dimension	g.	On	the	other	hand,	tolerance	limits	assigned	to	
dimensions	d	and	f	are	positive,	and	distribution	is	right‐skewed.	
	 	

	

Runs	 2000
Nominal	 152.000	mm	
Mean	 151.999	mm	
STD	 0.018	mm	
6STD	 0.110	mm	
LSL	 151.000	mm	
USL	 153.000	mm	
EST.	TYPE	 Pearson	I	
EST.	LOW	 151.958	mm	
EST.	HIGH	 151.995	mm	
EST.	RANGE	 0.085	mm	

	
Fig.	6	Monte	Carlo	assembly	results	and	histogram	
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Next	 step	 is	 to	 define	 the	 variation	model	 function.	 Since	Monte	 Carlo	 is	 applied	 to	 tolerance	
chart	method,	tolerance	stack	equations	are	used	to	define	it.	After	running	the	simulation	for	 	
=	2000	times	with	randomized	input	variables,	an	output	model	for	FR	was	created.	A	variation	
analysis	provides	descriptive	statistics,	inferential	statistics	data,	and	a	histogram	(shown	in	Fig.	
6).	By	adding	and	subtracting	the	input	variables	using	the	variation	model	functions,	distribu‐
tion	of	FR	tolerances	was	found.	The	resulting	functional	requirement	distribution	is	also	Pear‐
son	1.	However,	it	is	not	as	profoundly	left‐	or	right‐skewed	as	are	the	input	variables.	

3.3 Vector‐loop results 

An	assembly	graph	describing	the	open‐loop	of	the	assembly	and	its	vector	loop	tolerance	chain	
(or	datum	path)	was	created.	 It	was	used	to	 identify	of	 the	number	of	vector	chains	and	 loops	
involved	in	the	assembly	(Fig.	4).	Since	each	part	 is	 in	contact	with	its	two	neighbouring	parts	
only	once,	this	assembly	contains	one	open	loop.	Same	can	be	seen	on	the	assembly	graph	(Fig.	7)	
where	 each	 arrow	 is	 representing	 the	 contact	 between	 parts.	 Vector	 loop	 is	 open	 at	 the	 gap	
(noted	g)	between	the	Handle	(Part	4)	and	Base	(Part	1).	

The	 datum	path	 (Fig.	 7,	 right)	 connects	 the	 point,	 surface,	 axis	 or	DRF	 of	 a	 part	with	 next	
part’s	point,	surface	axis	or	DRF.	DRFs	have	been	assigned	to	each	part	with	respect	to	the	origin	
coordinate	system	at	the	top	of	the	Base	(Part	1).	All	the	DRFs	have	a	horizontal	 ‐axis	and	verti‐
cal	 ‐axis.	Origin	coordinate	system	is	set	in	such	a	way	that	positive	direction	of	 	axis	corre‐
sponds	with	the	positive	direction	of	a	tolerance	chain	in	Tolerance	chart	method.	This	eases	the	
tracking	and	method	comparison.	

The	geometric	tolerances	were	also	accounted	for.	Each	tolerance	was	represented	as	an	ad‐
ditional	vector	of	magnitude	equal	to	±	 /2,	where	 	is	the	width	of	corresponding	tolerance	field	
(see	Fig.	4;	0.2	for	the	positional,	and	0.1	for	parallelism	and	perpendicularity	tolerances).	The	
additional	vectors	represent	gaps	between	parts	contacting	points	and	were	denoted	based	on	
the	corresponding	nominal	dimension.	The	position	tolerance	on	the	Base	cut‐out	with	respect	
to	the	datum	A	(apos)	is	represented	as	a	translation	vector	of	the	surface	in	the	 ‐direction	(Fig.	
7).	The	parallelisms	applied	to	the	Pole’s	pin	( ),	and	Lever	holes	( )	with	respect	to	the	
datum	B	were	also	represented	as	translation	vector	along	the	 ‐axis	[1].	Perpendicularity	ap‐
plied	to	the	horizontal	axis	of	the	Handle	( )	with	respect	to	the	datum	D	can	be	described	as	
a	translation	along	 ‐axis	[1].	According	to	the	assembly	graph	there	are	 3	contacting	points	
and	 4	parts,	resulting	in	0	closed	loops	(Eq.	1	was	used).	There	is	also	one	open‐loop	func‐
tional	requirement.	
	

	

 

Var. Tol.	description Gap	vector	length
apos Position	(Base	top	to	cutout) ±0.1	
bpar Parallelism	(Pole’s	to	bottom) ±0.05	
cd Dimensional	tol. (Pole’s	pin) cdu	=	–0.009;	cdl	=	–0.034	
dd Dimensional	tol. (Lever’s	upper	hole) ddu	=	0.039;	ddl	=	0
epar Parallelism	(Lever	hole	axes) ±0.05	
fd Dimensional	tol.	(Lever’s	lower	hole) fdu	=	0.025;	fdl	=	0.009
gd Dimensional	tol. (Handle) fdu	=	0.0;	fdl	=	–0.025
hpar Perpendicularity	(Handle	axis) ±0.05	
	

Uppervalue	of	functional	requirement:	

2 2

2 2
152.241	mm	

	

Lower	value	of	functional	requirement:	

2 2

2 2
151.680	mm	

	

Fig.	7	Vector	loop	assembly	graph	and	results	
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3.4 Unified Jacobian‐torsor results 

Before	creating	the	assembly	graph	(Fig.	8),	it	was	necessary	to	identify	the	functional	elements	
(FE)	and	functional	requirements	(FR).	Also,	it	was	required	to	differentiate	between	the	inter‐
nal	 and	 kinematic	 pairs.	 For	 the	 assembly	 at	 hand,	 there	 are	 four	 internal	 and	 one	 kinematic	
pair.	First	internal	pair	(FE0‐1)	is	located	on	the	Base	(Part	1),	as	the	positional	tolerance	defined	
between	its	top	and	cut‐out	surface	corresponds	to	functional	surfaces	0	and	1	on	the	assembly.	
The	parallelism	tolerances	define	FE2‐3	and	FE4‐5.	Internal	pair	FE6‐7	is	defined	by	the	perpendicu‐
larity	tolerance	set	on	the	Handle	(Part	4).	
	 Only	kinematic	pair	(FE1‐2)	is	set	between	the	Base	cut‐out	and	Pole’s	bottom.	However,	the	
contact	is	assumed	to	be	ideal	so	that	it	will	not	impact	the	analysis.	Two	more	contacts	defined	
by	tolerance	fits	(between	Pole	and	Lever,	and	between	Lever	and	Handle)	were	not	set	as	kin‐
ematic	pairs	even	though	they	are	in	physical	contact.	This	means	they	are	defined	as	important	
conditions	to	be	satisfied	between	two	FEs.	So,	according	to	[13],	they	are	then	defined	as	func‐
tional	requirements	that	will	be	taken	into	account	in	the	analysis	as	kinematic	pairs.	
	

 
 

Upper	value	of	functional	requirement:	
152.28	mm	

	

Lower	value	of	functional	requirement:	
151.143	mm	

	

Fig.	8	Jacobian‐torsor	method	and	results		

	 Jacobian	matrix	and	small‐displacement	torsor	vector	were	calculated	for	each	internal	and	
kinematic	 pair.	 A	 small‐displacement	 torsor	 vector	was	 also	 calculated	 for	 each	FE	 (based	 on	
torsor	representing	the	tolerance	zone	[21]):	

, 	 (2)

	 For	each	tolerance,	 translational	and	rotational	components	 inside	the	 tolerance	zone	were	
determined	[21].	Since	the	direction	of	a	functional	requirement	is	along	the	 ‐axis	and	rotations	
that	would	 influence	 functional	 requirement	 are	 around	 	 and	 ‐axis,	 ,	 	 and	 	 component	
must	be	calculated.	
	 Contact	between	functional	surfaces	0	and	1	in	the	FE0‐1	is	a	planar	contact	with	normal	con‐
taining	one	translation	component	( )	and	two	rotational	components	( , )	[12,	21].	Compo‐
nents	are	calculated	using	the	equations	for	planar	surface	according	to	[21].	Internal	pairs	FE2‐3,	
FE4‐5,	 and	FE6‐7,	 and	 functional	 requirements	FR3‐4	 and	FR5‐6	 are	 defined	 by	 the	 tolerance	 fits.	
They	use	translational	components	v	and	w	and	rotational	components	 	and	 	of	a	slipping	piv‐
ot	with	 the	 axis	 [21].	 Below	 is	 a	 table	 containing	 displacements	 torsors	 for	 each	 internal	 and	
kinematic	pair.	 	
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Table	1	Displacement	torsors	for	each	internal	and	kinematic	pair	
FE0‐1	 FE2‐3	 FR3‐4 FE4‐5 FR5‐6	 FE6‐7

0 0

0 0

0.1 0.1

0.0013 0.0013

0.0013 0.0013

0 0

	

0 0

0.05 0.05

0.05 0.05

0 0

0.004 0.004

0.004 0.004

	

0 0

0.00365 0.0045

0.00365 0.0045

0 0

0.0003 0.0004

0.0003 0.0004

0 0

0.05 0.05

0.05 0.05

0 0

0.004 0.004

0.004 0.004

0 0

0.025 0.045

0.025 0.045

0 0

0.002 0.0004

0.002 0.0004

	

0 0

0.05 0.05

0.05 0.05

0 0

0.001 0.001

0.001 0.001
	

Jacobian	matrix	is	calculated	according	to	the	procedure	presented	in	[21].	Its	purpose	is	to	
calculate	the	effect	of	the	traditional	torsor	set	for	each	functional	element	(FE)	on	the	functional	
requirement	(FR)	of	the	assembly	[21].	Finally,	after	calculating	small‐displacement	torsor	vec‐
tors	and	Jacobian	matrices	for	each	FE,	the	same	can	be	done	for	FR:	

∙ 0.058 0.239 .
0.434 0.184 .

0.001 0.005 0.004
0.001 0.011 0.010

	 (3)

3.5 Comparison of the results obtained by different methods 

After	analysing	the	assembly	presented	 in	Section	3.1	using	the	 four	methods,	results	are	pre‐
sented	 in	Table	 2.	 Abbreviations	 are	 used	 to	 ease	 the	 result	 disambiguation;	 TC	was	used	 for	
tolerance	chain	method,	MC	for	Monte	Carlo	simulation,	VL	for	the	vector	 loop	method,	and	JT	
for	the	Unified	Jacobian‐torsor	method.	Since	it	is	not	possible	to	include	geometric	tolerances	in	
TC	and	MC	analysis,	two	results	were	provided	for	VL	and	JT	methods.	The	first	batch	of	results	
included	dimensional	tolerances,	while	the	second	includes	both.	Besides	the	quantitative	analy‐
sis	 results,	 qualitative	properties	 such	 as	 the	 scope	 and	perceived	 complexity	 of	 each	method	
were	assessed.		
	 Proprietary	CAT	tools	 that	are	used	 in	day‐to‐day	work	are	often	perceived	as	black	boxes.	
That	means	that	the	users	are	frequently	not	familiar	with	the	underlying	processes	and	mathe‐
matical	models.	Besides,	the	tolerance	analysis	methods	used	in	CAT	tools	are	often	not	comply‐
ing	to	the	technical	standards.	For	this	reason,	we	have	analysed	underlying	tolerance	analysis	
methods,	aiming	to	determine	their	advantages	and	shortcomings.		

When	considering	the	dimensional	tolerances	(DT)	exclusively,	TC,	MC,	and	VL	provide	simi‐
lar	 results,	with	FRu	 being	 practically	 equal.	 Contrary	 to	 the	 upper	 value	 of	 the	 functional	 re‐
quirement,	 the	 deviations	 in	 lower	 (FRl	 )	 are	 greater	 –	 TC	 and	VL	 provide	more	 conservative	
results	when	compared	to	MC.	A	significant	deviation	in	FRu	was	found	when	calculating	it	using	
JT.	Unlike	other	analysed	methods,	 in	 Jacobian‐torsor	method	 tolerance	analysis	 is	carried	out	
using	a	tolerance	zone	as	a	basis	(instead	of	points),	causing	the	afore‐mentioned	variations	in	
results.	By	using	 zones	 and	 surfaces	 instead	of	 points,	 it	 is	 possible	 to	 create	 a	more	 credible	
representation	of	a	realistic	case.	
	 	

Table	2	Method	comparison	
	 Scope	 FRu	 FRl Δ Applicability Complexity	

Tolerance	chain	method	 DT	 151.992	 151.938	 0.054	 For	simple	1D	tasks	
Simple,	carried	out	
by	hand	

Monte	Carlo		
simulation	method	

DT	 151.995	 151.958	 0.037	
Simple	tasks,	
statistical	analysis	

Statistical	tools	
required	

Vector	Loop		
method	

DT	 151.991	 151.930	 0.061	
Multi‐dimensional		

Carried	by	
hand/more	complex

	 D&GT	 152.243 151.143 1.100
Unified	Jacobian‐torsor	
method	

DT	 152.369	 151.946	 0.423	 Multi‐dimensional,	
automation	

Requires	mathemati‐
cal	tools,	enables	
automation		 D&GT	 152.665 151.053 1.612
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The	MC	method	is	the	least	conservative	due	to	its	statistical	approach	–	when	carrying	out	
the	tolerance	analysis	using	the	MC	method,	most	extreme	cases	are	excluded	from	the	analysis	
and	counted	as	write‐offs.	The	advantage	of	such	an	approach	is	that	it	reduces	the	cost	of	manu‐
facturing	equipment;	 it	 is	 less	expensive	to	write‐off	a	portion	of	parts,	 then	to	purchase	more	
accurate	manufacturing	tools.	Thus,	the	analysis	method	should	be	selected	in	accordance	with	
the	 manufacturing	 process.	 Statistical	 approaches	 are	 suitable	 when	 analysed	 products	 are	
manufactured	 in	 large	 series,	while	prototypes	and	one‐of‐a‐kind	products	warrant	 the	use	of	
more	complex	and	conservative	methods,	such	as	JT.	

The	applicability	of	methods	regarding	the	tolerancing	problem	dimensionality	should	be	ad‐
dressed	next.	As	applied	in	this	study,	by	using	TC	and	MC	only	1D	problem	containing	dimen‐
sional	tolerances	can	be	solved.	This	drawback	can	be	partially	mitigated	by	converting	the	ge‐
ometric	tolerances	into	their	dimensional	counterparts;	however,	methods	remain	limited	to	1D	
problems.	 In	 comparison,	 VL	 and	 JT	 were	 developed	 with	 having	 the	 2D	 and	 3D	 tolerancing	
problems	in	mind.	Besides	the	dimensional	tolerances,	both	methods	can	be	used	to	analyse	the	
geometric	 tolerances	 as	well.	 However,	 there	 is	 a	 significant	 difference	 between	VL	 and	 JT	 in	
terms	of	tolerance	representation.	The	former,	vector	loop,	observes	a	set	of	tolerances	simulta‐
neously,	 forgoing	the	possible	 interactions	among	them.	The	 latter,	Unified	Jacobian‐torsor,	 in‐
cludes	both	the	translational	and	rotational	components,	 thus	including	different	tolerances	as	
complementary.	
	 The	procedure	complexity	of	each	method	should	also	be	considered.	TC	 is	by	 far	 the	most	
straightforward	method	and	can	be	carried	by	hand.	 It	 is	suitable	 for	simple	tolerancing	prob‐
lems	 that	 engineers	 solve	daily.	 Second	 is	 the	VL,	which	 requires	 an	 additional	 schema	of	 the	
vector	loop.	By	procedure	complexity,	MC	comes	next.	It	is	a	statistical	method,	meaning	that	it	
requires	 a	 large	 sample	 in	order	 to	provide	 significant	 results	–	experience	with	 similar	parts	
and	their	tolerances	is	necessary.	The	last	method	is	JT,	which	is	found	to	be	the	most	complex.	
To	 carry	 it	 out,	 it	 requires	 the	 detection	 of	 functional	 elements,	 functional	 requirements,	 and	
kinematic	pairs.		
	 When	 comparing	 the	 method	 performance	 on	 open	 and	 closed‐loop	 tolerancing,	 changes	
were	detected	only	in	VL.	The	vector‐loop	method	is	affected	by	the	procedure	system	of	open	
and	closed	loops.	In	cases	where	only	open‐loop	tolerances	are	used,	the	vector	loop	method	is	
reduced	to	explicit	equations.	This	allows	for	a	direct	calculation	of	the	functional	requirement	
values.	In	other	words,	the	VL	method	loses	its	advantage	to	TC.		
	 The	 limitations	 of	 the	 study	 should	 also	 be	 considered.	 Each	 of	 the	methods	 is	 carried	 out	
strictly	according	to	the	literature,	without	additional	data	manipulation	(for	example,	geometric	
tolerances	 were	 not	 converted	 to	 dimensional	 ones).	 Additionally,	 when	 carrying	 out	 MC,	 it	
should	be	stressed	that	previous	knowledge	about	the	manufacturing	process	and	manufactur‐
ing	tool	properties	is	necessary	to	enable	satisfying	approximation	of	tolerance	distribution.	
	 Lastly,	 during	 the	planning	of	 the	product	design	process,	 in	 addition	 to	 tolerance	 analysis	
methods,	engineers	should	also	consider	applying	the	tolerance	optimisation	methods.	Several	
studies	have	been	carried	out	on	the	subject,	such	as	[25,	26].	Using	optimisation	algorithms	to	
tolerancing	problems	allows	us	 to	 find	the	optimal	 trade‐off	between	the	tolerances,	manufac‐
turing	costs,	and	quality	loss	[25].	Such	an	approach	would	surely	increase	the	design	effective‐
ness,	increasing	its	market	success.	

4. Conclusion 

Simple	 tolerancing	 problem	was	 used	 to	 assess	 the	 similarities	 and	 differences	 between	 four	
tolerance	 analysis	 methods:	 Tolerance	 chart	 (“Worst‐case	 analysis”),	 Monte	 Carlo	 Simulation	
method,	Vector‐loop	method,	and	Unified	Jacobian‐torsor.	Open‐loop	assembly	was	used	to	illus‐
trate	the	problem‐solving	process	using	each	of	the	methods.	Based	on	the	results,	the	authors	
have	concluded	the	following:	
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• Tolerance chart and Monte Carlo Simulation methods do not account for the geometrical 
tolerances. This results in overly optimistic results; however, both methods are only suita-
ble for solving simple, 1D tolerancing problems. 

• The unified Jacobian-torsor method was found to be most conservative (i.e. provided the 
most substantial deviations in functional requirement), followed by Vector-loop, Toler-
ance chart, and Monte Carlo Simulation, respectively. 

• Tolerance chart is the simplest and thus suitable for solving many day-to-day tolerancing 
problems. Monte Carlo Simulation and Unified Jacobian-torsor require more detailed anal-
ysis and know-how and are suitable for more pressing problems. Vector loop can be con-
sidered the middle ground – it offers good results at the moderate complexity. 

• When comparing the method performance in open-loop assemblies to closed-loop ones, 
differences are detected only in Vector-loop method. 

 The field of tolerance analysis is fruitful, and there is more work to be done. Following this 
study, the authors aim to analyse the performance of tolerancing methods by carrying out an 
industrial case study. The part deviations measured during the quality assurance are to be com-
pared to the values provided by analysis methods, providing additional insight. 

Acknowledgement 
This paper reports on work funded by the Croatian Science Foundation project IP-2018-01-7269: Team Adaptability 
for Innovation-Oriented Product Development - TAIDE. 

References 
[1] Polini, W. (2011). Geometric tolerance analysis, In: Colosimo, B., Senin, N. (eds.), Geometric tolerances: Impact on 

product design, quality inspection and statistical process monitoring, Vol. 2, Springer, London, United Kingdom, 
39-68, doi: 10.1007/978-1-84996-311-4_2. 

[2] International organisation for standardisation (2011). ISO 8015-2011 – Geometrical product specifications 
(GPS) – Fundamentals – Concepts, principles and rules, ISO, Geneva, Switzerland. 

[3] Sigurdarson, N., Eifler, T., Ebro, M. (2018). The applicability of CAT tools in industry – Boundaries and challenges 
in tolerance engineering practice observed in a medical device company, Procedia CIRP, Vol. 75, 261-266, doi: 
10.1016/j.procir.2018.04.066. 

[4] Corrado, A., Polini, W. (2017). Manufacturing signature in jacobian and torsor models for tolerance analysis of 
rigid parts, Robotics and Computer-Integrated Manufacturing, Vol. 46, 15-24, doi: 10.1016/j.rcim.2016.11.004. 

[5] Ramnath, S., Haghighi, P., Chitale, A., Davidson, J.K., Shah, J.J. (2018). Comparative study of tolerance analysis 
methods applied to a complex assembly, Procedia CIRP, Vol. 75, 208-213, doi: 10.1016/j.procir.2018.04.073. 

[6] Chen, H., Jin, S., Li, Z., Lai, X. (2014). A comprehensive study of three dimensional tolerance analysis methods, 
Computer-Aided Design, Vol. 53, 1-13, doi: 10.1016/j.cad.2014.02.014. 

[7] Morse, E.P., Shakarji, C.M., Srinivasan, V. (2018). A brief analysis of recent ISO tolerancing standards and their 
potential impact on digitalization of manufacturing, Procedia CIRP, Vol. 75, 11-18, doi: 10.1016/j.procir.2018. 
04.080. 

[8] American Society of Mechanical Engineers (2004). ASME Y14.5 – Mathematical definition of dimensioning and 
tolerancing principles, ASME, New York, USA, 1-15. 

[9] Shen, Z., Ameta, G., Shah, J.J., Davidson, J.K. (2005). A comparative study of tolerance analysis methods, Journal of 
Computing and Information Science in Engineering, Vol. 5, No. 3, 247-256, doi: 10.1115/1.1979509. 

[10] Marziale, M., Polini, W. (2011). A review of two models for tolerance analysis of an assembly: Jacobian and tor-
sor, International Journal of Computing Integrated Manufacturing, Vol. 24, No. 1, 74-86, doi: 10.1080/0951192X. 
2010.531286. 

[11] Chase, K.W., Magleby, S.P., Gao, J. (2004). Tolerance analysis of 2-D and 3-D mechanical assemblies with small 
kinematic adjustment, Advanced Tolerancing Techniques, Vol. 218, 1869-1873. 

[12] Ghie, W. (2009). Statistical analysis tolerance using jacobian torsor model based on uncertainty propagation 
method, The International Journal of Multyphysics, Vol. 3, No. 1, 11-30, doi: 10.1260/175095409787924472. 

[13] Ghie, W., Laperrière, L., Desrochers, A. (2010). Statistical tolerance analysis using the unified Jacobian-Torsor 
model, International Journal of Production Research, Vol. 48, No. 15, 4609-4630, doi: 10.1080/002075409028 
24982. 

[14] Wang, Y. (2008). Closed-loop analysis in semantic tolerance modeling, Journal of Mechanical Design, Vol. 130, No. 
6, Article No. 061701, doi: 10.1115/1.2900715. 

[15] Schleich, B., Wartzack, S. (2016). A quantitative comparison of tolerance analysis approaches for rigid mechani-
cal assemblies, Procedia CIRP, Vol. 43, 172-177, doi: 10.1016/j.procir.2016.02.013. 

Advances in Production Engineering & Management 15(1) 2020 55 
 

https://doi.org/10.1007/978-1-84996-311-4_2
https://doi.org/10.1016/j.procir.2018.04.066
https://doi.org/10.1016/j.procir.2018.04.066
https://doi.org/10.1016/j.rcim.2016.11.004
https://doi.org/10.1016/j.procir.2018.04.073
https://doi.org/10.1016/j.cad.2014.02.014
https://doi.org/10.1016/j.procir.2018.04.080
https://doi.org/10.1016/j.procir.2018.04.080
https://doi.org/10.1115/1.1979509
https://doi.org/10.1080/0951192X.2010.531286
https://doi.org/10.1080/0951192X.2010.531286
https://doi.org/10.1260/175095409787924472
https://doi.org/10.1080/00207540902824982
https://doi.org/10.1080/00207540902824982
https://doi.org/10.1115/1.2900715
https://doi.org/10.1016/j.procir.2016.02.013


Kosec, Škec, Miler 
 

[16] Magadum, R., Allurkar, B.S. (2015). A comparative study of fasteners tolerance analysis methods, International 
Journal of Scientific & Engineering Research, Vol. 6, No. 6, 700-705. 

[17] Fischer, B.R. (2015). Mechanical Tolerance Stackup and Analysis, CRC Press, Boca Raton, USA. 
[18] Yan, H., Wu, X., Yang, J. (2015). Application of Monte Carlo method in tolerance analysis, Procedia CIRP, Vol. 27, 

281-285, doi: 10.1016/j.procir.2015.04.079. 
[19] Schenkelberg, F. (2016). Statistical tolerance analysis – Basic introduction, FMS Reliability Publishing, Los Gatos, 

USA. 
[20] Chase, K.W., Gao, J., Magleby, S.P. (1995). General 2-D tolerance analysis of mechanical assemblies with small 

kinematic adjustments, Journal of Design and Manufacturing Automation, Vol. 5, 263-274. 
[21] Desrochers, A., Ghie, W., Laperrière, L. (2003). Application of unified jacobian-torsor model for tolerance analy-

sis, Journal of Computing and Information Science in Engineering, Vol. 3, No. 1, 2-14, doi: 10.1115/1.1573235. 
[22] Ghie, W. (2012). Tolerance analysis using Jacobian-Torsor model: Statistical and deterministic applications, In: 

Cakaj, S. (ed.), Modelling simulation and optimization – Tolerance and optimal control, InTech, Rijeka, Croatia, 
147-160, doi: 10.5772/9043. 

[23] Desrochers, A., Delbart, O. (1998). Determination of part position uncertainty within mechanical assembly using 
screw parameters, In: ElMaraghy H.A. (ed.), Geometric design tolerancing: Theories, standards and applications, 
Springer, Boston, USA, 185-196, doi: 10.1007/978-1-4615-5797-5_14. 

[24] Peng, H., Lu, W. (2017). Three-dimensional assembly tolerance analysis based on the Jacobian-Torsor statistical 
model, In: Proceedings of 3rd International Conference on Mechatronics and Mechanical Engineering (ICMME 
2016), Les Ulis, France, doi: 10.1051/matecconf/20179507007. 

[25] Siva Kumar, M., Kannan, S.M., Jayabalan, V. (2009). A new algorithm for optimum tolerance allocation of complex 
assemblies with alternative processes selection, The International Journal of Advanced Manufacturing Technolo-
gy, Vol. 40, No. 7-8, 819-836, doi: 10.1007/s00170-008-1389-5. 

[26] Ramesh Kumar, L., Padmanaban, K.P., Balamurugan, C. (2016). Optimal tolerance allocation in a complex assem-
bly using evolutionary algorithms, International Journal of Simulation Modelling, Vol. 15, No. 1, 121-132, doi: 
10.2507/IJSIMM15(1)10.331. 

 

56 Advances in Production Engineering & Management 15(1) 2020 
 

https://doi.org/10.1016/j.procir.2015.04.079
https://doi.org/10.1115/1.1573235
https://doi.org/10.5772/9043
https://doi.org/10.1007/978-1-4615-5797-5_14
https://doi.org/10.1051/matecconf/20179507007
https://doi.org/10.1007/s00170-008-1389-5
https://doi.org/10.2507/IJSIMM15(1)10.331
https://doi.org/10.2507/IJSIMM15(1)10.331

