Fault Diagnosis for Power Converters based on Random Forests and Feature Transformation

Kou, Lei; Liu, Chuang; Cai, Guo-wei; Zhang, Zhe; Li, Xue-jiao; Yuan, Quan-de

Published in:
Proceedings of 2020 IEEE 9th International Power Electronics and Motion Control Conference

Publication date:
2021

Document Version
Peer reviewed version

Citation (APA):
Fault Diagnosis for Power Converters based on Random Forests and Feature Transformation

1st Lei Kou  
School of Electrical Engineering,  
Northeast Electric Power University,  
Jilin, China  
koulei@abu.ac.cn

2nd Chuang Liu  
School of Electrical Engineering,  
Northeast Electric Power University,  
Jilin, China  
victorliuchuang@163.com

3rd Guo-wei Cai  
School of Electrical Engineering,  
Northeast Electric Power University,  
Jilin, China  
caigw@abu.ac.cn

4th Zhe Zhang  
Department of Electrical Engineering,  
Technical University of Denmark,  
Lyngby 2800, Denmark  
zz@elektro.dtu.dk

5th Xue-jiao Li  
School of Electrical Engineering,  
Harbin Institute of Technology,  
Harbin, China  
lixj@abu.ac.cn

6th Quan-de Yuan  
School of Computer Technology and Engineering,  
Changchun Institute of Technology,  
Changchun, China  
yuanqd@airlab.ac.cn

Abstract—Power converters have been key enablers of many energy conversion fields, and it is a trend to apply artificial intelligent (AI) technology to power converters to improve stability. A novel fault diagnosis method based on the combination of random forests (RFs) and feature transformation is proposed in this paper. Firstly, the three-phase AC fault currents of three-phase PWM rectifier are analyzed as examples. Secondly, the feature transformation, a novel current trajectories slopes based method, is adopted to transform the fault currents data. With the help of feature transformation, the fault diagnosis classifier can obtain a good load adaptability. And then the RFs based method, a data-driven method, is employed to train the fault diagnosis classifier with the fault current trajectories slopes data. Finally, the proposed method is carried out on an three-phase PWM rectifier system, which can detect and locate the open-circuit faults of IGBTs.

Index Terms—fault diagnosis, power converters, data-driven, random forests, feature transformation, current trajectories slopes

I. INTRODUCTION

Power converters have been widely utilized in various energy conversion applications, such as AC-DC grid, electric aircrafts, smart grids, utility interfaces with renewable energy resources and so forth [1] [2] [3]. And meanwhile AI technology has also been rapid development, therefore, it has been a trend to apply AI technology to the control design and fault diagnosis of power converters, which is conducive to greatly improving the stability of power converters [4] [5] [6].

Generally, AI technology is used in the open-circuit fault diagnosis of power converters, because the open-circuit fault is less harmful but it is a hidden danger to other equipment [7]. On the contrary, since short-circuit fault is generally more destructive, short-circuit fault is usually directly detected by standard hardware protection system, such as fuse and breaker, and then the short-circuit fault becomes open-circuit fault [8]. Therefore, open-circuit faults diagnosis is of great significance to improve the stability of power converters.

At present, there are some researches about the open-circuit faults diagnosis of power converter based on AI techniques have been reported. A fault detection method based on artificial neural network(ANN) was proposed in [4] for the switch devices of three-parallel power converters, in which the surface of current vector, vector angle, distributed angle were used to train the neural network fault diagnosis classifier. A Bayesian network based fault diagnosis methodology was proposed in [9] for three-phase inverters, in which the fast Fourier transform was adopted to extract fault features of two output line-to-line voltages. [10] proposed an intelligent fault protection algorithm based on ANN for MMC-based(Modular multilevel converter) DC grids, in which the discrete wavelet transform(DWT) algorithm was adopted to preprocess the input signals. Based on the grid current processing, [11] proposed an ANN-based method for the grid current prediction in the active rectifier to deal the transistors open-circuit faults. Based on the model-based and data processing perspective, [12] proposed a fault detection and isolation method for open-circuit faults of IGBTs in grid-connected neutral-point-clamped (NPC) inverters. Based on the relationship of the operation state and binaried output of voltage sensors, [13] proposed a Boolean logic operation fault indicator, which could detect and locate the open-circuit faults and improve the reliability of the MMC. In addition, some example applications of AI techniques in smart grid and renewable energy systems have been introduced in [14], especially the applications of expert systems, fuzzy logic and artificial neural networks in...
power electronics and power engineering. But few scholars consider the influence of loads, input voltages and other external conditions. Three-phase PWM rectifiers play a critical role in many energy conversion fields, and meanwhile RFs can overcome the problems of over-fitting and low training speed in comparison with other AI algorithms [15]. Therefore, the three-phase PWM rectifier system is selected as an example for research, a novel current trajectories slopes based method is proposed to transform the fault currents, which can adapt to the influence of different loads. And the RFs is adopted to train the fault diagnosis classifier with the transformed fault data, which can obtain a good load adaptability.

The fault diagnosis schematic for power converters is shown in Fig.1. And the rest of the paper is organized as follows. Section II describes fault AC currents of three-phase PWM rectifiers. Section III presents the RFs and feature transformation based method, and the performance of RFs fault diagnosis classifier is evaluated. The proposed method is carried out on an three-phase PWM rectifier system in section IV. Conclusions are drawn in the last section.

II. THREE-PHASE AC FAULT CURRENTS OF THREE-PHASE PWM RECTIFIER

The experimental platform of the three-phase PWM rectifier system is shown in Fig.2, and the input phase voltage is 40V, output voltage is 100V. As shown in Fig.1, the open-circuit faults happened in IGBT S_{a1}. Fig.3 and Fig.4 show the three-phase fault current waveforms with the 16 Ω load and 32 Ω load, respectively. According to Fig.3 and Fig.4, there is a relationship between fault waveforms and fault modes, the negative half cycle of phase-current waveform will be affected when the upper IGBTs suffer open-circuit faults, and the positive half cycle of phase-current waveform will be affected when the lower IGBTs suffer open-circuit faults. It’s obvious that the fault currents values are not the same under different loads. Therefore, it is necessary to study a method to reduce the influence of current amplitudes.

III. FAULT DIAGNOSIS METHOD BASED ON RFs AND FEATURE TRANSFORMATION

In this section, it has been certified that the novel current trajectories slopes are not affected by the loads. And the
performance of RFs fault diagnosis classifier is evaluated, which has the adaptive ability to different loads.

A. Feature transformation

The expressions of three-phase sinusoidal AC currents can be described as

\[
\begin{align*}
i_a &= A \sin(\omega t) \\
i_b &= A \sin(\omega t - \frac{2}{3}\pi) \\
i_c &= A \sin(\omega t + \frac{2}{3}\pi)
\end{align*}
\]

where \( A \) represents the amplitude of three-phase AC currents, and the frequency \( \omega = 100\pi \).

The current trajectories about \((i_a, i_b)\), \((i_a, i_c)\) and \((i_b, i_c)\) are oblique ellipses (as shown in Fig.5), whose shape is not affected by the amplitude \( A \), but the minor axis semidiameter and major axis semidiameter are affected by the amplitude \( A \). However, the novel current trajectories slopes are not affected by the loads (as shown in Fig.6 and Fig.7).

After a series of analysis and formula, the expressions of oblique ellipse can be described as follows

\[
(x + y)^2 + \frac{(x-y)^2}{3} = A^2
\]

The slopes of \( \psi_1 \), \( \psi_2 \) and \( \psi_3 \) are expressed as

\[
\begin{align*}
\psi_1 &= \frac{i_a(t)}{i_b(t)} = \frac{\sin(\omega t)}{\sin(\omega t - \frac{2}{3}\pi)} \\
\psi_2 &= \frac{i_a(t)}{i_c(t)} = \frac{\sin(\omega t)}{\sin(\omega t + \frac{2}{3}\pi)} \\
\psi_3 &= \frac{i_b(t)}{i_c(t)} = \frac{\sin(\omega t - \frac{2}{3}\pi)}{\sin(\omega t + \frac{2}{3}\pi)}
\end{align*}
\]

Take \( i_a, i_b, \) and \( i_c \) as the first phase current, respectively. The original fault data are transformed to \((\psi_{A1}, \psi_{A2}, \psi_{A3})\), \((\psi_{B1}, \psi_{B2}, \psi_{B3})\) and \((\psi_{C1}, \psi_{C2}, \psi_{C3})\), representing \( 9 \) features (as shown in Fig.6 and Fig.7), meanwhile the current trajectories slopes have the adaptive ability to different loads.

B. Training and evaluation of RFs fault diagnosis classifier

The training process of RFs and the proposed method are shown in Fig. 8 and Fig.9. Table I shows the fault location and fault labels. Table II and Table III show the accuracies of single RFs method and the proposed method, respectively.

Compared with the single data-driven method, the proposed method introduces feature transformation. After inputting fault samples, the fault samples can be transformed to
TABLE I

FAULT LOCATION AND FAULT LABELS

<table>
<thead>
<tr>
<th>Fault location</th>
<th>d1</th>
<th>d2</th>
<th>d3</th>
<th>d4</th>
<th>d5</th>
<th>d6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal state</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S_a1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S_a2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S_b1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S_b2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S_c1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>S_c2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

\((\psi_{A1}, \psi_{A2}, \psi_{A3}), (\psi_{B1}, \psi_{B2}, \psi_{B3})\) and \((\psi_{C1}, \psi_{C2}, \psi_{C3})\). And then the RFs method is adopted to train the fault diagnosis classifier. By this way, the influence of loads can be reduced. As shown in Table II and Table III, the fault diagnosis classifiers are trained by the fault samples under 16Ω load, and the fault data of other loads are adopted to validate the robustness of the proposed method.

IV. FAULT DIAGNOSIS EXPERIMENTS

In section III, the adaptive ability of the proposed method to the load has been proved. Therefore, the mature fault diagnosis
TABLE III
ACURACIES OF PROPOSED METHOD

<table>
<thead>
<tr>
<th>Fault location</th>
<th>16Ω diagnostic accuracy</th>
<th>32Ω diagnostic accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal state</td>
<td>0.9765</td>
<td>0.9758</td>
</tr>
<tr>
<td>S_{a1}</td>
<td>0.9682</td>
<td>0.9662</td>
</tr>
<tr>
<td>S_{a2}</td>
<td>0.9742</td>
<td>0.9683</td>
</tr>
<tr>
<td>S_{b1}</td>
<td>0.9783</td>
<td>0.9764</td>
</tr>
<tr>
<td>S_{b2}</td>
<td>0.9805</td>
<td>0.9803</td>
</tr>
</tbody>
</table>

The classifier is tested with the open-circuit faults data under 16 Ω load. Of course, other situations also tell the similar story. The open-circuit faults diagnosis process is shown in Fig. 1, the bottom hardware controller sends 200 fault samples to the mature fault diagnosis classifier every 20ms, and the fault diagnosis classifier can obtain 200 results every 20ms. Fig.10 shows the S_{a1} fault diagnosis experiment, and Fig.11 shows the S_{a1} fault diagnosis result. According to Fig.10 and Fig.11, 200 groups of samples can be obtained in one cycle, and then the fault samples were transformed by the proposed method, finally the 200 groups results were given by the mature fault diagnosis classifier during fault diagnosis. The first 100 samples were diagnosed as normal, and the last 100 samples were diagnosed as S_{a1} fault, thus it is considered that the fault location is S_{a1}.

V. CONCLUSIONS

A novel fault diagnosis method based on RFs and feature transformation is proposed in this paper. It has been certified that the novel current trajectories slopes are not affected by the loads, and the slopes are adopted to train the fault diagnosis classifier based on RFs, which has the adaptive ability to different loads. The proposed method dose not only reduce the dependence on fault model, but also reduce the dependence on training data. Finally, the proposed method is carried out on an three-phase PWM rectifier system, which can detect and locate the open-circuit faults of IGBTs. Furthermore, the proposed method is suitable for most of three-phase energy conversion systems.

REFERENCES


