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Leave-One-Out Cross-Validation for Bayesian Model Comparison in
Large Data

Mans Magnusson Michael Riis Andersen
Aalto University

of Denmark

Abstract

Recently, new methods for model assessment,
based on subsampling and posterior approx-
imations, have been proposed for scaling
leave-one-out cross-validation (LOO) to large
datasets. Although these methods work well
for estimating predictive performance for indi-
vidual models, they are less powerful in model
comparison. We propose an efficient method
for estimating differences in predictive perfor-
mance by combining fast approximate LOO
surrogates with exact LOO subsampling us-
ing the difference estimator and supply proofs
with regards to scaling characteristics. The
resulting approach can be orders of magni-
tude more efficient than previous approaches,
as well as being better suited to model com-
parison.

1 INTRODUCTION

Model comparison is an important part of probabilistic
machine learning. In many real-world domains, we are
often confronted with multiple models and would like to
choose the model that best generalizes to new, unseen
data. This can be done in a large number of ways,
but here we will restrict ourselves to choosing between
models based on the predictive performance. Due to the
growing data sizes over the last years, scaling model
comparison methods to large data is an important
problem.

One measure of predictive performance is the ezpected
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log predictive density (elpd) given by
Aoy = [ 108 par(d:lo)pi (3 1)

:ﬁ%UW@wmwwm@m

where log pas(9;|y) is the log predictive density of model
M for a new observation g;, that has been generated by
some true, unknown process, p;(%;). The log predictive
density, or the log score, has good theoretical properties
in that it is both local, i.e., only depend on ¢;, and
proper, the expected reward is maximized by the true
probability distribution (Bernardo, 1979; Bernardo and
Smith, 1994; Gneiting et al., 2007; Vehtari and Ojanen,
2012). Although we focus on the log score in this paper,
other scoring functions can be used.

1.1 Leave-one-out cross-validation

Leave-one-out cross-validation (LOO) is a method for
estimating the elpd, or the generalization performance,
of a model (Bernardo and Smith, 1994; Vehtari and
Ojanen, 2012; Vehtari et al., 2017). This is done by
training the model on all observations except observa-
tion y;, and then predicting the hold-out observation
yi, something that is then repeated for all n observa-
tions. In this way we treat each observation y; as a
pseudo-Monte-Carlo sample from the true generating
model p;. We hence compute n leave-one-out (LOO)
posterior distributions p(f|y_;), where y_; denotes the
data with observation y; removed. Using the LOO
posteriors, we can estimate the elpd in Eq. (1) as

1

elpd,,, = Z log pa (yily—:) (2)
i=1

1 n
:ﬁZlog/PM(yz'\@)PM(9|y—i)d9

i=1

1
=—elpd,,, ,
n Pdiso

where pas(y;|6) is the likelihood, and pps(0|y—;) is the
posterior for 8 where we hold out observation y;.
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Although the many good properties of LOO, scaling
the approach to large data is a problem. The naive
approach to LOO means that n posteriors need to be
computed. In situations with large n, the cost of just
computing one posterior may be large, hence leading
to poor scaling.

1.2 Approximating LOO

A number of approximate techniques have recently
been proposed to approximate exact LOO. Wang
et al. (2018) and Giordano et al. (2019) propose LOO-
approximations with very appealing error bounds for
M-estimators. The main idea is to fit a model on the
complete data set and then extrapolate to capture the
effect of holding out individual observations using a
second-order Taylor approximation. For some special
classes of models, such as Gaussian processes, special-
ized LOO approximations have been proposed (Held
et al., 2010; Vehtari et al., 2016).

In the Bayesian domain, similar ideas was introduced
by Gelfand (1996) using self-normalized importance
sampling (IS). The idea is to use the full posterior
distribution as the proposal distribution in an impor-
tance sampling scheme with the LOO posterior as the
target distribution. In this way, we only need to es-
timate the model once. Given S draws from the full
posterior p(f|y), we can estimate the individual elpd
contributions as

) iy pM<yi|es>r<es>>
log p(yily_;) = log [ = L . (3
g D(Yily—i) g( T35S 0y (3)
_ pu(Osly—i) _ 1
7"(9 ) B pM(9s|y) pM(inS) ' (4)

and where the last step is the result for factorizable
likelihoods. In case of highly influential observations,
the proposal distribution, i.e., the full posterior dis-
tribution can be very different than the target LOO
posterior, and importance sampling estimates may have
large variance. Vehtari et al. (2019b) present Pareto-
smoothed importance sampling (PSIS) to smooth the
importance ratios r(6s), introducing a small bias, but
reducing the overall mean-squared error. The PSIS
approach also has the benefit that the estimated shape
parameter k of the generalized Pareto distribution can
diagnose when the importance sampling approach has
too large (or infinite) variance (Vehtari et al., 2017).

LOO is closely related to the Watanabe-Akaike or
widely applicable information criterion (WAIC, Watan-
abe, 2010). The elpd of a given model can be estimated

using WAIC as

elpdwaic = Y _ logp(yily) — Va(log p(y;]6))

=1
= log p(yily) — picsr, (5)
=1

where Vy(logp(y;|0)) is the variance of the log likeli-
hood over the (full) posterior p(f|y), often called the
effective number of parameters or peg. It has been
shown that WAIC and LOO are asymptotically equiv-
alent (Watanabe, 2010), but LOO has been found to
be more robust than WAIC in the finite data domain,
especially in the case of outliers or weak priors. This is
because the WAIC approximation ignores higher order
terms and these may be non-negligible for finite data
(Gelman et al., 2014; Vehtari et al., 2016, 2017). Impor-
tantly, both LOO and WAIC are consistent estimators
of the true elpd under mild assumptions (Watanabe,
2010).

1.3 LOO for Large Data

Magnusson et al. (2019) address two problems with
Bayesian PSIS-LOO for large data. First the results
of Gelfand (1996) in Eq. (3) are extended to approxi-
mate inference methods such as variational Bayes (VB)
and Laplace approximations, and second an efficient
subsampling method using the Hansen-Hurwitz (HH,
Hansen and Hurwitz, 1943) estimator is proposed. Mag-
nusson et al. (2019) use the full log predictive density
log p(y;ily) (Ipd) and the logp(yi|é), the point log pre-
dictive density (plpd) as an auxiliary variable, 7. The
data is then subsampled proportionally 7 to efficiently
estimate the elpd as

— 1 1 .
elpdgy = — Z = log p(yjly—;) (6)
m<og T

where m is the subsample size and § is the subsam-
ple. This approach works well for estimating the elpd
of individual models and has good theoretical prop-
erties, but it has two problems when used for model
comparison.

First, when comparing models we are often interested
in the elpd for a set of different models. Since the
auxiliary information is used in the subsampling step,
this means that we would need to draw a new subsample
for each estimate of interest, such as (1) the elpd of
each model, (2) the elpd difference between models,
and (3) the variance of each elpd estimate. Ideally, we
would like to just draw one subsample and then based
on that subsample compute all estimates of interest.

Second, using the log p(y;]0) as the auxiliary variable
misses the effect of the efficient number of parameters
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in the model peg, i.e., the model complexity, as can
be seen in Eq. (5). This means that we would need
larger subsample sizes when estimating more complex
models.

1.4 Contributions and Limitations

In this paper, we focus on methods for scaling Bayesian
LOO methods for comparing models for large data. We
show that using the difference estimator combined with
simple random sampling without replacement is very
well suited for model comparison purposes. Since model
auxiliary information is not used in the sampling stage,
but in the estimation, the approach is much better
suited for the situation of model comparison.

We also show that incorporating estimates of peg im-
proves the performance of the subsampling and propose
fast methods to approximate peg for large data and
propose computationally efficient approximations, 7,
that take peg into account.

We prove that the difference estimator will converge in
mean to the true LOO (elpd,,,) for any LOO approxi-
mation 7 that converge in mean to m, irrespective of
subsample size and the number of draws from the poste-
rior. We also prove that our proposed approximations
will converge in mean to .

Together this makes the approach well suited for generic
large-data model inference, such as in probabilistic
programming frameworks as Stan (Carpenter et al.,
2017).

The limitations with the proposed approach are the
same as using general PSIS-LOO (see Vehtari et al.,
2017, for a detailed discussion), such as that the likeli-
hood needs to be factorizable for Eq. (3) to hold.

2 LARGE DATA MODEL
COMPARISON USING LOO

Let elpd, and elpdg be the elpd,,, for model A and
model B, respectively. To compare models, we are
interested in the difference in elpd between models,
elpdp = elpdy — elpdg as well as V(elpdp), the vari-
ability due to the data, where

Velpdp) =

To efficiently estimate V (elpdp), we propose to use
the difference estimator and simple random sampling
without replacement (SRS), something that previously
has been used to scale MCMC (Quiroz et al., 2019).
We also propose to include peg in Eq. (5) for better
approximations of logp(y;|y—;). This makes it possi-
ble to better compare models by computing the full

V(elpd,)+V (elpdg)—2 Cov(elpdy, elpdg) .

posterior distributions once and then compare models
performance on one subsample of observations.

2.1 The Difference Estimator

Let m; = log p(y;|y—;) be our variable of interest where
elpd;,, = Y7 m;. Then let ; be any approximation
of logp(yi|ly—i). Given 7; we can use the difference
estimator, a special case of the regression estimator
(Cochran, 1977), together with SRS. The elpd,,, can
then be estimated as

Zm m 2 (T

JES

elpddiff,loo j 7TJ ) (7)

where m is the subsampling size and S is the subsample.
The (subsample) variance associated with the difference
estimator is

2

— m\ S
V(elpddiff,loo) =n? (1 - g) é ) (8)

where s? is the sample standard deviationb of the ap-
proximation error e; = m; — 7y, i.e s2
% Z;n €j.

The proposed approach has two important proper-
ties. First, as the sequence of numbers 7; — m,
V(e/l&ldiff’loo) — 0. Unlike the HH estimator in

m

Eq. (6), we also have the property that as = — 1,

7m 1 (
€)? and e =

V(J&idiﬂ’loo) — 0. This finite correction factor in-
creases the efficiency also in smaller data, where LOO
still can be costly.

Second, the main benefits of using the difference esti-
mator is that we can use a sampling scheme that do
not depend on the models. Instead, we use the same
subsample to estimate all properties of interest, such as
elpd,,, for all models. This reduce the computational
cost, especially for model comparisons, since we can
reuse the already computed values for the sample when
computing the elpd. Similarly, for model comparison,
we are also interested in estimating V (elpd,,,) = o2,
the variability of the elpd,,, and elpdp, for comparing

models. Using the difference estimator we estimate
01200 as
Udlﬁ loo — Zﬂ_ + — Z (9)
JES
2
1 n - —
o ™ Z (mj —75) | — V(elpddiff,loo) +
jES

: n n 2
% 2 <Z 7~Tz‘> e/li)\ddiff,loo - (; ﬁi)

i=1

Eq. (9) shows that using the difference estimator, we
only need to compute 72 to estimate of , using the
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same subsample. The difference estimator is hence
better suited for the case of large data Bayesian model
comparison. We conclude by noting that the difference
estimator is unbiased.

Proposition 1. The estimators aﬁidiﬁ@o and &fliﬁ-’loo
are unbiased with regard to elpd,,, and o3, .

Proof. See the supplementary material. O

Remark Note that 634, is most often an optimistic
estimate for the variabﬂity of elpd,,,, since no general
unbiased estimator of the true variability exists (Bengio
and Grandvalet, 2004).

2.2 Fast Approximate LOO Surrogates

For the difference estimator to have small variance, we
need good approximations of the variable of interest.
We start with the following definition.

Definition 1. An approximation 7; of m; is said to
converge in mean if E|m; — 7;] = 0 as n — oo.

When estimating elpd,,, we want the approximation
7; to have the following three properties:

1. a good finite data approximation of 7,
2. computationally cheap, and
3. converges in mean to ;.

The last property is needed for Proposition 2 and 3,
that shows favorable theoretical scaling characteristics
of the estimator as n — oco.

The WAIC estimator in Eq. (5) indicates that using
the plpd as 7;, such as in Magnusson et al. (2019),
will essentially miss the effect of the effective number
of parameters pog = Vp(log p(y;|0)) in approximating
m;. Since it has been shown by Watanabe (2010) that
the WAIC and LOO are asymptotically equivalent, in-
cluding peg will improve over the plpd, especially for
more complex models. Using the WAIC as approxi-
mation we set 7; = log p(y;|y) — Vo(log p(y;|0)), where
elpdyarc = >.; 7 in Eq. (5).

A problem with this approximation is that for each
observation we need to integrate over the posterior to
compute 7; based on the WAIC in Eq. (5) and hence
the approximation is more costly than using the plpd.
To reduce the cost of computing 7, the simplest way
is to reduce the number of draws to approximate 7 to
Sz where Sz < .S, but this also reduces the accuracy.

Another approach to approximate m; more computa-
tionally efficient is to approximate p; g in Eq. (5) di-
rectly using a Taylor approximation:

Piert =V 1og(p(yi]0))" Z6V log(p(yi]0))
1
+ 5 tr(Hi’QZQHi’QEQ) , (10)

where Vlog(p(y;|0)) and H; g are the gradient and Hes-
sian of log(p(y;|0)) with respect to 8, respectively. This
gives us an approximation of the p; .¢ without the need
to compute Vp(log p(y;]0)) over all S draws. We can
use the idea to produce three different approximations,
Ay WAIC that uses Eq. (10), A;WAIC that only use
the first order (gradient) term and A; WAIC,, that only
uses the first order term and the marginal variances,
i.e., using diag(Xy) instead of ¥y in Eq. (10).

Another approach to approximate PSIS-LLOO is to use
truncated importance sampling (TIS, Ionides, 2008).
TIS-LOO will increase the bias but is less computa-
tionally costly since we remove the cost of estimating
Pareto-k and smoothing using the Pareto distribution.
As has been shown in Vehtari et al. (2019b), TIS-LOO
can approximate LOO better than WAIC at the same
computational cost. As with WAIC, we can also use
TIS-LOO with fewer posterior draws to compute com-
putationally less costly approximations of 7.

2.3 Summary of Approach

The difference estimator and fast LOO surrogates lead
us to how we can compare models for large data.

1. Compute the posterior pa(f|y) and pp(fly) for
model A and B, respectively.

2. Compute 7 for model A and B using an approxi-
mation that fulfill the properties in Sec. 2.2.

3. Compute the approximate differences as m; p =
;4 — 7, p for all n.

4. Draw a subsample of size m and compute 7; p =
TjA — T4 B for all m.

5. Estimate elpdp and V(elpdp) using Eq. (7) and
(8).

Depending on the accuracy of the chosen approximation
7, we can easily increase the subsampling size m to
reach the desired accuracy.

2.4 Asymptotic Properties

Here we study the asymptotic properties of using the
difference estimator together with any approximation
7; that converges in mean to 7. Let (y1,%2,.--,YUn),
y; € ¥ C R be drawn from a true density p; = p(+|6p)
with the true parameter 6y that is assumed to be drawn
from p(f) on the parameter space O, an open and
bounded subset of R?. To prove Proposition 2 and 3
we make the following assumptions:

(i) the likelihood p(y|@) satisfies that there is a func-
tion C': ¥ — Ry, such that E,,, [C(y)?] < oo
and such that for all 8; and 6, |p(y]|61)—p(y|02)| <
C(y)p(yl02)[61 — b2]|.

(ii) p(y|@) > 0 for all (y,0) € Y x O,

(iii) There is a constant M < oo such that p(y|0) < M
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for all (y,0),

(iv) for all 0, [},(—logp(y|0))p(y|0)dy < .

(v) all assumptions needed in the Bernstein-von Mises
Theorem (Walker, 1969), and

(vi) p(fly) >0orall § € ©

Here we also generalize the definition of r(6;) in Eq. (3)
to handle arbitrary posterior approximations (see Mag-
nusson et al., 2019, for an extended discussion). Hence,
let

L p(bsly)

r0) ) aOly)

Now, let elpdg;g 100 = %J&ldiff’loo, we then have the
following propositions.

Proposition 2. For any approrimation 7; that con-

verges in mean to m;, we have that elpdyg 1o cONVETgEs

in mean to elpd,,,,.

Proof. See the supplementary material. O

Proposition 3. Let the subsampling size m and the
number of posterior draws S be fized at arbitrary integer
numbers, let the data size n grow, assume that (i)-(vi)
hold and let ¢ = ¢, (-|y) be any consistent approzimate
posterior. Write 9q = argmax{q(f) : § € ©} and
assume further that éq is a consistent estimator of 0.
Then
T — W

in mean for any of the following choices of 7;, i =
1,...,n.

(a) 7 = log p(yilf,)-

(b) 7 =logp(yily) + Vop(py) (logp(4il0)).

(c) 7 =logp(ysly) —V log p(ysl0)" oV log p(yil6) for
any given fixed 0 and where the covariance matrix
is with respect to 6 ~ p(-ly).

(d) 7t = logp(yily) — Vlogp(ysl0)"SeV log p(ys|0) —
str(H;29H,)39) for any given fized 6 and where
the covariance matriz is as in (c)

(e) 7 = logp(urly_s) as defined in (3).

Proof. See the supplementary material. O

Proposition 2 and 3 generalizes the scaling properties
of Magnusson et al. (2019), namely that in the limit,
we essentially only need a subsampling size of m =1
and S = 1 draw from the posterior to estimate the
elpd,,, exact using the difference estimator. Proposi-
tion 2 show that for any 7 that converges in mean to
7 the difference estimator will converge in mean to the
true elpd,,,. Using Proposition 3 we also have that the
favorable scaling properties holds also for WAIC, our
proposed approximations of WAIC, and using impor-
tance sampling for any choice of S. The results also

T Needs Cost
plpd 0 O(nP)
TISs S draws from p(6|y) O(nPS)
WAICg S draws from p(0|y) O(nPS)
AIWAIC,, Vlogp(yi|0), 6 and tr(Xg)  O(nP)
AYWAIC  Vlogp(ys]6), 0 and O(nP?)
AsWAIC Vlog p(yi|0), Hy, 6 and £9  O(nP?)

Table 1: Computational costs for approximations of 7.

M  Description

Full pooling

Partial pooling

No pooling

Variable intercept

Variable slope

Variable intercept and slope

ULk W N

Table 2: Radon models. For full model specification,
see supplementary material.

hold for posterior approximations, as long as consistent
posterior approximations are used, such as variational
inference and Laplace approximations for regular mod-
els. In the supplementary material we also extend
Proposition 3 to additional choices of 7.

2.5 Computational Cost

The computational cost of the proposed method will
depend on the total number of observations for which
we need to compute 7; and hence, in most situations,
computing 7 will dominate. This makes it relevant to
understand how these costs relate to the total number
of parameters in the likelihood function P (not the
total number of parameters in the model) and the total
number of posterior draws S. The overall cost for
the different approximations proposed is presented in
Table 1. Computing the full PSIS-LOO has the cost of
O(nPS), given that the evaluation of the log-likelihood
is linear in P, i.e., the same complexity as WAIC,
but with larger constants. Different trade-offs can be
made depending on the specific likelihood where the
approximation cost range from the cheapest, the plpd,
to the most costly, WAIC/TIS with a large number
of posterior draws S. The plpd only computes the
log-likelihood once, while the full WAIC/TIS approach
needs to compute it S times.

3 EXPERIMENTS

We study the proposed method using both simulated
and real data. We simulated datasets with 10%, 105,
and 10° observations to fit Bayesian linear regression
(BLR) models. The simulated data is generated with
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different signal-to-noise ratios resulting in R? values
of approximately 0.1, 0.5 and 0.9. To simulate sparse
regression, we generated another dataset with only one
covariate with 5 # 0. See supplementary material for
the details of simulations. As the first real data, we
use the radon data of Lin et al. (1999). The dataset
consists of roughly 12 000 radon level measurements
in 400 counties (groups). Table 2 lists different non-
hierarchical and hierarchical models used. The exact
model specification with Stan code can be found in the
supplementary material. To compare different logistic
models with simple linear effects, interaction effects and
splines, we use the arsenic wells data of Gelman and Hill
(2006) with 3 020 observations. The datasets are big
enough to demonstrate the most important properties,
but small enough to be easily fit using MCMC as a
gold standard.

We use Stan (Carpenter et al., 2017; Stan Development
Team, 2018) for inference using 4 chains, a sample size
of 2 000, a warmup of 1 000 iterations and a dynamic
HMC algorithm (Hoffman and Gelman, 2014; Betan-
court, 2017) and the rstanarm R package (Goodrich
et al., 2018) to fit spline models. Convergence diagnos-
tics were made using R diagnostic (Gelman et al., 2013)
and HMC specific diagnostics (Betancourt, 2017). For
simplicity, in this paper we limit the scope to MCMC,
but the proposed approach is trivial to use with any
consistent posterior approximation using the approxi-
mation correction of Magnusson et al. (2019). Our ap-
proach has been implemented based on the 1oo R pack-
age (Vehtari et al., 2019a) framework for Stan and is
available at https://github.com/stan-dev/loo and
at https://cran.r-project.org/package=1loo.

With the empirical evaluations, we study the following
research questions: (1) does using better approxima-
tions of 7 improve the empirical performance, (2) which
approximation 7 should be preferred, (3) how does the
difference estimator compare with the HH approach,
and (4) how well does the method scale for large-data
model comparison?

3.1 Performance

Table 3 shows the estimator variance when including
Pegr in the estimation, by comparing our proposed ap-
proach with the HH method proposed in Magnusson
et al. (2019). From the results we can see the benefit
of including peg in the estimation of elpd,,,. Including
Peft improves the estimation by orders of magnitude
compared to using only the plpd, both for the HH
as well as for the difference estimator, both in turn
improve with orders of magnitude over simple random
sampling. Table 4 shows similar results where we see
that all approximations of 7 that include peg improves
over using just the plpd as approximate surrogate.

1000
750 4
500 -
250

0 -
754
50 A
254

0 -
60
40 -
204

0- T : T T T

50 100 150 200

Hp

HH

Subsamples

SYS

Figure 1: 1 000 estimates of 01o, for Radon Model 6
using TISgy, as 7. True value is 96 (dotted line).

The downside of using the WAICy,, WAIC based on
2 000 draws, as the approximate surrogate variable is
that it is computationally costly (see Table 1). Hence,
it is of interest to study the performance of the different
surrogate approximations shown in Table 4. We can see
that any approximation is better than just using the
plpd, as noted above. Using Ay WAIC,,, that have the
same computational complexity as the plpd, is better
in all models, showing the benefit of including peg in 7;.
Table 1 shows that as we improve the approximation
we get better and better estimates of the elpd,,,, even
though the benefit of the better approximations varies
from model to model. TIS, computed by averaging
2 000 posterior draws, is the most accurate approach.
Hence, we are confronted with the trade-off between
sampling size and cost of computing 7.

Table 3 contains the results of both the HH estimator
and the difference estimator with WAIC, as 7. The
performance between the estimators are similar, but
in most cases, the HH estimator is marginally better.
This can be explained by the HH estimator being bet-
ter at capturing heteroscedastic approximation errors
(see Cochran, 1977, Ch. 7,9A). Since we expect the
approximation to be worse for smaller values of m;, this
explains the difference in performance.

Figure 1 shows the benefit of the difference estimator
in the estimation of ojo,. It is quite clear that the
difference estimator is much more efficient in estimating
Oloo, and that this efficiency comes from using both 7
and 72 as auxiliary variables in estimating ojo,. To get
the same efficiency for the HH estimator we would need
to draw an additional subsample proportional to 72 to
reach a similar performance. Taken together, the HH
estimator is marginally better in estimating elpd values
for individual models. Although, the benefit of using
7; in the estimation, instead of in the subsampling, is
important in estimating o2 | as well as when comparing
models.
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Data M SE(elpddiff,WAICQk) SE(eldeH,plpd) SE(eldeH,WAICQk) SE(elpdsgs)  G00
Radon 1 0.002 0.7 0.001 949 88
2 1.0 42 0.81 1012 94
3 9.2 74 6.4 1012 94
4 1.0 40 0.79 1013 94
5 13 84 12 972 90
6 10 97 15 1050 96
R?2=09 BLR 0.03 4.0 0.02 704 70
R2=05 0.04 4.9 0.03 711 72
R?2=0.1 0.04 5.8 0.03 756 76

Table 3: The subsampling standard error (SE) for individual models of different subsampling approaches to
estimate elpd;,, with m = 100. The results are averaged over 100 set of subsamples. &0, is the estimated

standard deviation of the LOO-CV for comparison.

M WAICQk TISQk WAIC 100 TISlOO AQWAIC A1WAIC A1WAICm plpd
1 0.0 0.0 1.6 1.6 0.5 0.5 0.6 1
2 1.0 0.2 21 20 30 31 31 53
3 9.2 1.7 29 29 45 96 56 87
4 1.0 0.3 22 22 29 30 30 o1
5 13 9.8 26 36 32 39 40 81
6 10 7.5 34 42 50 57 90 107

Table 4: SE(elpdy;g) using different approximations 7 for the Radon data with m = 100. The results are averaged

over 100 set of subsamples.

n M # elpdy,  SE(elpdp)
105 RHSvs. N  plpd -47.6 5.2
RHS vs. N TISlO -52.3 0.04

105 RHSvs. N  plpd -44.7 7.0
RHS vs. N TIS;g -49.3 0.04

Table 5: Comparing models with Normal (N) and
regularized horse-shoe (RHS) prior using a subsampling
size of m = 100 and the difference estimator. The
elpdp, is the estimated difference in elpd,,, between
models with the subsampling SE of the estimate. 6p ~
9 for all.

3.2 Model Comparison

Table 5 shows a large-scale example of a Bayesian linear
regression model with 100 covariates and 1 million and
100 000 simulated data points with only one 3 # 0 to
compare between a normal prior and the regularized
horseshoe shrinkage prior (Piironen and Vehtari, 2017).
Using just the plpd we get a good approximation of 7
so a subsample of m = 100 is again sufficient to esti-
mate the elpd with sufficient accuracy. Using a better
LOO surrogate, such as TIS with only 10 posterior
draws, increases the accuracy considerably for these
large datasets, without much additional computational
cost in computing 7. Table 5 also shows the positive
scaling characteristics, the size of subsample needed to
compare models does not change much, even though
the total number of folds in LOO is increased tenfold.

m M el/P\dD SE(e/li)\dD) oD
100 6 vs. 4 -233 69 22
6 vs. 2 -303 35 26
6 vs. 3 -333 57 25
6 vs. b -1451 32 51
6vs. 1 -1778 35 57
400 6 vs. 4 -236 22 24
6 vs. 3 -294 20 26
6 vs. 2 -298 16 27
6 vs. 5 -1466 13 52
6vs. 1 -1780 13 58

Table 6: Comparing models using a subsample of size
m = 100, 400, the diﬁ’gr\ence estimator, and TIS;g9 as
approximation. The elpd, is the estimated difference
in elpd,,, between models with the subsampling SE of
the estimate and 6p. &p is the estimated standard
deviation of the elpd for comparison. The naive 6p
estimate is approximately 130 for all models

Table 6 shows an example of comparing the different
models for the Radon data based on an individual
subsample. Using only a subsample of size 100 we can
roughly identify which models should be preferred. The
estimated op for difference in elpd compared to the
reference model is much smaller than a naive approach
where only the o}y, of individual models are used, i.e.,
02.ve = V(elpdy) + V(elpdg). In this case, we use
the best (and most complex) model as a reference
with a subsample of size 100. Using a slightly bigger
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Model e/ll;iD SE(d/;dD) oD
GAM vs. interaction -21 14 7.2
GAM vs. linear -29 1.2 7.8

Table 7: Comparing arsenic models using m = 300
using the differencggstimator and the TIS;p9 as ap-
proximation. The elpd, is the estimated difference in
elpd,,, between models with the subsampling SE of
the estimate. ¢p is the estimated standard deviation
of the elpdp.

Model eTI;lD SE(@D) oD
D =100 vs. D =101 -0.5 0.03 0.6
D =100 vs. D =110 -4.3 0.04 3.3
D =100 vs. D =99 -9.7 0.04 5.1
D =100 vs. D =90 47.7 0.02 11.8

Table 8: Comparing BLR models with different number
of included covariates for R% ~ 0.1, using a subsample
of size m = 100 using the difference estimator and
TIS100 as approximation. The J;;i p is the estimated
difference in elpd,,, between models with the subsam-
pling SE of the estimate. p is the estimated standard
deviation of the elpdp.

subsample size of 400, the subsampling uncertainty
is reduced further and we can conclude that model 6
has the best predictive performance. Increasing the
subsampling size is not very costly once 7 has been
computed.

With earlier approaches, these comparisons would be
much more costly. Either we would need to compute 7;
for all models and observations (full LOO), or if we use
the HH estimator, we would need to draw a new set of
observations for each model, each model comparison,
and if we want an efficient estimate of op, two sets of
observations per model comparison.

In Table 7 we compare a generalized additive spline
logistic model (GAM) with linear models with and
without interactions. For these models, using TTS1gg
as approximation, we needed to increase the subsample
size to 300 to compare the model performance. A
small subsample size is sufficient as the model does
not have a complex hierarchical structure and hence
the approximation works well to compare even small
differences in elpdp,.

Finally, Table 8 contains another simulated example
with 100 covariates (8 = 1 and R? ~ 0.1) and study
the effect of adding irrelevant and removing relevant
covariates for n = 10 000. Again we see that using
only m = 100 we can get accurate estimates for elpd .
The results of Table 8 also show the well-known in-
consistency of LOO (Shao, 1993) in selecting the most
parsimonious model, so for feature selection other ap-

proaches should be used (see Piironen et al., 2018).

4 CONCLUSIONS

Comparing different models is an important, but often
overlooked, part of the process of predictive model-
ing. We propose a method for comparing and choosing
between probabilistic models that are well suited to
Bayesian model comparison for large data. First, using
the difference estimator is much better suited to the
setting of large-data model comparison. By using 7
in the estimation rather than in sampling we reduce
considerably the subsample size needed compared with
approaches such as Magnusson et al. (2019), both when
comparing models and estimating oj,, and op. Second,
including the number of efficient parameters in the
auxiliary variable when estimating the elpd improves
with orders of magnitude over not using this informa-
tion. But using the better surrogate approximations is
costly and introduce an accuracy-computational cost
trade-off. If the gradient of the likelihood with respect
to likelihood parameters is available, A;WAIC,, can
be used to improve performance without an additional
computational cost compared to plpd. In all, we recom-
mend using plpd as approximation for simpler models,
while TIS1gg is recommended when comparing more
complex hierarchical models.

We should not be too greedy and choose a very small
subsample. A subsample that is too small, such as
m = 10, may, due to randomness, miss observations
for which the approximation is bad, but still are not
too uncommon among the observations.

There are many additional possible improvements that
we leave as future work. First, here we use the dif-
ference estimator with a simple random sample. We
can use more or less any sampling strategy, such as
stratifying the data based on the design matrix or by
identified difficult observations. This can be further
be used by adaptive optimal allocations between these
strata. Second, we can further study other approaches
to approximate LOO efficiently, here Wang et al. (2018);
Giordano et al. (2019) are promising methods. As long
as the approximation will converge in mean to 7 the
theory holds, making the method general as well as
highly tunable for the specific problem at hand.

In all, we propose a scalable method for fast model
comparisons in case of large data.
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