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Abstract
Room acoustic simulations are widely used in the design and renovation of various spaces,
ranging from offices to theatres or even churches. Nevertheless, small volumes remain
a challenge with currently available techniques. These include spaces such as meeting
rooms and classrooms, where acoustic conditions are critical. This limitation is due to
two main factors. Firstly, surface materials are commonly characterized with simplified
parameters which neglect valuable information for low frequencies. It thus leads to an
approximate modelling of reflections that is not valid in small rooms. Secondly, research
on room acoustic simulations has not been able to find a method that offers accurate
results in a timely manner. Indeed, the methods available either favor efficiency by means
of approximations or inversely are accurate at the expense of a large computational load.
The present PhD thesis thus pursues accurate and efficient acoustic simulations in small
rooms by tackling these two limiting factors.

The boundary conditions representing surfaces in a room are generally expressed in
terms of absorption and scattering coefficients, two energy parameters lacking phase
information. The latter is most often estimated from the roughness of a surface, while
the former is the only parameter with widely available measured data for the materials
found in room acoustics. On the contrary, surface impedance is a complex-valued pa-
rameter from which all the information needed to describe a boundary can be derived.
Consequently, a method to calculate surface impedances from measured absorption co-
efficients is introduced in this study. The method is based on a novel impedance model
making use of fractional calculus. The information missing in absorption coefficients is
then retrieved by solving an inverse problem through constrained optimization.

The vast majority of commercial solutions for room acoustic simulations are based
on geometrical acoustics. They therefore rely on high frequency assumptions that do not
account accurately for interference and diffraction effects. On the other hand, the numer-
ical methods for differential equations, often called wave-based methods in room acous-
tics, are too heavy computationally for practical application. A compromise method
that combines accuracy and efficiency thus has to be found. To this end, the Equivalent
Source Method in the time domain is investigated. This method draws its efficiency
from assuming a solution to the wave equation and approximately solving the boundary
condition equation. A combination of image and equivalent sources is then introduced
in order to improve the accuracy of the method at a low computational cost.

Accurate acoustic simulations of small rooms are brought closer to practical reality
thanks to the contributions of this project. The impedance retrieval method introduced
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is a tool that can benefit all simulation methods, and hence improve the overall accuracy
of room acoustic modelling. The study of the Equivalent Source Method also provides
valuable insight on its application to room acoustics. Moreover, the combination of
image and equivalent sources presented shows an interesting potential and could lead to
further research on the topic.



Resumé
Rumakustiske simuleringer bliver ofte brugt i forbindelse med design og istandsættelse
af forskellige rum. Anvendelsen af sådanne simuleringer kan findes i alt fra kontorer
til teatre såvel som kirker. Men ikke desto mindre er simulering af små rum stadig
en udfordring med de nuværende metoder, dette inkluderer møderum og klasselokaler
hvor de akustiske betingelser er kritiske. To faktorer er hovedsaligt skyld i disse be-
grænsninger. For det første er overfladematerialer ofte karakteriseret med forsimplet
parametre der negligerer værdifuld lavfrekvent information, hvilket kan fører til fork-
ert modellering af refleksioner i små rum. For det andet har den nuværende forskning
i akustiske simuleringer ikke ført til metoder der både er nøjagtige men også beregn-
ingslette. De tilgængelige beregningsmetoder er enten beregningslette men unøjagtige,
eller nøjagtige og beregningstunge. Denne PhD afhandling vil derfor udforske mulighe-
den for nøjagtige og beregningslette akustiske simuleringsmetoder der kan benyttes til
beregning af små rum og samtidig håndtere disse to begrænsende faktorer.

Randbetingelserne der repræsenter overfladerne i et rum er normalt beskrevet ved en
absorptions- og spredningskoefficient, to energiparametre der ikke inkluderer faseinforma-
tion. Spredningskoefficienten er oftest estimeret på baggrund af grovheden af overfladen,
hvorimod absorptionskoefficienten er den eneste materialeparameter i rumakustik der er
almindeligt tilgængelig som målt data. På den anden side kan overflader beskrives
fuldstændig ved hjælp af den komplekse overfladeimpedans. I dette studie vil derfor
blive introduceret en metode til at beregne impedanser fra målte absorptionskoefficien-
ter. Denne metode er baseret på en ny impedansmodel der benytter såkaldt fractional
calculus. Den information som ikke er repræsenteret i absorptionskoefficienterne findes
ved at løse et inverst problem ved brug af constrained optimization.

Størstedelen af de kommercielle løsningsmetoder der bliver anvendt til simulering
af rumakustik, er baseret på geometriskakustik. Geometriskakustik er baseret på an-
tagelsen af høje frekvenser, dette gør modellering af effekter som interferens og diffrak-
tion unøjagtig. På den anden side, numeriske metoder der benytter partielle differen-
tialligninger, ofte kaldet wave-based metoder i rumakustik, kan betragtes som alt for
beregningstunge til praktisk brug. Det er derfor nødvendigt at finde en metode der er
et kompromis mellem beregningseffektivitet og nøjagtighed. Som en mulighed under-
søger dette projekt beregningsmetoden Equivalent Source metoden. Denne metode for
sin beregningseffektivitet ved at antage en løsning til bølgeligningen og approksimerer
randbetingelsesligningen. Derudover introduceres en kombination af billede- og ækviva-
lentkilder der forbedrer metodens nøjagtighed og beregningseffektivitet.
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Takket være det videnskabelige bidrag i dette projekt bliver nøjagtige akustiske simu-
leringer af små rum bragt tættere på praktisk brug. Impedansmetoden, forslået i dette
projekt, er et værktøj der kan være en hjælp i alle former for simuleringsmetoder og med-
virke til generelt øget modelleringsnøjagtighed af rumakustik. Det her i præsenterede
studie af Equivalent Source metoden bigrager med værdifuld indsigt i hvordan metoden
kan benyttes i forbindelse med rumakustik. Derudover bliver det vist at kombinationen
af billede- og ækvivalentkilder har et interessant potentiale der kan fører til fremtidig
forskning i netop dette emne.
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CHAPTER 1
Introduction

1.1 Motivation
Room acoustics consists of the study and prediction of sound fields in closed spaces. The
aim is to predict how sound will be experienced by the users of a room. This is done by
simulating the room impulse response, from which auralization and acoustic parameters
can be derived. Auralization consists in convoluting an anechoic recording, e.g. music
or speech, with the impulse response of a room [57]. The signal created renders how
that sound would be heard in that room. Acoustic parameters also give important
insight on the properties of a room. The most common one is the reverberation time,
which describes how fast sound is attenuated in a room. The intelligibility of speech for
listeners can also be assessed with the speech transmission index, or the perception of
music with the clarity index [28]. Many other acoustic parameters exist, most of which
can be derived from the impulse response. It is therefore central to determine how sound
propagates in a room in the time domain.

The spaces investigated in room acoustics can range from small rooms such as car
cabins or offices to the large volumes of concert halls and the like. It is therefore a wide
range in terms of dimensions. The present work is concerned with small to moderately
sized rooms, such as classrooms and offices where clear transmission of speech is essential.
Acoustic conditions can have a significant impact on students’ and workers’ performances
[2]. Noisy environment have an adverse effect on cognitive tasks, especially reading,
focusing, problem solving and memorizing [52, 36]. On the contrary, quiet environments
where speech is easily understandable foster learning and working efficiency. Being able
to design and predict the acoustics of small to moderately sized rooms would therefore
be highly beneficial to children and office workers, two groups of people who spend most
of their everyday lives in such spaces.

1.2 Background
The propagation of sound in time domain in any space is described by the wave equation
[19]

∇2p− 1
c2
∂2p

∂t2
= 0, (1.1)
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where p(t) is the sound pressure and c is the speed of sound in air. It is derived from
three linearized fundamental equations: the conservation of momentum, the conservation
of mass, and adiabatic compression. The Green’s function g(t) is the solution to the
inhomogeneous wave equation [11]

∇2g − 1
c2
∂2g

∂t2
= −δ(r0)δ(t), (1.2)

with δ the Dirac delta function and r0 the position of a point source. Like any differential
equation, the wave equation comes with its associated boundary conditions. In an
unlimited domain, the Sommerfeld radiation condition must be respected. Noting r the
distance between a point in space and the point source, it leads to the free-field Green’s
function in the time domain

g(t) = δ(t− r/c)
4πr

. (1.3)

In room acoustics the boundary conditions are prescribed by the shapes and materials
of the different surfaces, making it impossible to find an analytical Green’s function.

Interferences between incident and reflected waves can have an important influence
when sound propagates in an enclosure [12]. When wavelengths are larger or of same
order as the room dimensions, modes appear at the natural frequencies of the room and
lead to strong responses. Moreover, when wavelengths are of same order as the dimen-
sions of surfaces in the room, diffraction from edges can be observed. These wavelengths
define the low frequency range in room acoustics. As wavelengths decrease with increas-
ing frequency, the reflected waves become incoherent and interferences become random.
As a result, individual modes have less influence due to high modal overlap and edge
diffraction effects vanish in the sound field.

Since the wave equation with its associated boundary conditions cannot be solved
analytically in room acoustics, numerical simulations are performed to calculate the
impulse responses of rooms. Simulation methods can be separated into two categories:
geometrical acoustics and numerical methods for differential equations, also called wave-
based methods in the field of room acoustics. Techniques belonging to geometrical
acoustics are traditionally employed [51]. They make use of high-frequency assump-
tions, such as propagation of sound in straight lines and specular reflections, in order to
simplify calculations and reduce computation time. Although energy-based simulations
are more common, geometrical acoustics can include phase information to account for
interferences. Nevertheless, diffraction effects remain challenging to model. Numerical
methods for differential equations work by discretizing the equation under study in the
domain considered or on its boundary [50]. In room acoustics, it can either be the wave
equation that is discretized in the volume of the room or the boundary condition equa-
tion that is treated on the different surfaces. These numerical methods can account for
all wave phenomena as they do not assume a certain behaviour of the sound field, but
they generally come with a large computational load that prohibits their practical use
in room acoustics. Whatever method is employed, determining the individual modes
resulting from interferences require a fine frequency resolution. In frequency-domain
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calculations, simulations can only be performed one frequency at a time. It would thus
imply a large number of simulations to obtain an accurate room impulse response. On
the contrary, time-domain simulations are able to provide results for a chosen predefined
frequency range at once. Consequently, only time-domain simulation methods are viable
options in terms of computation efficiency for low-frequency room acoustics.

1.3 Scope of the thesis
No matter the method employed, an acoustic simulation is always made of three elements:
a geometrical model defining the domain, a set of boundary conditions, and a calculation
algorithm. In order to obtain correct results, all three elements need to be suited to the
problem studied. Geometrical models can be created to any level of details needed with
the help of a CAD program. Thus, they are usually not a source of significant error and
will not be discussed in the present work.

All the information needed to characterize boundaries in common simulation meth-
ods is comprised in the surface impedance. The specific parameter needed to express
the boundary conditions for any algorithm can then be derived from this quantity. How-
ever, surface impedance data is not available for common building materials. Instead,
the absorption coefficient is measured according to ISO 354 [18]. This parameter unfor-
tunately leaves out phase and angle-dependence information. Phased simulations then
have to resort to rough approximations and estimates as boundary conditions, leading
to inaccurate results. Thus, the first objective of the present work is to design a method
to determine surface impedances from measured absorption coefficients, hence allowing
to generate any boundary condition parameter a simulation algorithm could need.

Current simulation methods in room acoustics are not suited for small volumes. Tech-
niques from geometrical acoustics lack accuracy to model interference and diffraction
effects, while traditional numerical methods for differential equations are too heavy com-
putationally for practical applications. Therefore, the second objective of this project
consists in finding a method that exhibits both computation efficiency and accuracy at
low frequencies. To do so, the Equivalent Source Method in the time domain is investi-
gated. This method was originally designed for radiation and scattering problems, with
notable efficiency arguments. Its potential application to room acoustics is thus studied,
as well as its combination with image sources in order to improve its accuracy.

1.4 Structure
The articles published or to be submitted for publication are showcased in the appendix
to provide the research conducted over the course of the project. The thesis is then organ-
ised so as to introduce fundamental concepts, explain background theory, and present
the main findings of the articles. Chapter 2 touches upon the representation of boundary
conditions in room acoustics, with current practices and the impedance retrieval method
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proposed as a solution. Chapter 3 treats the different simulation methods encountered
in acoustics. It includes further investigation on the Equivalent Source Method in the
time domain and its combination with image sources.



CHAPTER 2
Boundary conditions

Boundary conditions in room acoustics are widely described in the frequency domain,
and are then transformed to the time domain when necessary. The present study on
boundary conditions has thus been carried out in the frequency domain accordingly.

2.1 Characterization of boundaries
The wave equation in the frequency domain is called the Helmholtz equation [19]. In
room acoustics, it is associated with the Robin boundary condition [8]

Zu = p , (2.1)

where Z is the wall impedance operator, u is the particle velocity, and p is the sound
pressure. This equation describes the excitation of the boundary induced by the pressure
field. If the sound field at the boundary is considered to be composed of an incoming
plane wave, the boundary condition is reduced to the algebraic expression

Za = p

un

, (2.2)

with Za ∈ C the surface impedance and un the particle velocity in the normal direc-
tion to the boundary. This form is generally used in room acoustics rather than the
impedance operator. The value of Za depends on the material constituting the bound-
ary, the position on the surface, and the incidence angle θ of the incoming plane wave.
A common approximation is to assume a locally reacting surface, meaning that the ex-
citation at one point of the boundary is independent of sound pressure at neighbouring
points. This simplification makes Za constant over the whole surface and removes its
angle-dependency. Nevertheless, building materials are rarely locally reacting and this
approximation sacrifices accuracy. In the time domain, Eq. (2.2) is equivalent to

un(t) = p(t) ∗ ya(t) , (2.3)

where the surface admittance ya(t) is the inverse of the surface impedance.
In practice, the sound field in front of a boundary is more complex than a single

incoming plane wave. The absorption coefficient α is then defined as the ratio between
the power absorbed by a surface Πabs and the incident power on said surface Πinc

α = Πabs

Πinc

. (2.4)
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As it is an energy parameter, α ∈ R, it does not include any phase information. The
absorption coefficient depends on the incident power and can thus take different forms
according to the incident sound field. It is commonly measured in reverberation cham-
bers according to ISO 354 [18], resulting in the Sabine absorption coefficient. In such
a case, the sound field can be decomposed as a sum of incoming plane waves, and the
corresponding statistical absorption coefficient is defined as [54, 55]

αs = 8
∫ π/2

0

Re {Za(θ)} sin θ
|Za(θ) + Zr(θ)|2

dθ , (2.5)

where Zr ∈ C is the radiation impedance. This quantity is equal to the ratio between
the radiated sound pressure and the transverse velocity of the surface [22]. Zr depends
on the shape and size of the surface as well as the incidence angle θ, and it is averaged
over the positions on the surface and over radiation angles. Given a rectangular surface
with a known area, the value of Zr(θ) can be estimated for all frequencies [10].

2.2 Modelling of boundary conditions

2.2.1 Current practices
Historically, and still to this day, unphased geometrical acoustics has been the favored
option for room acoustic simulations. These algorithms require absorption and scatter-
ing coefficients as boundary conditions to perform the calculations. In parallel, interna-
tional standards [16, 17, 18] have been set for the measurement of surface impedance
at normal incidence and absorption coefficient at both normal and diffuse incidences.
In practice, and despite important reproducibility issues [56], only the absorption coef-
ficient at diffuse incidence is widely available for building materials. This measurement
data is thus combined with an estimate of the scattering coefficient to perform unphased
geometrical acoustics simulations. Accuracy could be improved in this case by using an
angle-dependent absorption coefficient rather than applying the diffuse incidence coeffi-
cient for all angles.

Phased simulations, either by geometrical acoustics or numerical schemes, cannot
be performed with the absorption coefficient to describe boundary conditions. The so-
lution currently in use to model boundaries in these simulations is to estimate surface
impedances or pressure reflection coefficients based on absorption data. However, the es-
timates often lack precision by being real-valued or frequency-independent. The results
obtained from simulations using such boundary conditions are therefore unreliable. Ac-
curate boundary parameters would then enable the practical use of phased simulations.

2.2.2 Proposed solution
A robust method to inversely determine the surface impedance from measured absorption
coefficients of room acoustic materials is introduced. The detailed theory and validation
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can be found in paper B, as well as a preliminary study in paper A.
The description of boundaries in room acoustic simulations must respect physical

feasibility. Firstly, a boundary must be a passive system, it does not provide energy to
the sound field. Secondly, a boundary must be a causal system, meaning that causes
should always precede the consequences they produce. Lastly, time-domain signals must
be real-valued; this applies to sound pressure and particle velocity but also to surface
impedance and other boundary parameters. These three requirements can be written as
the following mathematical expressions involving the surface impedance in the frequency
domain [46]

Re {Za(ω)} ≥ 0 for all ω ∈ R , (2.6)
Za(ω) analytic for Im{ω} < 0 , (2.7)

Z∗
a(ω) = Za(−ω) . (2.8)

The complex angular frequency ω in the equations is due to the mathematical transfor-
mation leading to these expressions. In order to guarantee that these requirements are
respected, a general impedance model called RMK+1 and based on fractional calculus
is introduced

Za(ω) = K · (jω)−1 +R +M · (jω)1 +G · (jω)γ , (2.9)
with R,M,K,G ≥ 0 and −1 ≤ γ ≤ 1. The first three terms correspond to a classic
damped oscillator model, sometimes called RMK model, while the fourth term corre-
sponds to a fractional integral or derivative depending on the sign of γ [9]. The values of
the parameters in the RMK+1 model can then be determined from absorption coefficient
data to fit the different types of materials found in room acoustics.

Surface impedances and statistical absorption coefficients are related with Eq. (2.5).
However, the inverse problem to convert absorption coefficients into surface impedances
is ill-posed. There is indeed an infinite number of complex surface impedances that
correspond to a given real-valued absorption coefficient, as seen in Fig. 2.1. The param-
eters of the RMK+1 model are thus determined by solving a constrained optimization
problem. The input data αin is the measured Sabine absorption coefficient in octave
bands, and the cost function F at an evaluation point Za is defined from the statistical
absorption coefficient αs(Za)

F (Za) =∥ αin − αs(Za) ∥2
2 . (2.10)

The optimization problem is solved with a gradient-based method returning the first
local minimum found. Validity conditions based on the value of the cost function have
therefore been implemented to verify that the minimum found is an appropriate solu-
tion. In addition, prior information about the type of material under study is used
to constrain the problem and guide the solver towards physically meaningful solutions.
The distinction between hard and soft materials is notably made [47], leading to the
constraints

Hard materials: Re {Za(ω)} > 1 for all ω ∈ R , (2.11)
Soft materials: Re {Za(ω)} < 2 for all ω ∈ R , (2.12)
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(a) Linear scale. (b) Logarithmic x-axis.

Figure 2.1: Contour maps of αs in equation (2.5) at 2000 Hz for a sample of 11 m2, from
paper B.

Additional specific constraints have been established for porous materials and membrane
absorbers based on their theoretical surface impedance models. The detailed validity
conditions and specific constraints can be found in paper B.

The RMK+1 model and the retrieval method with constrained optimization have first
been tested on input data created from theoretical impedance models of room acoustic
materials. The materials investigated were a soft and a hard porous absorber with rigid
backing, a porous absorber backed by an air cavity, a membrane absorber, a perforated
panel, and a microperforated panel. The theoretical models were used to create origi-
nal surface impedances and their corresponding statistical absorption coefficients, from
which the surface impedances were retrieved. The match between original and retrieved
impedances is shown in Fig. 2.2 for the porous absorber with cavity and the membrane
absorber. Apart from the microperforated panel case, a good to excellent agreement was
found between original and retrieved impedances. Only a few discrepancies appeared,
as seen in Fig. 2.2a, due to the general form of the RMK+1 model. A single model
indeed cannot represent in details all materials, but the agreements obtained from the
use of the RMK+1 model coupled with the retrieval method are satisfactory.

The robustness of the method proposed has also been investigated. For each of the
theoretical material case, the optimization problem has been solved repeatedly with
random starting points. It was found that all the iterations lead to the same solution
to the problem. This is an indication that the constraints applied to the optimization
effectively narrow down the space of variables. Besides, the retrieval method has been
applied to measurement data from different laboratories of the same four absorber sam-
ples [56]. The samples included two porous materials, one membrane absorber, and one
hybrid combination of porous and membrane absorbers. The comparison of the devi-
ations within measured and retrieved absorption coefficients showed that the retrieval
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(a) Porous absorber with cavity. (b) Membrane absorber.

Figure 2.2: Original impedance from theoretical model and retrieved impedance in 1/3-
octave bands, from paper B. Solid blue line: original resistance; Dashed blue line: orig-
inal reactance; Dash-dotted red line: retrieved resistance; Dotted red line: retrieved
reactance.

method does not amplify noise and deviations that can be found in measurement data,
nor does it introduce any. The retrieval method presented can therefore be considered
robust in terms of stability of the solution and in terms of sensitivity to input deviations.

The surface impedances obtained with this retrieval method can be directly used in
simulation methods with impedance boundary conditions. Unphased simulation meth-
ods can also benefit from impedance retrieval, as angle-dependent absorption and reflec-
tion coefficients can be derived. Moreover, the RMK+1 model chosen in this method
allows to describe surface impedances with continuous frequency. As a result, the trans-
formation from frequency to time domain is facilitated and can be performed either by
inverse Fourier transform or by Z-transform to create an IIR filter [20].



10



CHAPTER 3
Simulation methods

With suitable tools to create geometrical models and an appropriate method to describe
boundary properties, the only element missing to obtain a good room acoustic simulation
is the calculation algorithm. This chapter reviews the different simulations methods in
acoustics with the perspective of their applicability to small and moderately sized rooms
based on their literature. Each method is presented with the main elements of its theory
and a brief discussion of its strengths and limitations. The Equivalent Source Method
is further studied to investigate its potential application to interior problems and room
acoustics. Implementation guidelines are thus determined and solutions to its flaws are
suggested.

3.1 Geometrical acoustics

3.1.1 Acoustical radiosity
Unlike other geometrical acoustics methods, acoustical radiosity is based on the assump-
tion that all reflections are diffuse [29, 40], i.e. sound is emitted in all directions at every
reflection. The reflected sound intensity I as a function of the reflection angle ϕ then
follows Lambert’s law

I(ϕ) = I(0) cosϕ . (3.1)

I(0) is determined from the incident sound intensity and the absorption coefficient of
the reflecting surface. An illustration of Lambert’s law is shown in Fig. 3.1, where the
sound intensity reflected in one direction corresponds to the distance from the reflection
point to the intersection point with the circle at the corresponding angle. The relation
in Eq. (3.1) implies that the incidence angle has no influence on the reflection angle.
Moreover, the use of the absorption coefficient eliminates phase information from the
simulation. Because every point on the boundary reflects sound in all directions, the
energy emitted by one boundary element dS depends on the energy received from all
the other elements dS ′. The geometry is shown in Fig. 3.2. The positions of elements
dS and dS ′ are respectively noted r and r′. The irradiation density B(r, t) can then be
defined as the sound intensity per unit area received on the boundary. It follows that
the sound intensity dI ′(θ′, t) reflected from dS ′ towards dS is

dI ′(θ′, t) = (1 − α(r′))B(r′, t) cos θ′dS ′ , (3.2)
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𝜑
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Figure 3.1: Diffuse reflection as per Lambert’s law.
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Figure 3.2: Geometry of the acoustical radiosity. Black dot: sound source; Orange dot:
receiver point.

with α the absorption coefficient of the surface approximated to be independent of time
and incidence angle. The total irradiation density on the element dS due to all the
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other elements on the boundary and the source in the room is calculated with the
integral equation

B(r, t) =
∫

S
(1 − α(r′))B(r′, t−R′/c)cos θ cos θ′

πR2 dS ′ +Bd(r, t) , (3.3)

where Bd(r, t) is the direct contribution from the source. Once the equation is solved
and the irradiation density is known for all elements at all times, the energy density
w(rP , t) at a receiver P located at rP can be determined from

w(rP , t) =
∫

S
(1 − α(r))B(r, t−RP/c)

cos θP

πcR2
P

dS + wd(rP , t) , (3.4)

with wd(rP , t) the contribution from the source in the room.
The assumption of completely diffuse reflections is valid for high frequencies and

late reflections [14]. However, early specular reflections are highly important for the
perception of sound in a room. The acoustical radiosity is therefore not a suitable method
by itself to simulate room acoustics. Nevertheless, this assumption is an interesting
feature for hybrid methods where the acoustical radiosity can be used to complement a
method assuming purely specular reflections.

3.1.2 Ray-tracing
The ray-tracing technique was adapted from optics as a mean to investigate the impulse
response of rooms [24]. In this method, sound is considered to propagate as straight
rays emanating from a chosen source. The rays are distributed over the solid angle
while making sure that their number is large enough to be representative. They are then
propagated and reflected by the different surfaces. Scattering can be taken into account
in different ways. For example, the new direction of propagation after a reflection can
be determined by a linear combination of the specular direction vector and a random
direction vector [48]. This random direction is found by considering Lambert’s law in
Eq. (3.1) as a probability distribution where the angle ϕ is measured from the specular
direction. The coefficients of the linear combination are then based on the scattering
coefficient of the surface. Each ray carries a certain amount of energy according to the
source power and directivity. The history of each ray is tracked by storing its reflection
points on the different surfaces. Every time a ray hits a surface, its energy is decreased
by using the absorption coefficient of said surface. A ray is terminated either when it
reaches a certain reflection order or when its energy drops below a defined threshold,
depending on how the algorithm is built. When defining a receiver point, a volumetric
detector is created to work around the infinitely small probability of a ray hitting a
point [27]. An illustration of ray-tracing up to the second reflection order taken from
[48] is given in Fig. 3.3. Each ray passing through the detector can give information
about its arrival time, energy and incidence direction. If the source is considered to emit
a pulse signal, summing information from all the rays detected at the receiver position
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Figure 3.3: Example of ray-tracing up to the second reflection order, from [48].

results in an echogram from which the impulse response and different room acoustic
parameters can be derived. The classical implementations of ray-tracing perform energy-
based calculations. Nevertheless, it is possible to carry out phased simulations by using
the pressure reflection coefficient instead of the absorption coefficient [51].

The main drawback of the ray-tracing technique is also its advantage and core as-
sumption: the propagation of sound as rays. This assumption is only valid at high
frequencies and discards effects due to the finiteness of the surfaces. Diffraction, which
occurs when wavelengths are of same dimensions as surfaces for example, can only be
tackled by complementing ray-tracing with an approximate dedicated algorithm [49].
Another issue that arises with ray-tracing is the number of rays needed to obtain accu-
rate results. It needs to be high enough in order to be representative of all the possible
travel paths in the room, but a precise estimate of the sufficient number cannot be easily
calculated.

3.1.3 Beam-tracing
The beam-tracing method is a modification of the ray-tracing technique where three-
dimensional beams are emitted by the source instead of rays [34]. Each beam is consti-
tuted of a central axis and bounding rays defining its cross-section, all of which ema-
nating from the source. Consequently, the bounding rays are divergent and the area of
the cross-section grows as the beam travels more distance. Triangular cross-sections are
the most common geometry because they allow to discretize a sphere around the source



3.1 Geometrical acoustics 15

with fair accuracy. Reflection is considered to be only specular in this method and can
be either phased or handled in energy terms [58]. When it occurs that the cross-section
of a beam extends beyond the reflection surface, the beam is split and each part is
then propagated separately as illustrated in Fig. 3.4. Since the beams are themselves
volumetric objects, the receiver positions can simply be represented as points.

The advantage of the beam-tracing method lies in the number of beams needed for
a simulation. The volumetric character of a beam indeed allows to cover more reflection
paths at once than a single ray. However, scattering cannot be accounted for and splitting
beams in the case of reflections over multiple surfaces is a tedious process. For these
reasons, the beam-tracing method is far less widespread than the ray-tracing technique.

3.1.4 The Image Source Method
The Image Source Method is based on geometrically determining the image positions of
the source in the room by use of symmetry relative to the boundaries [38]. This process
is done recursively to obtain higher order image sources, as illustrated in Fig. 3.5 for
a rectangular room. Each image source represents one reflection path and its order
corresponds to the reflection order of the path, with the underlying assumption that all
reflections are specular. The positions of the image sources account for the propagation
distance between the original source and the last reflection point of the path. The

Figure 3.4: Example of beam reflections.



16 3 Simulation methods

Figure 3.5: Image source positions for a rectangular room. Black disc: original source;
Blue triangles: 1st order image sources; Orange diamonds: 2nd order image sources;
Green crosses: 3rd order image sources.

source strengths are then calculated to satisfy the boundary conditions according to the
pressure reflection coefficients of the surfaces [7]

qi(t) =
M∏

m=1
Rmq0(t) . (3.5)

In this equation qi is the source strength of image source i, M is its order, Rm are the
reflection coefficients of the surfaces on the reflection path, and q0 is the strength of
the original source. The sound field in the room is finally computed by propagating
the sound pressures from the original and image sources with Green’s function in free
field. As a result, the wave equation is satisfied as well as the boundary conditions. The
solution provided by the Image Source Method is exact in the case of a rectangular room.
However, rooms with arbitrary shapes contain diffraction which cannot be modelled. In
such geometries, some image sources might also be non-valid if they are not visible from
the original source or the receiver. Visibility checks must therefore be performed to
retain only the valid image sources.

As mentioned previously, the Image Source Method only accounts for specular re-
flection and does not model diffraction effect. Moreover, the number of image sources
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needed in a simulation grows exponentially with the duration of the impulse response
[7]. As a consequence the method becomes very heavy computationally for long impulse
responses. To avoid this problem, the Image Source Method can be combined with an-
other method. An interesting combination is the CARISM [13], and its phased version
PARISM [35], where image sources treat early specular reflections and acoustical radios-
ity takes care of late diffuse reflections. A novel combination of image sources with the
Equivalent Source Method will also be introduced in section 3.3.3.

3.2 Numerical methods for differential
equations

3.2.1 Finite Difference schemes
The most straightforward way to numerically solve a differential equation is to approxi-
mate it with finite difference [33]. In acoustics, the Finite Difference in the Time Domain
is most commonly used to solve the system of equations

∂u

∂t
= −1

ρ
∇p , (3.6)

∂p

∂t
= −ρc2∇ · u , (3.7)

which is equivalent to the wave equation presented in Eq. (1.1). In order to solve the
system, the volume of the domain is discretized with two cartesian grids of respectively
sound pressure nodes and particle velocity nodes. The grids are staggered in space and
time to apply the finite difference [60]. An illustration of the staggered grids is shown
in Fig. 3.6 for a one-dimensional space, where m and n respectively denote the indices
of spatial steps and time steps. The system of equations is then approximated by finite
difference to create the update equations. For a one-dimensional space and first order
finite difference, the update equations are

u(m+ 1/2, n+ 1/2) = u(m+ 1/2, n− 1/2) − 1
ρ

∆t
h

(p(m+ 1, n) − p(m,n)) , (3.8)

p(m,n+ 1) = p(m,n) − ρc2 ∆t
h

(u(m+ 1/2, n+ 1/2) − u(m− 1/2, n+ 1/2)) , (3.9)

with ∆t the time resolution and h the spatial resolution. Given some initial conditions,
the particle velocity and sound pressure can then be calculated alternatively for every
new time step in this time-marching scheme.

The main limitation of the Finite Difference in the Time Domain is that it requires
to be implemented on a cartesian grid. This leads to a staircase approximation of
the boundary if the domain cannot be fitted with such a discretization. The resulting
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Figure 3.6: Staggered grids for the Finite Difference in the Time Domain, with space on
the horizontal axis and time on the vertical axis. Red discs: sound pressure nodes; Blue
diamonds: particle velocity nodes.

simulations can then be highly inaccurate [3]. As a solution the domain can be discretized
with cells of arbitrary shape centered on pressure nodes, and the method is then called
the Finite Volume Method [4]. In such a case the flow of velocity potential needs to be
calculated at each cell interface in order to compute the update equations, which can
be a tedious operation in three-dimensional space. Although it is able to operate in
any geometry, one discretization drawback remains in the Finite Volume Method. The
entire volume of the domain indeed needs to be meshed with cells. In addition, stability
conditions and minimization of dispersion error impose finer spatial and time resolutions
than other numerical methods.

3.2.2 The Finite Element Method
The Finite Element Method is a very common tool to numerically solve differential
equations. Its principle is explained here in the frequency domain for a one-dimensional
case [1]. Although more complicated, an implementation in the time domain and on
a three-dimensional domain follows the same steps. Starting from a domain bounded
between 0 and L, the Helmholtz equation is

c2 d
2p

dx2 + ω2p = 0 , (3.10)
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with prescribed boundary conditions p(0) and p(L). By multiplication with a weight
function ϕ and integration, the wave equation can be expressed in its weak integral form∫ L

0
c2dϕ

dx

dp

dx
dx− ω2

∫ L

0
ϕpdx = 0 . (3.11)

The two integrals in the equation can be seen as stiffness and mass terms, so that
K =

∫ L
0 c2 dϕ

dx
dp
dx
dx and M =

∫ L
0 ϕpdx. The next step is to discretize the domain into

elements. Each element e covers a portion Ωe of the domain and is made up of m + 1
nodes, with m the order of the element. Shape functions N e

i , also called basis functions,
are then used to approximate the sound pressure in the elements

p(x) =
m+1∑
i=1

N e
i (x)pe

i = N epe . (3.12)

pe
i is the sound pressure at node i of element e, and N e and pe are vectors which

components are N e
i (x) and pe

i . It is common practice to use polynomials as shape
functions due to requirements on differentiability and nodal values. These functions are
shown in Fig. 3.7 for first and second order elements. They are defined with the local
variable ξ rather than x for simplicity. Following this, the stiffness and mass terms in
the weak integral form can be rewritten for each element by replacing p = N epe and
ϕ = (N e)T

Ke = c2
∫

Ωe

(
dN e

dx

)T
dN e

dx
dx , (3.13)

M e =
∫

Ωe
(N e)T N edx . (3.14)

Eq. (3.11) then becomes
ne∑

e=1

(
Ke − ω2M e

)
pe = 0 , (3.15)

𝑁1 𝜉 𝑁2 𝜉

(a) First order

𝑁1 𝜉 𝑁2 𝜉 𝑁3 𝜉

(b) Second order

Figure 3.7: Local shape functions in the Finite Element Method.
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with ne the number of elements in the discretization. The global pressure vector p
comprising all the nodes is linked to the local element vectors by the localization matrices
Le

pe = Lep . (3.16)

In these matrices, each line represents one local node in element e and each column one
global node. The components of Le are then equal to 1 when the local node corresponds
to a global node and equal to 0 otherwise; hence, there is only one non-zero value per
line. Changing from local to global coordinates, the global stiffness and mass matrices
are then

K =
ne∑

e=1
(Le)T KeLe , (3.17)

M =
ne∑

e=1
(Le)T M eLe . (3.18)

It follows that the matrix equation of the system is(
K − ω2M

)
p = 0 , (3.19)

which can be generalized to three-dimensional problems. Impedance boundary condi-
tions can be inserted in the equation by introducing the global dissipation matrix C,
which is derived in the same manner as K and M . The matrix Ce of the elements Ωe lo-
cated at a boundary with surface impedance Za in a three-dimensional case is calculated
as

Ce = 1
c

∫
∂Ωe

1
Za

(N e)T N edS . (3.20)

The resulting matrix equation is(
K + jωC − ω2M

)
p = 0 . (3.21)

A source term can now be added to the right-hand side of the equation to investigate
the transfer function of the domain, and the solution is found by inverting the matrix
K + jωC − ω2M .

The inverse Fourier transform can be applied to Eq. (3.21) to obtain the time-domain
formulation of the Finite Element Method [42]

M
∂2p

∂t2
+ C

∂p

∂t
+ Kp(t) = 0 . (3.22)

The first and second order derivatives in this equation need to be discretized in order to
solve the problem. This can be done with Newmark methods [39], which are equivalent
to different finite difference approximations. Hence, the equations of the Finite Volume
Method can also be derived from the time-domain formulation of the Finite Element
Method.
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The Finite Element Method can return an accurate solution to the differential equa-
tion modelled. In the case of the wave equation, this means that all the reflection and
diffraction phenomena are simulated accurately. Moreover the matrix to be inverted
is sparse for both frequency-domain and time-domain formulations, which makes the
calculations simpler and faster. However, in a three-dimensional problem, the whole
volume of the domain has to be meshed. This has a significant impact on the size of
the matrix and thus calculation time. As a consequence, the computational load of the
Finite Element Method is too heavy to be applied to room acoustics. Its typical applica-
tions in acoustics indeed cover much smaller volumes, such as hearing aids, microphones
and ducts.

3.2.3 The Boundary Element Method
The Boundary Element Method also works by solving an integral formulation of a dif-
ferential equation. It can be applied to the wave equation in the time domain but it is
more commonly encountered for the Helmholtz equation in the frequency domain [59].
The frequency domain case is thus presented here. The Helmholtz equation is expressed
in 3D with k = ω/c as

∇2p+ k2p = 0 . (3.23)
The equation is multiplied by the free-field Green’s function in the frequency domain G
as a weight function, and then integrated over the volume V of the domain∫

V

(
∇2p+ k2p

)
GdV = 0 . (3.24)

After a double integration by parts it is found that∫
V

(
∇2p

)
GdV =

∫
V

(
∇2G

)
pdV +

∫
S

(
p
∂G

∂n
−G

∂p

∂n

)
dS , (3.25)

with S the boundary of the domain and n the normal direction to S. Eq. (3.24) then
becomes

−
∫

V
p
(
∇2G+ k2G

)
dV =

∫
S

(
p
∂G

∂n
−G

∂p

∂n

)
dS . (3.26)

As a solution to the inhomogeneous Helmholtz equation, Green’s function respects

∇2G+ k2G = −δ(r − r0) , (3.27)

where r denotes coordinates in the domain and r0 is the position of the source. In
addition, Euler’s equation allows to write

∂p

∂n
= −ρ∂un

∂t
, (3.28)

with ρ the density of air and vn the normal particle velocity at the boundary. Since
Helmholtz equation assumes pure tones, the time derivative is equivalent to

∂un

∂t
= jkcvn . (3.29)
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Thanks to these relations, and after defining P as an observation point and Q as a point
on the boundary, Eq. (3.26) becomes

C(P )p(P ) =
∫

S

(
p(Q)∂G

∂n
(P,Q) + jρkcun(Q)G(P,Q)

)
dS , (3.30)

with C(P ) being a collocation factor such that

C(P ) =


0 if P /∈ V

1/2 if P ∈ S

1 if P ∈ V

. (3.31)

Adding the boundary condition un(Q) = Ya(Q)p(Q) and a source term finally yields

C(P )p(P ) =
∫

S

(
∂G

∂n
(P,Q) + jρkcYa(Q)G(P,Q)

)
p(Q)dS + p0(P ) . (3.32)

The different terms of the equation can now be linked to their physical meaning. The
sound pressure at a field point p(P ) is the sum of direct sound from the source p0(P ),
sound from a monopole distribution on the boundary

∫
S jρkcYa(Q)p(Q)G(P,Q)dS, and

sound from a dipole distribution on the boundary
∫

S p(Q)∂G
∂n

(P,Q)dS. From there, the
problem is solved in two steps: first the sound pressure is determined on the boundary,
and then it is calculated at any desired field point. To do so the integral equation
is discretized similarly to the Finite Element Method, with the difference that only the
boundary of the domain needs to be meshed. The sound pressure on a boundary element
e is calculated from shape functions N e

i and nodal values pe
i as

p(Q) =
M∑

i=1
N e

i (Q)pe
i = N epe , (3.33)

with M the number of nodes in one element. The discretization of Eq. (3.32) follows as

C(P )p(P ) =
ne∑

e=1

∫
Se

(
∂G

∂n
(P,Q) + jρkcYa(Q)G(P,Q)

)
N edSpe + p0(P ) , (3.34)

where ne is the total number of elements and Se is the surface of element e. This equation
takes the matrix form

C(P )p = A(P,Q)pQ + p0 , (3.35)

with C the diagonal matrix of collocation factors, p the vector of observation points, pQ

the vector of boundary points, p0 the vector of direct sound pressure at the observation
points, and

A(P,Q) =
∫

Se

(
∂G

∂n
(P,Q) + jρkcYa(Q)G(P,Q)

)
N edS . (3.36)



3.2 Numerical methods for differential equations 23

One option to determine the sound pressure on the boundary is the collocation method.
It consists in placing the observation points P in the same positions as the boundary
points Q. It then follows that C = I/2 and p = pQ, I being the identity matrix. The
resulting system of equations is(

I

2
− A(Q,Q)

)
pQ = p0 , (3.37)

which is solved by inverting the matrix (I/2 − A(Q,Q)). Finally, once the sound pres-
sure on the boundary is known, the sound pressure at any receiver in the domain is
calculated from Eq. (3.35) with C(P ) = I and the observation points P at the desired
locations.

The derivation of the problem equations follows the same steps in the time domain
as in the frequency domain. The integral form before discretization in Eq. (3.32) is
expressed in the time domain as [53]

C(P )p(P, t) = − 1
4π

∫
S

∂rpq

∂n

[
1
r2

pq

p(Q, t− rpq/c) + 1
crpq

∂p

∂t
(Q, t− rpq/c)

]
dS

− ρ

4π

∫
S

1
rpq

[∫ t−rpq/c

0

∂p

∂t
(Q, t− rpq/c− τ)ya(Q, τ)dτ − ∂u

∂t
(Q, t− rpq/c)

]
dS

+ p0(P, t) , (3.38)

with rpq the distance between the observation point P and the boundary point Q. The
time interval is then discretized with time steps tk = k∆t, and the different variables
are discretized the help of continuous interpolation functions ψk(t) = ψ(t− tk) [5]. The
matrix form of Eq. (3.38) for observation points on the boundary at the time step
tm = m∆t, corresponding to Eq. (3.37) in the frequency domain, follows as(

I

2
+ A0 + C0

)
pQ(m) = −

m∑
k=1

(
Ak + Ck

)
pQ(m− k) +

m∑
k=0

BkuQ(m− k) + p0(m) ,

(3.39)
where the matrices Ak, Bk and Ck are defined as

Ak
ij = 1

4π

∫
S

∂riq

∂n

[
1
r2

iq

ψ(tk − riq/c) + 1
criq

∂ψ

∂t
(tk − riq/c)

]
N e

j (Q)dS , (3.40)

Bk
ij = ρ

4π

∫
S

1
riq

∂ψ

∂t
(tk − riq/c)N e

j (Q)dS , (3.41)

Ck
ij = ρ

4π

∫
S

1
riq

[
k∑

l=0

∂ψ

∂t
(tk − riq/c− tl)N eye

a(tl)∆t
]
N e

j (Q)dS . (3.42)

The matrices Ak, Bk and Ck are only dependent on relative times prescribed by the
positions of the boundary elements. They are therefore independent of the time step,
and the matrix

(
I
2 + A0 + C0

)
needs to be inverted only once to solve the problem.



24 3 Simulation methods

Similarly to the Finite Element Method, the Boundary Element Method can return
an accurate solution to the wave equation modelled with its boundary conditions. It
thus accounts for all the wave phenomena encountered in room acoustics. It also has
the advantage that only the boundary of the domain needs to meshed. Therefore, its
computational load only grows with the surface area of the domain and not its volume.
However, this advantage comes with a cost. Indeed, the matrix to be inverted is fully
populated in both frequency and time domains, making the operation heavy. Due to this
trade-off, the computational load of the Boundary Element Method is comparable to that
of the Finite Element Method. Consequently, it is commonly used for the same range
of geometries, and it is generally favored for investigations on radiation and scattering
because its formulation does not require a bounded domain for exterior problems.

3.3 The Equivalent Source Method
The Equivalent Source Method is commonly used in acoustics for scattering and radi-
ation problems [41]. It was originally formulated in the frequency domain for exterior
problems [23]. Various applications have followed [6, 44, 45], including enclosures [21],
street canyons [15], and large open scenes [37]. The Equivalent Source Method has
also been formulated in the time domain [26]. Despite some applications to scattering
problems [25, 31, 32], it remains less developed that the frequency-domain formulation.
History and state-of-the-art knowledge on the Equivalent Source Method for both fre-
quency and time formulations has recently been reviewed [30].

3.3.1 Background theory
The Equivalent Source Method is considered in the time domain in the present work.
It can be seen as a compromise between the Image Source Method and the Boundary
Element Method. Sources are placed outside the calculation domain and their strengths
are adjusted to respect the boundary conditions, similarly to the Image Source Method.
But rather than using image positions, equivalent sources are located all around the
boundary of the domain in a way recalling the Boundary Element Method. An illustra-
tion of the equivalent source positions is shown in Fig. 3.8. The main elements of the
theory are presented here for rigid boundaries and linear time interpolation, and com-
plete explanations can be found in paper C. In the Equivalent Source Method, sound is
assumed to propagate freely in space according to Green’s function in Eq. (1.3). The
acoustic problem then consists in solving the boundary condition equation. For a rigid
surface, the equation at one control point on the boundary can be expressed as

u(t) · ηn = 0 . (3.43)

u(t) is the particle velocity, and ηn is the normal unit vector of the surface. This equation
is differentiated over time in order to apply the conservation of momentum, and sound
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Figure 3.8: Positions of equivalent sources (red crosses) in a 2D room model.

pressure is split between incident pressure pi and reflected pressure pr to give

∇pr(t) · ηn = −∇pi(t) · ηn . (3.44)

The right-hand side of this equation is fully known from data on the input signal,
whereas the left-hand side contains the unknown strengths of the equivalent sources.
The reflected sound pressure at one control point b can be decomposed into the sum of
contributions from all equivalent sources e. The reflected sound pressure then becomes

pr(t) = 1
4π

∑
e

qe(t− rbe/c)
rbe

, (3.45)

with qe the source strength of equivalent source e, and rbe the distance between control
point b and source e. Consequently the gradient of the reflected sound pressure is

∇pr(t) = 1
4π

∑
e

(
−qe(t− rbe/c)

r2
be

− 1
crbe

∂qe

∂t
(t− rbe/c)

)
ηbe , (3.46)

with ηbe the unit directional vector from source e to point b. Similarities can be seen
with Eq. (3.38) from the time-domain Boundary Element Method. The time domain
now needs to be discretized for numerical implementation. The time resolution is noted
∆t, inducing t = n∆t with n ∈ N for the time variable, and rbe/c = νbe∆t with νbe ∈ R
for the travel time between equivalent source e and control point b. ∆t will later be
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omitted in function arguments. The integer numbers surrounding νbe are noted ν−
be and

ν+
be such that ν−

be ≤ νbe ≤ ν+
be. From linear time interpolation, the source strength and

its derivative in discrete time are expressed as

qe(n− νbe) = (νbe − ν−
be)qe(n− ν+

be) + (ν+
be − νbe)qe(n− ν−

be) , (3.47)

∂qe

∂t
(n− νbe) = qe(n− ν−

be) − qe(n− ν+
be)

∆t
. (3.48)

The left-hand side of Eq. (3.44) in discrete time then is

∇pr(n) · ηn = 1
4π

∑
e

((
−ν+

be − νbe

r2
be

− 1
crbe∆t

)
qe(n− ν−

be)

+
(

−νbe − ν−
be

r2
be

+ 1
crbe∆t

)
qe(n− ν+

be)
)

ηbe · ηn . (3.49)

After noting the scalar product σbe = ηbe · ηn, the factors multiplying qe(n − ν−
be) and

qe(n− ν+
be) can be arranged respectively in matrices A and B so that

Abe = 1
4π

(
−ν+

be − νbe

r2
be

− 1
crbe∆t

)
σbe , (3.50)

Bbe = 1
4π

(
−νbe − ν−

be

r2
be

+ 1
crbe∆t

)
σbe . (3.51)

Next, the matrices are decomposed according the values of ν−
be and ν+

be. These values are
sorted as

ν0 = min(ν−
be) , (3.52)

νk = ν0 + k , (3.53)

with k ∈ N. The decomposition is then defined as

A =
n∑

k=0
Ak , (3.54)

B =
n∑

k=1
Bk , (3.55)

where

Ak,be =

Abe if ν−
be = νk

0 otherwise
, (3.56)

Bk,be =

Bbe if ν+
be = νk

0 otherwise
. (3.57)
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Following this, the final matrix form of Eq. (3.44) is found to be

A0q(n− ν0) = −∇pi(n) · ηn −
n∑

k=1
(Ak + Bk)q(n− νk) . (3.58)

The size and values of the matrices A and B depend on the discretization of the do-
main boundary. Equivalent sources are commonly distributed uniformly with spacing hs

around the boundary, although random positions can also be used [43]. The orthogonal
distance between the sources and the boundary is noted d. Control points have also
been distributed uniformly over the boundary surfaces in the literature. Nevertheless,
a sparse distribution has been shown to be an efficient discretization of the boundary
in paper D. It consists in defining 4 control points per equivalent source placed in a
square with side hp centered on the orthogonal projection of the source on the surface.
The uniform and sparse distributions are illustrated in Fig. 3.9. It is seen that a sparse
distribution allows to greatly reduce the number of control points and thereby the size
of the problem.

The Equivalent Source Method cumulates advantages from the Boundary and Finite
Element Methods. Indeed, only the boundary of the domain needs discretization, and the
matrix A0 inverted to solve the problem is sparse. Moreover, A0 is time-independent.
This means that the matrix inversion is performed only once, and the operation to
calculate the source strengths at a new time step consists of a matrix multiplication.
As a result, the computation time of simulations grows linearly with the duration of
the impulse response calculated. The computation efficiency of the Equivalent Source
Method in the time domain makes it an attractive solution for room acoustic simulations.

ℎ𝑠

ℎ𝑝

(a) Uniform distribution.

ℎ𝑠

ℎ𝑝

(b) Sparse distribution.

Figure 3.9: Close-up front view of the discretization of a surface, from paper D. Blue
dots: control points; Red crosses: equivalent sources.
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Its accuracy and its application to interior problems have therefore been investigated in
paper C.

3.3.2 Parametric study
This section presents the main findings of paper C. In this study, the Equivalent Source
Method in the time domain was implemented with a uniform distribution of control
points, as seen in Fig. 3.10. The method was first tested with the reflection of sound
on a finite and rigid plate. The aim was to investigate its fundamental behaviour with
regards to the geometric parameters d, hs and hp. Results showed that simulations
become unstable when equivalent sources have a large influence on the responses of
their neighbour sources, and reciprocally. The equivalent sources thus should be placed
close enough to the surface they discretize in order to avoid this instability. In terms of
geometric parameters, the positions of equivalent sources should respect

d

L
<

1
3
, (3.59)

with L =
√
d2 + h2

s. The investigation on the finite plate test case pointed out another
behaviour of the Equivalent Source Method. For small values of d, the amplitude of
the reflected sound field tends to be overestimated. As d increases and the equivalent
sources are located further from the surface, the amplitude of the reflected sound field
decreases and is eventually underestimated. This behaviour is illustrated in Fig. 3.11
where the sound pressure calculated at a receiver point in front of the plate is shown
for two orthogonal distances d. As a consequence, there exists a value d0 between
overestimation and underestimation where the error of the Equivalent Source Method
is minimal. Through regression analysis, this value was found to be related to the other

ℎ𝑠

ℎ𝑝

(a) Front view.

𝑑 𝐿

ℎ𝑠

ℎ𝑝

(b) Top view.

Figure 3.10: Close-up illustration of the discretization of a surface in the Equivalent
Source Method, from paper C. Blue dots: control points; Red crosses: equivalent sources.
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Figure 3.11: Sound pressure at a receiver point in front of a finite plate for hp = 143 mm
and κ = 4, from paper C. Solid blue line: reference sound pressure; Dotted red line:
ESM with d/L = 0.022; Dash-dotted yellow line: ESM with d/L = 0.066.

geometric parameters as

d0√
d2

0 + h2
s

= 3κ−3 . (3.60)

After unveiling its properties with regards to geometric parameters, the Equivalent
Source Method in the time domain has been applied to an interior problem. The impulse
response of a rectangular box was simulated in two cases, one with rigid boundaries and
the other with constant and uniform surface impedance Za = 3ρc. Both cases highlighted
the propagation of errors in the simulation. When equivalent sources are close to the
surfaces, the overestimation of the reflected amplitude is replicated at every reflection
in the room. Hence, the amplitude of the sound field rises with time, which leads to
instability. Similarly, when equivalent sources are placed further away from the surfaces,
the underestimation of the reflected sound field occurs at every reflection and results in
large numerical damping as shown in Fig. 3.12.



30 3 Simulation methods

(a) Rigid walls. (b) Constant impedance.

Figure 3.12: Sound pressure at a receiver point in a rectangular box for hp = 143 mm,
κ = 4 and d/L = 0.094, from paper C. Solid blue line: reference sound pressure; Dotted
red line: Equivalent Source Method.

3.3.3 Combination of image and equivalent sources
The Image-Equivalent Source Method has been introduced in paper D. It consists in
combining image and equivalent sources into the same algorithm. This novel combina-
tion aims at overcoming the respective drawbacks of the two individual methods. Image
sources are indeed very efficient to model specular reflections, but the computational
load associated with the maximum image order required grows exponentially with the
duration of the impulse response calculated. Moreover, diffraction effects cannot be mod-
elled with image sources. On the other hand, the computation time of the Equivalent
Source Method grows linearly with the duration of the impulse response. The modelling
of successive specular reflections in a room was however found to be highly inaccurate
due to numerical damping. The integration of low-order image sources to the equivalent
source algorithm thus allows to accurately simulate the early part of the room response,
while late reflections and diffraction effects are accounted for by equivalent sources.

On top of the expected advantages on accuracy and efficiency, image and equivalent
sources can be combined in a simple process. The calculations are based on the algorithm
of the Equivalent Source Method where only the construction of the incident sound field
is modified. Image sources are first determined up to an arbitrary order. The incident
sound pressure is then defined as the sum of the contributions from the original source
in the room and from the K image sources considered

pi(t) =
K∑

k=0
pk(t) . (3.61)

The individual contributions pk(t) of the image sources are calculated according to Eq.
(3.5). The incident sound pressure is then injected in Eq. (3.44), and the derivation of
the problem equations follows the steps explained in section 3.3.1.
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The Image-Equivalent Source Method has been applied to the rectangular box with
impedance boundaries test case from paper C. A large gain in accuracy was found
compared to the simulations performed with the Equivalent Source Method. These
promising results are a good sign of the proper functioning of the algorithm. Nevertheless,
the error estimate of the simulations was biased due to the fact that the Image Source
Method was used to compute the reference impulse response. Consequently, the Image-
Equivalent Source Method awaits further investigation to validate its applicability to
room acoustics.
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CHAPTER 4
Discussion

The present study has introduced a method to convert absorption coefficients measured
in reverberation chambers into surface impedances. The impedance retrieval method has
been shown to be robust and efficient thanks to the constrained optimization problem set
up and to the RMK+1 impedance model defined. It can thus be employed to improve the
accuracy of boundary conditions and thereby the accuracy of room acoustics simulations.
However, a few limitations exist and should be kept in mind. The method retrieves
an approximate surface impedance expressed with a general model. Fine frequency
variations due to cavity phenomena, for example, therefore cannot be captured. Another
approximation is made with the assumption of local reaction. Nevertheless, the surface
impedances retrieved with the proposed method can be reliable and carry valuable phase
information. The impedance retrieval method thus constitutes an improvement of the
description of boundaries in room acoustics.

With reliable surface impedance boundary conditions available, simulations of room
acoustics with phased and time-domain methods become closer to practical applications.
Time-domain calculations appear as the best solutions for low-frequency room acoustics
due to computation efficiency considerations. The Equivalent Source Method in the
time domain has therefore been investigated with the perspective of solving interior
problems. Its formulation allows to solve the acoustic problem modelled by inverting
a sparse matrix. The inversion operation is performed only once, and the solution at
a given time step is then computed by multiplying the inverted matrix with a vector
comprising known information from already calculated past time steps. Moreover, the
simulation domain is discretized only on its boundary, thus limiting the size of the
system of equations considered. For these reasons, the Equivalent Source Method has
the potential to perform room acoustic simulations in a timely manner. However, despite
its attractiveness, the results obtained indicate that this method is not suited to room
acoustics due to the propagation of errors with multiple reflections on surfaces.

Advantage can nonetheless be taken from the computation efficiency of the Equiva-
lent Source Method. By adding low-order image sources to the algorithm, its inaccuracy
can be mitigated while avoiding the prohibitive computational load of the Image Source
Method for long impulse responses. Hence, the Image-Equivalent Source Method has
been introduced. This novel combination remains to be validated, but preliminary re-
sults seem encouraging to pursue further research.
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CHAPTER 5
Conclusion

The present project has treated the issue of room acoustic simulations at low frequencies.
In order to obtain accurate results, the acoustic problem needs to be described with a
proper mathematical model that includes propagation of sound and characterization of
boundary conditions. In addition, the method employed to solve the problem should be
computationally efficient to enable practical applications.

The first objective of the project was to design a method allowing to accurately char-
acterize boundary conditions from the available data on room acoustic materials. To do
so, a general impedance model that can fit the surface impedances of most materials was
pursued. After testing several options, the RMK+1 model was found to be the best so-
lution. It is based on the classic damped oscillator model, to which a fractional term has
been added. Following this, an inverse method to convert absorption coefficients mea-
sured in reverberation chambers into surface impedances was established. The method
consists in solving an optimization problem provided with constraints according to prior
information on the type of material considered. It has first been shown that such a
method combined with the general impedance model was capable of retrieving theoret-
ical surface impedances with reasonable accuracy. The robustness of the method was
then proven. Iterative retrievals of impedances indeed concluded that the constraints
associated with the optimization problem limited the space of variables to a unique so-
lution. Moreover, impedance retrieval from measured absorption data indicated that
the method proposed does not suffer from deviations in the input data and does not in-
troduce any deviation either. Thus, the impedance retrieval method introduced in this
project enables the characterization of common room acoustic materials with surface
impedance from the data currently available.

Improvements of the impedance retrieval method can be achieved from further re-
search. The constraints defined for different types of materials could be extended to
include materials that have not been covered in the study carried out. Moreover, the
choice of which constraints to apply to a retrieval case is currently made manually from
prior information. A method to automatically detect the constraints needed from the
absorption coefficient data would therefore be a great complement.

The second objective of the project consisted in finding a simulation method for room
acoustics that exhibits computation efficiency and accuracy at low frequencies. The fo-
cus was put on investigating the Equivalent Source Method in the time domain due its
apparent advantages regarding efficiency. This investigation has allowed to further the
understanding of the method for both exterior and interior problems. Indeed, stability
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conditions on the geometric parameters prescribing the discretization of surfaces have
been established. Guidelines have also been suggested for accurate modelling of sound
reflection over flat surfaces. Moreover, a discretization technique has been introduced
that can lead to large gains in terms of computation time. When applied to interior prob-
lems, it has been found that the errors in the sound field propagate and are amplified at
every new reflection. This propagation of errors thus causes either unstable simulations
or large numerical damping. The Image-Equivalent Source Method has consequently
been introduced in an attempt to limit the inaccuracy of the Equivalent Source Method
in interior problems. This novel hybrid method combines low-order image sources that
model early specular reflections and equivalent sources that account for late reflections
and diffraction effects. The preliminary study carried out suggests that accurate simu-
lations of interior problems could potentially be achieved with this method.

The study of the Equivalent Source Method in the time domain could be deepened
as only the geometric parameters have been investigated in this work. The influences
of the time resolution, the spectral content of the input signal, and the size of the
surfaces discretized could notably be examined. A study focusing on the modelling of
diffraction effects with equivalent sources would also give precious knowledge on the
method. Besides, research can be pursued on the Image-Equivalent Source Method to
assess its validity in room acoustics.



Bibliography
[1] N. Atalla and F. Sgard. Finite element and boundary methods in structural acous-

tics and vibration. Boca Raton, United States of America: CRC Press, 2017. Chap-
ter 4, pages 63–83.

[2] B. Berglund, T. Lindvall, and D. H. Schwela. Guidelines for community noise.
Geneva, Switzerland: Worlds Health Organization, 1999.

[3] S. Bilbao. “Modelling of complex geometries and boundary conditions in Finite Dif-
ference/Finite Volume Time Domain room acoustics simulation.” In: IEEE Trans.
Audio Speech Lang. Processing 21.7 (2013), pages 1524–1533.

[4] S. Bilbao et al. “Finite Volume Time Domain room acoustics simulation under
general impedance boundary conditions.” In: IEEE Trans. Audio Speech Lang.
Processing 24.1 (2016), pages 161–173.

[5] M. J. Bluck and S. P. Walker. “Analysis of three-dimensional transient acoustic
wave propagation using the boundary integral equation method.” In: Int. J. Numer.
Meth. Eng. 39.8 (1996), pages 1419–1431.

[6] A. Boag, Y. Leviatan, and A. Boag. “Analysis of three-dimensional acoustic scat-
tering from doubly periodic structures using a source model.” In: J. Acoust. Soc.
Am. 91.2 (1992), pages 572–580.

[7] J. Borish. “Extension of the image model to arbitrary polyhedra.” In: J. Acoust.
Soc. Am. 75.6 (1984), pages 1827–1836.

[8] J. Brunskog. “The forced sound transmission of finite single leaf walls using a
variational technique.” In: J. Acoust. Soc. Am. 132.3 (2012), pages 1482–1493.

[9] S. Das and I. Pan. Fractional order signal processing: Introductory concepts and
applications. Heidelberg, Germany: Springer, 2012. Chapter 1, pages 1–12.

[10] J. L. Davy et al. “The average specific forced radiation wave impedance of a finite
rectangular panel.” In: J. Acoust. Soc. Am. 136.2 (2014), pages 525–536.

[11] D. G. Duffy. Green’s functions with applications. 1st edition. Boca Raton, United
States of America: CRC Press, 2001. Chapter 3.

[12] A. P. French. Vibrations and waves. New York, United States of America: Norton,
1971. Chapter 8.



38 Bibliography

[13] J. Brunskog G. Koutsouris, C.-H. Jeong, and F. Jacobsen. “Combination of acous-
tical radiosity and the image source method.” In: J. Acoust. Soc. Am. 133.6 (2013),
pages 3963–3975.

[14] M. Hodgson. “Evidence of diffuse surface reflections in rooms.” In: J. Acoust. Soc.
Am. 89.2 (1991), pages 765–771.

[15] M. Hornikx and J. Forssén. “The 2.5-dimensional equivalent sources method for
directly exposed and shielded urban canyons.” In: J. Acoust. Soc. Am. 122.5 (2007),
pages 2532–2541.

[16] ISO 10534-1:1996. Acoustics – Determination of sound absorption coefficient and
impedance in impedance tubes – Part 1: Method using standing wave ratio. Geneva,
Switzerland: International Organization for Standardization, 1996.

[17] ISO 10534-2:1998. Acoustics – Determination of sound absorption coefficient and
impedance in impedance tubes – Part 2: Transfer-function method. Geneva, Switzer-
land: International Organization for Standardization, 1998.

[18] ISO 354:2003. Acoustics – Measurement of sound absorption in a reverberation
room. Geneva, Switzerland: International Organization for Standardization, 2003.

[19] F. Jacobsen and P. M. Juhl. Fundamentals of general linear acoustics. Chichester,
United Kingdom: John Wiley & Sons Ltd, 2013. Chapter 2, pages 5–10.

[20] H. Jeong and Y. W. Lam. “FDTD modelling of frequency dependent boundary
conditions for room acoustics.” In: Proc. 20th Int. Congr. Acoust. Sidney, Australia
(2010), 7 pages.

[21] M. E. Johnson et al. “An equivalent source technique for calculating the sound
field inside an enclosure containing scattering objects.” In: J. Acoust. Soc. Am.
104.3 (1998), pages 1221–1231.

[22] L. E. Kinsler et al. Fundamentals of acoustics. 4th ed. New York, United States of
America: John Wiley and Sons, Inc., 1999.

[23] R. Kress and A. Mohsen. “On the simulation source technique for exterior problems
in acoustics.” In: Math. Method Appl. Sci. 8.4 (1986), pages 585–597.

[24] A. Krokstad, S. Strøm, and S. Sørsdal. “Calculating the acoustical room response
by the use of a ray tracing technique.” In: J. Sound Vib. 8.1 (1968), pages 118–125.

[25] W. Kropp and P. U. Svensson. “Application of the time domain formulation of the
method of equivalent sources to radiation and scattering problems.” In: Acustica
81 (1995), pages 528–543.

[26] W. Kropp and P. U. Svensson. “Time domain formulation of the method of equiv-
alent sources.” In: Acta Acustica 3.1 (1995), pages 67–73.

[27] A. Kulowski. “Algorithmic representation of the ray tracing technique.” In: Appl.
Acoust. 18 (1985), pages 449–469.

[28] H. Kuttruff. Room acoustics. 5th ed. London, United Kingdom: Taylor and Francis,
2009. Chapter 7, pages 221–229.



Bibliography 39

[29] H. Kuttruff. Room acoustics. 5th ed. London, United Kingdom: Taylor and Francis,
2009. Chapter 4, pages 121–126.

[30] S. Lee. “Review: The use of equivalent source method in computational acoustics.”
In: J. Comput. Acoust. 25.1 (2017), 1630001 (19 pages).

[31] S. Lee, K. S. Brentner, and P. J. Morris. “Acoustic Scattering in the time domain
using an equivalent source method.” In: AIAA J. 48.12 (2010), pages 2772–2780.

[32] S. Lee, K. S. Brentner, and P. J. Morris. “Assessment of time-domain equivalent
source method for acoustic scattering.” In: AIAA J. 49.9 (2011), pages 1897–1906.

[33] R. J. LeVeque. Finite difference methods for ordinary and partial differential equa-
tions: Steady-state and time-dependent problems. Philadelphia, United States of
America: SIAM, 2007.

[34] T. Lewers. “A combined beam tracing and radiant exchange computer model of
room acoustics.” In: Appl. Acoust. 38 (1993), pages 161–178.

[35] G. Marbjerg et al. “Development and validation of a combined phased acoustical
radiosity and image source model for predicting sound fields in rooms.” In: J.
Acoust. Soc. Am. 138.3 (2015), pages 1457–1468.

[36] L. E. Maxwell and G. W. Evans. “Chronic noise exposure and reading deficits:
The mediating effects of language acquisition.” In: Environ. Behav. 29.5 (1997),
pages 638–656.

[37] R. Mehra et al. “Wave-based sound propagation in large open scenes using an
equivalent source formulation.” In: ACM Trans. Graph. 32.2 (2013), pages 1–13.

[38] D. Mintzer. “Transient sounds in rooms.” In: J. Acoust. Soc. Am. 22.3 (1950),
pages 341–352.

[39] N. M. Newmark. “Method of computation for structural dynamics.” In: Proc. Am.
Soc. Civil Eng. 85 (1959), pages 67–94.

[40] E.-M. Nosal, M. Hodgson, and I. Ashdown. “Improved algorithms and methods for
room sound-field prediction by acoustical radiosity in arbitrary polyhedral rooms.”
In: J. Acoust. Soc. Am. 116.2 (2004), pages 970–980.

[41] M. Ochmann. “The source simulation technique for acoustics radiation problems.”
In: Acustica 81.6 (1995), pages 512–527.

[42] T. Okuzono et al. “Fundamental accuracy of time domain finite element method
for sound-field analysis of rooms.” In: Appl. Acoust. 71 (2010), pages 940–946.

[43] G. Pavić. “An engineering technique for the computation of sound radiation by
vibrating bodies using substitute sources.” In: Acta Acust. United Ac. 91.1 (2005),
pages 1–16.

[44] S. Ramakrishna and P. R. Stepanishen. “Acoustic scattering from cylinders with
a plane of symmetry using internal multipole line source distributions I.” In: J.
Acoust. Soc. Am. 93.2 (1993), pages 658–672.



40 Bibliography

[45] S. Ramakrishna and P. R. Stepanishen. “Acoustic scattering from cylinders with
a plane of symmetry using internal multipole line source distributions II.” In: J.
Acoust. Soc. Am. 93.2 (1993), pages 673–682.

[46] S. W. Rienstra. “Impedance models in time domain including the extended Hemholtz
resonator model.” In: Proc. 12th AIAA/CAS Aeroacoust. Conf. Cambridge, United
States of America (2006), Paper 2006–2686.

[47] J. H. Rindel. “An impedance model for estimating the complex reflection factor.”
In: Proc. Forum Acusticum (2011), pages 1535–1540.

[48] J. H. Rindel. “Evaluation of room acoustic qualities and defects by use of auraliza-
tion.” In: Proc. 148th Meet. Acoust. Soc. Am. San Diego, United States of America
(2004), 1pAA1 (16 pages).

[49] J. H. Rindel, G. B. Nielsen, and C. L. Christensen. “Diffraction around corners
and over wide barriers in room acoustic simulations.” In: Proc. 16th Int. Congr.
Sound Vib. Krakow, Poland (2009).

[50] T. Sakuma, S. Sakamoto, and T. Otsuru. Computational simulation in architec-
tural and environmental acoustics: Methods and applications of wave-based compu-
tation. Tokyo, Japan: Springer, 2014.

[51] L. Savioja and U. P. Svensson. “Overview of geometrical room acoustic modelling
techniques.” In: J. Acoust. Soc. Am. 138.2 (2015), pages 708–730.

[52] A. Smith. “Noise, performance efficiency and safety.” In: Int. Arch. Occup. Environ.
Health 62.1 (1990), pages 1–5.

[53] T. Terai and Y. Kawai. “The application of Kirchhoff’s formula to the numerical
calculation of transient response in an enclosure.” In: J. Acoust. Soc. Jpn. 11.1
(1990), pages 1–10.

[54] S. I. Thomasson. “On the absorption coefficient.” In: Acustica 44 (1980), pages 265–
273.

[55] S. I. Thomasson. Theory and experiments on the sound absorption as function
of the area, Report No. TRITA-TAK-8201. Stockholm, Sweden: Department of
Technical Acoustics, Royal Institute of Technology, 1982.

[56] M. L. S. Vercammen. “Improving the accuracy of sound absorption measurement
according to ISO 354.” In: Proc. Int. Symp. Room Acoust. Melbourne, Australia
(2010).

[57] M. Vorländer. Auralization: Fundamentals of acoustics, modelling, simulation, al-
gorithms and acoustic virtual reality. Berlin Heidelberg, Germany: Springer, 2008.

[58] A. Wareing and M. Hodgson. “Beam-tracing model for predicting sound fields in
rooms with multilayer bounding surfaces.” In: J. Acoust. Soc. Am. 118.4 (2005),
pages 2321–2331.



Bibliography 41

[59] Y. Yasuda and T. Sakuma. “Boundary Element Method.” In: Computational sim-
ulation in architectural and environmental acoustics: Methods and applications
of wave-based computation. Edited by T. Sakuma, S. Sakamoto, and T. Otsuru.
Tokyo, Japan: Springer, 2014. Chapter 4, pages 79–92.

[60] K. S. Yee. “Numerical solution to initial boundary value problems involving Maxwell’s
equations in isotropic media.” In: IEEE Trans. Antennas Propag. 14.3 (1966),
pages 302–307.



42



Appendices





APPENDIXA
Retrieving complex surface
impedances from statistical

absorption coefficients



 
 

   

Retrieving complex surface impedances from statistical absorption 

coefficients 

Boris MONDET1; Jonas BRUNSKOG2; Cheol-Ho JEONG3; Jens Holger RINDEL4 

1,2,3 Acoustic Technology, DTU Electrical Engineering, Technical University of Denmark 

1,4 Odeon A/S, Scion-DTU, Denmark 

ABSTRACT 

In room acoustic simulations the surface materials are commonly represented with energy parameters, such 

as the absorption and scattering coefficients, which do not carry phase information. This paper presents a 

method to transform statistical absorption coefficients into complex surface impedances which are needed for 

phased or time-domain calculation methods. An impedance model based on fractional calculus is suggested 

to achieve a general model for common acoustic materials. The parameters governing the model are 

determined by solving an optimisation problem, with constraints ensuring that the impedance found has a 

physical meaning and respects causality in the time domain. Known material models, such as Miki’s and 

Maa’s models, are taken as references to assess the validity of the suggested model. Due to the 

non-uniqueness of retrieving complex-valued impedances from real-valued absorption coefficients, prior 

information about the absorber of interest can be used as constraints, which is shown to help determine the 

correct impedance from absorption coefficient. Further stability and sensitivity investigations indicate that 

the method presented constitutes an efficient solution to convert sound absorption coefficients back to their 

original complex surface impedances. 

 

Keywords: Phase retrieval, Surface impedance, Absorption coefficient 
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1. INTRODUCTION 

Room acoustic simulations have seen a great development in the last thirty years, and nowadays 

they are used worldwide by acoustic practitioners to predict the behaviours of newly designed 

renovated rooms. Current software offering room acoustic simulations are based on geometrical 

acoustics, a high-frequency approximation yielding accurate results above Schroeder’s frequency with 

relatively short computation times. However, problems arise at low frequencies or in small rooms: 

assumptions behind geometrical acoustics do not hold due to the low modal density, and traditional 

wave-based methods, such as boundary or finite element methods (BEM, FEM), finite volume method 

(FVM), or finite difference in the time domain (FDTD), are too time-consuming for practical 

applications. A possible solution would be to create a hybrid method combining the speed of 

geometrical acoustics and the accuracy of wave-based methods. Such a hybridization requires an 

adequate yet different description of the boundary conditions. Indeed, geometrical acoustics only 

requires energy parameters like absorption and scattering coefficients, which are widely available, 

whereas wave-based methods need a phased representation of the boundary with complex surface 

impedances or pressure reflection coefficients. These phased representations are not available for most 

of the materials encountered in room acoustics, according to ISO 10534 (1) it is only possible to 

measure such quantities for normal incidence. A compromised solution would be to retrieve the 

surface impedance from statistical absorption coefficient, which is the main aim of the  present paper. 
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2. CURRENT BOUNDARY REPRESENTATION 

2.1 Statistical absorption coefficient 

In 1982, Thomasson (2) defined three different absorption coefficients: the statistical absorption 

coefficient, its approximated version, and the alternative absorption coefficient. The method presented 

in this paper aims at transforming absorption coefficients, which are assumed to have been measured 

in reverberation chambers. The statistical absorption coefficient is thus considered; for a given 

frequency, it can be expressed as  

 
(1) 

where θ is the incidence angle of the sound wave, Za is the surface impedance of the material, and Zr (θ) 

is the radiation impedance of the sample studied. All the acoustic impedances expressed in this paper 

are normalized by the characteristic impedance of air ρ0c0. Thomasson (2), Rindel (3), and Davy et al. 

(4) successively proposed formulas for the radiation impedance, with Davy et al. being the only one s 

to suggest a unique formula for all frequencies yielding a complex impedance. For a rectangular 

sample, and assuming that the speed of sound is larger in the material studied than in air, it can be 

calculated with equations (53-63) from reference (4). In addition to the incidence angle, it should be 

noted that the radiation impedance is also dependent on the size of the sample; for an infinite sample, 

its value tends to 1/cos  θ. The international standard for reverberation chamber measurements (5) 

recommends relatively square samples with areas between 10 m2 and 12 m2. Therefore, in this study, it 

is assumed that all the samples have a square shape and an area of 11 m2. 

2.2 From absorption coefficient to surface impedance 

The surface impedance is the ratio of sound pressure and particle velocity at a boundary. It can be 

decomposed into resistance and reactance, corresponding respectively to the real and imaginary parts.  

This quantity alone is assumed to be enough to give a complete representation of the boundary. The 

surface impedance is related to the pressure reflection coefficient by the formula  

 
(2) 

and to the statistical absorption coefficient by equation (1).  Nevertheless, some conditions have to be 

respected to ensure that the surface impedance is physically feasible, as explained by Rienstra (6). If 

the boundary is a passive system it cannot give any energy to the sound wave, then the resistance must  

be positive:  

 (3) 

ω being the angular frequency. The other conditions are related to the time domain surface impedance 

Za(t). Like any physical representation, Za(t) must respect causality. This implies in the frequency 

domain:  

 (4) 

with the e jωt convention. Moreover, Za(t) is meant as a real quantity, and thus the following equality 

must be satisfied for the conjugate of the surface impedance:  

 (5) 

Several authors have attempted to retrieve surface impedances from absorption coefficients. In 

2011, Rindel (7) modelled three types of sound absorbers as resonant systems: porous absorbers, 

membranes, and resonators. He notably pointed out the non-uniqueness of solutions when 

transforming an absorption coefficient into surface impedance by differentiating soft and hard surfaces. 

An illustration of this non-uniqueness is given in Figure 1, where isolines of the statistical absorption 

coefficient are plotted as a function of surface impedance for a given ke, the product of the 

wavenumber and the characteristic length of the sample. Because the statistical absorption coefficient 

is an energy parameter, there is an infinite number of complex surface impedances corresponding to 

any value it can take, as seen with the almost circular isolines. Therefore, extra information is needed 

in addition to the absorption coefficient to retrieve the right impedance, such as the frequency 

dependence and some other constraints. Figure 1 also gives an illustration of the point of maximal 

absorption coefficient. With some variations according to the value of ke, the surface impedance 

leading to the highest absorption coefficient is approximately Za = 1.6.  



 

 

 

Figure 1 – Iso-absorption coefficient for ke = 60 according to Eq. (1) 

In 2013, Jeong (8) proposed methods to retrieve the surface impedances of porous absorbers with 

rigid and air cavity backings as well as fabrics with air cavities. His methods were based on Miki’s 

model and the determination of the flow resistances of the absorbers by solving an optimisation 

problem, which showed a good agreement in terms of absorption coefficient. They were later applied 

to measurement data from a round robin experiment (9,10), resulting in a reduction of the standard 

deviation in absorption coefficient (11). 

2.3 Absorber test cases 

Impedance models have been suggested for various materials commonly encountered in room 

acoustics. Porous absorbers have been described with empirical models for many years, and in this 

study the model presented by Miki (12) is considered. In the case of porous absorbers backed by an air 

cavity, a multilayered absorber model is applied (13). Three test cases are modelled with the following 

values for flow resistivity, thickness and cavity depth: (σ, h, d) = (10, 50, 0), (30, 150, 0), (10, 50, 150) 

in (kPa.s.m-2, mm, mm). These absorbers are later called ‘Soft porous’, ‘Hard porous’, and ‘Porous 

with cavity’. 

When a porous absorber is covered with a tight membrane, may it be fabric or a thin hard ma terial, 

the mass and resistance of the membrane affect the surface impedance as explained by Cox and 

D’Antonio (13). Values for the quantities governing the membrane absorber are estimated to represent 

an aluminum plate covering a cavity filled with a porous material. The thickness of the plate is set to 5 

mm and the cavity depth to 100 mm. The flow resistivity of the porous filling is 75 kPa.s.m -2, and the 

density and resistance of the aluminum plate are respectively 2700 kg.m -3 and 500 ρ0c0. 

Resonance absorbers (14) are commonly encountered as perforated panels in front of a porous 

material backed by an air cavity (15). Let us consider a 16-mm-thick panel with a perforation radius of 

4 mm, and a perforation rate of 20%. The thickness of the porous material is 40 mm and the depth of 

the air cavity is 160 mm. 

Microperforated panel absorbers have been described by Maa in 1998 (16). The test case for this 

type of absorbers is given dimensions commonly found in commercial products: the panel thickness is 

1 mm, the tube radius is 0.05 mm, the perforation rate is 3%, and the cavity depth is 20 mm.  

These different material models are taken as references to validate the impedances retrieved with 

the method presented in this paper. The surface impedances of the test cases are shown in Figure 2, 

where clear differences appear between the types of absorbers. The surface impedances of the 

membrane absorber and the microperforated panel lie where resistance is greater than the point of 

maximum absorption coefficient. The surface reactance of the membrane absorber is also always 

positive, with the surface impedance following the curve of an isoline at high frequencies. In the case 

of the microperforated panel, the surface reactance is negative at low frequencies but increases to 

positive values with frequency. Regarding the porous absorbers and the perforated panel, their surface 

impedances lie near the point of maximum absorption coefficient, sometimes with greater values and 

sometimes with lower values for their resistances and reactances. The effect of the air cavity can be 



 

 

easily seen with the loops observed in the curves for the porous absorber with cavity and the perforated 

panel. 

  

a) Wide view        b) Close-up 

Figure 2 – Surface impedances of the test cases 

3. IMPEDANCE RETRIEVAL METHOD 

3.1 Possible general impedance models 

In order to represent the different surface materials encountered in room acoustics, several models 

have been considered as general impedance models, with different levels of complexity. Local reaction 

is assumed, meaning that the surface impedance is constant over the surface of the sample and over the 

incidence angles. The models are of two types: a constant term to which are added fractional terms, or 

a spring-mass-damper model to which are also added fractional terms. The different models are 

displayed in Table 1. All the parameters are set constant, with , , 

and . A fractional derivative (positive γ) or integral (negative γ) can be written 

 (6) 

R, M and K represent the classical resistance, mass and stiffness terms, whereas A and B correspond 

to intermediate behaviours between them, typically found in porous and elastic materials , respectively. 

They indeed consist of a real and an imaginary part; hence, they contribute to both the resistance and 

the reactance of the surface impedance. Especially, they allow the real part of the surface impedance to 

be frequency dependent. Finally, G is equivalent to either A or B depending on the sign of γ. 

Table 1 – Possible general models for surface impedance 

Parameters Name Formula  

3 
RMK   (7) 

R+1   (8) 

5 
RMK+1  (9) 

R+2  (10) 

7 
RMK+2  (11) 

R+3  (12) 

 

3.2 Optimisation problem for direct impedance solving 

The first step to find a general impedance model is to ensure that the models proposed in Table 1 are 

capable of representing the surface impedances of a broad range of typical building materials. This is 

performed through direct impedance solving: after creating an input impedance for each of the test 

cases described previously, the parameters of the possible general models are determined by 

minimizing the L2-norm between the input and output impedances. The cost function to be 

minimized is 



 

 

 
(13) 

where Zin and Za are respectively the input and modelled impedances, and fi are the centre 

frequencies of the 1/3-octave bands between 100 Hz and 5000 Hz. No constraints are applied to this 

optimisation problem, and MATLAB solver fmincon is used to handle the problem. When the test case 

chosen for optimisation is extendedly reacting, the input impedance is taken equal to the surface 

impedance for an incidence angle of π/4, as an approximation of the surface impedance under diffuse 

incidence (17). The starting point of the optimisation is chosen near to the point of maximal 

absorption coefficient, i.e. Zstart  (fi) = 1.6. 

The goodness of the fit for the optimal impedances to the input impedances is then assessed with 

the adjusted R2. This quantity allows to take into account the number of parameters and indicates 

whether or not additional parameters bring new information to the model. It is calculated from the R2 

value as follows: 

 
(14) 

where n is the number of data points, and q is the number of parameters in the model excluding the 

constant term. The formula for R2 makes use of the residual and total sums of squares: 

 
(15) 

 
(16) 

 
(17) 

fref represents the reference data points, i.e. the input impedance in the present case,  fref is its mean, 

and fmodel corresponds to the fitted data points. The ratio between the residual and total sums of 

squares can also be seen as the ratio between the mean square error MSE of the model to the 

reference and the variance of the reference Vref. 

3.3 Optimisation problem for absorption solving 

The objective of the present impedance retrieval method is to convert absorption coefficients to 

surface impedances. Commonly available data for room acoustics materials is the statistical absorption 

coefficient in octave bands from 125 Hz to 4000 Hz; this is therefore taken as input data to the 

optimisation problem. The strategy to retrieve the surface impedance is to minimize the difference 

between the input and the absorption coefficient corresponding to the retrieved impedance.  Some 

constraints are applied to the optimisation in order to ensure that the right impedance is retrieved. 

First, general constraints corresponding to the requirements for a physical impedance are set. The 

retrieved impedance is constrained to have a positive real part  as in Eq. (3), while Eq. (4,5) are 

automatically satisfied with the functions chosen for the models. 

Moreover, if the input absorption coefficient is greater than 0.01 in all octave bands, the search 

range for the impedance is limited to a real part between 0.002 ρ0c0 and 1600 ρ0c0, and an imaginary part 

between -800 ρ0c0 and 800 ρ0c0; these values correspond to absorption coefficients greater than 0.005. 

Besides, some constraints may be applied according to the different absorbers. On one hand, 

absorbers are considered to be soft when the real part of their surface impedance is close to or lower 

than that of air. On the other hand, absorbers are considered to be hard when their surface resistance is 

greater than that of air. Translated into constraints, the resistances of soft and hard materials are forced 

to be lower than 2  ρ0c0 and greater than 1  ρ0c0, respectively. The region where the resistance is 

comprised between 1  ρ0c0 and 2 ρ0c0 is purposely shared by both absorber types as it coincides with the 

values yielding the maximal absorption coefficients.  Finally, additional constraints are applied in the 

case of porous materials: the imaginary part of the impedance must be negative, and the real part must 

be lower than 2  ρ0c0 for 2000 Hz and 4000 Hz octave bands. 

The whole optimisation problem can be summarized as follows: 

 
(18) 

 (19) 

  (20) 



 

 

 (21) 

 (22) 

 
            (23) 

 (24) 

In these equations, F is the cost function, αin is the input absorption coefficient, as is the statistical 

absorption coefficient obtained from the retrieved impedance, foct represents the octave bands between 

125 Hz and 4000 Hz, Za is the retrieved impedance, and fi corresponds to the centre frequencies of the 

1/3-octave bands between 100 Hz and 5000 Hz. The choice of the constraint in Eq. (22) depends on the 

absorber under consideration. From Figure 2, it can be inferred that the hardness constraint 

 is to be applied to membrane absorbers and microperforated panels, as well as high flow 

resistivity and thick porous absorbers. Inversely, the softness constraint  should be 

applied to perforated panels and thin porous absorbers with low flow resistivity. The starting point of 

the optimisation is identical to direct impedance solving with Zstart  (fi) = 1.6. The solutions found by 

the algorithm are considered valid under one condition: 

 (25) 

 (26) 

which is respectively equivalent to a root-mean-square error of 0.05 and around 0.2 between the input 

and retrieved absorption coefficients. Cases where the input absorption coefficient is greater than 1 are 

allowed a larger error because the general models proposed tend to yield values that exceed 1 to a 

lesser extent than what can be observed in measurements. 

4. CONVERSION OF ABSORPTION COEFFICIENTS 

4.1 Model selection 

The method for direct impedance solving is applied to the test cases given in Section 2.3 with all the 

possible general models, in order to evaluate how well they can represent the different types of 

absorbers. The results of the optimisations are gathered in Table 2. It can first be seen that the RMK 

model performs poorly at reproducing the surface impedance of the membrane absorber, the adjusted 

R2 value being even negative. This is not surprising because RMK only presents constant resistances, 

while the surface resistance of the membrane varies greatly as was seen in Figure 2. The fit of RMK to 

the surface impedance of the hard porous case is also significantly lower than that of the other models. 

The same observation can be made for the R+1 model with the perforated panel absorber. These two 

models can thus be considered inappropriate for a general impedance model. Among the four 

remaining models, the highest value of adjusted R2 is found for either the RMK+1 or R+2 models in all 

the test cases except the hard porous absorber. It indicates that the extra parameters included in the 

RMK+2 and R+3 models do not bring new information. In addition, the adjusted R2 values obtained 

with the RMK+1 and R+2 models are very close if not equal. Therefore, the two models with 5 

parameters, RMK+1 and R+2, are the most efficient at representing the surface impedances of various 

common sound absorbers. Nevertheless, the results presented here do not allow to choose one model 

over the other; consequently, the two models are selected and their performances will be compared in 

the later sections. 

Table 2 – Adjusted R2 between input and retrieved impedances 

Absorber RMK R+1 RMK+1 R+2 RMK+2 R+3 

Soft porous 0.9813  0.9782 0.9863 0.9885 0.9864 0.9864 

Hard porous 0.6323  0.9925 0.9962 0.9907 0.9971 0.9971 

Porous with cavity 0.7256 0.7237 0.7274 0.7274 0.6778 0.6778 

Membrane -0.0709 0.7510 0.7202 0.7202 0.6693 0.6605 

Perforated panel 0.9468 0.7872 0.9472 0.9417 0.9376 0.9376 

Microperforated panel 0.9999 0.9845 0.9999 0.9999 0.9999 0.9999 

 

Although similar in some aspects, the RMK+1 and R+2 models differ in their physical 



 

 

interpretation. On one hand, the four terms in the RMK+1 model represent the classical 

spring-mass-damper system to which either an elastic or a porous behaviour is added. On the other 

hand, the R+2 model can be seen as a generalization of the RMK model where the fractional terms 

describe the intermediate behaviours between pure resistance and pure mass or stiffness. The 

spring-mass-damper system is still included in this model as the extreme case α = β = 1. 

4.2 Performance of the retrieval method 

The RMK+1 and R+2 models were showed to be the most efficient general impedance models. 

However, the goal of this study is to retrieve surface impedances from statistical absorption 

coefficients. Therefore, the absorption solving method is applied to the same test cases as previously 

with the two selected models. From the results displayed in Table 3, a very poor fit can be observed for 

the membrane absorber with both general models. It is mostly due to the behaviour of the membrane 

input model: at high frequencies, the surface impedance follows the curve of an absorption coefficient 

isoline (cf. Figure 2). On the contrary, the general models can only yield monotonically increasing 

reactances, which results in absorption coefficients that keep decreasing at high frequencies. 

Considering the difficulty to describe membrane absorbers, it is likely that inaccuracies are present in 

the general and input models. When looking at the other absorbers, it is found that the RMK+1 model 

performs better for the hard porous absorber and the perforated panel, while the R+2 model shows a 

better fit with the soft porous absorber. The two models exhibit equivalent performances in the cases of 

the porous absorber with cavity and the microperforated panel. Overall, the RMK+1 model appears 

more advantageous than the R+2 model with theoretical input data. In practical applications though, 

input data consist in measurement results which are affected by noise from various origins. The 

retrieval method should thus be confronted to measured input data to confirm its validity.  

Table 3 – R2 between input and retrieved impedances 

Absorber RMK+1 R+2 

Soft porous 0.6750 0.7814 

Hard porous 0.9649 0.8581 

Porous with cavity 0.7324 0.7324 

Membrane -1.1286 -1.1283 

Perforated panel 0.8432 0.7918 

Microperforated panel 0.6247 0.6258 

 

4.3 Impedance retrieval from measured data 

In 2009 Tompson and Vercammen led a round robin study on reverberation chambers (9,10). The 

statistical absorption coefficients of four different samples were measured in 13 laboratories in Europe. 

The results of this study are taken as input to the retrieval method to assess its sensitivity to the noise 

and deviations that exist in real measurements. The first sample in the study is a foam material with a 

flow resistivity estimated to  and a thickness , to which the hardness 

constraint is applied for the optimisation. Another porous material was included in the study with a 

mineral wool sample whose flow resistivity is  and thickness , 

categorized as a soft material for the optimisation. The third sample is a membrane absorber consisting 

of the same mineral wool as the second sample with a 5-mm thick hardboard cover. Finally, the fourth 

sample is a combination of the previous membrane and mineral wool absorbers, with units arranged in 

a chessboard pattern. 13 surface impedances are retrieved for each sample, corresponding to the 13 

input absorption coefficients. 

The normalized standard deviations (STDn) are then compared between the input absorption 

coefficients and the retrieved absorption coefficients, as shown in Figure 3. The first observation is 

that the two general impedance models often return similar results. For the two porous absorbers, it can 

be seen that the absorption coefficients retrieved with RMK+1 and R+2 have lower STDn than the ones 

measured at almost all frequencies. Only the foam absorber around 250 Hz does not follow this trend. 

Concerning the combined absorber, the STDn of the retrieved absorption coefficients are very similar 

to that of the measured ones. The membrane absorber is the only case where significant differences 



 

 

appear between the two impedance models. Below 400 Hz, both the models and the measured data lead 

to close STDn. Above 400 Hz, however, the RMK+1 model yields a higher STDn than the 

measurements, whereas the R+2 model exhibit values close to the measured data and even lower 

values in the highest octave band. 

   

  a) Foam       b) Mineral wool 

  

 c) Membrane      d) Combination 

Figure 3 – Normalized standard deviations of input and retrieved absorption coefficients 

Another illustration of these results is displayed in Figure 4, where the standard deviations are 

represented as ranges in dashed lines along the means of the absorption coefficients in solid lines. The 

curves corresponding to RMK+1 and R+2 almost always overlap, the only discrepancies appearing in 

the membrane absorber case and especially at high frequencies. Besides, the retrieved impedances 

tend to yield lower values of absorption coefficient than the measurements. This is seen with the foam 

absorber above 500 Hz, with the mineral wool above 160 Hz, and with the membrane absorber above 

1600 Hz. The combined absorber is the only case where the results of the retrieval method are similar 

to the results of the measurements, both in terms of mean value and standard deviation. 

  

  a) Foam       b) Mineral wool 



 

 

  

c) Membrane       d) Combination 

Figure 4 – Absorption coefficients of the different samples. Dashed lines: ± 1 STD 

5. DISCUSSION 

The general impedance models presented in this paper are based on fractional calculus. The 

formulas of these models all imply that the imaginary part of the surface impedance is monotonically 

increasing. While this is a fair assumption in most cases, the theoretical models for the impedances of 

porous absorbers with cavities and membrane absorbers describe otherwise. Consequently, the 

performance to retrieve the impedances of such absorbers is limited, as seen already in Table 2 with 

direct impedance solving. It can lead to even greater discrepancies in absorption solving; it was for 

example the case with the membrane absorber in Table 3. As a result, the method presented should be 

applied with caution when retrieving the impedances of these absorbers, whichever general model is 

selected. 

The results of impedance retrieval showed close results between the two models selected in section 

4.1. The RMK+1 and R+2 are indeed similar mathematically, even though their physical 

interpretations differ. From the impedances retrieved in this paper, the R+2 model seems to yield more 

robust results than the RMK+1 when input data are based on measurements . However, the 

discrepancies observed are not large enough to completely discard the RMK+1 model , and further 

investigation is required. It is expected that a stability analysis and the study of transformation to the 

time domain will bring new clues to decide which of the models is best suited for surface impedance 

retrieval from statistical absorption coefficients. 

One issue not addressed here is the amount of prior information about the sound absorber under 

study. It is critical to know the type of absorber in order to apply the right constraints, especially for 

porous absorbers. These absorbers indeed require more specific and restricting constraints than the 

others. A possible solution would be to implement an automatic material detection with 

machine-learning: based on the input absorption coefficient, the type of sound absorber would be 

deduced and the corresponding constraints applied. However, it would require a large amount of 

training data, which is not necessarily available for all types of sound absorber. Naturally, training data 

could be created from the theoretical models, but it would not cover all the phenomena taking place in 

measurements. 

6. CONCLUSION 

This paper presented a method to retrieve the surface impedances of various sound absorbers from 

their statistical absorption coefficients. After suggesting several general impedance models based on 

fractional calculus, a first optimisation problem was set to minimize the difference between those 

general impedance models and the theoretical impedance models of sound absorber test cases. It was 

demonstrated that a general surface impedance model could be most efficiently expressed with five 

parameters. Two general models were thus selected for further study: the RMK+1 and R+2 models. 

Theoretical absorption coefficients were then calculated, and the parameters of the two models were 

determined with a second optimisation problem. A good agreement was found between the original 

surface impedances and those retrieved with RMK+1 and R+2; the only exception was the case of a 

membrane absorber. The impedance retrieval method was finally applied to the results of a round robin 



 

 

experiment where the absorption coefficients of four sound absorbers were measured in 13 different 

reverberation chambers. By retrieving the corresponding surface impedances, it was shown that the 

absorption coefficients obtained with the R+2 model always had similar or lower standard deviations 

than the ones measured in the laboratories, even in the case of the membrane absorber. Therefore, the 

impedance retrieval method presented with the R+2 model appeared to be robust to noisy input data, 

i.e. to deviations in measured absorption coefficients. Despite these promising results, further 

investigation is required to confirm the validity of this method, especially with a stability analysis of 

the optimisation problem. A transformation of the retrieved surface impedances to the time domain 

will also be implemented for later applications in numerical simulations for room acoustics.  
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to assess the validity of the suggested model. Further stability and sensitivity investigations indicate that
the method presented constitutes an efficient solution to convert sound absorption coefficients back to
their original complex surface impedances.

� 2019 Elsevier Ltd. All rights reserved.

1. Introduction

The simulation of room acoustics is an essential tool in the
architectural design of various spaces. Concert halls have been at
the heart of the development of this tool due to the utmost
demand of acoustics in music listening conditions. Therefore, com-
mon simulation software are well suited to large volumes or high
frequencies thanks to the principles of geometrical acoustics (GA)
[1,2]. An adverse effect of this development is inaccuracies at low
frequencies. It is especially true in rooms with small volumes,
e.g. classrooms and meeting rooms [3], where the acoustic proper-
ties are also critical. The GA simulation methods developed are
indeed typically based on a statistical description of the sound field
with energy parameters. Consequently, boundaries are repre-
sented with absorption and scattering coefficients, whereas phase
information that governs modal behaviour is necessary for accu-
rate predictions at low frequencies. Solutions have been proposed,
such as phased geometrical acoustics [4–8] and numerical wave-
based methods [9–11], and they are currently under ongoing study

for their application to room acoustics. The former relies on the
same principles as geometrical acoustics but includes phased
reflections at the boundaries, while the latter directly solve the
wave equation with numerical discretization and thus inherently
carry phase information. Besides considerations of computation
time and accuracy, another challenge these methods face is the
lack of reliable boundary conditions. In order to accurately predict
wave reflections, phased parameters are required to represent the
boundary conditions, such as the surface impedance or the pres-
sure reflection coefficient [6,12]. The problem lies in the availabil-
ity of measured data for these quantities, which is restricted by
experimental limitations and communication by manufacturers.
Indeed, manufacturers of sound absorbers only provide informa-
tion on the absorption coefficients of their products, usually mea-
sured in reverberation chambers according to ISO 354 [13], which
suffers a serious reproducibility issue [14]. This paper proposes a
robust method to inversely determine surface impedances of com-
mon building materials from their statistical absorption
coefficients.

A few authors have attempted to retrieve surface impedances
from absorption coefficients. Rindel used a resonant system to
model the surface impedances of sound absorbers [15]. He notably
pointed out the non-uniqueness of solutions when transforming an
absorption coefficient into surface impedance. He dealt with this

https://doi.org/10.1016/j.apacoust.2019.04.034
0003-682X/� 2019 Elsevier Ltd. All rights reserved.
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by distinguishing between soft and hard surfaces, a strategy also
used in the present paper. Since the absorption coefficient is an
energy parameter, there is an infinite number of complex surface
impedances corresponding to any value it can take. Therefore,
extra information is needed in addition to the absorption coeffi-
cient to retrieve the right impedance, such as the frequency depen-
dence of the impedance with physically inspired models and other
constraints. However, Rindel’s study only took into consideration
three types of sound absorbers, namely porous absorbers, mem-
branes, and resonators, thus leaving out other building materials.
Jeong proposed methods to retrieve the surface impedances of por-
ous absorbers with rigid and air cavity backings as well as fabrics
with air cavities [16]. His methods were based on Miki’s model
and the determination of the flow resistances of the absorbers by
solving an optimization problem, which showed a good agreement
in terms of absorption coefficient. They were later applied to mea-
surement data from a round robin experiment [14], resulting in a
reduction of the standard deviation in the random incidence
absorption coefficient calculated from the retrieved surface impe-
dance [17]. Despite the inclusion of absorbers with air cavities,
the impedance retrieval presented in this case is limited to porous
materials. Consequently, there is still a need for a more general
impedance retrieval method that would encompass a wide range
of different materials found in real rooms.

The current paper is a continuation of the work presented in
[18]. Its organization is as follows: the theory about surface impe-
dance is first given in chapter 2 with requirements on its physical
feasibility, its relation with the absorption coefficient, and several
models corresponding to different sound absorbers. In chapter 3,
two models of surface impedance are presented, the optimization
problem to be solved is described with its associated constraints,
and some theoretical test cases are introduced as references. Chap-
ter 4 compares the results between theoretical and retrieved impe-
dances, and analyzes the stability and sensitivity of the solution
found via the optimization problem. Lastly, the results are further
discussed in chapter 5, justifying the choice of one general model
for surface impedance, assessing the validity of the retrieval
method despite a few limitations, and foreseeing potential applica-
tions in room acoustic simulation.

2. Theory on surface impedance

Unless specifically stated otherwise, all the impedances men-
tioned thereafter are normalized by the characteristic impedance
of air q0c0.

2.1. Boundary representation

The surface impedance Za is a complex-valued parameter that
describes the relation between the sound pressure p and the nor-
mal particle velocity vn at a boundary @V [19]:

Za ¼ 1
q0c0

p
vn

����
@V

: ð1Þ

It is a function of frequency, the position on the boundary, and the
incidence angle of the sound wave. Its real part is called the resis-
tance, while its imaginary part is called the reactance.

The boundary properties for room acoustic simulations must be
physically feasible, which leads to three requirements on the sur-
face impedance. A boundary must be a passive system as it does
not give any energy to the sound field. A boundary must also be
a causal system so that the causes always precede the conse-
quences they bring about. Lastly, the sound pressure and particle
velocity in time domain are real-valued signals; therefore, when
represented in the time domain, the surface impedance function
must also take real values. Using the ejxt time convention, these

three requirements can be translated into mathematical expres-
sions involving the surface impedance in the frequency domain
[20]. Passivity, causality, and real values in the time domain are
respectively expressed as:

Re Za xð Þf g P 0 for all x 2 R; ð2Þ
Za xð Þ analytic for Im xf g < 0; ð3Þ
Z�
a xð Þ ¼ Za �xð Þ: ð4Þ

Note that the complex angular frequencies x appearing here are
due to the mathematical transformation of the requirements
defined in the time domain to the frequency domain. In the case
of causality in Eq. (3), the time-domain impedance corresponds to
an impulse response and must be equal to zero for any time t < 0.
This can only be respected by introducing complex x in the fre-
quency domain.

Besides these requirements, the surface impedance is related to
the absorption coefficient, the most widely available parameter to
describe materials in room acoustics. This parameter is regarded to
be measured in reverberation chambers according to the interna-
tional standard ISO 354 [13], resulting in the Sabine absorption
coefficient. It corresponds to the statistical absorption coefficient
as defined by Thomasson [21,22]:

as ¼ 8
Z p=2

0

Re Za hð Þf g sin h

Za hð Þ þ Zr hð Þj j2
dh ð5Þ

with h the incidence angle of the sound wave and Zr the radiation
impedance of the sample under study. It is obtained from the ratio
between the absorbed power and the projected incident power on a
finite sample, averaged over all angles assuming a diffuse sound
field. In the case of a locally reacting model for the surface impe-
dance the equation can be used without any dependence of Za on
h. Contrary to the random incidence absorption coefficient that
assumes an infinitely large absorptive surface [19], the statistical
absorption coefficient takes into account the size and shape of the
absorber sample as well as its influence on the sound field via the
radiation impedance.

Unlike the surface impedance, which is the ratio between total
sound pressure and particle velocity in the normal direction to a
surface, the radiation impedance describes the ratio between radi-
ated sound pressure and normal particle velocity at the boundary
[23]. Thomasson [22], Rindel [24], Brunskog [25], and Davy et al.
[26] successively proposed formulas for the radiation impedance,
with Davy et al. combining Thomasson’s theoretical formulas into
a unique empirical formula yielding a complex impedance for all
frequencies. For a rectangular sample, and assuming that the speed
of sound is larger in the material studied than in air, it can be cal-
culated with Eqs. (53)–(63) from reference [26]. In addition to the
incidence angle h, it should be noted that the radiation impedance
is also dependent on the size of the sample; for an infinite sample,
its value converges to 1= cos h. This radiation impedance was
derived for samples mounted in an infinite baffle, though measure-
ment setups for absorption coefficient typically consist of the
absorber simply lying on the ground of the reverberation chamber.
For this reason, the thinner a measured absorptive sample is the
more accurately Eq. (5) will represent it. The international stan-
dard for reverberation chamber measurements [13] recommends
relatively square samples with areas between 10 m2 and 12 m2.
Therefore, in this study and similarly to [15], an area of 11 m2 is
assumed with a square shape for all samples in order to minimize
the potential discrepancies with measured samples which dimen-
sions are unknown.

The corresponding isolines of the statistical absorption coeffi-
cient as a function of surface impedance are plotted in Fig. 1 for
the frequency 2000 Hz. The highest value of absorption coefficient
approximately occurs at Za ¼ 1:6, with small variations depending
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on frequency, as is illustrated. It is also clear that different values of
surface impedance can lead to the same statistical absorption
coefficient.

2.2. Existing material models

Impedance models have been suggested for various materials
commonly encountered in room acoustics. The models selected
as references for the present study are presented here; they
include porous absorbers with rigid and cavity backings, mem-
brane absorbers, as well as perforated and microperforated panels.
For the following, let us consider a two-dimensional space where x
represents the normal direction to a boundary and y the parallel
direction to it. A plane wave is propagating in air with a wavenum-

ber k such that k2 ¼ k2x þ k2y . It meets the boundary with an inci-
dence angle h between its direction of propagation and the
normal direction to the boundary. Consequently, the relations
kx ¼ k cos h and ky ¼ k sin h for the wavenumber exist.

2.2.1. Porous absorbers with rigid backing
For a rigidly-backed absorber whose characteristic impedance is

Zc , thickness is h, and internal wavenumber is kp with

k2p ¼ k2px þ k2py, the surface impedance with extended reaction is
[27]

Za xð Þ ¼ �jZc
kp
kpx

cot kpxh
� �

: ð6Þ

When local reaction is assumed, the internal wavenumber kp is
equal to the normal component of the wavenumber kx and the for-
mula simplifies to

Za xð Þ ¼ �jZc cot kxhð Þ: ð7Þ
Porous absorbers have been described with empirical models for
many years, and in this study the model presented by Miki [28] is
used. The characteristic impedance Zc and propagation constant g
of a porous material can be written

Zc ¼ 1þ 0:07
f
r

� ��0:632

� j0:107
f
r

� ��0:632

; ð8Þ

g
k
¼ 0:160

f
r

� ��0:618

þ j 1þ 0:109
f
r

� ��0:618
 !

; ð9Þ

with r the flow resistivity of the material and f the frequency. It is
interesting to note that these two formulas can be expressed with
fractional calculus. For �1 < c < 1, a fractional derivative (positive
c) or integral (negative c) is defined in the frequency domain as [29]

jxð Þc ¼ cos cp=2ð Þxc þ j sin cp=2ð Þxc: ð10Þ
The characteristic impedance and propagation constant then
become

Zc ¼ 1þ 0:409
jx
r

� ��0:632

; ð11Þ

g
jk

¼ 1þ 0:602
jx
r

� ��0:618

: ð12Þ

From these quantities, the surface impedance is determined by fol-
lowing Eq. (6) for extended reaction with kp ¼ g

j .

2.2.2. Porous absorbers with an air cavity
In the case of porous absorbers backed by an air cavity a multi-

layered absorber model is applied [30]. Let us consider a visible
material with a thickness h, a characteristic impedance Zc , and a

wavenumber kp with k2p ¼ k2px þ k2py; the cavity behind it has a
depth d and a surface impedance Zd, The surface impedance of
the whole system is then calculated as

Za xð Þ ¼ �jZcZdkp=kpx cot kpxh
� �þ Zckp=kpx

� �2
Zd � jZckp=kpx cot kpxh

� � : ð13Þ

An air cavity is most accurately modelled with extended reaction,
leading to the impedance

Zd ¼ �j
cot kd cos hð Þ

cos h
: ð14Þ

2.2.3. Membrane absorbers
Membrane absorbers are classically modelled as simple reso-

nant systems [19] with damping, mass, and spring terms as
follows:

q0c0Za xð Þ ¼ ri þ j xm� q0c
2
0

xd

� �
: ð15Þ

ri represents the internal resistance of the system, which includes
losses in the membrane as well as in the cavity where a porous
material is often placed. m is the mass per unit area of the mem-
brane, and d is the depth of the cavity. It is also assumed that the

Fig. 1. Isolines of Eq. (5) at 2000 Hz for a sample of 11 m2.
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wavelength of the incident sound is much larger than the depth of
the cavity, i.e. kd � 1. By introducing the loss factor g, the internal
resistance can be found as [31]

ri ¼ gxm: ð16Þ
However, it can be considered that this resistance has an influence
only around the resonance frequency. Therefore, x can be substi-
tuted with x0 in the equation above, leading to a constant ri.
Although widely accepted and used, this resonant system model
is still a rather rough approximation and the behaviour of mem-
brane absorbers remains hard to predict.

2.2.4. Perforated panels
The surface impedance of a perforated panel can be seen as the

sum of the contributions from its openings and from the cavity
behind it [32]. The impedance of the openings is dominated by
the mass of air put into motion; for a panel of thickness h with cir-
cular openings of radius a, the effective length Leff and the impe-
dance Zt of a single opening are

Leff ¼ hþ 1:7a; ð17Þ

Zt ¼ jxLeff
c0

: ð18Þ

The cavity of a perforated panel absorber is normally filled with a
porous material, either completely or partially. The cavity impe-
dance Zcav can then be calculated with the corresponding model
for porous absorbers. If the cavity is completely filled, Zcav is equal
to the surface impedance of a rigidly backed porous absorber, as
described in Eq. (6). On the other hand, if the cavity is made of a
porous layer backed by air, Zcav is taken as the surface impedance
of a porous absorber with an air cavity by following Eq. (13). Aver-
aging the opening impedance over the surface of the panel with the
perforation rate p, the total surface impedance of a perforated panel
becomes

Za xð Þ ¼ Zt

p
þ Zcav : ð19Þ

2.2.5. Microperforated panels
Microperforated panel absorbers have been described by Maa

[33]. They are made of a thin panel with thickness h, which is per-
forated with tubes of radius a at a perforation rate p. The specific
impedance of the tubes Zt and its end correction Ze can be written

q0c0Zt ¼ 32l0h
4a2

1þ s2

32

� �1=2

þ jxq0h 1þ 9þ s2

2

� ��1=2
 !

; ð20Þ

q0c0Ze ¼ q0l0x
2

� �1=2
þ j1:7q0xa; ð21Þ

where l0 is the dynamic viscosity of air and s is the perforate con-
stant, given by

s2 ¼ q0xa2

l0
: ð22Þ

Adding an air cavity of depth d as a backing, the surface impedance
of the microperforated panel absorber is

Za xð Þ ¼ Zt þ Ze

p
� j

cot kd cos hð Þ
cos h

: ð23Þ

These material models give valuable information on the beha-
viours of the different materials’ surface impedances, which will
greatly help the retrieval method with constraints for the opti-
mization problem, as described in the following section. The mod-
els have also been used to create reference test cases for the
validation of the retrieval method.

3. The impedance retrieval method

3.1. General impedance models

Following the requirements described in Section 2.1, a general
impedance model that would be able to describe all common sound
absorbers is desired. Starting from six models with different num-
bers of parameters, a preliminary study [18] indicated two eligible
models for this role. Both of them consist of five parameters and
are based on a modification of the damped oscillator model with
the help of fractional calculus. The RMK + 1 model is expressed as

Za xð Þ ¼ K � jxð Þ�1 þ R1 þM � jxð Þ1 þ G � jxð Þc; ð24Þ
where R1;M;K;G P 0 and �1 6 c 6 1. The first three terms corre-
spond to the classic damped oscillator model, also called RMK, to
which a fourth term has been added, equivalent to either a frac-
tional integral or derivative depending on the sign of c. The second
model investigated is the R + 2 model:

Za xð Þ ¼ A � jxð Þ�a þ R2 þ B � jxð Þb ð25Þ
with R2;A;B P 0 and 0 6 a;b 6 1. The stiffness and mass terms of
the damped oscillator model, corresponding to integer integral
and derivative respectively, have here been replaced with fractional
integral and derivative to obtain a more general model. The frac-
tional integrals and derivatives are powerful terms that allow the
resistance to be frequency-dependent in the present case. They
appear in Miki’s model, as mentioned previously, but also in the
description of mechanical properties of elastic materials [34] and
in the expression of electric impedances [35] to cite a few examples.
It can be easily verified that the models in Eqs. (24) and (25) satisfy
the requirements from Eqs. (2)–(4). However, these two surface
impedance models do not take into account the incidence angle of
the sound wave and therefore assume local reaction, contrary to
the theoretical models presented in chapter 2. Besides, it is interest-
ing to note that both models are bound to have a monotonically
increasing reactance due to their formulations, which is not the case
of all material models presented previously. Varying reactance can
for example occur with porous absorbers with and without air cav-
ity due to the cotan terms in Eqs. (7) and (13), as well as with per-
forated panels for the same reason.

3.2. Optimization problem

To convert a real-valued function into a complex-valued one,
the inverse problem to be solved is ill-posed: there is an infinite
number of surface impedances that can match a given absorption
coefficient. Consequently, the parameters of the RMK + 1 and R
+ 2 models are determined by solving a constrained optimization
problem. The input data consist of the Sabine absorption coeffi-
cient in octave bands between 125 Hz and 4 kHz. At a given eval-
uation point Za, the cost function F is defined as the squared L2-
norm between the corresponding statistical absorption coefficient
as Zað Þ and the input absorption coefficient ain:

F Zað Þ ¼ kain � as Zað Þk22: ð26Þ
Both absorption coefficients in this equation are expressed in octave
bands due to limitations on the input data, with three frequency
components per octave band to calculate as.

The goal of the optimization is to find the surface impedance Za

that minimizes the cost function F

arg min
Za

F Zað Þ ð27Þ

subject to constraints depending on the absorber investigated. It is
assumed in this study that prior information about the materials is
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known, especially the type of absorber as detailed later, allowing to
add extra constraints accordingly. Following the theoretical models
in Section 2.2, two categories and their corresponding constraints
are defined:

Hard materials : Re Za xð Þf g > 1 forall x 2 R; ð28Þ
Soft materials : Re Za xð Þf g < 2 forall x 2 R: ð29Þ
Thus, a material is considered hard if its resistance is larger than
that of air, the propagation medium of sound waves, or soft if its
resistance is of same order or lower than that of air. The two cate-
gories overlap in the region 1 < Re Za xð Þf g < 2 to keep some flexi-
bility, especially since the maximum absorption coefficient
possible is attained in this region when Im Za xð Þf g ¼ 0. Empirical
experimentation with Eqs. (6) and (7) concluded that rigidly backed
porous absorbers with approximately a flow resistivity r 6 20 kN.s.
m�4 and a thickness h 6 10 cm could be considered as soft materi-
als. When adding an air cavity as backing, the theoretical model in
Eq. (13) indicates that the values of the flow resistivity and thick-
ness limits even decrease as the cavity depth increases. Perforated
panels and membrane absorbers also fall under the same category
of soft materials. All the other materials, i.e. microperforated panels
and porous materials which parameters exceed the previously sta-
ted limits, are considered as hard materials.

In addition to this, specific constraints are applied depending on
the type of absorber. Most porous absorbers reach an absorption
coefficient close to 1 at high frequencies, meaning that their sur-
face impedances approach Za ¼ 1:6 as shown in Fig. 1. Moreover,
all types of porous absorbers exhibit a negative surface reactance.
Consequently, for porous absorbers with either rigid or cavity
backing, the surface reactance is bound to be negative at all fre-
quencies by applying a constraint on the highest frequency
considered:

Porous materials : Im Za xð Þf g < 0 for f ¼ 5000 Hz: ð30Þ
Concerning the resistance, it should also be bound to make sure that
the surface impedance approaches the value for maximum absorp-
tion at high frequencies. For soft porous absorbers, it is already done
through Eq. (29). For hard porous absorbers, however, an extra con-
straint should be introduced at the two highest octave bands:

Hard porous materials : Re Za xð Þf g < 2 for f P 1600 Hz: ð31Þ
Combined with Eq. (28) this binds the resistance of hard porous
materials between 1 and 2 at the two highest octave bands. Eqs.
(30) and (31) ensure that the absorption coefficient of a porous
absorber reaches its maximum value at high frequencies with the
correct convergence of the surface impedance. In the case of mem-
brane absorbers, a specific constraint is also applied to mimic the
theoretical model in Eq. (15). Indeed, both the RMK + 1 and R + 2
model can represent exactly a simple oscillator; however, some
deviation is allowed due to the simplicity and inaccuracy of the the-
oretical membrane model. Therefore, the fractional terms are con-
strained to be close to mass and spring terms:

Membranes : c P 0:9 for RMKþ 1; ð32Þ
a P 0:8 and b P 0:9 for R þ 2: ð33Þ

The solution to this constrained optimization problem is
obtained with MATLAB’s integrated solver fmincon, a gradient-
based solver returning the first local minimum encountered from
a given starting point. Consequently, different starting points could
lead to different solutions. The local minimum is found by the
interior-point method with numerical evaluations of derivatives
by forward finite difference. The optimization is carried out on a
5-dimensional space based on the parameters of the impedance
model selected. The parameters are normalized by their typical
orders of magnitude to facilitate the progress of the algorithm,

such that the 5-dimensional space is

R1;M � 104;K � 10�4;G � 104c; c
� �

for the RMK + 1 model and

R2;A � 10�4a;a;B � 104b; b
� �

for the R + 2 model. The tolerance on

the cost function to detect a local minimum is 10�9 and the toler-
ance on the violation of constraints is 10�6. The maximum number
of function evaluations is set to 3000 and the maximum number of
iterations to 1000. The optimization can also be terminated if the
step size becomes smaller than 10�10. The starting point of the sol-
ver is set to R1 ¼ 1:6 or R2 ¼ 1:6 and the other parameters equal to
0 with both general models. This value was chosen to correspond
to the peak of the statistical absorption coefficient as a function
of surface impedance, or near the peak value depending on fre-
quency, as seen in Fig. 1. To ensure that the solution found by
the solver is meaningful, validity conditions are introduced: if
the value of the cost function for the local minimum found is too
high, the optimization is run again with a new starting point. This
point is chosen by assigning random values between 0 and 2 to all
the normalized parameters, with the exception of the exponent
parameters for which �1 6 c � 1 and 0 6 a; b � 1. The validity
conditions defined for this purpose depend on the input absorption
coefficient to adapt to extreme cases. A given solution is consid-
ered valid if it respects

F < 0:250 if ain > 1 in any octave band; ð34Þ
F < 0:001 if ain < 0:1 in 3 or more octave bands; ð35Þ
F < 0:015 in the other cases: ð36Þ

The case with ain > 1 is included as it is known that absorption coef-
ficients measured in reverberation chambers can exceed 1
[14,16,17]. The condition value on the cost function in Eq. (36) is
equivalent to a root-mean-square error of 0:050 in terms of absorp-
tion coefficient, which is considered acceptable by the authors for
most cases. The other two condition values in Eq. (34) and (35)cor-
respond to root-mean-square errors of 0:204 and 0:013 respec-
tively, which are meant to adapt to extreme values of absorption
coefficients.

3.3. Theoretical test cases

Based on the theoretical impedance models presented in Sec-
tion 2.2, six test cases of sound absorbers have been created. The
different parameters involved in each model were given values
to correspond to realistic materials. Their statistical absorption
coefficients were then calculated using Eq. (5) and averaged in
octave bands in order to create input data to the optimization
problem. The six test cases are respectively called ‘soft porous’,
‘hard porous’, ‘porous with cavity’, ‘membrane’, ‘perforated panel’,
and ‘microperforated panel’.

The two first test cases are porous absorbers with rigid backing.
The first one, labelled ‘soft porous’, is thin and has a low density; its
flow resistivity is r ¼ 10 kPa.s.m�2 and its thickness is h ¼ 50 mm.
The second porous absorber represents a more dense material and
is labelled ‘hard porous’, with a flow resistivity r ¼ 30 kPa.s.m�2

and thickness h ¼ 150 mm. Another theoretical test case was made
by adding an air cavity to the soft porous absorber, leading to flow
resistivity r ¼ 10 kPa.s.m�2, thickness h ¼ 50 mm, and cavity
depth d ¼ 150 mm; it is labelled ‘porous with cavity’.

The next test case, labelled ‘membrane’, corresponds to a hard-
board membrane backed by a cavity filled with porous material.
The thickness of the membrane is h ¼ 1 mm and the density of
its material is q ¼ 1000 kg.m�3, hence a mass per unit area
m ¼ qh. The cavity is designed with a depth d ¼ 250 mm, and
the loss factor of the system is set to g ¼ 0:5.
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Finally, two test cases consisting of panels were made. One is a
perforated panel backed by a porous material and an air cavity; it is
labelled ‘perforated panel’. The perforations are circular with a
radius a ¼ 4 mm, length L ¼ 16 mm, and they cover p ¼ 20% of
the surface. The porous material behind the panel has a flow resis-
tivity r ¼ 10 kPa.s.m�2 and a thickness h ¼ 140 mm, while the
depth of the air cavity is d ¼ 160 mm. The last absorber is a
microperforated panel simply backed by an air cavity. The perfora-
tions are also circular, their radius is a ¼ 0:05 mm, their length is
L ¼ 1 mm, and they add up to a perforation rate p ¼ 3%. The air
cavity behind the panel has a depth d ¼ 20 mm. This absorber is
labelled ‘microperforated panel’.

The names ‘soft porous’, ’hard porous’, ‘porous with cavity’,
‘membrane’, ‘perforated panel’, and ‘microperforated panel’ will
be used throughout Sections 4.1 and 4.2 to refer to the theoretical
test cases described here. In Section 4.3, however, the retrieval
method will be tested against another set of input data coming
from Vercammen’s round robin study on reverberation chamber
measurements [14].

4. Results

4.1. Goodness of fit to original impedances

The statistical absorption coefficients in octave bands of the
theoretical test cases are now taken as input to the retrieval
method, and the retrieved impedances are compared to the origi-
nal ones. To assess how close these two quantities are, the coeffi-
cient of determination R2 is calculated as [36]

R2 ¼ 1� jjf ref � f modeljj22
jjf ref � f ref jj22

ð37Þ

with f ref the reference data points, f ref their mean, and f model the data
points from the explaining model. The ratio in the equation can also
be seen as the ratio between the mean-square-error of the model to
the reference and the variance of the reference. In the present case,
the original impedance is taken as reference and the retrieved one
as the explaining model. An R2 value of 1 indicates that the original
and retrieved impedances are identical, and the lower the value of
R2 the more different the two impedances are. The impedances
are described in 1/3-octave bands from 100 Hz to 5 kHz, corre-
sponding to the same frequency range as the input absorption coef-
ficient but with a finer frequency resolution.

Two retrieval examples are given in Fig. 2 using the RMK + 1
model. In these two cases, both RMK + 1 and R + 2 models returned
the same or very similar surface impedances so the comments
given are valid for both of them. Fig. 2a shows the porous absorber
with an air cavity. Despite a small offset in the imaginary part
below 500Hz, it can be observed that the retrieval method per-
forms well in obtaining the general trend of the original impe-
dance. However, the fine frequency variations are impossible to
capture from the coarse energy-based and frequency-averaged
input data. The absorption coefficients considered are given in
octave bands, therefore the phenomena taking place in the cavity
and modelled with the cotangent term in Eq. 13 are averaged
out. Moreover, the frequency dependences of the RMK + 1 and R
+ 2 models do not allow to reproduce such oscillating behaviours.
With the membrane absorber in Fig. 2b, however, the original
and retrieved impedances are hardly distinguishable. It is due to
the monotonic behaviour of the theoretical model, which can be
easily reproduced with the RMK + 1 and R + 2 models. This result
is an ideal case of impedance retrieval, and it illustrates the effi-
ciency of the method in obtaining surface impedances from
octave-band absorption coefficients.

The parameter values of the two models for all test cases are
compiled in Table 1. It should be noted that, for a given model, dif-
ferent values of the parameters can lead to identical surface impe-
dances. The resulting fit between original and retrieved
impedances is shown in Table 2. In most cases the agreement
between original and retrieved impedances is excellent, with an
R2 value larger than 0.9 in many occurences and even larger than
0:99 for the membrane absorber with the RMK+1 model. When
looking at all the test cases the two general models show compa-
rable results. Nevertheless, the R+2 model is seen to perform better
than the RMK+1 model with higher R2 values for the soft porous
and microperforated panel cases. On the down side, the lowest
R2 value found is 0.336 for the microperforated panel with the
RMK+1 model, which indicates some deviation from the original
impedance. The R+2 model also returns a low R2 value of 0.419
in this case. Microperforated panels have not been as well studied
as other widely used absorption materials, such as porous absor-
bers for example. Consequently, no additional specific constraints
were applied in the retrieving algorithm. It is however expected
that the fit between original and retrieved surface impedances
would be improved with the help of appropriate constraints suited
for microperforated panels. The porous absorber with cavity shown
previously in example returned an R2 value of 0:637 with both
models, a fair agreement given the conditions. Indeed, the general
models are not capable of reproducing frequency variations due to
cavity phenomena in the absorbers. Moreover, input data are given

Fig. 2. Original and retrieved impedances in 1/3-octave bands using the RMK + 1
model. Solid blue line: original resistance; Dashed blue line: original reactance;
Dash-dotted red line: retrieved resistance; Dotted red line: retrieved reactance. (a)
Porous with cavity: r = 10 kPa.s.m-2, h = 50 mm, d = 150 mm; (b) Membrane: h = 1
mm, q = 1000 kg.m-3, d = 250 mm, g = 0.5. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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in octave bands, which are averaged and smooth out said fre-
quency variations; certain assumptions and prior knowledge
would then be needed in order to retrieve these fine variations.

Overall, the two general models RMK + 1 and R + 2 showed a
similar performance for retrieving the surface impedances of the
theoretical test cases, with a slight advantage for the R+2 model.
Apart from two test cases, the agreement with the original impe-
dances was excellent. The discrepancies observed were due to
the general impedance models not being able to reproduce the fine
frequency variations in porous absorbers with air cavities and to
the retrieval method not finding the correct impedance without
specific constraints for microperforated panels.

4.2. Stability analysis

The cost function associated with the optimization problem to
retrieve surface impedances is not guaranteed to have a unique
minimum in spite of the constraints applied. Moreover, the opti-
mization problem is solved with a gradient-based method, only
returning the first minimum found by the solver. A stability anal-
ysis is thus necessary to ensure that the optimization problem is
properly set. To do so, and for each test case, the surface impedance
is retrieved repeatedly with random starting points and the differ-
ent solutions are inspected to detect divergences. The range of the
starting points depends on the input absorption coefficient: if its
values are very low, it is expected that the parameters of the sur-
face impedance will be large. For each starting point, the surface
impedance retrieved is first assessed with the validity conditions
from Eqs. (34)–(36). Then, all the valid solutions of a given test case
are compared with each other. Two surface impedances are consid-
ered different enough to be separate solutions when the R2 value
between one of them and the mean of the two is lower than
0:99. In this calculation, the mean is taken as the reference function
to determine R2 in Eq. (37). The stability analysis is performed for

both general models RMK + 1 and R + 2, with the number of start-
ing points being set for each case so that at least 13 valid solutions
are retrieved. One result of the stability analysis is illustrated in
Fig. 3 with the valid surface impedances found for the membrane
absorber and the RMK + 1 model. In this case, 13 valid solutions
were found out of 20 random starting points, and they were all
similar enough to be considered identical. It can indeed be seen
that all 13 surface impedances overlap below 1000 Hz, and the
slight deviations appearing at high frequencies are hardly notice-
able. The outcome of the stability analysis is summarized in Table 3.
Only for the membrane absorber with the R+2 model two different
valid solutions appeared; in all the other cases and with both gen-
eral models, a unique valid solution to the optimization problem
was found. This is a good indicator that the constrained problem
is well set. Nevertheless, not all starting points lead to valid solu-
tions, especially with the R + 2 model. Indeed, for the membrane
absorber and the porous absorber with cavity, 40 starting points
were needed to obtain respectively 17 and 16 valid solutions. In
other words, only 40% of the starting points lead to valid solutions
in the case of the porous absorber with cavity. This also happened
to a lesser extent for the soft porous absorber and the perforated
panel, where 30 starting points returned 18 and 13 valid solutions
respectively. Regarding the RMK + 1 model, it is only for the mem-
brane absorber that 20 starting points yielded 13 valid solutions,
equivalent to a 65% rate in the worst scenario. In the other cases,

Table 1
Parameters of the general models for the retrieved impedances; values normalized by q0c0.

(a) RMK + 1 model

Test case K R1 M G c

Soft porous 5688 1:09 9:6 � 10�6 56.8 �0:57

Hard porous 1611 1:7 � 10�3 1:7 � 10�5 15:5 �0:23

Porous with cavity 3112 5:6 � 10�6 3:3 � 10�11 0:54 0:08

Membrane 1447 0:15 2:3 � 10�3 8:1 � 10�5 1

Perforated panel 2888 7:3 � 10�7 2:7 � 10�4 0:14 0:22

Microperforated panel 5:4 � 104 2:3 � 10�3 2:1 � 10�4 21:8 �0:11

(b) R + 2 model

Test case A �a R2 B b

Soft porous 3871 �0:94 3:8 � 10�5 0:33 0:13

Hard porous 177 �0:55 1:0 � 10�3 6:0 � 10�2 0:28

Porous with cavity 3112 �1 4:5 � 10�6 0:54 0:08

Membrane 1008 �0:97 6:2 � 10�2 2:0 � 10�3 1

Perforated panel 2954 �1 0:66 4:5 � 10�4 0:95

Microperforated panel 3:1 � 104 �0:92 3:74 0:11 0:37

Table 2
R2 between original and retrieved surface impedances with the two general models.

Test case RMK + 1 R + 2

Soft porous 0.821 0.951
Hard porous 0.957 0.972

Porous with cavity 0.637 0.637
Membrane 0.999 0.914

Perforated panel 0.920 0.901
Microperforated panel 0.336 0.419
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Fig. 3. Surface impedances of all the 13 valid solutions found from random starting
points with the RMK + 1 model for the membrane absorber. Yellow: 13 overlapping
solutions. Solid line: real part; Dashed line: imaginary part. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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20 valid solutions were retrieved out of 20 starting points. Hence,
the RMK + 1 model exhibited a better convergence towards valid
solutions.

The impedance retrieval method with the RMK+1 model
appeared to be stable with a unique solution found in each case
investigated. However, the R + 2 model exhibited two different
valid solutions in one occurence and showed great difficulties con-
verging to valid solutions in many test cases. Consequently, the
RMK + 1 model was found to be far more stable with regard to
solving the optimization problem.

4.3. Sensitivity to measurement deviations

In this study noise is not meant as unwanted sound signal but is
understood in a data processing point of view, i.e. random effects
that pollute the desired information. For practical use of the retrie-
val methods, the input absorption coefficients will come frommea-
surement data which are contaminated by noise from various
origins. The same sound absorber measured at two different times
or two different places can yield different absorption coefficients
[14,17]. It is therefore important to study how the impedance
retrieval method behaves with measured input data. To do so,
results from a round robin study [14] conducted in 13 laboratories
are taken as input data and the deviations of the absorption coef-
ficients are compared between measurement and retrieval output.
Four sound absorbers were investigated in that study: one porous
absorber made of foam, one porous absorber made of mineral
wool, one membrane absorber, and one arrangement of mineral
wool and membrane absorbers in a chessboard pattern; and the
same samples were measured in all laboratories. Therefore, for
each sound absorber, the absorption coefficient was measured in
1/3-octave bands 13 times, once in each laboratory. In the present
study, 13 surface impedances corresponding to the 13 laboratories
were retrieved for each sound absorber from the octave band val-
ues of the measured absorption coefficients. Then, the retrieved
absorption coefficients were calculated with Eq. (5), allowing the
comparison with measurement data. As a result, the means and
the standard deviations of the 13 measured and the 13 retrieved
absorption coefficients are found in Fig. 4. The lines corresponding
to the retrieved absorption coefficients with RMK + 1 and R + 2
often overlap, showing that the two models generally return sim-
ilar solutions. When comparing to the measurements, different
behaviours arise. First, divergences appear between the measured
and retrieved absorption coefficients of the porous absorbers. The
retrieval indeed tends to underestimate absorption at high fre-
quencies. It should be noted here that the values of the measured
absorption coefficients exceed 1 in both porous absorbers, for fre-
quencies higher than 2000 Hz with the foam absorber and frequen-
cies above 250 Hz with the mineral wool absorber. This is a known
phenomenon happening in reverberation chamber measurements
that is due to the finite size of the sample and a not perfectly dif-
fuse sound field. The size effect is most influential at low frequen-
cies, where the wavelengths are of same order as the sample
dimensions, and it is taken into account when calculating

absorption coefficients from surface impedances with Eq. (5)
through the radiation impedance. However, the non-isotropic
sound field affects broadband frequencies and is not accounted
for in the retrieval method as it assumes a perfectly diffuse sound
field. Hence, the retrieved absorption coefficients tend to exceed 1
less than measured values. It is also seen that the standard devia-
tions of the retrieved absorption coefficients become much lower
than those of the measured ones above 1000 Hz. The reason behind
this could be that the retrieval method overconstrains the surface
impedances of porous absorbers at high frequencies. The second
behaviour observed occurs with the membrane absorber. Below
1000 Hz, the measured and retrieved absorption coefficients are
close to each other with both general models, but above 1000 Hz,
the absorption coefficients retrieved with RMK+1 have very low
standard deviations and are noticeably underestimated. Some
modelling inaccuracies could be at the origin of this discrepancy.
Lastly, for the chessboard absorber, the measured and retrieved
absorption coefficients are similar both in terms of mean and stan-
dard deviation at all frequencies.

The relative standard deviation (RSD) between the 13 absorp-
tion coefficients of each sound absorber is also plotted in Fig. 5.
Except for the membrane absorber, the RSD of the absorption coef-
ficients retrieved with the RMK + 1 and R + 2 models are similar or
identical. Besides, the two porous absorber cases exhibit the same
behaviour: for both the foam and the mineral wool, the RSD of the
retrieved absorption coefficients is consistently lower than that of
the measured ones and even reach values close to 0 at frequencies
higher than 2000 Hz and 1000 Hz, respectively. This is another
illustration that porous absorbers may be overconstrained at high
frequencies. Concerning the membrane absorber, the absorption
coefficients retrieved with the general models have similar RSD
values with the measured ones between 100 Hz and 630 Hz, and
higher values above 630 Hz. This frequency region above 630 Hz
corresponds to where the measured and retrieved absorption coef-
ficients are around or below 0.1. It is seen that the RSD obtained
with the RMK+1 model largely increases in the 1000 Hz and
2000 Hz octave bands but becomes smaller than the RSD of the
measurement above 4000 Hz. For the R+2 model, its corresponding
RSD appears to follow the behaviour of the measurement but with
a sharper increase above 1000 Hz. Lastly, in the case of the chess-
board arrangement, the RSD of the measured and retrieved absorp-
tion coefficients agree very well with each other; the only large
difference appears at 100 Hz where the RSD is 0.1 lower for the
retrieved coefficients. It should be kept in mind that the chess-
board arrangement consists of small patches of porous and mem-
brane absorbers. Despite the good match in terms of absorption
coefficient, the retrieval method here returns an equivalent surface
impedance for the whole arrangement. In a modeling perspective,
to avoid introducing errors with such an approximation it would
be beneficial to retrieve the surface impedances of the two types
of patches separately if data is available. Nevertheless, this part
of the study focuses on comparing deviations between input and
retrieved absorption coefficients, for which the behaviour of the
method is satisfactory.

Table 3
Number of starting points, valid solutions, and separate solutions found with the two general models.

Starting points Valid solutions Separate solutions

Test case RMK + 1 R + 2 RMK + 1 R + 2 RMK + 1 R + 2

Soft porous 20 30 20 18 1 1
Hard porous 20 20 20 20 1 1

Porous with cavity 20 40 20 16 1 1
Membrane 20 40 13 17 1 2

Perforated panel 20 30 20 13 1 1
Microperforated panel 20 20 20 20 1 1
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Overall, the RSD values of the retrieved absorption coefficients
were similar to or lower than those of the measured data thanks
to the properties of the impedance models and to the optimization
constraints. The only exception is the membrane absorber at high
frequencies where the absorption coefficients are very low. It can
then be said that the impedance retrieval method does not amplify
noise and deviations that appear in measured data, and it does not
introduce any noise either.

5. Discussion

5.1. Choice of a general impedance model

In the light of the results presented here, the RMK + 1 model
appears to be better suited than the R + 2 model to represent the
various surface impedances of common sound absorbers found in
room acoustics. The two models are closely related to each other

in their construction, and as could be expected, they lead to similar
results in many cases. Despite this similarity, significant differ-
ences could be found in the stability analysis. It was indeed
observed that the R + 2 model converged to valid solutions for less
than half of the starting points in three different test cases,
whereas the RMK + 1 model returned valid solutions for all starting
points with every test case except one, where 65% of the starting
points lead to valid solutions. Given that the fitness to known
impedances and the sensitivity to measurement data showed no
significant advantage for one or the other model, the choice in
favour of the RMK + 1 model is made due to its higher stability.

5.2. Validity of the retrieval method

The efficiency of the method to convert octave-band absorption
coefficients into surface impedances has been validated in the pre-
sent paper. However, a few limitations exist and should be kept in

Fig. 4. Measured and retrieved means of the 13 1/3-octave band absorption coefficients. Black line: measured in [14]; Blue line: calculated from the retrieved impedances
with RMK + 1; Red line: calculated from the retrieved impedances with R + 2; Dashed lines: standard deviations. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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mind. The method relies on equations assuming local reaction and
mounting of measured sample in an infinite baffle which lead to
approximations. It was also seen that cavity phenomena occurring
at high frequencies in some sound absorbers can not be reproduced
and are smoothed out. Nevertheless, most of the numerical meth-
ods that can benefit from impedance boundary conditions are only
suitable at low frequencies due to computation time considera-
tions; it is thus considered an acceptable drawback. The optimiza-
tion constraints are subject to another limitation: choosing which
constraints apply to a given case relies on knowing the type of
material under study. It was seen that a lack of knowledge about
a material could impede the performance of the impedance retrie-
val. It would be advantageous if the surface impedance of a mate-
rial could be retrieved without any prior knowledge. This could be
achieved by implementing an automated detection of the material
based on the frequency dependency of the values of absorption
coefficient. Although outside the scope of this paper, further
research on this topic would be a great addition to the presented

method. Furthermore, typical building materials like brick and
concrete walls were not included in this study. Such hard materials
reflect most of the incoming sound energy without a phase shift,
implying that their surface impedances consist of a very large
resistance and a low reactance. Given the formulation of the
RMK + 1 model, it is foreseen that this behaviour will be nicely
reproduced with the retrieval method, possibly with the help of
adapted constraints.

5.3. Prospected applications

The present method to retrieve surface impedances from
absorption coefficients will enable new improvements in the accu-
racy of room acoustic simulations. In the case of wave-based meth-
ods it will be possible to realistically represent boundaries, in
contrast with the common rigid boundaries or educated guesses
one has to assume to describe boundary conditions. Consequently,
better input data to the numerical models will lead to better

Fig. 4 (continued)
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simulation results. Some advantages can also be found in geomet-
rical acoustics: knowledge about complex surface impedances
allows to determine angle-dependent absorption coefficients
based on complete information instead of relying on approximate
real-valued impedances; hence, the calculation of reflections can
be improved, especially in cases with grazing incidence. These
improvements will benefit hybrid calculations doubly as they
make use of wave-based methods at low frequencies and geomet-
rical acoustics at high frequencies.

For frequency-domain calculations, implementing the new
frequency-dependent boundary conditions is straight-forward.
For time-domain calculations, however, some more work has to
be done. In order to avoid convolution operations that are compu-
tationally heavy, the surface impedance can be turned into an infi-
nite impulse filter through the Z-transform. A thorough
investigation about filter orders and best practice for this operation
with the RMK + 1 model would complement the present study

nicely, as it would bring time-domain room acoustic simulations
one step closer to practical application.

More generally, values of boundary parameters at very low fre-
quencies can be inferred thanks to the general impedance model.
Since measurement methods are hardly reliable in this frequency
range, an extrapolation given by the RMK + 1 model can provide
more accuracy than the simple and common assumption of con-
stant values between the 63 Hz and 125 Hz octave bands.

6. Conclusion

The present paper introduced a method to obtain approximate
surface impedances from octave-band absorption coefficients. A
general impedance model to represent common building materials
found in room acoustics is proposed, based on the simple oscillator
model and an additional fractional calculus term. This model,

Fig. 5. Relative standard deviations between the 13 1/3-octave band absorption coefficients. Solid black line: measured in [14]; Dotted blue line: calculated from the
retrieved impedances with RMK + 1; Dashed red line: calculated from the retrieved impedances with R + 2. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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called RMK + 1, is therefore guaranteed to respect physical feasibil-
ity. For given absorption coefficient data, the parameters of the
RMK + 1 model are determined by solving a constrained optimiza-
tion problem to ensure that the solution found corresponds to the
type of material investigated. Several tests have been performed to
bring evidence on the efficiency of the retrieval method. Starting
with theoretical test cases, the retrieved surface impedances
showed an excellent fit with almost all the original impedances.
This proves that the RMK + 1 model is capable of approximating
the surface impedances of common sound absorbers and that the
optimization problem is an efficient way to convert absorption
coefficients. The stability of the method has also been tested by
solving the optimization problem with different random starting
points. For all of the theoretical test cases but one, solutions fulfill-
ing the validity conditions were found from all the starting points.
Furthermore, the valid solutions were always corresponding to the
same surface impedance. This indicates that the retrieval method
is stable. Lastly, the method has been confronted with real

measurement data from a study where sound absorber samples
were measured in different laboratories. The deviations among
the measured absorption coefficients have been compared to those
among the retrieved ones, and it showed that the retrieval method
rarely amplified noise that is inherently present in measurement
data. Therefore it can be concluded that the optimization problem
set to retrieve surface impedances is not oversensitive to noise in
input data and does not generally introduce any noise either. Over-
all, the retrieval method with the RMK + 1 model has been found to
be well-suited to common sound absorbers, stable, and not over-
sensitive to noise. Thus, it is considered an appropriate solution
to obtain more complete information on boundary conditions from
the widely available absorption coefficient data.

Now that the method to obtain surface impedances from
absorption coefficient data has been validated, frequency-
dependent impedance boundary conditions can be implemented
in numerical methods, providing more accurate simulations for
room acoustics.

Fig. 5 (continued)
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Abstract

To this day in room acoustics, simulation methods are not capable of delivering accurate results in a timely
manner at low frequencies. The present paper investigates the potential of the Equivalent Source Method,
commonly used in acoustics for radiation and scattering problems. The method is implemented in the time
domain to meet the needs on computation efficiency. The stability and accuracy of the Equivalent Source
Method in the time domain are first investigated with a single reflection on a rigid finite plate. This simple
test case allows to understand the fundamental properties of the method. An interior problem is then
studied, consisting of a rectangular box with rigid or finite uniform impedance boundaries. The impulse
responses calculated show that errors propagate in simulations through the multiple reflections on surfaces,
leading to either instability or numerical damping.

Keywords: Equivalent Source Method, Time domain, Interior problem, Numerical stability, Room
acoustics

1. Introduction

For a long time the simulation of room acoustics has been dominated by geometrical acoustics methods.
These methods are indeed computationally efficient and very well suited to spaces such as concert halls
and auditoria [1]. However, they offer limited accuracy in small volumes where acoustic conditions are also
of crucial importance [2]. This is the case for example in classrooms, offices, and meeting rooms. This
shortcoming is due to the energy description of the sound field made in commercially available geometrical
acoustics, which does not account for interference or modal behaviour. As a consequence, and thanks to the
ever-increasing power of computers, numerical methods for differential equations are becoming attractive
alternatives for room acoustic simulations. They rely on solving the wave equation, or an equation derived
from it, and thus inherently represent interference, modes and diffraction effects. The most common methods
in acoustics are the Finite Element Method [3], the Boundary Element Method [4], and the Finite Difference
in the Time Domain with its offshoots [5]. In the present study the Equivalent Source Method (ESM) in
the time domain was chosen to be applied to room acoustics. It is based on solving the boundary conditions
associated with the wave equation but compromises some accuracy to simplify calculations and reduce
computation time.

The Equivalent Source Method was originally designed for sound radiation and scattering from objects
[6]. Its frequency-domain formulation has been applied to various problems, including enclosures [7], street
canyons [8], and large open scenes [9]. Kropp and Svensson [10] introduced its formulation in the time
domain, but research on the topic was not furthered until Lee, Brentner and Morris [11, 12]. They notably
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made use of truncated Singular Value Decomposition and running average to stabilize the solution to the
numerical problem. However, they did not address the causes of instability. Lee [13] later gathered the
state-of-the-art knowledge on the topic to establish guidelines for radiation and scattering problems. The
present work investigates instability and accuracy issues in the Equivalent Source Method. Moreover, unlike
previous studies, the method is employed to solve an interior problem by simulating the sound field inside
a rectangular box.

The theoretical aspects of the Equivalent Source Method are presented in section 2. The problem to be
solved is derived from the boundary condition equation, with both rigid and finite impedance boundaries. In
section 3, the Equivalent Source Method is first investigated with a single-plane reflection. This simple test
case allows to understand the fundamental behaviour of the method and establish stability and accuracy
conditions. The conditions found are then assessed in section 4 on an interior problem by simulating the
impulse response of a small rectangular room.

2. Theory

For the Equivalent Source Method treated in this study, sound propagation is considered in the time
domain and a three-dimensional space. This is described with the free field Green’s function [14]

G(r, t) =
1

4π

δ(t− r/c)
r

(1)

with r the distance between source and receiver, t the time variable, δ the Dirac delta function, and c the
speed of sound. Given a point source with strength q(t) = ρ∂Q/∂t, Q(t) being the volume velocity, the
sound pressure at a receiver position is then

p(r, t) =
1

4π

q(t− r/c)
r

. (2)

If sound is emitted from several sources, the sound pressure at the receiver location is calculated as the sum
of the contributions of individual sources.

2.1. General principle

The Equivalent Source Method is based on placing sources outside the domain to satisfy boundary
conditions together with the original source located in the room. Equivalent sources can be defined as
monopoles or multipoles, and they can be distributed around the domain uniformly or not. The boundaries
are also discretized with control points. In this study, a uniform distribution of monopoles is considered as
illustrated in Fig. 1. The total number of equivalent sources and control points are respectively defined as
Ne and Nb. The strengths of the equivalent sources are then determined by solving the boundary condition
equations. The general case of impedance boundaries is explained in section 2.5, but the method is first
described with rigid boundaries for simplicity. In the case of rigid boundaries, the particle velocity u is
bound to zero in the normal direction:

u(t) · ηn = 0 . (3)

Bold characters are used to denote vectors. ηn is the unit normal vector to the surface pointing towards
the domain. The particle velocity and sound pressure are linked by the conservation of momentum in its
linearized form as

∂u

∂t
(t) = −1

ρ
∇p(t). (4)

By separating the sound pressure into incident and reflected pressures pi and pr, the boundary condition
equation can be written as

∇pr(t) · ηn = −∇pi(t) · ηn . (5)

The gradient of the incident sound pressure can be known exactly under the condition that the strength of
the original source has an analytical and differentiable expression. If this is not the case, an estimate can
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Figure 1: Uniform distribution of equivalent sources (red crosses) for a 2D interior problem.

be found from interpolation techniques. The reflected sound pressure, however, depends on the unknown
strengths of the equivalent sources. At a given control point b, the reflected sound pressure is the sum
of contributions from all equivalent sources pr(t) =

∑Ne

e=1 pbe(t). The boundary condition equation then
becomes

Ne∑
e=1

∇pbe(t) · ηn = −∇pi(t) · ηn . (6)

The pressure gradient from one equivalent source e can be expressed from Eq. (2) as

∇pbe(t) =
1

4π

(
−qe(t− rbe/c)

r2be
− 1

crbe

∂qe
∂t

(t− rbe/c)
)
ηbe , (7)

where qe is the strength of source e, rbe is the distance between point b and source e, and ηbe is the unit
directional vector from source e to point b. As numerical schemes cannot handle continuous time, the time
variable t is discretized as tn = n∆t, with n ∈ N and ∆t the time resolution. The travel time between source
e and point b can also be expressed in time steps as rbe/c = νbe∆t. This results in

tn − rbe/c = (n− νbe)∆t . (8)

However, νbe ∈ R unlike n. Therefore, the values of the equivalent source strengths must be interpolated.

2.2. Time interpolation

The process is explained here for linear interpolation, but a more general approach for any order desired
can be found in the appendix in section 7. The integer numbers surrounding νbe are defined as

ν−be ≤ νbe ≤ ν
+
be . (9)

Hence, the discrete time steps around (n− νbe)∆t are

(n− ν+be)∆t ≤ (n− νbe)∆t ≤ (n− ν−be)∆t . (10)
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Linear interpolation can then be applied to the source strength

qe ((n− νbe)∆t) =
(n− ν−be)∆t− (n− νbe)∆t

∆t
qe
(
(n− ν+be)∆t

)
+

(n− νbe)∆t− (n− ν+be)∆t
∆t

qe
(
(n− ν−be)∆t

)
. (11)

This expression can easily be simplified to give

qe ((n− νbe)∆t) = (νbe − ν−be)qe
(
(n− ν+be)∆t

)
+ (ν+be − νbe)qe

(
(n− ν−be)∆t

)
. (12)

From now on ∆t will be dropped in function arguments for clarity. Linear interpolation implies the first
order approximation to calculate derivatives. Applying it to the source strength time derivative yields

∂qe
∂t

(n− νbe) =
qe(n− ν−be)− qe(n− ν

+
be)

∆t
. (13)

Finally, injecting Eq. (12) and Eq. (13) in Eq. (7) results in

∇pbe(n) =
1

4π

(
−
νbe − ν−be
r2be

qe(n− ν+be)−
ν+be − νbe
r2be

qe(n− ν−be)

− 1

crbe

qe(n− ν−be)− qe(n− ν
+
be)

∆t

)
ηbe . (14)

After factorisation it can be rewritten as

∇pbe(n) =
1

4π

((
−
ν+be − νbe
r2be

− 1

crbe∆t

)
qe(n− ν−be)

+

(
−
νbe − ν−be
r2be

+
1

crbe∆t

)
qe(n− ν+be)

)
ηbe . (15)

2.3. Matrix form

The boundary equation to be solved at one control point is given by Eq. (6), which in discrete time
becomes

Ne∑
e=1

∇pbe(n) · ηn = −∇pi(n) · ηn . (16)

The left-hand side can be replaced by using Eq. (15)

Ne∑
e=1

1

4π

((
−
ν+be − νbe
r2be

− 1

crbe∆t

)
qe(n− ν−be)

+

(
−
νbe − ν−be
r2be

+
1

crbe∆t

)
qe(n− ν+be)

)
ηbe · ηn = −∇pi(n) · ηn . (17)

The scalar product is now defined as σbe = ηbe · ηn. At this point, the factors multiplying qe(n − ν−be) and
qe(n− ν+be) are written respectively as matrices A,B ∈ RNb×Ne , which components are

Abe =
1

4π

(
−
ν+be − νbe
r2be

− 1

crbe∆t

)
σbe , (18)

Bbe =
1

4π

(
−
νbe − ν−be
r2be

+
1

crbe∆t

)
σbe . (19)
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It can be seen in this expression that the matrices A and B are independent of time. However, the system
of equations cannot be set in matrix form yet. Indeed, the arguments of the source strengths in qe(n− ν−be)
and qe(n − ν+be) depend on the pair be of equivalent source and control point. Therefore A and B need to
be decomposed into matrices corresponding to the discrete time steps. For this purpose, the values of ν−be
and ν+be are sorted as

ν0 = min(ν−be) , (20)

νk = ν0 + k , (21)

with k ∈ N. The matrix decomposition is then carried out as follows

A =
n∑

k=0

Ak , (22)

B =
n∑

k=1

Bk , (23)

with

Ak,be =

{
Abe if ν−be = νk

0 otherwise
, (24)

Bk,be =

{
Bbe if ν+be = νk

0 otherwise
. (25)

This allows to write the boundary condition equation in matrix form

A0q(n− ν0) +

n∑
k=1

(Ak +Bk)q(n− νk) = −∇pi(n) · ηn . (26)

In this equation q ∈ RNe×1 and pi ∈ RNb×1. The equation can be rearranged to have all the known
information from already solved previous time steps on the right-hand side, leading to

A0q(n− ν0) = −∇pi(n) · ηn −
n∑

k=1

(Ak +Bk)q(n− νk) . (27)

This problem is solved by inverting the matrixA0, which is independent of the time step. Therefore it is only
needed to perform the matrix inversion once for the whole simulation. Moreover, A0 is sparse as seen from
its construction in Eq. (24), making the inversion easier to compute. One of the properties of the Equivalent
Source Method is the possibility to have more control points than sources. This leads to an overdetermined
problem, and consequently the matrix A0 to be inverted is rectangular. In this paper, this inversion is done
through non-truncated singular value decomposition: the matrix is decomposed as A0 = USV T , with S
the diagonal matrix of singular values, and U and V the corresponding matrices of singular vectors. The
inverse matrix is then calculated as A−10 = V S−1UT . As a consequence, the least-square solution to the
system of equations is found.

2.4. Boundary discretization

The discretization of the domain boundary plays an important role in the Equivalent Source Method.
The number of non-zero elements in the matrix A0 to be inverted depends on the positions of equivalent
sources and control points. Indeed, only the elements of A that correspond to ν−be = ν0 are retained in A0.
In other words, for each equivalent source, only the control points that are reached within the first time step
of arrival are taken into account to determine its strength. Discretization must therefore be performed with
care.
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Figure 2: Close-up illustration of the discretization of a surface in the Equivalent Source Method. Blue dots:
control points; Red crosses: equivalent sources.

Several parameters govern how the domain boundary is discretized. These parameters consist of the
spacing between control points hp, the spacing between equivalent sources hs, and the orthogonal distance d
between equivalent sources and the surface they are related to. The parameters hs and hp are linked by the
ratio κ = hs/hp. The distance between an equivalent source and the orthogonal projection of its neighbour

is also defined as L =
√
d2 + h2s. An illustration of the geometry with the different parameters is given in

Fig. 2. The relative positions of control points and equivalent sources can be decided freely. If control points
are located at the orthogonal projections of the equivalent sources on the boundary, singularity can occur
from the 1/rbe terms in matrices A and B when the value of d approaches 0. In this study it is chosen to
keep the equivalent sources in central positions between control points with the value of κ equal to a power
of 2. This allows to avoid potential singularities and ensures that at least four control points are used to
determine the strength of a source.

Nevertheless, the choice of locating equivalent sources centrally relative to control points also affects the
scalar product σbe = ηbe · ηn found in Eq. (18,19). This choice implies that the value of the scalar product
σbe varies together with the orthogonal distance d. Indeed, when d tends to 0, the vectors ηbe and ηn
approach orthogonality and their scalar product tends to 0. This is most influential on the nearest control
points to an equivalent source, and hence on matrix A0. As a consequence, larger values of qe are needed
to satisfy the boundary conditions when d tends to 0. Inversely, the value of σbe grows as d increases, and
lower values of qe are found to solve the boundary condition equation.

Although there are κ2 control points per equivalent source in a simulation, it is important to note that
not necessarily κ2 points are reached by a source in the shortest time interval. The number of these points
retained with non-zero elements in A0 depends indeed on the travel times between the sources and control
points and on the sampling frequency. The number of control points taken into account to solve the strength
of one equivalent source is noted γ. If γ = κ2, every control point is reached within the shortest time interval
by only one source and is used to solve its strength. In this case, each line of A0 has one non-zero element. If
γ < κ2, some control points are not reached within the shortest time interval by any source. This means that
their corresponding equations are not used to solve the system, and in the matrix A0 their corresponding
lines contain only zeros. On the contrary, when γ > κ2, some control points are used to solve the strength
of more than one source, hence increasing the coupling of the system. Some lines of A0 then have more than
one non-zero element.
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2.5. Finite impedance boundaries
When considering boundaries with finite impedances the boundary condition becomes

u(t) · ηn = p(t) ∗ ya(t) , (28)

with ya(t) the surface admittance expressed in the time domain. The equation is differentiated over time to
apply the conservation of momentum, and the derivative of the convolution on the right-hand side can be
written [15]

∂ (p ∗ ya)

∂t
(t) =

∂p

∂t
(t) ∗ ya(t) . (29)

The incident and reflected sound pressure are then separated to obtain

1

ρ
∇pr(t) · ηn +

∂pr
∂t

(t) ∗ ya(t) = −1

ρ
∇pi(t) · ηn −

∂pi
∂t

(t) ∗ ya(t) . (30)

Similarly to ∇pi(t) ·ηn previously, ∂pi

∂t (t)∗ya(t) is a straightforward calculation if the strength of the original
source is known analytically. Moreover the discretization of ∇pr(t) · ηn has already been described in Eq.
(15). Thus, only ∂pr

∂t (t) ∗ ya(t) needs to be derived in a suitable form for matrix equation. From Green’s
function in Eq. (2) and first order approximation of the derivative in Eq. (13), the convolution operation
at one control point b for one equivalent source e is

∂pbe
∂t

(n) ∗ ya(n) =
1

4πrbe∆t

M∑
m=0

(
qe(n− ν−be −m)− qe(n− ν+be −m)

)
ya(m) , (31)

with M the truncation limit. The terms of the convolution corresponding to m = 0 are separated to isolate
qe(n− ν−be)

∂pbe
∂t

(n) ∗ ya(n) =

(
ya(0)

4πrbe∆t
(qe(n− ν−be)− qe(n− ν

+
be))

+
1

4πrbe∆t

M∑
m=1

(
qe(n− ν−be −m)− qe(n− ν+be −m)

)
ya(m)

)
. (32)

The convolution corresponding to the total reflected sound pressure at one control point is then

∂pr
∂t

(n) ∗ ya(n) = hb(n, νbe) +

Ne∑
e=1

ya(0)

4πrbe∆t
(qe(n− ν−be)− qe(n− ν

+
be)) , (33)

with

hb(n, νbe) =

Ne∑
e=1

1

4πrbe∆t

M∑
m=1

(
qe(n− ν−be −m)− qe(n− ν+be −m)

)
ya(m) . (34)

All the elements composing hb are known information from previous time steps, it can thus be computed
as it is. Moreover, if the surface impedance is constant over frequency, ya(m) = 0 for m ≥ 1 and it follows
that hb(n, νbe) = 0. At this point it is seen from Eq. (33) that matrices A and B defined in Eq. (18,19) are
modified and become

A′be =
1

4π

(
−
ν+be − νbe
r2be

− 1

crbe∆t

)
σbe +

ya(0)

4πrbe∆t
, (35)

B′be =
1

4π

(
−
νbe − ν−be
r2be

+
1

crbe∆t

)
σbe −

ya(0)

4πrbe∆t
. (36)

The matrix decomposition process is then carried out in the same manner, and the whole system takes the
following matrix form

A′0q(n− ν0) = −∇pi(n) · ηn −
n∑

k=1

(A′k +B′k)q(n− νk)− ∂pi
∂t

(n) ∗ ya(n)− h(n) . (37)

This system is solved by inverting matrix A′0 which is still sparse and time-independent.
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(a) Time domain.
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(b) Frequency domain.

Figure 3: Signal emitted by the original source.

2.6. Methods used as references

The Edge Diffraction Method by Svensson [16, 17] is taken as reference for the simulation of the single-
plane reflection in section 3. It is based on Biot and Tolstoy’s [18] theory on diffraction of wedges and
calculates the response to a delta pulse. The response can then be convoluted with the source signal in Fig.
3.

The exact solution for a rectangular box with rigid boundaries can be found with the Image Source
Method, as well as a good estimate for the uniform impedance boundary condition [19, 20]. This method is
thus chosen as a reference for the calculation of the impulse response in a rectangular room in section 4.

3. Parametric study

3.1. Numerical setup

All the sources in the simulation are considered as monopoles. The original source is set to emit a
sine-modulated Gaussian pulse with a source strength

q(t) = −αe−
(t−t0)2

2s2 sin(ω0(t− t0)) . (38)

α is the amplitude of the Gaussian pulse, t0 defines the peak of the Gaussian pulse and the zero-crossing
of its sine-modulated version, s is the bandwidth parameter of the pulse (corresponding to the standard
deviation in a Gaussian distribution), and ω0 = 2πf0 is the angular frequency of the modulation. These
parameters are set to α = 1 Pa.m, t0 = 10 ms, s = 1 ms, and f0 = 150 Hz. The resulting time signal and its
frequency content are plotted in Fig. 3 with a sampling frequency fs = 2400 Hz. This sampling frequency
is used for all the simulations presented later, although it is seen that the half-power bandwidth of the
input signal ranges from 29 Hz to 427 Hz and very little energy is present above 600 Hz. The function q(t)
was chosen as input signal for two reasons. The first one is the smoothness of the Gaussian pulse, which
provides a finite frequency spectrum. The second reason is that numerical simulations in enclosures need a
zero-mean input signal to avoid instabilities; hence, the modulation on the pulse. Indeed, input signals with
a non-zero mean pressures lead to a high quasi-static pressure component (also called cavity mode), which
is problematic for the Boundary Element Method and the Equivalent Source Method [21].

In order to determine the optimal values for the geometry parameters mentioned previously, the reflection
of sound on a single and finite hard plane is investigated. This test case was chosen because it includes
both specular reflection and diffraction, two important aspects at low frequencies. The plane is modelled
infinitely thin, meaning that the sound field from the Equivalent Source Method is only valid in front of it. 15
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(a) d = 0.51m, stable simulation.
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(b) d = 1.05m, unstable simulation.

Figure 4: Signal emitted by an equivalent source located at (x, y, z) = (−0.55 m,−d, 1.64 m) for hp = 274 mm
and κ = 4.

simulations have been performed, corresponding to the five values of hp (53.6 mm, 85.8 mm, 143mm, 214mm,
274mm) combined with the three values of κ (2 , 4 , 8). For each simulation the orthogonal distance d was
varied from hp/100 to 10hp in 20 logarithmic steps. The rigid plane is centered on the origin with lengths
of 6 m in the x-direction and 4 m in the z-direction. The sound source is placed at (−1 m, 2.5 m, 0.5 m). The
sound pressure is calculated on a horizontal grid of receivers at z = −0.5 m and ranging from x = −3 m
to x = 3 m and from y = 0 m to y = 4 m, with the distance between receivers being 0.1 m. The error
estimate ε at one receiver is defined as the mean squared error normalized by the mean squared pressure of
the reference

ε =

∑N
n=0(p(n)− p0(n))2∑N

n=0 p0(n)2
, (39)

N being the index of the last time step in the simulation, p the sound pressure obtained from the Equivalent
Source Method, and p0 the sound pressure from the reference method. This error is then averaged over all
positions defined in the receiver grid to obtain the global error estimate of a simulation ε.

3.2. Stability conditions

The main issue of the Equivalent Source Method is its potential instability. To investigate this phe-
nomenon, the signals emitted by one equivalent source in a stable and an unstable situation are shown in
Fig. 4. They were obtained for hp = 274 mm, κ = 4, and respectively d = 0.51 m and d = 1.05 m. The
signal of the equivalent source is first explained for the stable case. The first dip and two peaks are the
response of the source to the incident sound field. The ripples following the second peak then correspond
to the source reacting to the sound field coming from other equivalent sources in the simulation. Two
important differences can be observed in the unstable case. First, the amplitude of the ripples is much
larger and even reaches values comparable to the first peaks and dip. Secondly, the first ripple seems to
happen simultaneously with the second peak of the response to the incident sound. This indicates that the
equivalent sources have a large influence on each other, leading to an unstable feedback loop process where
the signal amplitudes keep growing with time.

Stability therefore depends on how much influence each equivalent source has on its neighbours. This
influence is assessed with the quantity d/L. If d and L have comparable values, the sound pressure from
an equivalent source measured on its closest control points and on its neighbour’s closest control points will
be similar. On the contrary, if the ratio d/L takes a small value, the sound pressures on the source’s and
its neighbour’s points will be well separated in time and amplitude. To investigate this, the global error ε
measured in the 15 simulations performed was plotted as a function of d/L. The results are shown in Fig.

9



5 with one plot for each value of κ. In this section the focus is put on the onset of instability, that is
the points where the error curves show a sudden change. It can be seen that instability arises at similar
values of d/L for the different simulation setups. The lowest value leading to instabilities was found to be
d/L = 0.37. Thus, it is estimated that the Equivalent Source Method should produce stable simulations as
long as d/L < 1/3. It can be expressed in terms of directly controllable parameters as

d√
d2 + h2s

<
1

3
. (40)
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Figure 5: Error measured in the ESM simulations. Solid blue line: hp = 53.6 mm; Dotted red line: hp =
85.8 mm; Dash-dotted yellow line: hp = 143 mm; Dashed purple line: hp = 214 mm; Circled green line:
hp = 274 mm.
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Figure 6: Sound pressure at a receiver point located at (x, y, z) = (0.65 m, 1.05 m,−0.50 m) for hp = 143 mm
and κ = 4. Solid blue line: reference sound pressure; Dotted red line: ESM with d/L = 0.022; Dash-dotted
yellow line: ESM with d/L = 0.066.

3.3. Accuracy of the results

As seen in Fig. 5b and Fig. 5c, the error ε as a function of d/L can have two local minima. The sound
pressure found in simulations on either side of the first local minimum with hp = 143 mm and κ = 4 is
shown in Fig. 6 for a receiver located at (x, y, z) = (0.65 m, 1.05 m,−0.50 m). The results indicate that
the Equivalent Source Method tends to overestimate the amplitude of the specular reflection for low values
of d/L. The sound pressure amplitude then decreases when d/L increases, and the specular reflection is
eventually underestimated until instability arises. This agrees with the expected influence of the scalar
product described in section 2.4. The first local minimum then corresponds to the pivot point between
overestimate and underestimate. However, the diffraction effect which are seen with an onset at 0.023 s
are underestimated in both the curves presented. This shows that the accuracies of the specular reflection
and of the diffraction effect depend on different parameters. Nevertheless, the global error appears to be
dominated by the specular error. This error should therefore be minimized as the first priority.

It is desirable to know which parameter values can lead to the first local minimum as it is less likely to
be affected by instability issues. Moreover, ε exhibited little variation with respect to hp as long as κ was
kept constant. Consequently, the ratio (d/L)0 yielding the first local minimum has been recorded together
with the value ε0 of the error at this point. This was done for 12 of the 15 simulations, as three cases with
κ = 8 exhibited too large of an error to have a meaningful minimum. This can be explained by their large
values of hs, where equivalent sources are indeed more than 1 m apart from each other. It can be observed
from Fig. 5 that the value of (d/L)0 is roughly divided by 8 when κ is doubled. It suggests a relation
(d/L)0 ∝ κ−3, and applying regression analysis to the data with this assumption finds

(d/L)0 = 3κ−3 (41)
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Figure 7: Parameter relation leading to highest accuracy in ESM simulations. Blue crosses: data from
simulations; Red plus signs: regression from Eq. (41).

with an R2 value of 0.86. The data and regression can be seen in Fig. 7. Rewriting Eq. (41) with directly
controllable parameters gives

d0√
d20 + h2s

= 3κ−3 . (42)

In cases where κ = 2 Eq. (42) returns d0/
√
d20 + h2s = 0.375, a value slightly above the stability limit

estimated in Eq. (40). Although the estimate is not a strict limit and local minima could still be found, it
does indicate that simulations with κ = 2 have a high risk of being unstable if Eq. (42) is followed.

The data points ε0 collected suggest that the minimal error depends on the spacing between equivalent
sources hs. This is a sensible result, as the density of sources impacts directly how well a wavefront can
be reproduced. The relationship between these two quantities is plotted in Fig. 8. It is observed that the
minimal error takes lowest values for hs < 0.5 m, reaching a limit at ε0 = 2.5%. As discussed previously,
the global error is dominated by the error on the specular reflection. Consequently, the minimal error
ε0 corresponds to the lowest specular error. It follows therefrom that the limit ε0 = 2.5% represents the
remaining diffraction error. When hs > 0.5 m, the minimal error increases together with the spacing between
equivalent sources. It is known that accuracy is linked to the number of sources per wavelength of the signal
to be reproduced [22]. The present threshold corresponds to 1.6 equivalent sources per wavelength at the
higher limit of the half-power bandwidth of the input signal. It can then be recommended for maximal
accuracy to implement at least 2 equivalent sources per wavelength at the highest frequency desired.

When performing an acoustic simulation, the geometry parameters need to be fixed prior to the calcula-
tions. In the Equivalent Source Method, this concerns d and two of the three interdependent quantities hp,
hs and κ. It has been shown that the spacing of the control points hp influences neither the stability nor
the accuracy of the simulation. It can therefore be left aside and determined by the values given to hs and
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κ. The spacing between equivalent sources hs, however, determines the accuracy of the simulation. From
the results presented its value should be set to respect 2 sources per wavelength at the highest frequency
simulated. Although κ was not found to affect accuracy, it influences both the stability and the computation
time of the simulation. For a given hs, κ determines the spacing of control points. Therefore, it determines
the number of control points in the simulation, and hence the number of equations in the system to be
solved. For computation efficiency it is then desired to keep κ as low as possible. It was seen, however,
that κ = 2 leads to a high risk of instability. Thus, it is recommended to set κ = 4. Finally, with hs and κ
fixed, the orthogonal distance d between the equivalent sources and the surface can be found according to
Eq. (42) for best accuracy.

3.4. Effect of higher order time interpolation

The previous results were obtained by applying linear time interpolation to the boundary equation. It is
however possible to use a higher order interpolation in an attempt to reach higher accuracy. This is verified
here with quadratic time interpolation. The errors obtained from linear and quadratic interpolations are
compared in Fig. 9 with the geometric parameters hp = 85.8 mm and κ = 4. It is seen that the errors for
the two interpolation cases are very similar for d/L < 0.2. The quadratic interpolation simulation however
becomes unstable past this value, whereas the linear case remains stable until d/L = 0.5. Furthermore, the
computation time with quadratic interpolation is about 50% larger due to an extra history term involved on
the right-hand side of the equation. Hence, it is found that there is nothing to be gained from using higher
order time interpolation in the Equivalent Source Method.
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Figure 9: Error measured in the ESM simulations with hp = 85.8 mm and κ = 4. Solid blue line: quadratic
interpolation; Dashed red line: linear interpolation.

4. Solving an interior problem

The Equivalent Source Method in the time domain is now to be applied to an interior problem. The
goal is to investigate whether the previous findings on stability and accuracy hold in such a situation. The
simulation test case is a rectangular box with dimensions (6 m, 5 m, 2 m) centered on the origin. The
source is located at (−1 m, 0 m, −0.5 m) and the receivers are defined on a horizontal grid at z = 0.5 m
with a spacing of 0.1 m covering the whole area. The impulse response is calculated until t = 0.1 s. Two
boundary conditions are considered: rigid walls and constant impedance. In the latter case, the surface
impedance is set to Za = 3ρc uniformly over all surfaces; it is thus real-valued, frequency-independent and
angle-independent. In the Image Source Method used as reference, the reflection coefficient is either set to
R = 1 or R = 0.5, which respectively correspond to infinite surface impedance and Za = 3ρc when assuming
normal incidence and surface dimensions much larger than the wavelength. The reflection coefficient R = 0.5
is approximated to be constant over all incidence angles, the reference simulation from the Image Source
Method is therefore not an exact solution. However, given the conditions of the test case, it is estimated
that this approximation does not critically affect the results [19]. Error plots are created again from the
simulations for κ = 4 and hp = (85.8 mm, 143mm, 214mm), and they are shown in Fig. 10. The simulations
performed with the two boundary conditions considered exhibit similar behaviours. It can be seen that the
stability condition in Eq. (40) still has to be respected for an interior problem. The simulations are indeed
stable up to d/L = 0.50 for hp = 85.8 mm and d/L = 0.38 for hp = (143mm, 214mm). However, a new
instability arises for low ratios d/L. The onset of this instability corresponds to the value in Eq. (41) that
lead to highest accuracy for the single-plane reflection. As already mentioned, this value corresponds to the
pivot point between overestimating and underestimating the amplitude of the sound field. Consequently,
when d/L < 3κ−3, the sound pressure amplitude on the control points coming from the equivalent sources is
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larger than should be. In return, the equivalent sources’ reactions to this sound pressure are overestimated
again. This process occurs at every new reflection and builds up to create the instability. Therefore, the
stability condition of the Equivalent Source Method for an interior problem is approximately

3κ−3 <
d

L
<

1

3
. (43)

It is also seen that simulations are more accurate when d/L approaches the instability thresholds. Never-
theless, even in the stability region, the error is found to be high with ε between 70% and 90% for rigid walls
and between 20% and 40% for the impedance boundary condition. An example of the sound pressure at one
receiver located at (x, y, z) = (0.65 m,−1.45 m, 0.50 m) for hp = 143 mm and d/L = 0.094 is given in Fig.
11. It is observed that the sound pressure calculated with the Equivalent Source Method is largely atten-
uated compared to the reference with both boundary conditions. This is due to the fact that the stability
region corresponds to values of d/L when the specular reflection amplitude is underestimated. Similarly to
the overestimation leading to instability, the underestimation is amplified at every reflection and results in
numerical damping. Because some damping is already present in the model when the surface impedance is
finite, numerical damping is less important in the case where Za = 3ρc than with rigid walls.
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Figure 10: Error measured in the ESM simulations. Solid blue line: hp = 85.8 mm; Dashed red line:
hp = 143 mm; Dash-dotted yellow line: hp = 214 mm.
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(a) Rigid walls.
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Figure 11: Sound pressure at a receiver point located at (x, y, z) = (0.65 m,−1.45 m, 0.50 m) for hp = 143 mm
and d/L = 0.094. Solid blue line: reference sound pressure; Dotted red line: Equivalent Source Method.
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5. Discussion

In their study [12], Lee, Brentner and Morris tackled instability by truncating singular values in the
matrix inversion operation. Such a procedure can lead to inaccuracies due to energy loss, which was addressed
with a time-averaging scheme as a complement strategy. In the present study, the understanding of the
mechanism leading to instability is furthered, allowing to ensure a stable simulation from the geometric
setup stage. From two-dimensional scattering problems, they also suggested guidelines for result accuracy.
They notably suggested that the number of equivalent sources should be a quarter of the number of control
points. This is in agreement with the recommendation κ = 4 given in the present work from a three-
dimensional problem, which corresponds to 16 control points per equivalent source. Another suggestion
they made was to position equivalent sources on an 80% scale of the scattering object. This differs from the
results found in this paper, where the orthogonal distance d between the equivalent sources and the surface
is recommended to be set according to the spacing between sources hs and the spacing ratio κ between
control points and equivalent sources.

The study presented here is limited in a few aspects. Firstly, only flat surfaces have been considered.
Although curved surfaces can be discretized into flat pieces, the difference in geometry could have an
influence on how equivalent sources interact. Secondly, the equivalent sources were always centered between
four control points in the simulations performed. The results obtained are expected to be different in other
conditions, especially if sources are positioned in the center of nine control points. Investigation on the
influences of the input signal and the sampling frequency were also overlooked by the focus of the study on
geometric parameters. Finally, the error associated to the modelling of the diffraction effect has not been
separated from the error on specular reflection. Additional guidelines for the accuracy of simulations could
potentially be found by investigating the diffraction effect in more details.

Furthermore, computation efficiency has not been thoroughly investigated. The Equivalent Source
Method has the advantage that only boundaries need to be discretized. Therefore, the computational
load grows with the surface area of the domain and not its volume. Another advantage of the Equivalent
Source Method in the time domain is that only one matrix inversion needs to be performed to solve the
problem. The calculation occurring for a new time step then consists of a matrix multiplication. As a
consequence, the computational load grows linearly with the length of the impulse response. In addition the
matrix to be inverted is even sparse, making the inversion operation easy to handle. The construction of
this matrix can nonetheless generate a significant number of lines containing only zeros when κ > 2. These
unnecessary equations significantly increase the size of the system, which affects all the calculations. An
important efficiency gain can thus be found.

Lastly, the numerical damping occurring with interior problems remains an unsolved issue. If the amount
of underestimation for a single reflection can be predicted, numerical damping could then be compensated by
correcting the source strengths when solving the system of equations at each time step. Another approach
would be to combine equivalent sources with another simulation method. The second method could account
for the main part of the sound field with specular reflections while the equivalent sources solve the remaining
part with diffraction effects notably. The impact of numerical damping would thus be limited by the small
amount of energy contained in the contributions from equivalent sources.

6. Conclusion

The present paper provides a better understanding of the Equivalent Source Method in the time domain.
The formulation of the problem has been given for rigid and impedance boundary conditions, as well as for
any time interpolation order. It has been showed that instability in simulations arises when the equivalent
sources have too much influence on each other. This can be avoided by placing the sources close enough
to the boundary, thus ensuring a stable simulation before calculations are performed. It was also observed
that a higher time interpolation order does not improve accuracy and makes stability conditions stricter.
Linear time interpolation is therefore sufficient for the method. Moreover, it has been found from the study
of single-plane reflection that the Equivalent Source Method can overestimate or underestimate the reflected
sound pressure depending on the geometric parameters. Following this, guidelines have been established to
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setup simulations yielding accurate results. These findings have been further tested with an interior problem
consisting of a rectangular box. It was observed that the overestimation and underestimation phenomena
occurring for a single plate are replicated at every reflection on the domain boundary. As a result, the errors
propagate in the simulation and lead to either instability or large numerical damping. A solution to the
numerical damping would therefore be required in order to apply the Equivalent Source Method to room
acoustics.

7. Appendix: General order time interpolation

Given an arbitrary function f evaluated on discrete steps xj , Lagrange polynomials can be employed in
order to interpolate its values [23]. The interpolation of f on the interval {x ∈ R | x0 ≤ x ≤ xk} is

L(x) =
k∑

j=0

f(xj)lj(x) . (44)

k is the order of the polynomial interpolation, and the Lagrange basis polynomials lj(x) are defined as

lj(x) =
k∏

m=0
m6=j

x− xm
xj − xm

. (45)

In the case k = 1 this is equivalent to linear interpolation. The derivative of f can also be obtained by
deriving the interpolated function L(x):

∂L

∂x
(x) =

k∑
j=0

f(xj)
∂lj
∂x

(x) ; (46)

∂lj
∂x

(x) = lj(x)

k∑
m=0
m6=j

1

x− xm
. (47)

Lagrange polynomial interpolation is applied to the equivalent source strength qe by setting x = (n−νbe)∆t
and xj = njbe∆t, with njbe integer numbers. Moreover, in the present case it is considered that nk−1be ≤
n− νbe ≤ nkbe. It is then possible to write

qe ((n− νbe)∆t) =
k∑

j=0

qe(n
j
be∆t)lj ((n− νbe)∆t) ; (48)

lj ((n− νbe)∆t) =
k∏

m=0
m6=j

(n− νbe)∆t− nmbe∆t
njbe∆t− nmbe∆t

. (49)

As for the time derivative of the source strength:

∂qe
∂t

((n− νbe)∆t) =

k∑
j=0

qe(n
j
be∆t)

∂lj
∂t

((n− νbe)∆t) ; (50)

∂lj
∂t

((n− νbe)∆t) = lj ((n− νbe)∆t)
k∑

m=0
m6=j

1

(n− νbe)∆t− nmbe∆t
. (51)

The discrete time steps njbe around n − νbe can be related to the current time step n by introducing their

corresponding travel times: njbe = n − νjbe, with νjbe integer numbers. It follows that νkbe ≤ νbe ≤ νk−1be ≤
... ≤ ν0be. This is illustrated in Fig. 12. Replacing the terms in Eq. (49) and (51) then produces
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Figure 12: Time steps and travel times used in the Lagrange interpolation.

lj ((n− νbe)∆t) =
k∏

m=0

m 6=j

νmbe − νbe
νmbe − ν

j
be

; (52)

∂lj
∂t

((n− νbe)∆t) = lj ((n− νbe)∆t)
k∑

m=0
m 6=j

1

(νmbe − νbe)∆t
. (53)

It can be seen that the Lagrange basis polynomials only depend on the travel time νbe from source e to
point b, and not on the current time step n. The notation is then simplified to lj(νbe) and

∂lj
∂t (νbe). From

Eq. (48) and (50), the terms corresponding to the most advanced time step nkbe∆t can be isolated, resulting
in

qe ((n− νbe)∆t) = qe(n
k
be∆t)lk(νbe) +

k−1∑
j=0

qe(n
j
be∆t)lj(νbe) ; (54)

∂qe
∂t

((n− νbe)∆t) = qe(n
k
be∆t)

∂lk
∂t

(νbe) +

k−1∑
j=0

qe(n
j
be∆t)

∂lj
∂t

(νbe) . (55)
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Lastly, Eq. (7) is rewritten with the expressions from Eq. (54) and (55):

∇pbe(n∆t) =
1

4π

(
−
(
lk(νbe)

r2be
+

1

crbe

∂lk
∂t

(νbe)

)
qe(n

k
be∆t)

−
k−1∑
j=0

(
lj(νbe)

r2be
+

1

crbe

∂lj
∂t

(νbe)

)
qe(n

j
be∆t)

ube . (56)

This equation can then be used instead of Eq. (15) to derive the matrix form of the problem.
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1. Introduction

In a recent article [1], the present authors together with Svensson have presented an application of the
Equivalent Source Method (ESM) in the time domain to interior problems. The stability region for the
geometric parameters has notably been determined, but several issues that have been left unresolved are
addressed here. Firstly, many unnecessary equations were included in the system of equations describing
the problem, making the computation inefficient. This can be solved by an alternative discretization of the
boundary with control points. Secondly, simulation results were hindered by numerical damping. In the
present study, image sources are introduced in addition to the equivalent sources in an attempt to improve
accuracy.

2. Alternative surface discretization for the Equivalent Source Method

Both equivalent sources and control points were distributed uniformly in [1] to discretize the surfaces
in the domain. Their respective spacings are noted hs and hp, with the ratio κ = hs/hp. The equivalent
sources were positioned to always be centrally located between four control points, thus binding the value
of κ to a power of 2. Furthermore, the study recommends to set κ = 4 for simulations, leading to 16 control
points per equivalent source as shown in Fig. 1a. Each control point in the simulation corresponds to one
equation in the system to be solved. However, the control points that are not reached by any equivalent
source within the shortest time interval yield lines containing only zeros in the matrix A0 describing the
system [1].

In order to avoid these unnecessary equations and reduce the size of the system, a non-uniform distri-
bution of control points is introduced. For each equivalent source, a square of 4 control points is defined
with side hp and centered on the orthogonal projection of the source on the surface, as illustrated in Fig.
1b. An analogy can be seen with nonconforming linear elements in the Boundary Element Method [2].
This distribution can guarantee that every line of the matrix A0 contains exactly one non-zero element.
The ratio κ can also take any value desired while maintaining equivalent sources centrally located between
control points, unlike the uniform distribution case. The results obtained with this alternative discretization
are compared to those from [1] for the single reflection on a finite rigid plate. The error plots from both dis-
cretization techniques for hs = 343 mm and κ = 4 are shown in Fig. 2. For the homogeneous discretization
12 control points were reached within the shortest time interval by each source, meaning that 1/4 of the
lines in A0 contained only zeros. The two error plots are seen to be highly similar, with the same tendencies
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Figure 1: Close-up front view of the discretization of a surface. Blue dots: control points; Red crosses:
equivalent sources.
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Figure 2: Error measured in the ESM simulations with hs = 343 mm and κ = 4. Dashed red line: results
from [1]; Solid blue line: alternative discretization.
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regarding stability and accuracy. In terms of efficiency, the alternative discretization is found to save 45% of
computation time for this test case. The distribution of control points described in the present paper thus
appears to give a large gain of computation time without altering the accuracy of the simulations.

3. The Image-Equivalent Source Method

3.1. Theory

Image sources are very efficient to model early specular reflections [3, 4]. The main drawbacks of the
Image Source Method are the lack of diffraction and the computational load that increases exponentially
with the duration of the calculated impulse response. On the other hand, the Equivalent Source Method
does not suffer from the duration of the response as computational load only grows linearly. However, the
accuracy of the results for interior problems is hindered by numerical damping [1]. By incorporating low-
order image sources in the equivalent source algorithm, the early part of the time response where most of
the acoustic energy is present can be simulated accurately, while the late part and the diffraction effects are
modelled with equivalent sources. Hence, the drawbacks aforementioned for both methods are mitigated.

Combining image and equivalent sources in one method is a rather easy process. The largest part of
the algorithm remains identical to the Equivalent Source Method, and only the construction of the incident
sound field is altered. In addition to the original sound source, image sources up to an arbitrary order are
positioned in the domain. The incident sound pressure pi(t) then becomes the sum of the contributions from
the original source and from the M image sources

pi(t) =

M∑
m=0

pm(t) . (1)

The strengths of the equivalent sources are then calculated from the boundary condition equation without
any further change in the derivation of the system. The sound pressure equation for a boundary with finite
impedance is

1

ρ
∇pr(t) · ηn +

∂pr
∂t

(t) ∗ ya(t) = −1

ρ
∇pi(t) · ηn − ∂pi

∂t
(t) ∗ ya(t) , (2)

with pr(t) the reflected sound pressure, ya(t) the surface admittance in the time domain, and ηn the normal
unit vector to the surface. The rigid boundary condition can be obtained by setting ya(t) = 0. The final
matrix formulation of the problem is found in [1].

3.2. Simulation results

The Image-Equivalent Source Method (IESM) is applied to the rectangular box test case with uniform
surface impedance Za = 3ρc from [1]. The box has the dimensions (6 m, 5 m, 2 m), and the image sources
are set to account for reflections up to 0.01 s after the onset of the original source. The control points
are distributed on the surfaces according to the discretization described in section 2. The sound pressure
calculated at one receiver position is shown in Fig. 3 and compared with the reference and the results from
the Equivalent Source Method. As expected, it is observed that the early reflections are simulated more
accurately with the help of image sources in the IESM. After 0.03 s in the response, however, the numerical
damping coming from the equivalent sources is seen to take effect as image sources do not contribute to the
sound field anymore. The error plot of the Image-Equivalent Source Method is given in Fig. 4 for κ = 4 and
three different values of hs, with the same error estimate as defined in [1]. In the stable region, the global
error of the simulations is comprised between 6% and 10%. It is a significant improvement compared to the
error of the ESM ranging between 20% and 40% in the same conditions in [1]. The addition of image sources
to the Equivalent Source Method can therefore be seen as an interesting solution to inaccuracy issues.
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Figure 3: Sound pressure at a receiver point located at (x, y, z) = (0.65 m,−1.45 m, 0.50 m) for hp = 143 mm
and d/L = 0.094. Solid blue line: reference sound pressure from [1]; Dotted red line: Equivalent Source
Method from [1]; Dash-dotted yellow line: Image-Equivalent Source Method.

4



10
-1

10
-2

10
-1

10
0

10
1

10
2

Figure 4: Error measured in the IESM simulations with κ = 4. Solid blue line: hs = 343 mm; Dashed red
line: hs = 572 mm; Dash-dotted yellow line: hs = 856 mm.
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4. Discussion and conclusion

A rectangular box has been simulated in this study to allow the comparison with [1]. Yet, it is not an ideal
test case to assess the Image-Equivalent Source Method. Diffraction indeed does not occur in such a space.
Hence, an important argument for including equivalent sources in the method cannot be verified. Moreover,
results from the Image Source Method were taken as reference simulations. Consequently, calculations with
the IESM bear the reference solution of the sound field up to the time when equivalent sources take over.
The error estimate is therefore biased. The work presented here should then be taken as a proof of concept
for the combination of image and equivalent sources, and further validation of the method should be pursued.

The main challenge of the Image-Equivalent Source Method consists in setting the limit for maximum
order of image sources. Because a high order leads to better accuracy at the cost of a large computational
load, a compromise has to be found for application to room acoustic simulations. A potential solution could
be to define a threshold for the energy emitted by a source. Image sources can then be implemented up to
the order corresponding to that threshold or up to a predefined maximum order if the threshold is too low
to reach within reason, a situation that can occur in the case of two low-absorbing parallel walls.

In addition, computation time of the Equivalent Source Method, and thereby the Image-Equivalent
Source Method, can be greatly reduced thanks to a non-uniform distribution of control points on the
boundary. It has indeed been found that implementing only four control points per equivalent source for
κ > 2 does not compromise accuracy. When following recommendations from [1], the number of equations
in the system is divided by four with this alternative discretization. Such a decrease in the size of the system
therefore leads to a large efficiency gain.
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