
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: May 05, 2024

Flexible Utilization of Transmission Grid Capacity for Wind Power Integration.

Viafora, Nicola

Publication date:
2020

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Viafora, N. (2020). Flexible Utilization of Transmission Grid Capacity for Wind Power Integration. Technical
University of Denmark.

https://orbit.dtu.dk/en/publications/d52cb4b0-ed1d-42a3-9a14-bf9da53c4af1


Center for Electric Power and Energy

Flexible Utilization of Transmission Grid
Capacity for Wind Power Integration

Nicola Viafora
PhD Thesis, April 2020, Kongens Lyngby, Denmark

https://earth.nullschool.net/





DANMARKS TEKNISKE UNIVERSITET
Center for Electric Power and Energy (CEE)

DTU Electrical Engineering

Flexible Utilization of Transmission Grid

Capacity for Wind Power Integration

Dissertation, by Nicola Viafora

Supervisors:

Professor Joachim Holbøll, Technical University of Denmark

Chief Engineer Anders Steen Kristensen, Energinet

DTU - Technical University of Denmark, Kogens Lyngby - April 2020



Flexible Utilization of Transmission Grid Capacity for Wind Power Integration

This thesis was prepared by:
Nicola Viafora

Supervisors:
Professor Joachim Holbøll, Technical University of Denmark
Chief Engineer Anders Steen Kristensen, Energinet

Dissertation Examination Committee:
Associate Professor Spyridon Chatzivasileiadis
Department of Electrical Engineering, Technical University of Denmark, Denmark

Associate Researcher Andrea Michiorri
MINES ParisTech, Ecole des mines de Paris, France

Associate Professor Vijay Venu Vadlamudi
Department of Electric Power Engineering, Norwegian University of Science and Technology,
Norway

Center for Electric Power and Energy (CEE)
DTU Electrical Engineering

Elektrovej, Building 325
DK-2800 Kgs. Lyngby
Denmark

Tel: (+45) 4525 3500
Fax: (+45) 4588 6111
E-mail: cee@elektro.dtu.dk

Release date: April 2020

Edition: 1.0

Class: Internal

Field: Electrical Engineering

Remarks: The dissertation is presented to the Department of Electrical Engineering
of the Technical University of Denmark in partial fulfillment of the require-
ments for the degree of Doctor of Philosophy.

Copyrights: ©Nicola Viafora, 2016– 2020

ISBN: 000-00-00000-00-0



Ad maiora





Preface
This thesis is prepared at the Department of Electrical Engineering of the Technical University of
Denmark in partial fulfillment of the requirements for acquiring the degree of Doctor of Philosophy
in Engineering. It collects the work carried out by the author as a Ph.D. student from the 15th of
November 2016 to the 13th of April 2020. During this period, the author was employed at the
Technical University of Denmark under the OPTIMUM project, a cooperation with the Danish
transmission system operator, Energinet, who funded the project together with DTU

The thesis summarizes the research work proposed in five scientific papers, four of which have
been published with a peer-review process, while the remaining one is currently under revision.
The main body of the thesis serves the purpose to introduce and discuss the proposed contributions
from a broader perspective, whereas for in-depth technical details the reader is referred to the
papers attached in the appendix.

Nicola Viafora
April 2020
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Abstract
Power systems around the globe face increasing shares of renewable energy sources, whose variable
and stochastic nature calls on grid operators to rethink their approach to system planning and
operation. Attaining the best trade-off between security of supply and operational costs under
uncertainty is closely tied to a flexible utilization of transmission systems, defined as the ability
to withstand unexpected variations of power on different timescales. This thesis investigates
novel solutions in this regard and proposes original decision-making support-tools that favour the
large-scale integration of wind power.

Grid operators around the world are constantly under pressure, as the rate at which new generation
capacity is connected to the system outpaces their ability to upgrade it with traditional grid
expansion projects, such as the construction of new overhead lines. To this end, recent advances
in the field of wide-area monitoring suggest how additional network capacity can be revealed in
the existing systems by assessing the thermal state of critical components in real-time. Known as
dynamic thermal rating, this novel approach is listed as a promising solution, although several
challenges lay ahead.

While dynamic thermal rating indicates that a significant margin for higher power flows is
possible, accessing this potential requires innovative solutions in the operational horizon to limit
the impact of the associated weather-dependent uncertainty. Novel analytical tools presented
in this thesis let grid operators take advantage of this technical solution, by proposing revisited
thermal models of components and accounting for common risk-aversion levels in the allocation
of transmission capacity for day-ahead energy markets. Simulation results show that significant
savings can be achieved in wind-dominated power systems by allowing higher power flows,
without compromising on the high standards of security of supply, which grid operators must
adhere to. Additionally, key contributions show that the full potential of this approach can be
maximised by applying the core physical methodology of dynamic thermal rating not only to
overhead lines, but to other components as well, such as power transformers.

Contributions presented in this thesis further elaborate how a flexible utilization of transmission
systems can also be achieved by focusing on operational aspects rather than novel infrastructural
functionalities. The need for higher power flows can be anticipated by pre-positioning operating
reserves while accounting for network limitations in a way that current sizing practices have not
considered so far. An original perspective on the definition of zonal reserve capacity markets is
offered in this thesis, which closely approximates ideal solutions while being compatible with
fundamental properties of current electricity market structures.

Overall, the results indicate that the successful integration of large-scale wind power generation
would greatly benefit from enhanced transmission system flexibility, and that increased awareness
of natural phenomena and extensive cross-border cooperation would be needed to achieve it.
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CHAPTER1
Introduction

1.1 Background

The World Energy Outlook published in 2019 by the International Energy Agency reiterates the
global trend that sees electricity demand rising at a steady pace of 2% on an annual basis [1].
While CO2 emissions from the power sector reached a record high in 2018, the falling cost
of renewable energy sources such as solar and wind power generation is paving the way to a
significant decarbonisation of the energy sector. The share of renewables in the additional electricity
generation up to 2040 is expected to range from 50%, in a conservative scenario, to 100%, in a
more sustainable and proactive course of action [1]. Ultimately, the synergy between a carbon-free
power sector and the adoption of electrical energy for transportation and heating too is perceived
as one of the possible concrete responses to climate change.

Projections to 2040 show that wind power installations triple with respect to the current status,
covering significant shares of electricity demand in China, United States and Europe. The Offshore
Wind Outlook 2019 [2] indicates that the wind resource in particular will be pivotal in Europe,
where the cumulative share of on- and off-shore wind power generation is expected to cover 40%
of the demand by 2050.

Growing demand for electricity on one side and newly installed power generation from renewable
sources on the other, put transmission systems under an unprecedented stress, as they underpin
the transition towards a carbon-free and sustainable power system. The Ten Year Network
Development Plan (TYNDP) [3] issued by the Europen Network of Transmission System Operators
for Electricity (ENTSO-E) highlights how the ambitious goal of reducing CO2 emissions down
to 1990’s levels requires increasing grid capacity across the continent, while at the same time
minimizing the societal cost of the power system transformation. Most of the initiatives that strive
in this direction are related to grid reinforcements by means of AC overhead lines, which remain
the predominant technology so far with 60% of the total projects. Despite the need for additional
infrastructures, new overhead lines have traditionally encountered low social acceptance that
hindered their deployment, whereas current alternative options such as underground cables entail
significantly higher investment costs [4].

A recent report from a group of European TSOs [5] points to a second and more critical aspect of
new overhead line projects, that is the ability of grid operators to match the pace at which additional
generation capacity is added to the grid. The report finds that the average installation time lasts 5
years longer for grid expansion projects as opposed to the connection of new renewable energy
sources. This constantly puts grid operators in the position of finding viable and cost-effective
solutions for the security of supply in a shorter amount of time. Given the need for increased
grid capacity and the difficulties associated with achieving it, improving utilization of existing
transmission assets seems to be a necessary, even though not sufficient, measure to address such
challenges.

1



2 CHAPTER 1. INTRODUCTION

Besides higher network capacity, the large-scale integration of wind power generation needs to
factor in the uncertain nature of this energy source. While conventional thermal units can regulate
their output in a highly controlled manner, renewables1 lack the ability to do so, since they are
governed by stochastic processes related to the underlaying natural phenomena. The inability to
dispatch power generation from non-controllable sources is problematic in common electricity
market structures, where the market clearing process and the schedule for power delivery are
determined far prior to the actual realization of the uncertainty, i.e., from 12 to 36 hours in advance.
This market structure was congenial in highly controllable and monopolistic power system that
had to face only limited uncertainty due the variations in load demand. However, as the share
of renewables in liberalized electricity markets increases, so does the frequency and the extent
of deviations from scheduled operations. These deviations are remedied by grid operators with
expensive out-of-market corrective actions, which worsen the economic efficiency of the system,
thus mining the basis for further integration of renewables.

The evolution towards a carbon-free and sustainable power system requires increased levels
of flexibility, which is regarded as the number one priority in The Status of Power System
Transformation 2019 [6]. The term refers to the ability of a system to withstand unexpected
variations of power on different timescales, without jeopardizing the security of the supply.
Following the definition provided in [7], flexibility develops around three interdependent categories:
the infrastructure, the operational framework and the role of stakeholders. Increasing network
capacity in order to face the rapid diffusion of new wind power installations falls within the
first category, whereas counteracting the uncertainty in electricity markets and power system
operations points to the second. Clearly, these categories need to be developed in harmony as they
all account for necessary aspects of the evolution of power systems, which may not be sufficient if
considered independently of one another. The content of this thesis explores these two categories
from the point of view of grid operators, considering the challenges they face and the solutions at
their disposal.

1.2 Research directions

The research work presented in this thesis explores solutions for a flexible utilization of transmission
systems, where the contribution of wind power generation is significant. In particular, the work
suggests innovative models and operational practices that grid operators may resort to, considering
different aspects, components and timescales of power systems.

The work is articulated in two main research directions: the first considers recent advances in
the field of wide-area monitoring and it studies the possibilities of increasing network capacity
in existing transmission systems; the second focuses on measures that address uncertainty in
power system operation due not only to wind power generation but also novel data-driven
approaches. These research directions recall the categories in the definition of flexibility, namely
the infrastructural and the operational one. The interdependence between the two is made evident
throughout the thesis: on the one hand, the increase in network capacity by means of additional
monitoring introduces new uncertain variables, which need to be taken into account during
operational planning; on the other hand, current power system and market operation need to
adapt to the evolving infrastructure by allowing different sources of flexibility.

1Excluding hydro power and biomass



1.2. RESEARCH DIRECTIONS 3

Increasing network capacity with dynamic thermal rating

The first research direction stems from the consideration that, although transmission systems
would not be adequate without future reinforcements, the existing asset is considerably oversized.
However, accessing the available margin for higher utilization requires a novel approach to system
operations.

Maximum power flow on overhead lines is limited by a variety of factors, which can be classified
according to the length of the interconnection [8]. Lines longer than 300 km are usually limited
by small-signal stability, whereas for those in the range from 100 to 300 km the voltage drop is
the constraining factor. For shorter lines, maximum power flow is usually determined by the
line thermal rating, which reflects the ability to dissipate heat generated by Joule effect in the
conductors. This property is heavily dependent on weather parameters like ambient temperature,
wind speed and solar radiation, which influence convection and radiation processes. For this
reason, the actual line thermal rating can be interpreted as a random variable, whose evolution is
linked to the stochastic nature of weather phenomena.

Traditional overhead line dimensioning practices assume overly conservative values of the
above-mentioned weather parameters in order to safeguard the grid operator from the risk of
overestimating the line capacity [9]. Excessive heating would cause the line to sag beyond the
clearance security limit exposing high-voltage conductors to nearby objects. Given the high
risk-aversion to these eventualities, values of line thermal ratings are usually fixed or seasonal,
which guarantee that the actual ones would be far greater most of the time.

Recent advances in the field of wide-area monitoring have rendered the continuous and real-time
assessment of overhead lines thermal state a practical solution [10]. Therefore, rather than assuming
safe values of weather parameters, grid operators can measure them in real-time and set the line
thermal rating accordingly. Alternative options to determine the real-time thermal state include
measuring the conductor temperature directly or indirectly by means of line tension and sag
measurements. Overall, this data-driven approach is known as Dynamic Thermal Rating (DTR)
and it allows grid operators to significantly increase the maximum power flow on thermally limited
components. While this topic has recently gained particular interest from the research community,
early works date back to the late 70s [11].

The latest ENTSO-E report on Technology for Transmission Systems [12] lists DTR as one of the
promising solutions that can help improving network utilization in the evolution of the European
power system. Several pilot projects have already demonstrated its effectiveness on the field [13–15],
confirming it as a viable and mature technology, whose benefits would be particularly relevant for
the integration of wind power. Authors of [16–18] showed that the positive correlation between the
additional cooling of overhead lines and wind power generation translates into increased network
capacity when needed the most. Therefore, the use of DTR would entail significant advantages
for grid operators considering timescales in terms of hours, for contingency management, days,
for market scheduling, and years, for system planning [19]. However, as pointed out in [12], the
system-wide implementation of DTR would also require proper upgrade and adaptation of other
power system components.

The contributions presented in this thesis that advance the state-of-the-art in this direction consists
in solutions and tools for increasing the applicability and potential of DTR. The focus is not only
on overhead lines, but on other critical components too such as power transformers, which may
bear the consequences of higher network utilization.
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Operational planning challenges under uncertainty

The second research direction aims at providing grid operators with novel support-tools that
may compensate the increasing presence of uncertainty in power systems. While there exists
a variety of uncertain quantities that may be considered, this thesis focuses on those that are
crucial whenever the contribution of wind power is significant. In view of the potential that DTR
has to facilitate wind power integration and given its weather-dependent stochastic nature, the
uncertain quantities considered in this thesis are not only wind power injections, but thermal
line ratings too. Uncertainty in power systems is directly related to common electricity market
structures, where energy is traded one day prior to the actual delivery. This setup implies that
grid operators face the challenge of making critical decisions based on predicted values that
inevitably entail approximations and partial descriptions of the underlying stochastic processes.
Therefore, flexibility during real-time operations is necessary to cope with deviations arising from
an incomplete representation of the system.

The increase in network capacity offered by DTR certainly favours system operations in this
direction by allowing higher power flows. However, the adoption of DTR also suggests that
uncertainty is not confined to the generation and consumption assets, but extends also to the
transmission one. Therefore, the increased network capacity has to be traded-off against higher
levels of uncertainty in order to safeguard the high standard of security. The contributions in
this regard focus on analytical methods developed for maximising the benefits of DTR, while
controlling the associated risks and considering potential synergies with other uncertain variables

As the share of wind power generation increases, so does the need for sufficient and readily available
back-up power, i.e. reserves, that would balance out any short-term deviations during real-time
operation [20]. Reserves are generally classified as contingency, which are deployed in case of
emergencies, or operating, which are needed to regulate the system under fluctuations around
a scheduled operating point [21]. The latter in particular is necessary to integrate intermittent
renewable sources in electricity markets, which are cleared well prior to the realization of the
underlying stochastic processes. Current reserve sizing practices, however, fail to address important
aspects such as limitations of the transmission system that would prevent the accessibility of
these resources. Since the cost of procuring reserves falls on grid operators entirely, their optimal
allocation is of primal importance to limit the cost of wind power integration. Considering
this aspect of flexibility, the contributions listed in this thesis propose original reserve allocation
practices that take grid limitations into account, while still being compatible with existing market
structures. This latter aspect is deemed to be fundamental, as the evolution of power systems
depends not only on the technical feasibility of novel solutions, but also on the appealing that
these have on power system and market operators.

1.3 Contributions and list of publications

The main contributions presented in this thesis are the following:

i Reformulation of existing overhead line thermal model in order to account for radial
temperature drop in high-voltage conductors.

ii Analysis of possible gradations of DTR for large scale implementation with varying levels of
monitored variables.
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iii Formulation of a DC-OPF algorithm that includes DTR of both overhead lines and power
transformers. The algorithm is formulated as a convex optimization problem with second-
order conic constraints.

iv Study of seasonalities in overhead lines and transformers thermal ratings considering weather
data from an actual power system.

v Formulation of a lossy DC-OPF algorithm that includes a lifetime-based utilization of power
transformers considering different loading strategies.

vi Formulation of a risk-averse energy and reserve co-optimization algorithm based on DC-OPF
and chance constraints. The algorithm can be used to set line capacities during operational
planning taking into account non-parametric predictive distributions of DTR and wind
power generation.

vii Testing Gaussian distributions for modelling DTR probabilistic forecast derived with quantile
regression algorithms.

viii Formulation of a decision-making support-tool for redefining the boundaries of zonal reserve
capacity markets and setting zonal reserve requirements based on total expected operating
costs. The methodology can also serve to allocate available transmission capacity between
day-ahead and balancing market stages.

These contributions have been proposed in the following publications:

[Pub. A] N. Viafora, J. G. Møller, R. A. Olsen, A. S. Kristensen and J. Holbøll, "Historical Data
Analysis for Extending Dynamic Line Ratings Across Power Transmission Systems," 2018
IEEE International Conference on Probabilistic Methods Applied to Power Systems (PMAPS), Boise,
ID, 2018, pp. 1-6.

[Pub. B] N. Viafora, K. Morozovska, S.H.H. Kazmi, T. Laneryd, P. Hilber, J. Holbøll, "Day-ahead
dispatch optimization with dynamic thermal rating of transformers and overhead lines",
(2019) Electric Power Systems Research, 171, pp. 194-208.

[Pub. C] N. Viafora, J. Holbøll, S. H. H. Kazmi, T. H. Olesen and T. S. Sørensen, "Load Dispatch
optimization using Dynamic Rating and Optimal Lifetime Utilization of Transformers," 2019
IEEE Milan PowerTech, Milan, Italy, 2019, pp. 1-6.

[Pub. D] N. Viafora, S. Delikaraoglou, P. Pinson, J. Holbøll, "Chance-constrained optimal power flow
with non-parametric probability distributions of dynamic line ratings", (2020) International
Journal of Electrical Power and Energy Systems, 114, art. no. 105389.

[Pub. E] N. Viafora, S. Delikaraoglou, P. Pinson, G. Hug, J. Holbøll, "Dynamic Reserve and Capacity
Allocation in Wind-Dominated Transmission Systems", submitted to IEEE Transactions on
Power Systems

Other publications have not been included in this thesis being outside the scope of this thesis or
still partially completed at the time this thesis is submitted for approval:
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[Pub. F] K. Morozovska, W. Naim, N. Viafora, E. Shayesteh, and P. Hilber, "A framework for application
of dynamic line rating to aluminum conductor steel reinforced cables based on mechanical
strength and durability", (2020) International Journal of Electrical Power and Energy Systems,
116, art. no. 105491.

[Pub. G] N. Viafora, S.H.H. Kazmi, T.H. Olsen, T.S. Sørensen, J. Hølboll, "Grid Reinforcement Planning
for Wind Power Integration with Dynamic Network Rating", Working paper.

1.4 Structure of the thesis

The contributions included in this thesis are organized as shown in Table 1.1. The chosen
classification serves the purpose to present the research work considering two main categories of
flexibility in power systems: the infrastructural and the operational.

Table 1.1: Classification of the contributions in publications and chapters

Chapter 2 Chapter 3
[Pub. A] i - ii -
[Pub. B] iii - iv -
[Pub. C] v -
[Pub. D] - vi - vii
[Pub. E] - viii

Chapter 2 This chapter is centered around the infrastructural aspect of flexibility. Given the
need for increasing network capacity and the difficulties associated with achieving it, this
chapter focuses on the potential that DTR systems have for unveiling hidden capacity as
a way to support wind power integration. This potential is assessed with weather data
simulated across an actual transmission system in combination with historical load demand
and wind generation data. Power systems and day-ahead market operation is considered
in a deterministic fashion in order to focus on the synergies between overhead lines and
transformers thermal ratings under various weather patterns throughout the year.

Chapter 3 The focus in this chapter is on the operational aspect of flexibility, in particular the
operational planning phase of power systems where grid operators face critical decisions
for the efficient functioning of system and market operations. The core aspect in this case
is how to deal with uncertainty, both in wind power generation and DTR systems. The
chapter reviews common electricity market structure and uncertainty modelling before
presenting key contributions on the risk-averse allocation of transmission capacity and
operating reserves in systems with high share of wind power.

Chapter 4 This chapter draws final conclusions and traces future research directions stemming
from the results achieved in this thesis.



CHAPTER2
Potential of dynamic thermal

rating
The current-carrying capability of transmission systems is as vary and diverse as the weather
conditions they are exposed to spanning over hundreds of kilometers. Asking these systems to
provide more than they were originally designed for is possible under the condition that new
information on their real-time state is made available to grid operators and decision-makers.
Starting from a discussion on state-of-the-art thermal models in Section 2.1, this chapter lays out
the potential that DTR has to unveil additional network capacity in the existing infrastructure. This
first step offers the opportunity to introduce a modified version of a popular overhead line thermal
model presented in [Pub. A], which considers temperature distributions within conductors and the
consequent impact on thermal rating. Once the relation between weather variables and operating
temperature of components is assessed, Section 2.2 presents [Pub. B], where the impact of DTR
applied to a network of overhead lines and transformers is evaluated considering different seasonal
patterns. Effects of higher utilization on power transformers are discussed together with a novel
methodology proposed in [Pub. C], that allows to load such components based on cumulative
lifetime utilization, rather than standard nameplate ratings. Lastly, Section 2.3 concludes the
chapter by collecting the most relevant assumptions and discussing the main findings.

2.1 Thermal models of components

The following sections elaborate on the core physical aspect of DTR, i.e., the ability to load
components depending on their temperature, rather than pre-specified quantities that are indirectly
related to it. Ratings are commonly expressed in terms of current or power, however, these
inputs are only part of the equation when determining the operating temperature. Surrounding
environmental conditions and thermal dynamics also play a key role and their real-time knowledge
can be used to safely increase power flows.

2.1.1 Overhead lines

Two main models are regarded as the state-of-the-art when considering the thermal dynamics
of overhead transmission lines: the IEEE [22] and the Cigrè [9]. Both approaches rely on similar
analytical formulations that are centered around the heat balance equation (2.1). This fundamental
relationship links the operating temperature of conductors to the current flow and the surrounding
environmental conditions. It is expressed as a first order differential equation, i.e.,

qJ + qS − qC − qR = Cth,ohl
dϑav

dt
, (2.1)

where the right-hand-side represents the evolution of temperature ϑav over time scaled by the
thermal capacitance Cth,ohl and the left-hand-side the per-unit-length thermal energy balance of the

7
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conductor. While there may be several more heating and cooling mechanisms q, standard thermal
rating guidelines narrow them down to the these four: Joule heating, solar heating, convective
cooling and radiative cooling. A detailed analytical description of each term can be found in [9],
whereas a synthetic one is presented as follows:

Joule heating (qJ ) — The main source of heat generation in the conductors is caused by the flow of
current and the corresponding power losses. It is the only term in (2.1) that depends on the
current and therefore it represents the link between the electrical and the thermal quantities.
An accurate calculation of power losses requires considering temperature-dependent electrical
resistivity, skin effect for alternating current as well as the type of conductor.

Solar heating (qS) — The global solar radiation that reaches the conductor causes an exogenous
temperature increase, which may become significant depending on the geographical location,
seasonal cycles or particular conditions, such as near-zero wind speed, when other cooling
terms are drastically reduced. The main source of uncertainty in this term is given by cloud
coverage, whose rapid variations can change the amount of direct radiation reaching the
conductors. Specific material properties as the absorptivity of the conductors also affect the
contribution of this term.

Convective cooling (qC) — The principal cooling mechanism on overhead lines is convection driven
by the air flow in the proximity of conductors. This depends on the difference between
conductor surface and ambient temperature in addition to a variety of meteorological
parameters and surface properties of the conductors. Wind speed and wind direction,
however, are the most important factors to be considered as well as the most uncertain and
hard to predict.

Radiative cooling (qR) — Part of the heat generated in the conductor is dispersed through thermal
radiation emitted from the surface. This process is highly dependent on the difference
between conductor surface and ambient temperature together with dimensions and material
properties of the conductor.

An accurate estimation of the operating temperature under varying loading patterns and environ-
mental conditions requires a detailed modelling of all the heating and cooling mechanisms that
intervene in the heat balance equation (2.1), including the influence of the thermal capacitance
Cth,ohl. This latter parameter models the thermal inertia of the conductors: the larger the value, the
slower the temperature rate of change. Tracking the evolution of conductor temperature over time
can be achieved with a discretized version of (2.1), which is solved for the operating temperature
ϑav using a sufficiently small time step, usually in the order of few minutes. Clearly, (2.1) has local
validity, as it depends on quantities that may vary greatly within a short space. Therefore, the
operating temperature has to be evaluated at several locations in order to identify the hot-spot
which eventually limits the entire line capacity.

This approach highlights the margin for higher utilization in real-time, however, it is impractical
for operational and long term planning studies, where grid operators need to calculate expected
ratings that fit a variety of conditions. To this end, the steady-state version of (2.1) is commonly
adopted, where setting the right-hand-side to 0 represents a condition of thermal equilibrium.
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Figure 2.1: Steady state vs. transient temperature rise in a “Drake” 26/7 ACSR conductor following
a step change in current assuming constant weather variables.

In this case, a maximum operating temperature is set a priori and the following equation is solved
for the current appearing in the Joule heating term qJ , i.e.,

qJ + qS − qC − qR = 0. (2.2)

The result represents the maximum current that can be sustained for a indefinite period of time
without violating the temperature criterion, provided that environmental conditions remain the
same. Grid operators usually follow this approach to set seasonal thermal ratings, assuming highly
conservative values of the surrounding weather condition. The Danish grid operator, Energinet,
provided some indications in this regard, which have been discussed in [Pub. A]: seasonal wind
speed values fall in the first quantile of the distribution of historical realizations, while wind
direction is not considered; ambient temperature values correspond to the top 90-th quantile and
solar radiation to the 99-th. In agreement with [23], the resulting Static Thermal Rating (STR) leaves
out a significant potential for higher power flow.

In order to access this hidden potential, a common approach is to consider hourly averaged values
of selected weather parameters, typically wind speed, wind direction, ambient temperature and
solar radiation in combination with the steady-state thermal model. This is possible due to the
small thermal inertia of the conductor, which quickly reaches its steady-state temperature. The
illustrative example in Fig. 2.1 shows the comparison between the steady-state and the transient
model considering a "Drake" 26/7 ACSR conductor subject to a step change in current. The
difference between the two models is negligible at the end of the 60-minutes interval, indicating
that this approach is applicable whenever power flows are defined on an hourly basis. For any
other application that needs to consider sub-hour time periods, the use of the full differential
equation is advised. For a discussion on how the rating estimation varies depending on the time
resolution used in the discretization, the reader is referred to [24].

Accounting for radial temperature drop

Building upon the steady-state version of the Cigrè model [9], [Pub. A] presents a modified version
which addresses a novel modelling aspect. As mentioned in [25–28], there may be a significant
temperature difference between the core and the surface, when operating the conductor at high
current densities. Core temperature is particularly critical in ACSR conductors, as the steel core is
responsible for bearing the tension of the line. Exceeding the design temperature limit may result
in unacceptable thermal dilatation of the conductor with the consequent violation of clearance
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security limits. Surface temperature, instead, is a key parameter in the estimation of convective
and radiative cooling, thus considering the average temperature in these calculations leads to an
overestimated line capacity.

In order to account for these aspects, [Pub. A] introduces two additional variables in the solution of
the steady-state heat balance equation: the surface temperature ϑs and the average cross-sectional
temperature ϑav, while specifically imposing the maximum operating value to the core ϑc. Instead
of solving (2.2) for the current, the proposed methodology requires solving the following system
of non-linear equations

qJ(Imax
ohl , ϑav) + qS − qC(ϑs)− qR(ϑs) = 0, (2.3a)

ϑc − ϑs = ∆ϑcs(Imax
ohl , ϑav), (2.3b)

ϑc + ϑs = 2ϑav, (2.3c)

where the variables are: maximum admissible current Imax
ohl , surface temperature ϑs and average

temperature ϑav. In addition to the steady-state heat balance (2.3a), the system accounts for the
difference between core and surface temperature in (2.3b), where ∆ϑcs is an analytical expression
presented in [9] that depends on dimensions and material properties of the conductor other
than current and average temperature. Lastly, (2.3c) defines a linear relation between conductor
temperatures at different locations on the cross-section.

[Pub. A] and [Pub. B] further elaborate on the modelling details and conclude that, although this
approach is not expected to consider the actual temperature distribution within conductors, it
provides a simplified way to account for the radial temperature drop by means of readily available
expressions that are included in the guidelines for thermal rating calculations. By imposing the
temperature limit on the hottest point of the cross-section, i.e., the core, the thermal rating derived
from the solution of (2.3) is more conservative than (2.2), especially under high wind and high
current conditions, where the difference between core and surface temperature is more prominent.
Nevertheless, as shown in Fig. 2.2, the expected value of the distribution of hourly ratings is still
more than 50% higher than the seasonal line ratings, based on simulated weather data across the
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Figure 2.2: Histogram of hourly DTR on high-voltage transmission lines in the Danish system.
Values of DTR estimated with the solution of the proposed thermal rating in (2.3).
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Danish power system. Furthermore, DTR are greater than static ratings by at least 10% nearly 90%
of the time and by at least 30%, 75% of the time, thus indicating a consistent margin for higher
utilization.

Gradations and sensitivity analysis

The large amount of variables that affects overhead line thermal rating motivated the work in [Pub.
A] to consider simplified versions, where only a subset of them is taken into account. The different
nature of weather variables involved implies that some may be more straightforward to measure
and predict than other. For example, this is the case of wind direction, which although guidelines
in [9] indicate as significantly relevant, its accurate and reliable estimation poses considerable
challenges given its high variability. At the other end of the spectrum, ambient temperature is
a slow varying and spatially uniform variable, which still affects line thermal ratings, but does
not require measurements as distributed and extensive as those for wind speed and direction.
Therefore, [Pub. A] studies a series of gradations of DTR, where the thermal model is used in
combination with groups of variables. It is concluded that accounting for the full spectrum of
inputs guarantees the highest increase in rating, but at the cost of dealing with higher variability.
Alternative options that purposely leave out the most aleatory contributions, would still entail
significant benefits for grid operators.

2.1.2 Power transformers

While the thermal rating of overhead lines is predominantly dependent on the temperature of
conductors, two critical parts of transformers need to be modelled: the top layer of cooling oil in
the reservoir tank and the low-voltage winding hot-spot. The previous section discussed how the
unexpressed potential for higher ratings on overhead lines is mainly owed to the conservative
assumptions on environmental conditions. When considering DTR of transformers, instead,
a second determinant factor to take into account is the larger thermal inertia, which allows
to cyclically load this component beyond nameplate ratings, without exceeding recommended
operating temperatures.

Section 2.2 of [Pub. B] reviews in detail the IEEE Loading Guide [29], which has been adopted for
transformer DTR in this thesis. What follows is a discussion on the main modelling assumptions
that have been introduced with the purpose of incorporating transformer thermal dynamics in
convex optimization problems. Top-oil ϑtop and hot-spot ϑhst temperatures are modelled in [29]
with the following first-order differential equations,

−ϑtop + ϑamb + ϑu
(
I2ν

trf
)

= τ0
dϑtop

dt
, (2.4)

−ϑhst + ϑhu

(
I2µ

trf

)
+ ϑtop = τh

dϑhst

dt
, (2.5)

where τ are the thermal time constants, ϑamb the ambient temperature, ϑu and ϑhu are the steady-
state top-oil temperature rise over ambient temperature and hot-spot rise over top-oil, respectively.
These values are a function of the transformer per-unit load Itrf, where the empirical factors ν
and µ depend on cooling mode of the transformer. Setting them to 1, restricts the validity of the
model to a particular class of transformers, however, it allows to handle these expressions with
quadratic constraints that do not compromise the sought-after convexity property of optimization
problems. With this decision, the contribution in [Pub. B] prioritizes the computational aspect over
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Figure 2.3: Steady state vs. transient hot-spot temperature rise following a step change in
transformer current assuming constant ambient temperature.

the accuracy, while still conveying novel insights in the potential of DTR applied to transformers.
The final discretized version of (2.4) and (2.5) used in this thesis to express the time-dependent
evolution of top-oil and hot-spot temperatures are formulated as

ϑtop(t) = K1I
2
trf(t) +K2ϑamb(t) + (1−K2)ϑtop(t− 1) +K3, (2.6)

ϑhst(t) = ϑhrI
2
trf(t) + ϑtop(t) (2.7)

where Ki are constants depending on the transformer type and the time step used in the
discretization, i.e., 1 hour. Note that as opposed to top-oil, hot-spot temperature dynamics evolve
at a higher rate due to a smaller time constant τh and are fully extinguished after 60 minutes.
Therefore, since the purpose of [Pub. B] is to incorporate these models in hourly load dispatch
optimization problems, the steady-state version of (2.5) is adopted, where temperature rate of
change is set to 0. Figure 2.3 illustrates the comparison between the steady-state and the dynamic
hot-spot temperature model when considering a step change in current. It stands out as the
difference between the two approaches is minimal at the end of the 60-minutes interval.

To summarize, accounting for thermal dynamics in transformers offers increased levels of flexibility,
provided that critical top-oil and hot-spot temperature evolution are monitored. As in the case of
overhead lines, grid operators usually assume worst-case ambient condition in order to safeguard
the utilization of these assets. However, the use of simulated weather conditions and realistic
ambient air temperature values shows that a significant margin for higher utilization can be
harvested from these components.

2.2 Dynamic network rating

Having introduced the principles of DTR in both overhead lines and transformers, this section
presents the methodology proposed in [Pub. B], which, for the first time, considers the joint DTR of
these components in a market clearing algorithm. Building upon the same methodology, [Pub. C]
proposes a lifetime-based utilization of transformers, where not only temperature but also aging
dynamics are accounted for.

2.2.1 Literature review

Operating a power system based on the temperature of components rather than standard power
flow limits affects the dispatch of generators and daily market operations, as the available network
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capacity varies during the day [30, 31]. Increased network capacity is beneficial under many
circumstances such as generator re-dispatch, line outages and grid congestions, although the use
of DTR requires modifying current market clearing algorithms.

In this vein, the flexibility of DTR is incorporated into a N-1 Security Assessment (SA) and a Security
Constrained Unit Commitment (SCUC) algorithm in [32] and [33], respectively, considering a
set of predetermined contingencies where the value of DTR would come into play. The impact
of DTR on market operation is also studied in [34], where it is concluded that although higher
losses should be expected from a system-wide utilization of this technology, the benefits would
still outweigh the costs due to the increased availability of low-cost renewable energy. Given the
ability of DTR to significantly increase network capacity, [35, 36] consider this technology as a
viable option to postpone grid reinforcements in highly congested networks, while [37] includes it
in a transmission expansion planning problem.

Given the significantly higher power flows that DTR allows on overhead lines, the system-wide
implementation would also require proper upgrade and adaptation of other power system
components. To this extent, [38] considers the potential of dynamically rating power transformers
and underground cables too. Indeed, the conservatism used for overhead lines is typically adopted
for other components as well. Authors of [39, 40] focus on DTR applied to transformers, whereas
in [41] the benefits of Dynamic Network Rating (DNR), i.e., the combined application of DTR
on several components, are investigated concluding that the limiting asset in a congested power
system is likely to change depending on the season.

While [41] focuses on estimating weather-dependent network rating in distribution systems
based on predicted operating conditions, [Pub. B] incorporates thermal models discussed in
Section 2.1 into a day-ahead market clearing algorithm. The novelty consists in showing how a
coordinated approach can increase network capacity considering the synergies between various
components. Furthermore, to the best of our knowledge, no loading criteria has ever considered
the temperature-dependent aging of transformers as in [Pub. C]. The following sections elaborate
on the proposed methodologies and discuss their main implications.

2.2.2 Combining DTR of different components

The proposed methodology is based on a DC-OPF algorithm in a multi-period formulation, which
is required to account for the temporally coupled constraints on the transformer rating. Unlike
overhead lines, whose hourly ratings are independent from one another, transformer top-oil
thermal dynamics span over several hours, thus they need to be taken into account whenever
the loading is temperature-based. The implication is that dynamic transformer ratings cannot be
defined a priori, since they depend in particular on the loading pattern they have been through,
other than the environmental conditions such as ambient temperature. Instead, due to their
shorter thermal time constant discussed in Section 2.1, overhead lines do not require this modelling
approach, since their rating in one hour would not affect the following. Assuming hourly averaged
weather forecasts, DTR for transmission lines are pre-calculated with steady-state thermal model
(2.3) and passed on to the optimization problem as time-dependent parameters.

In the formulation that follows, unit commitment constraints are not included. This limitation,
however, is not expected to reduce the applicability and generality of the proposed methodology
since those constraints that model transformer and overhead lines thermal ratings could be
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easily implemented with other assumptions on the modelling of the power system. Furthermore,
no uncertainty is considered in the following formulation neither in the weather forecasts nor
in wind power generation. This limitation is addressed in Chapter 3, where support-tools for
decision-making problems under uncertainty are presented. While the proposed methodology is
formulated in detail in [Pub. B], a compact version with properly defined h and q matrices for
equality and inequality constraints is formulated as

min
ξt

∑
t

c>ξt (2.8a)

s.t. h>1 ξt − h0,t = 0 ∀t ∈ T : Power balance, (2.8b)

q>1 ξt − q′>1 ξt−1 − q0,t ≤ 0 ∀t ∈ T : Operational limits, (2.8c)∑t

τ=1
q>2 ξ

2
τ − q′0,t ≤ 0 ∀t ∈ T : Thermal dynamics (2.8d)

where ξt = {pg, dsh
n , wj}t collects the DC-OPF decision variables for each time step t, i.e., scheduled

power output, nodal load shedding and dispatched wind power. The objective function accounts
for the total generation cost over a 24-hours period including a penalty term on the load not
supplied in order to guarantee feasibility in any condition. Constraints (2.8b) model power system
balance at each time step, whereas (2.8c) collects other operational limits such as power generation
upper and lower bounds, generator ramp rates and power flow limits modelled with the Power
Transfer Distribution Matrix (PTDF) matrix [42]. Note that the term q0,t is dependent on the
time index t as it includes the time-varying pre-calculated DTR for overhead lines and available
wind power generation. Lastly, constraints (2.8d) model the transformer top-oil and hot-spot
temperature dynamics, whose hourly discretization is provided in Section 2.1.

Besides a linear objective function, affine equality and inequality constraints that are standard in a
DC-OPF algorithm, problem (2.8) includes conic quadratic inequality constraints, which model
transformer thermal dynamics. These temporally coupled constraints express the effect of high
thermal inertia, which can be used to cycle the utilization of these components at higher operating
temperatures.

Mutual dependencies

Testing the proposed methodology in a RTS-24 bus system [43] with simulated weather data and
additional wind power generation showed that substantial savings can be achieved in the total
generation costs, when the full flexibility is in place. The combined DTR of overhead lines and
transformers facilitates the dispatch of wind power, as opposed to a reference case with statically
rated components. This is particularly evident when simulating highly congested systems, where
upgrading either lines or transformers might not be sufficient to deliver higher power flows across
the network. In this regard, it is shown that the potential of DTR on overhead lines may not be
fully expressed unless transformers are also considered and vice versa.

Seasonal effects

The mutual dependencies are more evident during the winter season due to positively correlated
line ratings and wind power generation levels. The available data also showed a significant
negative correlation between wind speed and ambient temperature, which strengthens the synergy
between thermal ratings of overhead lines and transformers. When high wind speed occurs in
conjunction with low ambient temperatures, both overhead lines and transformer ratings increase.
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Although the reverse case during the summer period shows a narrower margin for higher capacity,
the increase with respect to the reference case is still significant, given the highly conservative
assumptions on static ratings. Results are based on weather, load demand and wind generation
profiles mapped from the Danish power system.

Cyclic loading

The main advantage of incorporating transformer thermal dynamics into system operation is
that higher asset utilization can be synchronized with daily peak load demand. By running the
component at low-load during the night, top-oil temperature cools down in preparation for the
higher loading patter occurring in the central hours of the day. This loading strategy allows grid
operators to face growing wind power generation in the system with minimal infrastructural
investments, thus offering the possibility to postpone necessary grid reinforcements.

2.2.3 Lifetime-based utilization of transformers

Unlike overhead lines, transformers undergo significant and quantifiable temperature-dependent
degradation over the course of their service. Although this process is influenced by a variety of
factors, hot-spot temperature is generally regarded as a good indicator of the aging rate. The aging
considered in [Pub. C] is based on the IEEE model [29], i.e.,

Ψ(t) =
∫ t

t0

ψ(τ) dτ, with ψ(t) = e

( 15000
110 + 273−

15000
ϑhst(t) + 273

)
(2.9)

where Ψ(t) represents the cumulative lifetime utilization of the asset up until time t and ψ(t)
the aging rate expressed as an exponential function of the hot-spot temperature ϑhst, which is
modelled with (2.7). Given the cycling patterns at higher operating temperature entailed by DTR,
it is reasonable to investigate the consequences of such a loading strategy on the lifetime utilization
of transformers. The benefits of increased power flow would need to be traded-off against a
shortened lifetime and the anticipated cost of replacement units. While this first consideration
may apply to grid operators that manage aging infrastructures, utilities in the wind power sector
face the opposite problem. For those applications with a limited asset lifetime, such as offshore
wind farm systems, any overdimensioned component with abundant residual lifetime at the end
of the designed period translates into extra weight and extra capital costs for newly built offshore
platforms. In this case, it is preferred to maximize the utilization of the components so that their
designed lifetime fits the planned window of operation.

The novel methodology proposed in [Pub. C] builds upon [Pub. B] and addresses these topic by
incorporating both thermal and aging dynamics into a multi-period DC-OPF. Three main aspects
differentiate the two studies:

1. [Pub. C] does not include DTR on overhead lines, as it is assumed that the main bottleneck
lies on the transformer;

2. [Pub. C] accounts for power losses in the system by means of an iterative approach based on
quadratic constraints;

3. [Pub. C] includes piece-wise linearized exponential aging models that are used to infer the
temperature-dependent aging during system operations.
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The proposed iterative methodology is compactly formulated for iteration η as

min
ξt

∑
t

c>ξt (2.10a)

s.t. h>1 ξt − h0,t = 0 ∀t ∈ T : Power balance, (2.10b)

q>1 ξt − q′>1 ξt−1 − q0,t ≤ 0 ∀t ∈ T : Operational limits, (2.10c)∑t

τ=1
q>2 ξ

2
τ − q′0,t ≤ 0 ∀t ∈ T : Thermal dynamics, (2.10d)∑t

τ=1
q′>2 ξ

2
τ − q′′0,t ≤ 0 ∀t ∈ T : Aging dynamics, (2.10e)

q′′>2 ξ2
t − q′′1ξ

1
t − q

′′′(η)
0 ≤ 0 ∀t ∈ T : Power losses (2.10f)

where ξt = {pg, dsh
n , wj , γ`}t collects the same DC-OPF decision variables as in [Pub. B] adding

branch power losses γ`, whereas h and q are properly defined constant matrices that describe the
structure of the problem. For the detailed problem formulation, [Pub. C] offers an exhaustive
description.

Accounting for power losses estimation in a DC-OPF algorithm has gathered particular attention
in the literature. The method adopted in this study is inspired by [44], where quadratic inequality
constraints are used to model branch power losses as additional nodal load demand in the system.
However, as discussed in [45] and more recently in [46], this approach might prove wrong under
some circumstances, where, due to negative locational marginal prices, the solver introduces
additional fictitious losses. To compensate for this effect, [Pub. C] adopts a method which
iteratively bounds the losses by restricting the power flow solution. Although accounting for losses
in the solution of the DC-OPF, further research is required to assess the generality of the method.

Higher transformer rating

The proposed methodology is tested in the RTS-24 bus system [43], assuming that one transformer
in a strategic location is equipped with DTR. Three loading criteria are then considered based on:
1) standard nameplate ratings, 2) operating temperature, 3) cumulative lifetime utilization and a
higher temperature limit. Simulation results show that the utilization of the transformer in the
third case can safely exceed the other two, while in the first case the operating temperature is far
from the maximum limit, even though the component runs at full nameplate power. Provided
that the lifetime utilization does not violate the operator requirements and that security limits
suggested by international standards are not breached, loading criteria 3 unlocks extra capacity by
operating the component at higher temperatures.

Collateral effects

A first direct consequence of higher utilization is that the aging process is accelerated, although the
proposed methodology allows the operator to manage this aspect by adjusting the temperature
limit based on the health status of the component. A second one is that higher losses should be
expected, not only in the thermally rated component, but elsewhere too, given higher power flows
across the system. The findings of this study are in agreement with the literature, where it is argued
that the benefits still outweigh the costs. However, it should be noted that since power losses
are modelled as additional load demand, their cost has been only indirectly accounted for in the
total generation costs. Grid operators are responsible for the energy efficiency of their networks,
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therefore there might be a direct interests in limiting higher losses with ad hoc measures. Further
research should evaluate a cost-benefit analysis in the long term.

To conclude, optimizing the expected duration of components by limiting their size and pushing
their utilization can be an advantage for limited lifetime assets such as off-shore platforms for
wind power, where weight savings are prioritized. Instead, grid operators that need to increase
the utilization of their network while controlling the asset health, may rely on this methodology
with more restrictive requirements in terms of cumulative lifetime consumption.

2.3 Remarks

The assessment of the potential of DTR begins from the understanding of core physical aspects
that govern thermal dynamics of single components and considers their impact on the whole
transmission system. The work in [Pub. A] shows how modelling the temperature distribution of
conductors can help grid operators prevent extreme conditions on overhead lines, by imposing
operating temperature limits on the most vulnerable part of conductors. Although this novel
approach may require further testing and verification, it provides a robust model for DTR that
enables higher utilization of overhead lines, based on widely known and accepted guidelines in the
industry. While it is shown that higher current-carrying capability can be achieved in transmission
systems, accessing this potential on a large scale may pose significant challenges for grid operators.
In this vein, the gradations of DTR studied in [Pub. A] offer simplified approaches, which ease the
adoption and assimilation of this technology in power systems.

The margins for higher power flows are certainly more evident on overhead lines, however, the
same principle can be applied to other components as well. The key contribution in [Pub. B]
shows that in order to enable higher utilization of transmission systems, it may be necessary to
upgrade not only overhead lines, but other strategical components too, while taking advantage of
dependencies between them. Long term collateral effects on lifetime utilization of transformers
can be managed with the methodology proposed in [Pub. C].

Overall, one of the most appealing arguments in favour of DTR is the ability to quickly upgrade
transmission systems, considered that the construction of new traditional overhead lines is
increasingly more difficult and time demanding. Unveiling extra capacity in a relatively short
amount of time would grant system operators enough flexibility to postpone critical reinforcements
in the long term. However, accurately assessing the potential of DTR requires further research
in terms of its applicability. Large-scale and geographically diverse power systems pose more
challenges to the implementation of DTR, given varying environmental conditions and different
correlation patterns with renewable energy sources. Furthermore, the assumptions of thermally
limited components should be dropped, thus evaluating the benefits of DTR from a more complete
power system perspective.

In conclusion, the main assumptions and key points of each publication presented so far have
been listed in Table 2.1. This chapter studied the potential of DTR with a strong assumption of
perfectly known weather and wind power forecasts, however, assessing the value of DTR for grid
operators cannot overlook the increasing uncertainty introduced in daily system operations. The
next chapter addresses this aspect and takes a closer look at operational planning challenges faced
by grid operators, where critical decisions for the correct functioning of power systems are made
considering the stochastic nature of data-driven technologies and wind power generation.
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Table 2.1: List of major assumptions and conclusions for each contribution presented in Chapter 2.

Assumptions Conclusions

[Pub. A] • Wind speed, wind direction, ambi-
ent temperature and solar radiation are
considered on an hourly basis. Other
weather variables that may affect the ther-
mal ratings are not considered.

• The right-of-way of overhead lines is
assumed to be piece-wise linear to facili-
tate the calculation of the relative angle
between wind speed and conductors.

•Modified thermal model used for the
calculation of DTR does not consider tem-
perature transients. Radial temperature
drop estimated according to state-of-the-
art guidelines.

• Simulated DTR are greater than static
ratings by at least 10% and 30%, nearly
90% and 75% of the time, respectively.

• Accounting for radial temperature
drop in conductors reduces DTR in high
wind conditions with respect to standard
guidelines.

• Significantly higher ratings can still
be obtained with safe assumptions on
highly variable inputs of the thermal
model, e.g., wind direction.

[Pub. B] • Overhead line DTR are pre-calculated
on a hourly basis and transformer hot-
spot dynamics are assumed to be over
after 1 hour.

• Efficient cooling mode typical of high
power and high voltage transformers

• Lossless power flows, small voltage
angles and negligible voltage drops (DC-
OPF assumptions)

• Perfectly known wind power injections
and thermal ratings

• Both overhead lines and transformer
constraints are binding in the reference
case with statically rated components.
Components are thermally limited.

• In highly congested grids, potential of
DTR is fully expressed if applied both to
overhead lines and transformers. Total
generation costs are reduced by 10%.

• Clear seasonal behaviour of DTR with
higher ratings in winter due to high wind
speed and low ambient temperatures.

• Higher temperature cycles of trans-
formers can be synchronized with daily
peak load demand

[Pub. C] • Same assumptions of [Pub. B] for trans-
former modelling.

• Only insulation paper aging is consid-
ered. No impact from residual moisture
and oil.

• DC-OPF assumptions as in [Pub. B].

• Congested system with bottleneck on
a transformer.

•Higher operating temperature further
increases maximum power flow on trans-
former.

• Power losses increase not only on the
component equipped DTR, but across
the system too.

• Methodology can favour limited as-
set lifetime applications or network rein-
forcement while managing accelerated
aging.



CHAPTER3
Operational planning challenges

under uncertainty
Power systems are increasingly reliant on stochastic processes, whose ever-changing dynamics
require innovative solutions for daily system operations. This chapter delves into operational
planning challenges faced by grid operators in wind-dominated systems and proposes an original
perspective on capacity calculations and the scheduling of operating reserves. Seizing the core
aspects of the proposed contributions requires taking a closer look at the electricity market clearing
process, which is reviewed in Section 3.1 together with uncertainty modelling techniques adopted
in this thesis. The allocation of additional transmission capacity unlocked by DTR into power
system operations is studied in Section 3.2, where [Pub. D] is presented. Section 3.3 instead
focuses on the contribution proposed in [Pub. E], which elaborates on a novel approach for the
network-aware provision of operating reserves. Lastly, Section 3.4 draws final remarks.

3.1 Modelling preliminaries

During the operational planning of power systems, grid operators go through a decision-making
process, which is interfaced with the ordinary functioning of electricity markets. It is mostly in this
phase that, confronted with the uncertain nature of renewable energy sources, decision-makers
seek the best compromise between security of supply and economically efficient ways to operate
the system. [Pub. D] and [Pub. E] propose analytical support-tools to optimize this trade-off,
based on descriptions of the underlying stochastic processes. With this regard, special attention is
dedicated to modelling the uncertainty associated to wind power and DTR of overhead lines, as
they form the inputs to the decision-making support-tools.

3.1.1 Organization of short-term electricity markets

The common denominator of existing electricity market structures is a sequence of trading floors
where energy is exchanged on different timescales. The contributions listed in this chapter consider
short-term markets, i.e., those that take place close to the actual energy delivery up to 24 hours
ahead. More importantly, the analysis is carried out from the point of view of grid operators,
whose role is to supervise market operations and ensure technical feasibility of all the transactions.
While there may be several intra-day markets where participants can adjust their offers, three main
trading floors are considered in this treatise: reserve, day-ahead and balancing markets, which are
arranged as shown in Fig. 3.1. A more in-depth discussion on the organization and functioning of
electricity markets can be found in [47].

Electrical energy is traded in the day-ahead market, whose clearing produces an hourly schedule
for conventional and stochastic producers, pg and wj , respectively. Grid operators have the
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Figure 3.1: Overview of a simplified sequential market clearing sequence.

responsibility to ensure that resulting power exchanges are physically possible by allocating
enough transmission capacity F` to the system. At this stage, however, the trading of renewable
energy is based on simplified point forecast values Ŵj , which do not carry any information
regarding the associated uncertainty. Therefore, the balance between generation and demand is not
guaranteed until the grid operator clears a series of hourly balancing markets, where controllable
generators can adjust their output based on more recent information on the uncertainty in the
system, i.e., actual wind power generation Wj . Failing to balance out power fluctuations, forces
the operator to resort to expensive corrective actions, such as load shedding dsh

n and wind power
curtailment wct

j .

It is therefore crucial to guarantee that enough upward and downward balancing power p+
g , p

−
g

are, in fact, available during real-time operation to compensate power shortages or excesses,
respectively. To this end, grid operators clear a reserve market prior to or in combination with the
day-ahead market: in the first case energy and reserve are procured independently of one another,
whereas in the second they are co-optimized. While [Pub. D] deals exclusively with the second
case, [Pub. E] compares the proposed methodology with both. Overall, the reserve market ensures
that sufficient power is withdrawn from the energy market and set as a reserve, i.e., ready to be
deployed in case of deviations from the scheduled operations.

This simplified description of a sequential market clearing highlights those critical decisions that
grid operators are responsible for. Two in particular are the focus of this chapter: setting line
ratings F`, which establish the network capacity available for power exchanges; setting upward
and downward reserve requirements, Λ+ and Λ−, respectively, which are directly related to the
share of wind power in the system. The first decision in particular is where DTR poses a novel
challenge. How should the grid operator decide the capacity for energy trading if line ratings
themselves are random variables no different than wind power production levels? [Pub. D]
addresses this question by proposing a novel methodology whose objective is to maximise the
benefits of DTR, while at the same time considering the high-risk aversion of grid operators and the
correlation with wind power generation. The second critical decision instead consists in a measure
of operational flexibility that is pivotal for the successful large-scale integration of wind power.
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[Pub. E] proposes a novel reserve procurement approach that improves the position of flexible
resources in the system and challenges common strategies which fail to address key topological
aspects.

3.1.2 Wind power and line rating uncertainty modelling

In the market clearing process described above, wind power is commonly dispatched based on
single-value forecasts, which easily fit into a deterministic view of power system operations.
Single-value or point forecasts typically correspond to the conditional expectation of random
variable Y t, which here identifies the underlying stochastic process at time t [48]. The information
provided by a point forecast, however, is not sufficient to characterize the uncertainty in the system,
thus other methods are required to gain awareness during operational planning as the share of
renewable energy increases. To this end, probabilistic forecasts f̂t+h|t issued at time t for a lead
time h aim at predicting the marginal density function ft+h of the stochastic process. The work
presented in this thesis assumes that forecasts are issued at noon for each hourly time slot of the
following day from 12 up to 36 hours in advance. Although a decay in the quality of the forecasts
should be expected as the lead time h increases [49], this aspect is not considered in the thesis.

Two main classes of probabilistic forecasts can be identified: parametric and non-parametric. While
in the first case the forecaster assumes a certain family of the distribution and estimates the set of
its defining parameters with available data, in the second case no assumption is made about it.
Assuming a predefined distribution certainly eases the modelling approach but it may introduce
further approximations that are passed on to the decision-making models and the solutions they
provide. Contrarily, a non-parametric approach is more flexible and allows to capture statistically
significant properties with higher accuracy, however, it usually implies higher computational
burden.

Parametric models

[Pub. E] deals with large-scale systems with several injections of wind power, whose marginal
predictive distributions are modelled with a parametric approach. As discussed in [48], a variety
of parametric distributions fits wind power forecast errors, provided that their double-bounded
nature is accounted for. Figure 3.2(a) shows an example of Beta distributions used in [Pub. E]
where the modelling approach in [50] is adopted. Shape parameters α and β are estimated as a
function of expected wind power production p and associated variance σ2, while the analytical
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Figure 3.2: Wind power forecast errors with parametric model. (a) Beta distributions and (b)
variance estimation based on expected wind power.
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relation that links the latter two quantities is shown in Figure 3.2(b). This simplified relationship
is used as a variance estimator, assuming that grid operator has knowledge of the expected
wind power production p. It shows that a sharper distribution of forecast errors is considered
whenever p is close to the lower and upper limits. Although a more complete approach should
also consider space-time trajectories and more complex dependencies as in [51], in this case the
marginal predictive distributions model wind power forecast errors at a specified time t without
any inter-temporal relation. Overall, this approach offers a computationally efficient way to model
probabilistic forecasts by simply requiring the expected wind power production level p.

Non-parametric models

In [Pub. D], instead, the focus is on both wind power generation and DTR of overhead lines,
whose probabilistic forecasts exhibit highly irregular shapes [52]. Furthermore, authors of [52]
show that the nature of the forecast is likely to change depending on which weather variable is
predominant for the estimation of the line thermal rating. These considerations motivated the
adoption of a non-parametric approach that provides the maximum flexibility for the input of the
decision-making tool.

Non-parametric probabilistic forecast are constructed by linearly interpolating a series of m point
forecasts obtained with quantile regression [53]. In [Pub. D] a piece-wise polynomial quantile
regression has been adopted for wind power generation, whereas a multivariate linear one has
been used for DTR, both trained on historical data from the Danish power system. Assuming a
linear dependence of line rating with respect to the regressors could be acceptable for ambient
temperature and solar radiation, but not quite for wind speed and direction, which exhibit highly
non-linear behaviors as shown in [Pub. A]. This approach has been adopted nonetheless owing
to its simplicity, while more advanced forecasting tools applied to DTR of overhead lines are
discussed in [54]. By taking advantage of the notation in [55], where non-parametric probabilistic
forecasts are applied to wind power, the predictive density function can be expressed as

f̂t+h|t = {q̂(εi)
t+h|t, i = 1, . . . ,m | 0 ≤ ε1 ≤ ε2 ≤ . . . ≤ εm ≤ 1} (3.1)

where q̂εi

t+h|t is the ε-quantile forecast issued at time t for lead time t + h and εi is a monotonic
sequence of equally-spaced quantile levels with a sufficiently small granularity, e.g., 1% or 0.1%.
The resulting probabilistic forecast for wind power and DTR are shown in Fig.3.3(a) and Fig.3.3(b),
respectively. Note that, unlike Beta distributions in Fig.3.2(a), non-parametric forecasts lack a
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overhead line thermal rating.
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close form expression which is necessary to incorporate them into the class of decision-making
models proposed in [Pub. D]. Therefore, the last step consists in fitting a Gaussian Mixture
Model (GMM), which provides an analytical description of the Probability Density Function (PDF)
and the Cumulative Density Function (CDF).

From marginal to joint distribution

Both [Pub. D] and [Pub. E] model multivariate stochastic dependencies in power systems, i.e.,
spatial correlation between different wind farms in the first case and also between wind power
and line ratings in the second. This is achieved by means of the methodology in [56], which may
be briefly summarized with the following points:

1. Generate a sufficiently large number of samples x = (x1, x2, . . . , xn) from a n-dimensional
Gaussian distribution, which is assumed to model the interdependence structure between
stochastic variables. Each x consists in a realization of the multivariate random variable
X ∼ N (0,Σr), which is centered in 0 with a rank correlation matrix Σr estimated from
historical data. Spearman’s rank correlation is preferred to Pearson’s as the former is invariant
to monotonic transformations and better represents the stochastic dependence between
random variables.

2. Each realization x is transformed to the rank domain with the CDF, i.e., u = ΦX(x), where
ΦX is the multivariate Gaussian CDF. Initial samples x are now transformed to u which
are uniformly distributed U ∼ U(0, 1), but preserve the rank correlation structure as the
CDF transformation is monotonic. This step bridges the initial samples from the Gaussian
interdependence to the actual domain of the stochastic random variables.

3. Lastly, samples u are transformed to the actual domain with the inverse CDF of each
predictive marginal distribution, i.e., yn = F−1

Yn
(un). This step requires the inversion of FYn

that is the predictive CDF of the n-th random variable in the system. Figure 3.4 shows
the realizations y = (y1, y2) in the actual domain considering wind power and line rating
together with a fitted multivariate GMM which models the joint predictive distribution.

Figure 3.4: Example of joint probabilistic forecast of wind power and line rating. Realizations
simulated with a Gaussian copula and fitted GMM.
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3.2 Risk-averse transmission capacity allocation

Chapter 2 showed the potential that DTR has to unveil extra capacity in the system, however, the
available margin can be successfully utilized only if the uncertainty associated with it is taken
into account. This section discusses the contribution proposed in [Pub. D], where a risk-averse
methodology is defined for maximising the potential of DTR, while not jeopardising the security of
the system. The high positive correlation between DTR and wind power generation is taken into
account, thus promoting the integration of this renewable energy source in transmission systems.

3.2.1 Literature review

Several methodological approaches have been proposed in the literature to address the uncertainty
of DTR during operational planning. Authors of [57] propose a two-stage stochastic programming
framework, where a set of possible line rating realizations and their associated probabilities is
considered in day-ahead and balancing markets. The chosen line rating minimizes the total
expected operating costs considering potential re-dispatch actions such as load shedding and wind
power curtailment. The same principle is also adopted in [58], where a security constrained unit
commitment is considered instead together with network topology changes. While accounting for
the uncertainty, these studies do not consider the typical risk-aversion of grid operators, as they
provide the best solution in terms of expectation.

In order to enforce more conservative solutions that still take advantage of DTR, authors of [59]
adopted a chance-constrained optimization framework, which allows grid operators to set a
predetermined risk-aversion in the day-ahead capacity calculation. With this approach, the same
low violation probability that is commonly accepted for seasonal line ratings can be used for DTR
in a more adaptive way. The problem, however, is that this requires a detailed description of the
uncertainty. To circumvent this aspect, a robust optimization framework is studied in [60], where
both centralized and decentralized corrective actions are taken into account for deviations from the
chosen line rating. In the same vein, authors of [61] rely on distributionally robust optimization
framework that considers possible valid probabilistic descriptions of the uncertainty.

The methodology proposed in [Pub. D] is aligned with the literature, although two important
differences are put forward. Existing studies treat the uncertainty with parametric models
and introduce a risk measure by considering either worst-case scenarios in [60] or worst-case
distributions that fit the data within a predetermined statistical distance [61]. Rather than using
parametric models, which may poorly represent DTR forecasts, and enforce a risk measure a
posteriori, the proposed approach opts for modelling the input forecasts with higher fidelity using
non-parametric distributions and incorporate them directly in the decision-making tool. Ultimately,
the effectiveness of this approach should be seen in particular when combined with advanced
forecasting tools, such as quantile random forests proposed in [62], which provide a clearer picture
of line rating forecasts.

The second key contribution considers the synergies between DTR and wind power generation,
again with non-parametric distributions. The proven correlation between the two can be taken into
account to further increase the available margin for higher power flows in wind-dominated power
systems. Thus, line ratings are determined not only based on the selection of a quantile from their
probabilistic forecast, but also considering the stochastic part of power flows. The combination of
these two aspects is expected to maximise the benefits of DTR.
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3.2.2 Chance-constrained optimal power flow with DTR

The impact of line rating and wind power uncertainty is studied in a reserve and energy co-
optimization problem formulated as a DC-OPF, where power flow limits and reserve procurement
constraints are enforced in a probabilistic fashion. To this end, line ratings and wind power
generation are modelled with spatially correlated non-parametric probabilistic forecasts, as
described in Section 3.1.

The objective is to minimize total generation and reserve procurement costs of a given transmission
system, including penalty terms for curtailed wind power and shed load. All conventional
generators are assumed to respond to imbalances caused by wind power forecast errors according
to linear decision rules, so that each response is proportional to the installed capacity of the unit.
Such a reserve allocation policy reflects a condition where the grid operator does not consider the
location of flexible units during the procurement phase and implies that the relative positioning
of reserves in the system cannot be changed. The implications of this assumption are further
discussed in Section 3.3, whereas the focus of this section remains on the uncertainty of DTR.

Although simulation results are derived over a 24h period, no inter-temporal constraints are
considered since hourly thermal ratings are temporally decoupled, as discussed in Section 2.1. The
proposed methodology is compactly formulated with proper c, h and q matrices as

min
ξ

c>ξ (3.2a)

s.t. h>1 ξ − h0 = 0 : Power balance, (3.2b)

q>1 ξ − q0 ≤ 0 : Operational limits - Deterministic, (3.2c)

P
{
q′>1i
ξ − q̃0i

≤ 0
}
≥ 1− εi ∀i ∈ I : Operational limits - Probabilistic (3.2d)

where ξ = {pg, r+
g , r

−
g , d

sh
n , w

ct
j } is the set of decision variables, i.e., scheduled power generation, up-

and downward operating reserves, load shedding and wind curtailment. System power balance at
the day-ahead stage is enforced with (3.2b), whereas upper and lower bounds for conventional
units and corrective actions are modelled with linear deterministic constraints in (3.2c). Instead,
power flow and reserve adequacy constraints are considered in (3.2d), where line ratings and wind
power probabilistic forecasts appear as random variables q̃0i

. The separable structure of each
individual chance-constraint i allows the problem to be solved with a deterministic equivalent
problem, whose formulation is presented in details in [Pub. D].

The risk level ε is defined as the probability of violating the inner inequality in (3.2d), so it is
commonly fixed at low values, in this case 2% for reserve adequacy and 5% for power flows, which
are chosen in accordance with standard practices. Enforcing low violation probabilities requires
a reliable model for the tails of the distributions and that is where non-parametric models come
into play. Clearly, the introduction of probabilistic constraints entails more conservative solutions
compared to the fully deterministic version of (3.2), where (3.2d) is replaced by its inner inequality
constraint. However, the value of such methodology consists in the ability to safeguard the grid
operator against potentially critical situations, which may require expensive corrective actions.

Simulation results are derived from the RTS-24 bus system [43], where additional wind power
generation is localized diametrically opposite to the major load centers. These assumptions
configure a highly stressed transmission system, where the value of additional network capacity
can be easily evaluated. Both wind power and line ratings are simulated based on historical
weather data from the Danish power system.
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Figure 3.5: Analysis of simulated power flow with DTR over a 24h period [Pub. D].

Power flow analysis

The reformulation of chance-constraints highlights a safety margin that can be used to reduce
transmission capacity allocated to the market, so that the sought-after risk-aversion of the grid
operator is accounted for. Whenever lines are operated with conventional STR, this margin reflects
the uncertainty in power flows caused by wind power generation. However, when also DTR is in
place as in Fig. 3.5, the chosen rating considers both sources of uncertainty, while accounting for
their correlation. This approach allows the grid operator to push the utilization of the lines even
further, as opposed to a case where wind generation and line ratings are considered statistically
independent. Overall, considering a day with favourable windy conditions, where the actual
thermal rating of the line is 1.7 times the STR, this methodology allows to use approximately 90%
of the extra margin, while accepting the same 5% violation probability adopted for the other lines.

Robustness test

To test the validity of this approach against perturbations in wind power and DTR, a sufficiently
large number of realizations is simulated from the joint predictive distributions that models their
stochastic dependence. These realizations are plugged in the inner inequality of (3.2d) together
with the solutions ξ∗ obtained by solving (3.2) with varying assumptions on the random variables.
It stands out as the commonly used approach of normally distributed line ratings entails an
overestimation of the lower tail, which results in higher violation probabilities. This result points
to the fact that, if the utilization of the lines needs to be maximised, an accurate representation of
the uncertainty is necessary.

Cost analysis

The use of DTR entails significant cost differences as opposed to STR, especially in terms of wind
power curtailment, which is nearly halved thanks to the high correlation between DTR and wind
generation. Some side effects are also evident on the procurement of reserves, although an in-depth
analysis should study different allocation policies. Considering the linear decision rule assumed in
this study, upward reserve costs decrease and downward reserve costs increase. In the first case,
higher network capacity guarantees that larger and cheaper generators can provide operating
reserves, while not reducing their capacity for the market. In the second case, instead, more
down-regulating power is needed to dispatch extra wind power generation that can be injected
into the system thanks to highly correlated line ratings. Overall, as a result of extra transmission
capacity in a windy day, total generation cost is 17% less, in line with results from [Pub. B], although
higher savings can be expected for grid operators if reserve procurement is also considered.
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3.3 Network-aware reserve procurement

The large-scale integration of wind power requires increased levels of operational flexibility,
which is interpreted as the ability to anticipate and quickly adapt to fluctuations of power from
stochastic generators. On the one hand, the contributions presented so far aimed at increasing
the available transmission capacity, so that such fluctuations can easily flow through the network
without violating thermal limits of components. On the other hand, the system balance between
power production and consumption needs to be maintained by readily available generators,
which regulate their output following deviations from scheduled operations. Therefore, a flexible
utilization of grid capacity is achieved not only by increasing maximum power flows, but also
ensuring that enough reserve capacity is optimally placed in the system. This section presents
the contributions in [Pub. E], where the focus is on the ability to deliver operating reserves to the
system by ensuring that network limitations are taken into account during their provision process.

3.3.1 Literature review

The connection between higher shares of wind power in electricity markets and increased levels
of operating reserves is widely acknowledged in power systems analysis [20]. Several studies,
however, recently discussed the implications of this trend concluding that the procurement of
more reserve capacity from flexible generators does not necessarily guarantee that imbalances
would be covered in real-time, due to network limitations and congested transmission lines [63,64].
Although the location of generators plays a key role in the ability to activate and deliver power to
the grid, this aspect is usually not considered in the reserve market clearing process, as discussed
in Section 3.1.

Two-stage stochastic programming has been proposed as an effective way to preposition reserves
in the system in such a way that total expected system costs are minimized [65, 66]. In fact, this
approach is considered an ideal one, since the violation of revenue adequacy and cost recovery
renders it incompatible with current market structures. To this end, authors of [67] developed a
framework based on two-stage stochastic bilevel programming for optimally dispatching wind
power in day-ahead markets. The bilevel structure allows grid operators to leverage their degree
of freedom in order to steer the dispatch of the system towards the cost optimal one given by the
purely stochastic model, with limited control over the clearing of electricity markets. Similarly, [68]
and [69] adopted the same methodology while incorporating cross-border transmission capacity
allocation and reserve procurement, respectively. Nevertheless, the fact that these studies rely on a
single reserve market means that the procurement of capacity follows the least-cost merit-order
curve, regardless of the physical position of generators. While they show that it is possible to
regulate the total amount of reserves considering expected corrective actions, the location of reserve
capacity in the system is still not accounted for.

The contribution in [Pub. E] aims at improving this latter aspect, by proposing a zonal pre-emptive
framework which allows grid operators to define a number of zones, where reserve markets can be
cleared independently of one another, while respecting the least-cost merit-order on a zonal basis.
A zonal representation of the system is beneficial for procuring reserves considering major network
limitations, however, the effectiveness of a zonal setup is conditional to a detailed description of
the uncertainty in the system. That is why the proposed methodology indicates the best way to
split the reserve capacity market, given the latest probabilistic description of stochastic power
production.
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Other studies proposed a dynamic partition of the system for the provision of operating reserve,
however, the way the zones are defined is still open to interpretation. The method proposed in
[Pub. E] relies on grid partitioning algorithms that are exclusively driven by the total expected
system costs, thus without the need for additional metrics which may entail a level of arbitrariness.
Grid partitioning constraints have already been used in power system research for intentional
islanding of transmission systems in a two-stage stochastic problem [70, 71]. However, to the best
of our knowledge, [Pub. E] is the first that relies on them for defining zonal reserve markets, and
the first that incorporates them in a bilevel framework.

3.3.2 Zonal pre-emptive methodology

The goal of the proposed methodology is to split the system in a number of contiguous reserve
zones and set zonal reserve requirements in order to minimize total operating costs. Having both
the boundaries of each zone and the corresponding reserve requirements as decision variables
grants maximum flexibility to optimally position reserve capacity. The proposed methodology is
able to identify potential bottlenecks in the system and dynamically redefine zonal markets so that
the access to flexible reserve capacity during real-time operation is guaranteed with the minimal
cost. Furthermore, the option to set aside part of the cross-zonal transmission capacity is included
in order to facilitate the exchange of reserves between zones during re-dispatch actions. Figure 3.6
shows a conceptual overview of the stochastic bilevel optimization problem.

The optimal solution of the whole problem is guided by the upper-level part, where the main
objective function is defined. This is comprised of three terms: reserve costs CR, day-ahead costs CD
and expected balancing costs CB , given a scenario set with S realizations of wind power production
and their corresponding probabilities πs. Upper-level decision variables model the degree of
freedom during the sequential market clearing process described in Section 3.1. In particular, grid
operators are assumed to set zone boundaries with a partitioning binary variable x, set zonal
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Figure 3.6: Schematic representation of the zonal pre-emptive methodology
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reserve requirements Λ and cross-zonal transmission capacity Γ, expressed as a percentage of
line ratings. Additionally, the solution of the upper-level problem is delimited by the optimal
solution of the lower-level problems, which model each stage in the sequential market clearing.
Therefore, even though the grid operator has neither control over the dispatch of single generators
nor the ability to procure reserve out-of-merit, the economic efficiency of the system can be heavily
influenced by optimizing those quantities that the operator is responsible for. The following
sections take a closer look at the interactions in Fig. 3.6, whereas an in-depth analytical description
and a solution methodology is provided in [Pub. E].

Grid partitioning

The partition of the system into a predefined number of zones follows three defining properties:
zones do not overlap, they cover all nodes in the system and the corresponding sub-graphs
generated by the partition are connected, meaning that whichever two nodes are considered inside
a zone, there is always an internal path connecting them together. The connectivity requirement,
in particular, is necessary to ensure that zonal reserve markets truly reflect the limited exchange
possibilities in a congested transmission system. Considering the RTS-96 system [72] in Fig. 3.7,
the adaptive partition enables the identification of those areas where reserves may be required
the most, as opposed to a single reserve market whose clearing does not consider the location of
flexible capacity. Neglecting the locational aspect is likely to entail higher operating costs, since
part of the reserves may not be accessible during real-time operation, thus forcing expensive
out-of-market corrective actions. Grid partitioning constraints are included in the upper-level
problem and govern the solution of the lower-level ones. Such a hierarchical structure implies
that the optimal configuration of the system takes into account all stages of the sequential market
clearing and their associated costs.

Reserve procurement

Each zone of the partition has different reserve requirements Λ1, . . . ,Λz , which are procured abiding
by a least-cost merit-order on a zonal basis. Figure 3.7 shows a partition of the IEEE RTS-96 system
into three zones together with the corresponding reserve capacity offers of generators and the
final procured amount. Even though cheaper reserves are available in zone 3, the optimal solution
suggests to procure them where the cost per MW is higher, i.e., zone 1 and zone 2, since generators
in these zones are located closer to nodes with large share of wind power generation. This approach
resembles the ability of the purely stochastic model to pre-position reserves close to the sources of
potential imbalances, however, it does so without the assumption of a generator-specific resolution
by defining zones, where generators can present their offers. As the number of zones increases,
the total operating cost of the the system approaches the one of the purely stochastic model.
Nevertheless, simulation results show that significant savings can be obtained with just two zones,
thus limiting the scale of the problem and the associated computational time.

Capacity allocation

Another leverage of the zonal pre-emptive methodology is the allocation of cross-zonal transmission
capacity between energy trading and balancing services. Upper-level decision variable Γ indicates
the share of line rating that is set aside from the day-ahead market in order to leave a headroom on
transmission lines for re-dispatch actions during real-time operations. Therefore, whenever Γ% of
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Figure 3.7: Partition into 3 zones of the IEEE RTS-96 system with corresponding reserve capacity
offers from generators in each zone. Highlighted part is the procured amount. Triangles indicate
nodes with wind power injection.

line capacity is reserved for the balancing market, only (1− Γ)% is allocated for energy trading at
the day-ahead stage on those lines that connect adjacent zones in the partition. The addition of this
extra decision variable further reduces total operating costs, since more reserves can be procured
from cheaper areas of the system, while ensuring that they are deliverable in case of imbalances.
Total costs, however, are reduced at the expenses of higher generation cost during day-ahead stage,
given the reduced network capacity for energy trading. Furthermore, simulation results show that
this measure is effective only when the portion of line capacity set aside for balancing is greater
than 60%. This point resembles the line switching method [73], according to which the dispatch of
a system can be improved by rerouting power flows in the system with coordinated switching of
transmission lines.

3.4 Remarks

In conclusion of this chapter, key points of the presented publications are listed in Table 3.1. These
contributions aim at providing novel decision-making support-tools for the integration of wind
power generation by offering a new perspective on the definition of flexibility in operational
planning.

To answer the question in Section 3.1 about the assimilation of DTR into capacity calculations, the
methodology proposed in [Pub. D] based on chance-constraints offers a risk-averse approach to do
so. By setting aside a margin of transmission capacity on each line, grid operators can safeguard
the system against unexpected variations in stochastic power production. The quantification of
this margin is the goal of the proposed methodology, which in case of lines with DTR considers
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not only wind power, but also weather-based uncertainty on the thermal state of conductors. For
this reason, it is stressed the importance to adopt detailed probabilistic forecast, while considering
the underlying interdependence structure. Overall, this approach allows grid operators to take
advantage of the potential of DTR in wind-dominated power systems and it paves the way for
the application of more advanced forecasting tools applied to DTR. To this end, the similarities
between wind power and line rating forecasting could be further investigated in order to transfer
the consolidated experience from the first to the second.

Although simulation results show a valid business case for DTR with significant savings for daily
system operations, assessing the value of this technology should also consider other limiting
factors and other measures of flexibility that grid operators can resort to. A more adaptive reserve
allocation policy, for example, could be used in combination with DTR in order to coordinate the
available flexibility in the system. To this end, the zonal pre-emptive methodology in [Pub. E]
could prove to be a valid solution owing to its ability to identify potential bottlenecks in the system
and procure reserve accordingly.

The zonal pre-emptive methodology shows that it is possible to approximate the efficiency of the
stochastic market clearing with solutions that are more appealing to current electricity market
structures. Rather than procuring reserve capacity from single generators in contrast with the
least-cost merit-order, the dynamic definition of zones let grid operators identify critical areas in the
system where reserve markets can be cleared independently of one another following consolidated
practices in power system operation. The ability to redefine zonal reserve markets in such a way
that total operating costs are minimized brings a significant contribution to the current debate on
a coordinated European reserve capacity market [5], envisioning a zonal setup that transcends
national borders.
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Table 3.1: List of major assumptions and conclusions for each contribution presented in Chapter 3.

Assumptions Conclusions

[Pub. D] •Non-parametric probabilistic forecast
for hourly line ratings and wind power.
Use of quantile regression with fixed lead
time.

• Spatial correlation from historical data
in Danish power system. Results simu-
lated with moderate wind speed (≤ 13
m/s).

• Lossless power flows, small voltage
angles and negligible voltage drops (DC-
OPF assumptions). No temporally cou-
pled constraints. 3 lines equipped with
DTR.

• Reserve allocation policy in a single
reserve market with a linear decision
rule.

• Assuming normally distributed DTR
overestimates the lower tail of the distri-
bution. More constraint violation should
be expected with this assumption.

• 90% of the available extra margin for
higher power flows can be utilized as-
suming the same 5% risk-aversion for
other lines.

• Wind power curtailment halved and
-17.6% total cost reduction compared to
STR during a 24h dispatch period

[Pub. E] • Parametric probabilistic forecasts of
wind power forecast errors at different
sites. Spatial correlation from historical
data in Danish system.

• Error variance of Beta distributions
expressed as a quadratic function of p.u.
point forecast.

• Share of wind power generation is
equal to approximately 45% and 18%
in the RTS-24 and RTS-96 system, respec-
tively.

• Lossless power flows, small voltage
angles and negligible voltage drops (DC-
OPF assumptions). Single-period formu-
lation.

• Zonal pre-emptive methodology pro-
duces a grid partitioning that considers
network topology, probabilistic descrip-
tion of uncertainty, location, availability
and reserve cost of flexible generators.

• Total costs approach the efficiency of
the purely stochastic model as the num-
ber of zones increases.

•Adaptive partition in 2 zones sufficient
to match efficiency of stochastic model
in RTS-96 system.

• Transmission capacity allocation fur-
ther reduces the costs in the RTS-24 sys-
tem.



CHAPTER4
Conclusion and future work

This last chapter recollects the content of the thesis while providing final comments on the proposed
contributions in Section 4.1. Future research directions stemming from the results achieved in this
thesis are outlined in Section 4.2.

4.1 Concluding remarks

The evolution of power systems is driven by impelling decarbonization targets and it proceeds
at a pace which requires increased levels of flexibility, in all the categories it consists of: the
infrastructure, the operation and the role of stakeholders. This thesis focuses on the first two, while
taking the stance of grid operators facing growing shares of renewable energy sources in view of
limited room for traditional grid expansion projects.

Under these circumstances, achieving higher utilization of existing transmission systems seems
to be a necessary measure to address these challenges. The use of dynamic thermal rating (DTR)
has the potential to support this goal, although several aspects limit its wide application at the
time being. The large amount of data required for a reliable implementation of this technology is a
first step that needs to be tackled and contributions in [Pub. A] propose potential solutions in this
regard. Simplified approaches with reduced inputs offer viable options that, despite marginally
increasing maximum power flows, limit the additional uncertainty introduced in the system. The
uncertainty associated with weather dependent ratings is probably the biggest source of concerns
for grid operators, whose responsibility is to guarantee high levels of security of supply. To this
end, the modifications proposed in [Pub. A] to widely known thermal models limit the risk of
overheating conductors under high current and high wind conditions, where internal temperature
differences may become relevant.

The extension of DTR to larger parts of the system inevitably entails the need to adequately
upgrade other components, such as power transformers. A day-ahead dispatch including thermal
dynamics of both overhead lines and transformers is formulated for the first time in [Pub. B],
offering the possibility to study mutual dependencies between these components. Furthermore,
this approach can be used to take advantage of cyclic loading of large components at higher
operating temperatures, while still respecting maximum recommended values. The inclusion of
aging dynamics in [Pub. C] completes the methodology and shows that lifetime utilization of
transformers can be managed depending on the needs of the stakeholders.

The integration of large shares of stochastic power productions, such as wind power generation,
requires not only proper upgrade of the system, but also reviewed measures to address the
underlying uncertainty. In view of the potential that DTR has to favour wind power integration
and given their uncertain and correlated stochastic nature, [Pub. D] proposes a risk-averse
methodology to set line ratings with DTR, based on available probabilistic forecasts. This approach
let grid operators harvest the potential of DTR, while assuming the same risk aversion level that

33
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is commonly accepted on any other line. Testing this methodology in highly congested systems
with large shares of wind power generation reveals that significant savings can be attained with
respect to a reference scenario, where overhead lines are operated with static thermal ratings. This
approach increases flexibility in the transmission system, as large fluctuations of power due to
forecast errors can be managed without violating the line thermal ratings.

Rather than allowing higher power flows on specific corridors, an alternative approach that still
aims at optimizing operating costs while considering network limitations and large shares of wind
power, is the methodology proposed in [Pub. E]. The need for higher flows can be anticipated
by pre-positioning flexible generation capacity at strategic locations in the systems, in a way that
current reserve sizing practices do not consider. As a result, the system is better prepared to handle
large variation of power from stochastic producers, thus limiting the impact of uncertainty during
power system operations. While leading to operating costs that closely match the ideal lower
bound, the zonal pre-emptive methodology in [Pub. E] does not violate fundamental properties of
electricity markets that hinder the application of more efficient methods.

To conclude, results achieved in this thesis suggest that large-scale integration of renewable energy
sources can benefit from a flexible utilization of transmission grid capacity, both in terms of new
infrastructural functionalities and novel operational methods. The influence of natural phenomena
on power systems is already visible in the generation as well as in the demand of electricity and it
is bound to grow further, embracing the transmission too. The evolution of power systems will
require gaining the necessary awareness and the ability to adapt accordingly.

4.2 Future work

Potential sources of flexibility in the existing infrastructure lay also on other components that lend
themselves to the application of the core physical aspect of DTR. Underground power cables, in
particular, can be modelled with electro-thermal models that closely resemble those of power
transformers. The similarities between the two include high values of thermal capacitance that
temporally couple thermal ratings and the ability to cyclically load these components without
violating critical temperature limits. However, as opposed to transformers, power cables have
various heat sources that mutually affect each other: core, screen and armour losses. Modelling
these components in an optimization framework poses new challenging aspects that are under
consideration in [Pub. G], where dynamic network rating on overhead lines, transformers and
cables is studied in a long-term grid reinforcement problem for wind power integration.

The contributions included in this thesis analysed the potential benefits of DTR applied to a
pre-selected subset of overhead lines. However, the choice of those interconnections in the system
that maximise the benefits of DTR has not been discussed, although this aspect would be of primal
importance in highly loaded power systems. While the consolidated experience and in-depth
knowledge of grid operators can certainly provide an heuristic solution to this problem, data-driven
analytical tools have the potential to assist and optimize this decision. The identification of those
lines where additional transmission capacity would benefit the system the most could be studied
by combining bilevel optimization framework with upper-level binary decision variables, drawing
from the methodological contributions in [Pub. E].

Assuming that the construction of new lines would be increasingly difficult in the future, new
research opportunities arise for studying the impact of DTR on long-term planning. To this end,
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the interactions of DTR with other components is of primal interest. For example, the coordinated
use of DTR with energy storage systems may provide a novel case study where favourable weather
conditions, such as high wind speed, are not correlated with high load demand periods. In
this scenario, the higher network capacity could still be utilized to charge storage systems and
maximise the usage of the grid under low-load periods. Furthermore, enhanced power flow
control capabilities offered by advances in power electronics could be combined with DTR in an
effort to take full advantage of the available grid capacity. The rapid diffusion of High Voltage
Direct Current (HVDC) interconnections could offer further possibilities in this regard. While
HVDC systems allow for controllable power flows over long distances and different market areas,
DTR increases AC network capacity of relatively short lines that are thermally limited. This
complementarity might be used for increasing network capacity and flexibility under high share of
renewable energy sources.

The zonal pre-emptive methodology proposes a new perspective on the definition of zonal reserve
capacity markets, although formulated with assumptions that may limit its applicability. A
multi-period formulation could be investigated and tested providing a dynamic partition of
transmission systems that optimizes operating costs over a prolonged period of time, considering
the evolution of stochastic processes and ramping limitations of components. The application
of the tool to large-scale case studies would require new contributions from the computational
point of view, but has the potential to offer an original perspective on cross-border cooperation
and integration of national power systems.

Whenever the share of renewable energy sources will have reached a predominant part in the total
electricity demand, seasonal trends in solar and wind power generation will be so evident that the
transmission asset will need to adapt accordingly. Under these circumstances, it is hard to imagine
how power systems could be operated without increased awareness of the thermal states of all
critical components. The optimal trade-off between high-resolution numerical weather prediction
models and measuring equipment technologies should be further investigated to support future
decision-making in power systems.
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Abstract—Dynamic Line Rating (DLR) consists in an innova-
tive way to operate power systems, which allows for higher power
flows on transmission lines depending on weather conditions.
Extending the application of DLR technology from one to nu-
merous lines across a larger transmission power system presents
challenges with respect to the scalability due to the large amount
of data required. Firstly, a modified overhead line thermal model
and the use of historical weather data are considered in this
paper to preliminary assess the margin for increased rating of
transmission lines. Secondly, spatial correlation of line ratings
are analyzed and a comparison of various rating approaches,
which rely on different combinations of weather variables, is
presented. The resulting probability distributions of line ratings
are compared with constant seasonal ratings highlighting the
trade-off between those solutions that yield a large increase in
rating at a cost of high volatility, against simpler approaches
which are more conservative and require less information. The
results reported are based on actual data of the western section
of the Danish power transmission system.

Index Terms—Dynamic line rating, historical weather data,
correlation, overhead lines, thermal model

I. INTRODUCTION

It is a common practice among Transmission System Op-
erators (TSOs) to dimension and operate transmission lines in
a very conservative way by assuming unfavourable thermal
conditions, which limit the admissible line current to low
values [1]. However, the analysis of historical weather data
suggests that relaxing some of the existing tight thermal
constrains could ease the allocation of extra capacity in the
system [2]. This consideration especially applies to those lines
shorter than 80 km, whose ampacity is thermally limited, as
opposed to long ones where power transfer capabilities are
usually dictated by voltage or stability constrains [3].

Therefore, driven by the need to increase the utilization of
existing assets, Dynamic Line Rating (DLR) could provide
the TSOs with a tool for enhancing grid flexibility and coping
with increasing shares of intermittent renewable generation.
Additionally, results from [4] show that this technology has
the ability to increase transmission system reliability, espe-
cially when considering correlations between line ratings.
The proven positive correlation between cooling effect on
overhead line conductors and wind power generation [5],
further motivates the adoption of DLR technology as a means
for improving wind power integration.

Several pilot projects [6] have demonstrated the effective-
ness of DLR, but it remains an open research question whether
this rating approach is scalable to transmission systems as a

whole that span over wide geographical areas. Extending the
application of such technology to larger parts of the power
system is hindered by the need of large amount of data. In
order to correctly estimate the operating temperature of a
conductor, state of the art thermal models from Cigré and
IEEE, [7] and [8] respectively, require detailed information
about local weather conditions, which are difficult assess and
often affected by high uncertainty [9].

The risk associated with DLR is not exclusively due to data
uncertainty. Simplified approaches in the thermal models also
contribute to the possibility of overestimating the line rating.
Approaching the thermal limits, the temperature gradient be-
tween the center of the conductor and its surface cannot be
neglected and it can reach values as high as 20 ◦C [10] - [11].
Exceeding the maximum core temperature is likely to cause
a violation of the clearance requirements, as above the knee-
point temperature the sag mainly depends on the steel thermal
dilatation [12]. Despite acknowledging the relevance of the
radial temperature drop, the guide in [7] does not consider it
in the rating calculations, as it assumes a uniform temperature
distribution in the cross-section.

Therefore, the first contribution of this paper is to propose
a modified thermal model based on [7] that accounts for the
radial temperature drop in conductors. This ensures that the
maximum operating temperature is not exceeded at the center,
where the temperature is highest. Secondly, this paper reports
the results of a preliminary assessment of thermal ratings
across the western Danish transmission system. Historical
weather data utilized to derive the ratings have been simulated
by means of the mesoscale downscaling method presented in
[13], which generates time series of wind speed and other
meteorological fields for the considered geographical location.

Furthermore, a comparison of different rating approaches
is discussed, studying the same thermal model applied to
different combinations of weather variables. This allows to test
various alternatives for implementing DLR across transmission
systems, considering simple solutions that require less inputs.

The paper is organized as follows. Section II reviews
the adopted guide for thermal ratings and elaborates on the
modifications that have been introduced. Section III presents
the historical weather data from which the DLR have been
derived. Section IV presents the comparative approach to
different gradations of DLR. Section V presents key statistics
of thermal ratings across the considered transmission system,
whereas Section VI concludes the paper.



II. OVERHEAD LINE THERMAL MODELLING

A. Cigré Steady State Rating

Thermal limits of overhead lines are determined by the max-
imum temperature at which the conductors can be operated
without violating clearance requirements or compromising
structural integrity of materials. Assuming the cross-section
of the conductor to be isothermal, the operating tempera-
ture results from a thermal equilibrium between several heat
sources and cooling mechanisms. Equation (1), known as the
Heat Balance Equation (HBE), models such per-unit-length
thermal balance in steady state conditions. Joule losses PJ

and solar heating PS contribute to the temperature rise over
time, whereas convective cooling PC and radiative cooling PR

act against it. Table I lists the relevant quantities that are used
throughout this section.

PJ + PS − PC − PR = 0 (1)

The convective cooling PC , in particular, is the term that
dissipates most of the heat generated in the conductor. Equa-
tion (2) models such heat transfer mechanism where λf is the
thermal conductivity of the air, Ts is the conductor surface
temperature, Tair is the surrounding air temperature and Nu is
the Nusselt Number which mainly depends upon wind speed,
wind angle of attack and wind regime.

PC = π · λf · (Ts − Tair) ·Nu (2)

The Pi terms in (1) are highly weather dependent and
for a detailed description of the various heating and cooling
mechanism, the reader is referred to [7].

For steady state rating calculations under a given set of
weather variables, the conductor is assumed in thermal equilib-
rium with the environment. The HBE is solved for the current
I which solely appears in the joule losses term PJ = I2 ·Rac,
where Rac is the AC resistance at maximum operating tem-
perature. The resulting value is therefore the current for which
the conductor reaches asymptotically the maximum operating
temperature, given a set of constant weather variables. For
overhead lines operated with n bundled conductors, it has been
assumed that no mutual heating occurs between bundles and
that the phase current is equally distributed among the bundles
so that Iphase = n · Ibundle holds.

B. Proposed Modifications

As the line current approaches the steady state rating,
conductor current densities may be greater than 2 or 3 A/mm2

[7]. If the steady state rating is set according to (1), the radial
temperature drop can be such to require a de-rating of the
line in order not to overheat the centre of the conductor.
Accounting for the this aspect in the steady state estimation
algorithm, can be achieved by relying on the system comprised
of (3a), (3b) and (3c).




PJ(I, Tav) + PS − PC(Ts)− PR(Ts) = 0

Tc − Ts =
PH(I, Tav)

2πλ

[
1

2
−
(

D2
1

D2 −D2
1

ln
D

D1

)]

Tc + Ts = 2Tav

(3a)

(3b)

(3c)

TABLE I
NOMENCLATURE

Symbol Unit Name

PJ [W/m] Joule heating
PS [W/m] Solar heating
PC [W/m] Convective cooling
PR [W/m] Radiative cooling
PH [W/m] Total heat gain
I [A] Current rms
Rac [Ω/m] AC resistance
Tc [◦C] Conductor core temperature
Ts [◦C] Conductor surface temperature
Tav [◦C] Conductor average radial temperature
Tair [◦C] Surrounding air temperature
∆Tcs [◦C] Radial temperature drop
λf [W/(m·K)] Thermal conductivity of the air
λ [W/(m·K)] Effective radial thermal conductivity
D [m] Conductor outer diameter
D1 [m] Inner steel core diameter.
Nu [-] Nusselt number

Unlike the procedure discussed in II-A where the rating
is found by solely solving (3a) for the current, the system
of non-linear equations in (3) is solved for I , Tav and Ts,
which are the steady state rating, the average and the surface
conductor temperature, respectively. Equation (3a) is the HBE
in steady state conditions, where the dependency upon the
system variables has been highlighted. Equation (3b) models
the radial temperature drop and (3c) defines the average
temperature in the cross-section. The maximum operating
temperature is set on the center of the conductor, thus the
core temperature Tc in the system has to be chosen a priori.

The radial temperature drop is estimated in a simplified way
according to equation (3b), presented in [7]. In (3b) PH is
the total heat gain per unit length of the conductor and it
is approximated with the sum of Joule losses PJ and solar
heating PS . As in [7], internal heat generation is assumed to
be uniformly distributed in aluminum wires. This implies that
the impact of skin effect on temperature distribution is not
considered, even though the skin effect is accounted for in the
AC resistance calculations. Lastly, the conductor is modelled
as a uniform cylinder with λ being the effective radial thermal
conductivity. This parameter accounts for interstices and air
gaps between strands which worsen the heat transfer from the
center to the outer surface of the conductor. λ depends on
numerous factors among which is the tension of aluminum
strands. Typical values range from 0.5 to 7 W/(m·K) and in
this work a conservative constant value of 0.7 is assumed as
suggested in [7].

Compared to (1), the solution of (3) yields the highest
steady state current that results in the maximum operating
temperature being reached at the center of the conductor. A
lower surface temperature at the thermal equilibrium reduces
the convective heat transfer and thus the ability to dissipate
heat. Consequently, the ampacity obtained accounting for the
radial temperature drop is reduced. Fig. 1 shows the de-rating
introduced by this approach compared to the rating algorithm
described in II-A. As the wind speed increases, the radial



Fig. 1. Derating of line ampacity introduced in the proposed model with
respect to model in [7]. Derating and corresponding radial temperature drop
are derived for a Drake conductor and different values of wind speed. Other
weather variables are assumed constant at the reference values in Fig. 2

temperature drop grows larger and the rating is reduced ac-
cordingly. Attenuating the influence of the convective cooling
in windy conditions also reduces the risk of overestimating
the true thermal limits. Therefore, this approach offers a
conservative way to account for large temperature differences
within the conductor by relying on existing guides for thermal
rating.

C. Sensitivity analysis

Four main weather variables are considered in the thermal
rating estimation: air temperature, solar radiation, wind speed
and direction. The influence of each one of these on the
rating of a ACSR Drake conductor is shown in Fig. 2. From
the comparison between the proposed modification and the
original rating algorithm in [7], it emerges that accounting
for the radial temperature drop in conductors attenuates in
particular the influence of high wind speeds. Wind speed at
0.5 m/s reduces the rating by 10%, whereas at 14 m/s the
attenuation reaches nearly 27%. Fig. 2 also shows that the
sensitivity of other weather variables on the ampacity is not
affected by the introduced modification, i.e. variations of air
temperature, wind direction and solar radiation result in the
same relative change in ampacity.

III. HISTORICAL WEATHER DATA

The results presented in this study are based on simulated
time series of weather data that were produced using the
mesoscale numerical model ”Weather, Research and Forecast-
ing Model”. The simulated weather data preserve the typical
spatio-temporal correlations that real measurements would
have. The specific simulation that generated the data utilized
in this study is presented in [14].

Fig. 3 shows the location of the weather data points in
comparison with the outline of the real transmission system.
The line azimuths have been calculated in a simplified way
by assuming the lines to be piece-wise straight in major
sections. The weather variables considered for estimating DLR
are: wind speed and direction at 15 meters above ground,
air temperature and integrated solar radiation. Elevation with
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Fig. 2. Sensitivity analysis of weather variables on ampacity of a ACSR Drake
conductor. Vertical dashed line shows the reference value for each variable:
wind speed 0.5 m/s, wind direction 90 ◦, air temperature 30 ◦C and solar
radiation 1200 W/m2. Absorptivity = 0.8, Emissivity = 0.8

respect to the sea level is included and different values of
terrain roughness are implemented as well depending on the
estimated land use. The weather data was sampled along the
direction of the transmission lines using an horizontal spacing
of 5 km. Parallel lines share the same data points whereas
for those lines shorter than the minimum spatial resolution a
single point defines the thermal state. As discussed in [7],
the poor axial temperature equalization of conductors may
cause large temperature differences in a single span, due to
local sheltering effects which limit the convective cooling. An
accurate estimation of the local wind profile on overhead lines
should also include sheltering effect due to nearby objects, but
this aspect could not be accounted for in this study.

This study relied on hourly weather data that was obtained
for a period of 3 years from January 2014 through January
2017. According to [15], using 60 minutes averaged values
of the weather variables, the estimated DLR could be higher
than the real one 1.6% of the time. This aspect consists in a
second limitation of the study which is in part compensated
by the adoption of the thermal model presented in Section II,
as this conservatively accounts for wind speed.

IV. METHODOLOGY

For each hour of the considered time period and for all
the locations considered in Fig. 3, the steady state thermal
model proposed in Section II-B is solved using the weather
data presented in Section III. At any given time, the value
of DLR is determined as the lowest value of I in (3) reached
along the line, as the location with the worst thermal condition
determines the maximum loadability for the entire line.

All simulated DLRs are expressed relatively to the constant
Seasonal Line Ratings (SLRs) of the considered transmission
system. These line ratings are set by assuming conservative
weather conditions that are listed in Table II. Conservatism in



Fig. 3. Overview of the location of the weather data points (left). Overview
of the western Danish transmission lines taken as a reference case (right).
Weather data have been considered only for AC lines at 400 kV.

this aspect is common among TSOs, which have to limit the
probability of thermal overload as much as possible during
normal operation of the system. Therefore, the TSO sets a
single base value of wind speed per season for the entire
system: 0.6 m/s in summer and 0.7 m/s in winter. Fig. 4
shows the probability distribution of wind speed and ambient
temperature respectively, considering all three years of data at
disposal regardless of their location. This allows to compare
the base values set by the TSO with the actual distribution of
these variables. The base values of wind speed provided in
Table II correspond approximately to the first 1% quantile of
the distribution for both summer and winter. Air temperature
values correspond to the top 15% and top 10% quantiles for
summer and winter respectively. The values assumed for the
incident solar radiation instead are both well beyond the top
first 1% quantile and close to the highest simulated values in
the three-years period, which are 900.4 W/m2 in summer and
653.7 W/m2 in winter.

The comparative approach adopted throughout the study
serves the purpose to present different gradations of DLR,
which vary in complexity, expected rating increase and overall
variability. Five cases are tested by selecting specific combina-
tions of the available weather data, i.e. air temperature, wind
speed, wind direction and solar radiation. Table II lists which
weather variables are considered in each case. The rationale
of this approach is to gradually relax the tight assumptions of
the TSO, by considering the actual time series of weather data
instead of the fixed seasonal values. Case 1 solely considers
the air temperature time series keeping all the other inputs to
the thermal model constant at their seasonal values. Case 2
introduces the influence of solar radiation, thus standing for
the case which is expected to yield the maximum increase in
rating without accounting for the wind profile. Case 3 and

TABLE II
WEATHER VARIABLES ASSUMED BY THE TSO AND OVERVIEW OF THE

SIMULATED CASES.

Air
Temp.

Solar
Radiation

Wind
Speed

Wind
Direction

◦C W/m2 m/s ◦

Summer 20 900 0.6 90TSO Winter 10 600 0.7 90
Case 1 X - - -
Case 2 X X - -
Case 3 X - X 0
Case 4 X X X 0
Case 5 X X X X

X From historical weather data
- As assumed by the TSO
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Fig. 4. Probability density distribution of weather variables across the western
Danish power system. Vertical lines mark typical conservative values assumed
by TSO for steady state loading calculations in winter and summer. The graphs
share the same scale on the y-axis

Case 4 add the historical time series of wind speed to the
first two cases. As wind speed is known to sharply increase
the rating, this variable is introduced in a conservative way
by assuming wind always parallel to the conductors. As the
relative angle between wind direction and conductor axis is
known to have an impact on the rating, these cases allow to
estimate the minimum increase in rating due to wind speed.
Ultimately, from the comparison of Case 4 and Case 5, the
impact of wind direction can be analyzed. Case 5 considers
the historical data of all the inputs and therefore stands as the
best estimate of the full rating potential.

V. RESULTS

This section reports the results of the system-wide evalua-
tion of DLR following the methodology presented in Section
IV. The thermal model described in Section II-B is adopted to
assess DLRs across the system. The comparison is performed
in terms of probability distribution of ratings and correlation.

A. Probability distribution of ratings

Fig. 5 shows the probability density and cumulative distri-
bution function of DLRs across the considered system. The
simulated hourly ratings of each line are normalized with the
corresponding SLR set by the TSO, in order to show the
relative gain or reduction in line ampacity throughout the year.
This also allows to aggregate the results and provide a system
overview of the ratings. As SLRs differ from line to line, the
reference value of ”1” in Fig. 5 stands for the steady state
system rating considering all 23 transmission lines at once.
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Fig. 5. Probability density and cumulative distribution function of DLRs in the system. All values are normalized with the SLR of the corresponding line.
A description of the weather variables included in each case is presented in Table II in Section IV.

Table III collects key statistics of the probability distribu-
tions of DLR across the system considering the entire time
period analyzed. The expected values of the distributions are
derived as E =

∑
i P (xi) · xi, where xi are values of rating

and P (xi) the corresponding probability.
It appears as expected that the cases which do not take the

historical wind profile into account yield a lower increase in
rating, as opposed to the others. Estimating the DLR solely
by means of variable air temperature, as in Case 1, yields
an increase of 2% in the expected value of the probability
density distribution. Accounting for the solar radiation in Case
2 is found to increase the rating by and additional 10%.
Such weather variable plays a key role in determining the
rating in low wind conditions. This behavior can be verified
comparing the 0.025-quantiles in Case 3 and Case 4, whose
sole difference lays in the solar radiation. The lower tail region
of the distribution in Case 3 is almost 20% lower than in Case
4, meaning that high solar radiation in low wind conditions
considerably worsen the thermal ratings.

As the number of inputs to the thermal model increases, so
does the gain in rating but at the cost of introducing additional
variability into the system. The sole exception from Case 3
to Case 4, where σ is slightly reduced, is due to the effect of

TABLE III
KEY STATISTICS OF DLR DISTRIBUTIONS

Quantiles Expected
value

Standard
deviation

0.025 0.975 E σ

Case 1 0,87 1,18 1,02 0,07
Case 2 0,95 1,31 1,13 0,09
Case 3 0,77 1,53 1,14 0,20
Case 4 0,91 1,63 1,24 0,19
Case 5 0,97 2,08 1,52 0,28

long periods with zero solar radiation in winter. Generally,
those cases in which the wind speed profile is taken into
account exhibit higher expected values but also higher standard
deviation, as reported in Table III. Case 5 in particular reaches
the highest gain due to the combined effect of wind speed
and direction yielding a 50% increase in the expected value
of DLR and doubling the thermal rating with a probability
of 2.5 %. Nevertheless, Case 5 only considers the prevalent
direction of each transmission line, thus overestimating the
additional cooling effect. As line azimuth varies on a per-span
granularity, the actual influence of wind direction is expected
to be a compromise between Case 4 and Case 5.

Overall, this comparative approach suggests that the TSO
might have several alternatives to implement different grada-
tions of DLR. Excluding some weather variables from the
thermal model would sacrifice a part of the potential increased
in rating in favour of more predictability and stability of the
DLRs. Nevertheless, it has to be stressed that the conservative
approaches like Case 1 and Case 2 still do not exclude the
occurrence of low wind speed conditions.

B. Investigating correlation

Fig. 5 alone does not provide any information about the
contemporaneity of the DLRs, as it considers the system
rating as a whole. Therefore, a key aspect of DLR that has
to be investigated is the correlation between line ratings,
as an indicator of the ability to unlock extra transmission
capacity in the system. Furthermore, as DLRs are expected
to facilitate wind power integration, the correlation between
line ratings and wind power generation is also a key aspect
to take into consideration. Fig. 6 illustrates the values of the
correlation coefficient ρij derived by means of (4) for each of
the considered approaches to DLR.

ρij =
Cov[Xi, Xj ]

σiσi
(4)
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Fig. 6. Boxplot of correlation between ratings of different lines (Line -
Line) and between line ratings and historical wind power generation in the
considered power system (Line - Wind Power Generation).

When estimating the correlation between lines, Xi and Xj

in (4) represent the random variables describing the ratings
in line i and j, respectively. From the comparison in Fig.
6 it stands out as the conservative approaches of Case 1
and Case 2 exhibit high correlation between the ratings of
different lines. These values reflect the original correlation in
the input variables, since air temperature is a slow-varying
and spatially uniform variable compared to wind speed. Case
3 and Case 4 consider instead the historical wind speed and
thus DLRs in these cases are less correlated between each
other. Ultimately, accounting for the actual wind direction in
the rating algorithm of Case 5 further reduces the correlation
since additional degrees of freedom are introduced in the rating
estimation. When estimating the correlation of DLRs with
wind power generation instead, the trend is reversed. Slow
varying and stable ratings based on air temperature variations
are less correlated with wind power generation compared to
the other approaches which consider the wind profiles in the
thermal model.

VI. CONCLUSIONS

This paper presented a system-wide analysis of dynamic line
ratings based on simulated weather data across a transmission
power system. This paper also introduced an overhead line
thermal model that accounts for the radial temperature drop
in the cross-section of the conductors. This novel approach
allows for a conservative estimation of the convective cooling
on overhead lines, ensuring that the maximum operating
temperature is not violated at the core of the conductor. The
application of the proposed thermal model to large parts of an
actual transmission system revealed the margin for increased
utilization of the existing asset, depending upon which weather
variables are considered. Furthermore, this study considered
five different combinations of the inputs to the thermal model
in order to illustrate different possible gradations of DLR and
test the sensitivity of the rating algorithm.

Results are offered in terms of probability distributions
of hourly ratings and highlight the differences between the
tested cases in terms of expected gain in the line thermal

limits, variability and correlation. On the one hand, conser-
vative approaches to DLR, which only consider part of the
weather variability, require less data and information to be
implemented. These ratings are also likely to be more stable
and highly correlated across the system. On the other hand,
accounting for the full variability of the weather would result
in higher but also more volatile ratings. This study has also
investigated the correlation between DLR and historical wind
power generation concluding that accounting for wind speed
in the thermal rating algorithm increases such value. This latter
consideration in particular is recognized to be a key aspect in
future studies that will investigate DLR as a means to support
wind power integration, not only on a regional level, but across
transmission systems.
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A B S T R A C T

Several studies have demonstrated how Dynamic Line Rating (DLR) could be an effective solution for increasing
transmission capacity of existing overhead lines. As opposed to Static Line Ratings (SLR), DLR allows for higher
power flows depending on real time thermal state of conductors, which highly depend on actual weather con-
ditions. Similarly, recent advances in transformer thermal modelling revealed the feasibility of Dynamic
Transformer Rating (DTR) based on the temporal evolution of top oil and winding hot spot temperatures.
However, the joint dynamic thermal rating of both overhead lines and transformers in transmission networks has
not been thoroughly addressed yet in the literature.

This paper proposes a day-ahead dispatch optimization problem based on DC-Optimal Power Flow, where
transformer top oil and hot spot dynamics are directly accounted for together with dynamic line ratings of
selected transmission lines. Simulated weather data from an actual power system are mapped to the IEEE RTS 24
bus system thus allowing for the estimation of DLR on several lines and the influence of ambient temperature on
transformer rating. Results indicate the potential benefits that using DLR in conjunction with DTR could provide
for the optimal power system dispatch. The proposed approach does not only indicate advantages compared to
standard rating scenarios, but also shows a positive impact that dynamic line rating has on unlocking trans-
former constraints and vice versa.

1. Introduction

The electrical power system is evolving and so are the associated
challenges. These challenges include aging infrastructure and integra-
tion of decentralized generation in the network. Moreover, the influx of
Renewable Energy Sources (RES) at points in the grid, which were not
initially planned to deal with more energy, can result in extensive
bottlenecks in the system [1]. Some of these bottlenecks can be rectified
or large-scale investments in the grid can at least be delayed by using
dynamic rating for major components including Over Head Lines
(OHL), transformers and cables.

Dynamic rating of Overhead Lines, or Dynamic Line Rating (DLR),
makes use of the under-utilized potential of power lines, which are
traditionally over-dimensioned by assuming conservative weather
conditions. The thermal rating guidelines for OHL [2] and [3], from
IEEE and Cigré respectively, report considerable upgrade in line ratings

if one switches from conservative static rating to dynamic rating based
on varying weather conditions.

Similarly, Dynamic Transformer Rating (DTR) allows the transfor-
mers to be used beyond their nameplate ratings by setting a limit on
maximum thermal capacity for given ambient temperature and load
profile. The maximum thermal capacity is determined by the section of
the transformer that is under the largest thermal stress, which is usually
at the top region of the winding insulation [4]. The dynamic thermal
assessment of a transformer can be performed using a number of
thermo-electric models of varying accuracy in [4], [5] and [6].

On the one hand, the applications of dynamic rating for OHL and
transformers as individual network components have been discussed
extensively in the existing literature [7]. The facilitation of wind power
integration using DLR has been explored in [8], [9] and [10], whereas
similar studies have been performed using DTR for cases with trans-
formers as primary system bottlenecks [11], [12]. On the other hand,
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systematic application of dynamic rating of multiple components in a
network has been a topical research question in recent times. The im-
pact of weather variability on the ratings of major system components
including OHL, transformers and cables has been discussed in [13].
Yang et al. discuss the utilization of dynamic network rating for dis-
tribution networks in UK (11 kV) to facilitate low carbon electricity
network operation [14]. Similarly, the applicability of dynamic rating
of several network components for the Swedish grid has been ex-
tensively discussed in [15].

Building upon the concept of electro-thermal coordination in-
troduced in [16] and [17], where the power system is dispatched ac-
cording to temperature of overhead lines rather than their rated values,
this paper addresses a novel methodology for transmission power
system dispatch. The minimization of load-dispatch cost in the day-
ahead market is accomplished by using not only dynamic rating of OHL,
but also transformers, which have not been considered so far in the
literature. This paper presents a Dynamic DC - Optimal Power flow
problem in order to dispatch a power system over a period of 24 hours,
considering thermal dynamics in transformers and overhead lines. This
approach maximizes the utilization of low cost RES generation and
unlocks extra capacity in the entire network.

The IEEE RTS 24-bus network [18] is adjusted with additional wind
power generation as well as application of dynamic rating on a trans-
former and a number of appropriate lines. In this paper, actual load and
generation patterns of the Danish transmission system are used in
supplement with the actual weather data for Denmark to demonstrate
realistic system behavior. The cost-optimized day-ahead hourly load
dispatch is compared for different scenarios with DLR and DTR. The
concluding argument shows the benefits that combination of DLR and
DTR can bring to the system as well as the influence, which dynamically
rated lines have on unlocking additional transformer capacity and vice
versa. In addition to one day-ahead planning, an analysis of weekly
market needs and seasonal load differences are taken into account for
more a broader view on the synergies between DLR and DTR.

The rest of the paper is structured as follows. Section 2 elaborates
the thermal models used for key temperature estimation and for de-
termination of real-time dynamic rating of OHLs and transformers. The
DC Optimal Power Flow (DCOPF) problem devised for this paper for
hourly load dispatch cost optimization in the day ahead market is also
explained in this section. Section 3 provides a brief background of the
test system and presents a comprehensive classification of the test cases
that have been formulated for the proposed problem. The results are

Nomenclature

qJ Joule losses, [W/m]
qS Solar heating, [W/m]
qC Convective cooling, [W/m]
qR Radiative cooling, [W/m]
Cth,ohl Thermal capacitance of OHL conductor, [kWh/°C]
ΔTcs Radial temperature drop, [°C]
Iohl

max Per unit maximum allowed loading of OHL conductor
ϑc Core temperature of OHL conductor, [°C]
ϑs Surface temperature of OHL conductor, [°C]
λ Equivalent radial thermal conductivity, [WKm-1]
D Outer diameter of OHL conductor, [m]
D1 Inner steel core diameter of OHL conductor, [m]
ϑav Average conductor temperature for cross-sectional area,

[°C]
τ0 Thermal time constant for oil in transformers, [h]
τh Thermal time constant for winding, [h]
ϑu Ultimate top-oil temperature rise for transformer load I,

[°C]
ϑtop Transformer top-oil temperature (TOT), [°C]
ϑhu Ultimate hot-spot temperature rise for transformer load I,

[°C]
ϑhst Transformer hot-spot temperature (HST),[°C]
ϑamb Ambient temperature, [°C]
Itrf Per unit transformer load current with rated load current

as base
ϑor Top-oil rise over ambient temperature ϑamb at rated load,

[°C]
Lfl Total transformer losses at rated load, [W]
R Ratio of load losses to no-load losses at rated load for

transformer
Cth,trf Thermal capacitance of oil in transformer, [MWh/°C]
ν empirically derived coefficient known as oil exponent
μ empirically derived coefficient - constant
ϑhr Rated host-spot temperature rise for load I, [°C]
ONAN Oil Natural Air Natural transformer cooling mode
ONAF Oil Natural Air Forced transformer cooling mode
OFAF Non directed Oil Forced Air Forced transformer cooling

mode
ODAF Directed Oil Forced Air Forced transformer cooling mode
DLR Dynamic Line Rating

SLR Static Line Rating
DTR Dynamic Transformer Rating
STR Static Transformer Rating
TOT Transformer Top Oil Temperature
HST Transformer Hot Spot Temperature
HBE Heat Balance Equation for OHL conductor thermal rating
OHL Overhead Line
TRF Transformer
, , , set of buses, conventional generators, wind farms and

branches in the power system
M Power Transfer Distribution Factor matrix
Bn, Bl Bus admittance matrix and branch admittance matrix
Fℓ Per unit power flow through branch ℓ in the system
Pinj Per unit nodal power injection in the system
Pgen Per unit nodal power generation at each bus
Pwnd Per unit nodal wind power generation at each bus
Pdem Per unit nodal power demand at each bus
Psh Per unit nodal load shedding
Sbase Apparent power base for per unit conversion, [MVA]
Strf Nameplate apparent power rating of transformers, [MVA]
Sohl Apparent power static line rating of overhead lines,

[MVA]
Iohl Per unit line loading
Strf Nameplate apparent power rating of transformers, [MVA]

Pg
max Maximum ramping rate of conventional generator g, [pu/

h]
Pg Per unit scheduled output for generator g
Pw Per unit dispatched wind power generation for wind farm

w
Pw

av Per unit available wind power generation for wind farm w
Pn Per unit load demand at bus n
Pn

sh Per unit load shedding at bus n
m Linear mass of OHL conductor, [kg/m]
c Specific heat capacity of OHL conductor, [J/(kg°C)]
Δϑav Average conductor temperature change, [°C]
Δt Time resolution equal to 1, [min]
K1, K2, K3Constants in discretized transformer top-oil model
n g w, , , Index for buses, generators, wind farms and branches
Δ%(x) Percentage cost reduction
Cost(x) Total dispatch cost of case x
CostSTR-SLR Total dispatch cost for reference case with STR-SLR
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then discussed in Section 4 and Section 5 concludes the paper.

2. Methodology

In this section, the thermal models used for calculating dynamic
ratings of overhead lines and transformers are discussed. In order to
incorporate them in the proposed optimization problem, thermal
models are modified accordingly. This section also presents the for-
mulation of the DCOPF problem for load dispatch optimization defining
key constraints that set thermal limits of respective components.

2.1. Dynamic line rating

2.1.1. Review of state-of-the-art thermal models
IEEE standard 738 [2] and the Cigré Technical Brochure 601 [3] are

widely recognized as the state-of-the-art thermal models for overhead
lines. Despite some differences in the terms of how the convective
cooling is accounted for [19], both sources model the conductor
thermal equilibrium with a Heat Balance Equation (HBE). Taking as a
reference the Cigré formulation, the HBE is shown in (1).

= +m c d q q q q
dt J S C R

av
(1)

The first order differential equation in (1) models a per-unit-length
thermal balance in W/m. Joule losses qJ and solar heating qS contribute
to the temperature rise over time dϑav/dt, whereas convective cooling
qC and radiative cooling qR act against it. The heat power terms in the
right-hand side of (1) are highly weather dependent: the convective
cooling mainly depends upon wind speed, wind angle of attack and
ambient air temperature; the radiative cooling depends upon the fourth
power of air temperature; and solar heating is determined by the
amount of solar radiation that reaches the conductor. Additional terms
in the right-hand side of (1) could be introduced to model corona
heating, magnetic heating and evaporative cooling as well, but they are
not accounted for in this study. For a detailed description of the various
heating and cooling mechanism, references [2] and [3] offer an ex-
haustive treatise.

The thermal capacitance Cth,ohl of the conductor is modelled in (1)
as the product of m and c, which stand for the linear mass of the con-
ductor and its specific heat capacity, respectively. These two para-
meters in the left-hand side of (1) take into account the thermal inertia
of the conductor, whose temperature cannot vary instantaneously fol-
lowing a change in the heat balance. The time that the temperature
takes to reach 63.2% of its asymptotic value after a step change in
current is defined as the thermal time constant and it is usually around
15 min. Fig. 1 shows an example of the evolution of conductor tem-
perature following a step change in current, assuming that weather
conditions remain unaltered.

The temperature profile in Fig. 1 has been derived following the
steps of the temperature tracking algorithm described in [3]. In parti-
cular, the conductor used in this example is a “Drake” 26/7 ACSR,
whose outer diameter, core diameter and outer strand diameter are
28.143, 10.4 and 4.44 mm, respectively. Wind speed is fixed at 1.9 m/s
and the associated angle of attack at 55°, whereas ambient temperature
is kept constant at 24 °C. No solar heating has been considered in this
illustrative example and the average conductor temperature is assumed
to be uniform in the cross-section. Under these assumption the tem-
perature tracking algorithm has been implemented as follows with (2)
and (3), using a time resolution Δt equal to 1 minute.

= +q q q q t
C

( )·t J t S t C t R tav, , , , ,
th,ohl (2)

= ++t t tav, 1 av, av, (3)

where the heat balance terms q are evaluated at each time step t, Δϑav,t
is the change in conductor temperature at time t and ϑav,t+1 the updated
temperature. Under these conditions, the transient in conductor's tem-
perature is extinguished within one hour after the step change in cur-
rent and the temperature has stabilized at its steady state value.

This consideration supports the assumption of using the steady state
version of the HBE (1) in the hourly dispatch optimization problem
presented in Section 2.4. Hourly values of DLR are derived by solving
the HBE for the rms current that appears in the Joule losses term qJ. As
discussed in [20], using hourly values of DLR introduces an approx-
imation in the temperature estimation of the conductor and increases
the risk of overloading the line during the thermal transient. However,
since in this study the hourly ratings are assumed to be used at an early
stage in the dispatch problem, this approximation is adopted none-
theless. For estimation of DLR closer to real-time operation, a finer time
resolution is required.

2.1.2. Accounting for radial temperature drop
The ultimate hourly values of DLR adopted in this study have been

derived by means of a modified version of the Cigré thermal model first
presented in [21]. This modified version of the steady state rating al-
gorithm has been introduced in order to consider the radial temperature
drop in conductors in a simplified way under high current densities
scenarios.

As the line current approaches the steady state rating, conductors
undergo high current densities, i.e. greater than 2 or 3 A/mm2 [3] and
the heat generated within the conductor needs to flow to the outer
surface, as shown in Fig. 2. Under these conditions, the temperature
gradient between the center of the conductor and its surface should not
be neglected, as it can reach significantly high values [22], [23]. Ex-
ceeding the maximum core temperature is likely to cause a violation of
the clearance requirements, as above the knee-point temperature the

Fig. 1. Comparison of OHL conductor temperature rise for transient thermal model and its steady state approximation for a step change in line current. The conductor
used in this example is a “Drake” 26/7 ACSR.
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sag mainly depends on the steel thermal dilatation [24]. In order to
include this aspect in the steady state algorithm, the system of non-
linear equations (4), (5) and (6) is used instead of the standard proce-
dure discussed in [3], where conductor temperature is assumed to be
constant in the whole cross-section.

+ =q I q q q( , ) ( ) ( ) 0J S C s R sohl
max

av (4)

=
q I D

D D
D
D

( , )
2

1
2

lnc s
H ohl

max
av 1

2

2
1
2

1 (5)

=
q I D

D D
D
D

( , )
2

1
2

lnc s
H ohl

max
av 1

2

2
1
2

1 (6)

where ϑc is the core temperature of the conductor, ϑs is the surface
temperature and ϑav indicates the average value in the cross section.
Maximum operating temperature of the conductor is set at the core,
assuming that the inner part of the cross section is the hottest on the
conductor. The system of equations is solved for the maximum steady
state current Iohl

max and the corresponding surface and average tem-
perature, ϑs and ϑav, respectively. The value of Iohl

max represents the
highest current rating that would result in the maximum operating
temperature being reached at the center of the conductor.

The first equation (4) is the HBE in steady state conditions, where
the time derivative of the conductor temperature is set to 0. The second
equation (5) approximates the radial temperature drop in the cross
section with a relation presented and discussed in the Cigré Technical
Brochure 601 [3]. The third and last equation in the system expresses
the average temperature as a function of core and surface temperature.

The estimation of the radial temperature drop by means of (5) de-
pends on the total heat gain qH beside geometrical and material prop-
erties of the conductor. For ACSR conductors, internal heat generation
is assumed to be uniformly distributed in aluminum wires as the steel
conducts very little current, whereas for full-body mono-metallic ones,
the heat generation is assumed in the entire cross-section instead. This
simplified expression of the radial temperature drop in (5) depends on

both geometric and material properties and thus it can be applied to
different type of conductors. Nevertheless, the impact on different
conductor designs in terms of thermal rating is not addressed in this
paper. The equivalent radial thermal conductivity λ is expressed in WK
m−1 and depends on various factors among which is the tension of the
strands. A conservative value of 0.7 is assumed, as suggested in [3]. D
and D1 are the outer diameter of conductor and the inner steel core
diameter, respectively.

Overall, this approach allows to distinguish between core and sur-
face temperature in the calculation of the heating and cooling terms of
the HBE. In particular, convective and radiative cooling are found to be
dependent on surface temperature rather than average temperature.
Therefore, by solving at once the system of equations (4), (5) and (6),
this aspect is taken into account. Most importantly, the presence of
equation (5) in the modified rating algorithm, couples the radial tem-
perature difference with the HBE and ensures that the maximum op-
erating temperature is not violated in the core. Accounting for radial
temperature drop ΔTcs= ϑc− ϑs reduces the rating compared to the
Cigré model, as it can be seen in Fig. 3. Imposing the maximum oper-
ating temperature on the core and not on the average value in the cross-
section, results in a lower convective cooling and thus a lower ratings
for a given set of weather variables.

This condition is especially accentuated under high wind speed
conditions, where the radial temperature drop increases significantly.
Fig. 3 shows the de-rating introduced by the proposed algorithm with
respect to the standard thermal rating approach in the Cigré guide [3].
As wind speed increases, so does the temperature difference between
outer and inner strands in the conductor and therefore the rating is
reduced accordingly.

Consider the following example where wind speed is 8 m/s and
perpendicular to the conductor, ambient temperature is 5 °C and solar
radiation is negligible. Under these conditions the thermal rating of a
“Drake” conductor would be 2.835 kA according to [3] and 2.261 kA
according to the proposed algorithm. Assuming common and very
conservative assumptions, i.e. wind speed at 0.5 m/s and ambient
temperature at 15 °C for winter, the static rating of the same conductor
would be 1.169 kA meaning that the proposed approach would still
yield a +93% increase in rating despite being nearly 20% less than the
value derived with [3].

The optimization problem that is later presented in Section 2.4 can
be implemented with different rating strategies as long as they are in
the form of a time series of hourly values. This rating approach in
particular can be seen as conservative way to account for convective
cooling on overhead lines and benefit from the increased capacity of
DLR introducing a safety margin under high wind speed scenarios.

2.1.3. Weather data for DLR
Time series of DLR hourly values have been derived with the re-

viewed steady state rating algorithm in conjunction with weather va-
lues simulated across the Danish power system. As described in [21],
time series of wind speed, wind direction, ambient temperature and

Fig. 2. Concept of radial heat flow across Aluminium Conductor Steel Reinforced (ACSR) cross-section.

Fig. 3. Conductor thermal rating reduction (Derating - blue) with respect to
Cigré model [3] after accounting for radial temperature difference ΔTcs (red)
between core and surface [21].
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solar radiation have been derived along the coordinates of the 400 kV
transmission system with a mesoscale downscaling method [25]. This
approach has allowed the estimation of hourly values of DLR which are
normalized with the seasonal rating in operation at the Danish TSO,
Energinet.

2.2. Dynamic transformer rating

As opposed to DLR, the dynamic loading of transformers can be
performed by determining two temperatures which are critical for
transformer operation: Top-Oil Temperature (TOT) and Hot-Spot
Temperature (HST). These temperatures can be approximated with
sufficient accuracy using a number of thermal models for given ambient
temperature and load profiles [4][6][26]. The accuracy of these models
varies but so does the respective practicality.

2.2.1. Estimation of top oil temperature
The ANSI/IEEE Clause 7 top-oil rise model [4] corrected for ambient

temperature, given in (7), has been chosen as the basis for dynamic
calculation of TOT, mainly because of its established popularity and
large-scale acceptance in the industry, as well as its mathematical
suitability for convex optimization problems [4].

= + +
d

dt0
top

top amb u (7)

where,

= C
L

·0 th,trf
or

fl (8)

= +
+

I R
R

1
1u or

trf
2

(9)

where τ0 is thermal time constant for oil expressed in hours; ϑamb is the
ambient temperature in °C; ϑu in °C is the ultimate top-oil rise over
ambient temperature ϑamb for load Itrf; ϑtop in °C is top-oil temperature
(TOT); Itrf is the transformer load current in p.u. with rated load current
as base; ϑor in °C is the top-oil rise over ambient temperature ϑamb at
rated load; Lfl is total losses at rated load; R is ratio of load losses to no-
load losses at rated load; Cth,trf in MWh/°C is thermal capacity ap-
proximated using [4].

Also, ν represents the empirically derived coefficient known as oil
exponent, which varies with transformer cooling mode (ONAN, OFAF
etc.). The non-linear dependence of heat flow on temperature difference
varies the convective cooling process and is therefore dependent on the
cooling mode. The empirical values of ν for different cooling modes are
given below, as suggested in [4]

=
0.8 for ONAN
0.9 for ONAF and OFAF
1.0 for ODAF (10)

The model of (7) can be converted into discrete form using backward
Euler rule. The resulting equation is provided in (11), where Δt is the
time resolution.
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+

+
+

+
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+t
t

t t
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0
top

0

trf
2
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(11)

The discretised IEEE Clause 7 model of (11) is still not suitable for the
sought optimization problem, due to the non-integer exponential ν.
Therefore it is further simplified by assuming a straightforward ap-
proximation: the cooling mode of all the transformers in the simulated
system is assumed to be ODAF (directed) (ν ≈ 1). Consequently, the
chosen model is linearized to fit into the optimization problem and the
final form is shown in (12).

= + + +t K I t K t K t K( ) ( ) ( ) (1 ) ( 1)top 1 trf
2

2 amb 2 top 3 (12)

where,

=
+ +

K t R
t R( )( 1)1

or

0 (13)

=
+

K t
t2

0 (14)

=
+ +

K t
t R( )( 1)3

or

0 (15)

2.2.2. Estimation of hot spot temperature
The HST model of IEEE Loading Guide C57.91 [4] is used in this

paper, which is given by the differential equation of (16).

+ = +d
dth

hst
hst hu top (16)

where τh is thermal time constant for winding expressed in hours; ϑhu in
°C is the ultimate hot-spot temperature rise over TOT for load Itrf; ϑhst is
the HST in °C; while, ϑtop is top-oil temperature (TOT) calculated in (7).
The ultimate HST rise over TOT for load Itrf, which is the per-unit load
current is given by(17)

= I µ
hu hr trf

2 (17)

where ϑhr in °C is the rated HST rise over TOT for p.u. load Itrf; Identical
to the empirical factor ν, μ is also an empirically derived exponent
which represents the impact of transformer cooling mode on the change
in resistance and oil viscosity. The values suggested in [4] are men-
tioned in (18)

Fig. 4. Comparison of transformer hot-spot temperature rise for IEEE Clause 7 model [4] and its steady state approximation of Eq. (19) for unit step change in load.
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=µ 0.8 for ONAN, ONAF, and OFAF
1.0 for ODAF (18)

The value of μ is set to 1 for the reasons similar to the choice of ν. A
second approximation that has been introduced considers the steady
state version of (16) where the rate of change of hot-spot temperature is
set to 0. Since the goal of this paper is to optimize the hourly load-
dispatch, while the winding τh thermal time constant is usually around
7-8 min [6], the ultimate HST would be reached by the end of each hour
for a certain load change. Consequently, the final hot-spot temperature
model is expressed in (19). The accuracy of this approximation is
confirmed by comparing the HST rise for a step change in transformer
load in Fig. 4. It is perceivable that the difference between the esti-
mated hot-spot temperatures is minimal by the end of the 60-min mark,
which is also verified for different load conditions.

= +I t( )hst hr trf
2

top (19)

2.3. Wind power simulation

In order to simulate a power system with large penetration of wind
generation, historical wind power production data from the Danish
system has been used. Fig. 5 shows the aggregate wind power pro-
duction in the western part of the Danish system (DK1) as a function of
the average wind speed simulated across the same region over the same
period. Weather data have been simulated by means of a mesoscale
down-scaling method according to the study presented in [25].

With the intent to simulate wind power production time series at
several locations in a test power system, the following procedure has
been adopted [27]. Firstly, an error function erf(x) has been fitted to the
scatter plot of available wind power production normalized with the
historical maximum. The red profile shown in Fig. 5 served the purpose
to emulate a multi-turbine wind power curve. Secondly, available wind
speed time series at various locations in the Danish system have been
transformed into wind power time series by applying the fitted error
function. This approach allowed to simulate wind power time series at
different locations, preserving the spatio-temporal correlation structure
of a real power system. Beside the correlation between wind power at
different locations, the positive correlation between wind power and
dynamic line ratings is also accounted for with this data-driven ap-
proach.

2.4. DCOPF problem formulation with DLR and DTR

The considered power system consists of a set of buses, ; a set of
conventional generators, ; a set of wind farms, and a set of
branches, , that includes all transmission lines and power transfor-
mers. The number of elements in each set is identified as | |, | |, | |
and | |, respectively. The subsets of transmission lines with DLR and
SLR are identified as DLR and SLR, respectively. Similarly, the subsets
of transformers with DTR and STR are identified as DTR and STR.

This study adopts a DC approximation of the full AC power flow
equations. The active power flow on each branch is modelled by means
of the Power Transfer Distribution Factor matrix M [28], thus without
the need to introduce bus voltage angles in the set of decision variables.
The matrix ×M | | | | expresses the constant coefficients of the linear
relationship between the power injections at each bus and the power
flows on the branches. It is defined as =M B Bl n

1, where Bl is the
branch admittance matrix and Bn is the bus admittance matrix in which
the row and column corresponding to the slack bus are set to 0. The
power flow Fℓ on branch ℓ can then be expressed as Fℓ =MℓPinj, where
Mℓ is the ℓ-th row of matrixM and Pinj represents a column vector of per
unit power injection at each bus in the system. For those branches ℓ*

referring to a transformer, the per unit load at time t is defined as (20).
Similarly, for the other branches referring to transmission lines, the per
unit load is defined in (21).

= M PI S
Sttrf *

inj
base

*
trft*, (20)

= M PI S
Stohl

inj
base

ohlt, (21)

where Sbase, S *
trf and Sohl are the base apparent power values in MVA for

the system, the transformer on branch ℓ* and transmission lines on
branch ℓ. This allows to express the transformer load in per unit and
relate the branch power flow to the specific nameplate rating. In a si-
milar fashion, utilization of overhead lines is represented by Iohl t, . The
nodal power injection for a given time slot t can be written in its ex-
tensive form as in (22).

= +P P P P P( )t t t t t
inj gen wnd dem sh (22)

where = …( )P P P, ,t g G g t g G g t
gen

, ,
| |

n1
collects total thermal

generation at each bus, thus representing a generic power system where
a group of generators Gi with different cost functions might be con-
nected to the same i-th bus. Similarly, P P P, ,t t t

wnd dem sh represent dis-
patched wind power, load demand and load shedding at each bus in the
system for a given time t, respectively.

The optimization problem in (23) is the Dynamic DC - Optimal
Power Flow (DDCOPF), where transformer top-oil and hot-spot thermal
dynamics have been accounted for together with dynamic line ratings.
The objective is to find the optimal 24-hours day-ahead energy dis-
patch, which minimizes total generation cost over the period . For a
more accurate representation of the actual dynamics in the power
system, the DDCOPF may be extended to a Unit Commitment study
where generators’ start-up and shut-down actions are included as well
by means of binary decision variables. N-1 security constraints could
also be integrated starting from the base formulation of the DDCOPF
that is presented in this paper. The DDCOPF is formulated in a compact
form as follows

+c P c Pmin
t g

g g t
n

n t,
sh

,
sh

(23a)

+ =P P P P ts. t. ( ) 0
g

g t
w

w t
n

n t n t, , , ,
sh

(23b)

P P P g t,g g t g
min

,
max (23c)

P P P P g t,g g t g t g
max

, , 1
max (23d)

I t1 1 ,ohl t, (23e)

I I I t,ohl
max

ohl ohl
max

t t t, , , (23f)

I t1 1 ,trf t, (23g)

Fig. 5. Aggregate wind power production in the western Danish power system
(DK1) over a 3-years period. Scatter plot as a function of average wind speed
simulated in DK1 over the same period (blue). Fitted error function (red) [27].
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t,top top
max

DTRt, (23h)

t,hst hst
max

DTRt, (23i)

P P n t0 ,n t n t,
sh

, (23j)

P P w t0 ,w t w t, ,
av (23k)

= + + +K I K K K(1 )top 1 trf
2

2 amb 2 top 3t t t t, , , 1 (24)

= + Ihst top hr trf
2

t t t, , , (25)

where = P P P[ , , ]g t n t w t, ,
sh

, is the set of decision variables that for each
time step t represent scheduled generator's output Pg,t, shed load Pn t,

sh and
dispatched wind power Pw t, for every generator, bus and wind farm,
respectively.

The objective function in (23a) consists in the cost of dispatching
the system over period considering linear generation cost functions
and the additional cost of remedial corrective actions such as load
shedding. This latter term models extreme conditions with a low
probability of occurrence, but it serves the purpose to guarantee fea-
sibility for each scenario of load demand and available wind power Pw t,

av .
Constraint (23b) enforces system day-ahead power balance for each
hour in the considered time period. Constraints (23c) and (23d) impose
operational limits on conventional generators in terms of their power
outputs and ramping capabilities. On the one hand, power flow limits
on transmission lines equipped with DLR are enforced with constraints
(23f), where Iohl

max represents hourly dynamic ratings that have been
calculated as described in Section 2.1. On the other hand, lines that are
statically rated are constrained by means of (23e).

Alternatively to the method presented in this paper, DLR could be
integrated in an optimization framework by directly constraining con-
ductor temperature, as presented in [29], [30] and [16]. In order to
preserve convexity in the optimization problem, this latter approach
would require a convex approximation of the heat balance equation,
which is highly non-linear and non-convex as a function of conductor
temperature. As discussed in [30], Joule heating, convective cooling
and radiative cooling may be integrated in a convex optimization
problem adopting conservative relaxations and linearized versions of
the original equations.

The load on those transformers that are statically rated according to
their per unit value is modelled with constraint (23g), whereas those
that are dynamically rated are constrained by means of (23h) and (23i).
Top-oil and hot-spot temperature variations of dynamically rated
transformers are bounded by predefined values that ensure they are
used within their thermal capabilities without jeopardizing their re-
liability. The extensive form of the constraints associated with the
transformer utilization is shown in (24) and (25), where linearized IEEE
models are shown again. Top-oil temperature of transformer, ϑtop, is
expressed as a function of its squared per unit load Itrf

2 , ambient tem-
perature ϑamb and value of top-oil temperature reached in the previous
time step. Coefficients K1, K2 and K3 are constants that solely depend on
transformer construction, as discussed in Section 2.2. Unlike ϑtop, the
constraint on hot-spot temperature ϑhst is imposed in terms of its steady
state value, since short term thermal transients are assumed to be ex-
tinguished within one hour as shown in Fig. 4 in Section 2.2.

It is important to notice how the constraints related to transformers
with DTR are strongly coupled in time throughout the entire dispatch
period, due to the high thermal capacitance of top-oil dynamics. This
aspect reflects the importance of considering recent loading history for
DTR as opposed to DLR, where temperature transients are much faster.
Lastly, constraints (23j) and (23k) impose physical limitation on the
amount of load that can be shed and the availability of wind power
generation, respectively.

From a convex optimization point of view, constraining top-oil and
hot-spot temperature is achieved by means of quadratic inequality
constraints (23h) and (23i). Recalling that the composition of a convex
function with an affine expression is convex [31], it can be verified that
inequalities (23h) and (23i) are convex in terms of the set of decision
variables Ξ.

+

+

×
x

A b
b

f
f b

: decision variable
, : constants

Ax : affine combination
(·): : convex function

(Ax ) : convex

n
m n m

m

In the DC power flow approximation, the per unit transformer load Itrf is
an affine combination of decision variables, i.e. the power injection
terms at each bus scaled with the M matrix as shown in (20). Thus, the

Fig. 6. Modified IEEE RTS 24-bus system [18].
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squared value Itrf
2 retains convexity since it results from a composition

between an affine expression and a convex function f(·) = α(·)2, where α
is a positive coefficient.

In order to preserve convexity for each time step t, a second im-
portant observation has to be made. Consider in (26) the extensive form
of constraint (24), where also the top t, 1 is expanded up to one previous
time step. To ease the notation in this context, the index ℓ referring to
the branch is dropped as well as the subscript ”trf” for transformer load.

= + …
+ + + + +
K I K

K K I K K K K(1 )[ (1 ) ]
t

t

top 1
2

2 amb

2 1 1
2

2 amb 2 top 3 3

t t

t t1 2

(26)

It can be noticed that topt is convex in Ξ only if all the coefficients that
multiply the quadratic terms are positive. This can be visualized with an

inductive reasoning, by considering constraint (23h) at the last time
step for t= T in the optimization problem. The following list shows
which coefficient is associated to which quadratic term in the extensive
formulation of (26) for t= T.

I K
I K K
I K K

I K K

Quadraticterm Coefficient

(1 )
(1 )

(1 )

T

T

T

T

2
1

1
2

2 1

2
2

2
2

1

1
2

2
1

1

Coefficient K1 is positive by construction since it is a ratio of positive
quantities, as shown in Section 2.2. Coefficient K2 is positive as well and
it is smaller than 1 by construction, thus guaranteeing that
(1 − K2) > 0. As a result, every quadratic term in (24) is multiplied by
a positive coefficient ensuring the convexity of the inequality con-
straints for each time step t. A similar conclusion can be drawn for
inequality constraint (23i) since ϑhr is strictly greater than 0.

To conclude this section, the resulting problem has a scalar affine
objective function, affine equality constraints for the system power
balance, conic quadratic inequality constraints for top-oil and hot-spot
temperature and affine inequalities for the remainder of the constraints.
The convexity of the problem guarantees that a global optimal solution
exists and can be attained in a computationally-efficient way by relying
on readily available solvers. In this study, the resulting optimization
problem has been solved with the Matlab-based optimization toolbox
CVX [32], which allows for a direct implementation of convex pro-
blems.

3. Case study

This section briefly explains the test system used in this paper. The
modifications made to this system and the rationale behind these
changes are presented. Different test cases are comprehensively dis-
cussed in this section.

3.1. IEEE 24-bus test system with wind generation

The test system adopted in this study is based on the modified IEEE

Fig. 7. 24-hour loading of individual lines resulting from a DDCOPF simulation of the IEEE RTS 24-bus system with integrated wind generation. Data from 01 Feb
2016.

Table 1
Input data for transformer thermal model

Quantity Value Unit

Base power 175 MVA
DC losses 411.8 kW
Eddy losses 29.5 kW
Stray losses 43.4 kW
ϑor 38.3 °C
ϑhr 20.3 °C
Cth,trf 59.6 kWh/K
τh 7 min

Table 2
Test cases classification

Lines Transformers

Title Rating Constraint Rating Constraint

SLR STR Static Iohl ≤ 1 Static Itrf ≤ 1
DLR STR Dynamic I Iohl ohl

max Static Itrf ≤ 1
SLR DTR Static Iohl ≤ 1 Dynamic hst hst

max

DLR DTR Dynamic I Iohl ohl
max Dynamic hst hst

max
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RTS 24-bus system [18], where selected components have been derated
in order to highlight the impact of DLR and DTR. The test system is
shown in Fig. 6. Historical daily load profile from the Danish system has
been scaled with the peak load demand provided in [18] and increased
by 10%.

In contrast to [18], wind power production is only located at Buses
16, 21 and 23. However, the installed wind power capacity at each of
these buses has been doubled from 200 to 400 MV with respect to the
original test case. Wind power generation located far from the main
load center is expected to further stress the transmission system and
highlight the value of dynamic rating on various components.

Transmission lines marked with red have been derated to introduce
additional bottlenecks in the grid, as suggested in [18]. MVA ratings of
transmission lines between node pairs (13;23), (14;16) and (15;21)
have been reduced from 500, 500 and 1000 to 250, 250 and 400, re-
spectively. A preliminary simulation of a 24h dispatch with static rat-
ings has shown that such lines are the best candidates for DLR. Fig. 7
shows the utilization of each line in the system over the 24h dispatch
period with static ratings. It can be clearly seen that derated lines

constitute a congestion in the system and limit the power flow across
the network. Without any loss of generality, this case study does not
account for the N-1 security limit, thus components are loaded up to
their thermal rating.

The transformer chosen for dynamic rating application is between
Bus 3 and Bus 24. The data necessary for dynamic thermal estimation of
the chosen transformer is provided in Table 1. The preliminary power
flow simulations suggest that this transformer is strategically important
as it favours the integration of wind power from Bus 16. Furthermore,
unlike other transformers in the system, the absence of alternative
feeders on the respective buses makes this transformer critical for op-
eration.

The selection of components for dynamic rating application in a real
power system would be based on well-established industrial practices,
which dictate future grid expansion in case of system congestion.
Possible criteria that could be adopted in order to identify the need for
dynamic rating on certain lines and transformer are mentioned below,
but their thorough treatise is outside the scope of this work.

Fig. 8. Hourly wind speeds and ambient temperatures for winter 2016 (week 05 - Blue) and summer 2016 (week 34 - Red).

Fig. 9. Transformer results for cost-optimized hourly load dispatch for a weekday in winter 2016 (01 Feb). Top: Transformer load in pu. Bottom: Transformer hot
spot temperature in (°C).
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1 Failure rate of the surrounding components
2 Estimated repair time in case of faults
3 Cost of possible load interruption
4 Integration of newly built generating units from renewable sources.

3.2. Test case classification

In order to correctly identify the necessity of using DLR and DTR
together, different test cases have been prepared. The tested cases can
be classified into four categories. Each of these cases represent a unique
combination of dynamic loading for OHLs and transformer. The

individual test cases and the respective constraints are provided in
Table 2.

Table 2 classifies all the cases that have been tested with the pro-
posed methodology. The form of the constraints for the considered
components is shown as well. It is recalled that Iohl is the line load
normalized by the static line rating, Iohl

max is the dynamic line rating
computed with the rating algorithm presented in Section 2.1, Itrf is the
transformer per unit loading and finally ϑhst and hst

max are hot spot
temperature and its maximum allowed value (110 ∘C).

3.3. Weather Data for the Analysis

Dynamic line and transformer ratings are highly dependent on the
weather variability. Since the actual load and generation patterns of the
Danish grid are being used in this paper, it is tangible to use the actual
Danish weather data for rest of the analysis. A brief scrutiny of the
weather data from Denmark reveals significant difference for wind
speeds and ambient temperatures during summer and winter periods.
This hourly-pattern is presented in Figure 8, where week 34 of year
2016 (22 to 28 August) represents summer, while week 5 of the same
year (01 to 07 February) has been used for winter depiction. Hence-
forth, all the test cases specified in Section 3.2 are analyzed for both the

Fig. 10. Results for cost-optimized hourly load dispatch for a weekday in winter 2016 (01 Feb) for Line 23 of Fig. 6. Top: Line loading and dynamic rating in pu.
Bottom: Wind speed (m/s) and wind direction (°) with respect to Line 23.

Table 3
Comparison of load-dispatch cost reduction for 4 cases of Table 2 for 01-Feb-
2016 (winter)

Cost Reduction Δ%

STR DTR

SLR 0 −0.1 %
DLR −0.5 % −11.4 %

Fig. 11. Transformer results for cost-optimized hourly load dispatch for a weekday in summer 2016 (25 Aug). Top: Transformer load in pu. Bottom: Transformer hot
spot temperature in (°C).
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summer and winter seasons.

4. Results and discussion

This section begins with the comparison of transformer and over-
head line hourly load profiles for a 24-hour period during winter and
summer. The respective 24-hour periods were chosen to represent two
critical weather conditions: low ambient temperature and high wind
speed against high ambient temperature and low wind speed. All the
four case studies from Table 2 are compared by analyzing the cost of

power dispatch for one day for each case. The results are presented in
terms of percentage reduction taking as a reference the case with STR
and SLR. Cost reduction are then calculated as in (27), where Cost(x)
indicates the total dispatch cost for the x-th case as opposed to CostSTR-
SLR which indicates the total cost of the reference case.

=x x( ) 1 Cost( )
Cost

·100%
STR SLR (27)

The hourly dispatch cost and dynamic loading of the components is also
considered for a week in both winter and summer thus highlighting
daily load and temperature cycles in different seasons.

4.1. Analysis of day ahead hourly dispatch during winter

The day-ahead hourly dispatch optimization for winter has been
performed with data from the 01 Feb 2016. This day has been chosen
because of sharp rise and fall in loading pattern of a weekday. The
temporal evolution of transformer and line loading along with the re-
spective limiting factors for actual load, generation and weather pat-
terns from Denmark are provided in Fig. 9 and Fig. 10. The results for
different test cases of Table 2 are superimposed over each other in these

Fig. 12. Results for cost-optimized hourly load dispatch for a weekday in summer 2016 (25 Aug) for Line 23 of Fig. 6. Top: Line loading and dynamic rating in pu.
Bottom: Wind speed (m/s) and wind direction (°) with respect to Line 23.

Table 4
Comparison of load-dispatch cost reduction for 4 cases of Table 2 for 25-
Aug-2016 (summer)

Cost Reduction Δ%

STR DTR

SLR 0 −0.3 %
DLR −0.3 % −7.4 %

Fig. 13. Transformer results for cost-optimized hourly load dispatch for week 05 in 2016 (winter). Top: Transformer load in pu. Bottom: Transformer hot spot
temperature in (°C).
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figures. Referring to Fig. 6, dynamic loading of the following compo-
nents are elaborated only: Line 23 and transformer between bus 24 and
bus 3. This is done because these components are loaded extremely
close to their rated capacity (1 p.u.) for the entire 24-hour period,
which is evident by the STR+SLR profiles in Figures 9 and 10 .

Fig. 9 reveals that the application of DTR with and without dynamic
rating of lines would improve transformer utilization during certain
periods. However, for the given system, the transformer is optimally
utilized for the DTR+DLR case only. This proves the fact that the
system bottlenecks exist in the red-marked transformer as well as OHLs
in the modified IEEE RTS 24-bus system of Fig. 6. It is evident that the
transformer can be loaded as high as 1.5 p.u. on a cold winter day.
However the rating is decreased over time once the maximum HST is
reached and the rating stabilizes around 1.35 p.u. for the given load and
ambient conditions.

Since the rating of a overhead line is highly dependent on the am-
bient temperature, wind speed and its direction with respect to the
OHL, Fig. 10 has been provided for verification of this phenomena for
line 23. The red-dashed line determining the real-time dynamic rating
of OHL for given ambient conditions and the wind speed graph in the

bottom show rising trends as the day proceeds. The line rating is also
found to be high for low speed wind flowing perpendicularly to the OHL
between hours 4 and 9. Comparable to the transformer loading, DLR for
line 23 appears to be more relevant for DTR+DLR case as compared to
rest of the cases, because of the system bottlenecks. The trend of line
loading for DTR+DLR case between hours 8 and 22 is evidently similar
to the transformer loading, which proves that the line 23 has not been
loaded to its available dynamic rating (i.e. red-dashed and blue lines do
not converge) because the corresponding transformer's maximum HST
is reached.

The hourly load dispatch cost for the 24-hour period in winter is
compared for different test cases in Table 3. The STR+SLR case has
been used as the base case for comparison. It is evident that for the
given system with congestion lying both in the transformer and OHLs,
STR+DLR and DTR+SLR cases do not result in significant cost re-
duction. The DTR+DLR case is found to be optimal for this system on a
cold winter day.

Fig. 14. Results for cost-optimized hourly load dispatch for week 05 in 2016 (winter) for Line 23 of Fig. 6. Top: Line loading and dynamic rating in pu. Bottom: Wind
speed (m/s) and wind direction (°) with respect to Line 23.

Fig. 15. Results for cost-optimized hourly load dispatch for week 05 in 2016 (winter). Top: Hourly dispatch cost in pu. Bottom: Available and dispatched wind
generation in pu.
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4.2. Analysis of day ahead hourly dispatch during summer

Figs. 11 and 12 show the loading profile of the transformer and line
for Thursday 25 August, during summer of 2016. The overall behavior
of transformer and line loading is comparable to winter. DTR+DLR
case appears to utilize the components optimally, but in contrast with
winter, the blue line representing DTR+DLR appears to be much closer
to the remaining cases during low wind speeds and high ambient
temperature periods.

As a result of high ambient temperature around midday on 25
August (Thursday), the real-time dynamic rating of line reduces in
Fig. 12. Unlike winter, transformer HST is not always the limiting factor
in this case and the bottleneck shifts to the OHL rating during high
ambient temperature periods. It is interesting to note that the dynamic
rating of OHL would have decreased below the 1 p.u. mark, if con-
vective cooling due to wind was not taken into account.

Table 4

4.3. Analysis for winter Week with Increased Wind Generation Capacity

In Fig. 13 and Fig. 14, the loading for power transformer and line 23
are compared for cases without dynamic rating (SLR+STR) and with
dynamic rating (DLR+DTR) for week 05 during winter 2016. It is ob-
served that the utilization of transformer and OHL has improved sig-
nificantly for the combined dynamic rating case. Both the transformer
and OHL are often loaded beyond the respective rated capacities,
especially during high load demand periods. The dynamic rating ca-
pacity of the OHL is not fully utilized because the maximum HST limit is
reached for the transformer during high load periods.

The impact of combined dynamic rating on hourly dispatch cost is
presented in Fig. 15. The per unit cost of the hourly load dispatch shows
significant reduction during high wind periods. The wind energy which
needs to be curtailed for SLR+STR case is fully utilized for the com-
bined dynamic loading case. The curtailment of wind energy in DTR
+DLR case is only performed during low-load periods (night, weekends
etc.). This utilization can further be improved by accounting for storage
and energy trade to the neighboring systems through interlinks.

Fig. 16. Transformer results for cost-optimized hourly load dispatch for week 34 in 2016 (summer). Top: Transformer load in pu. Bottom: Transformer hot spot
temperature in (°C).

Fig. 17. Results for cost-optimized hourly load dispatch for week 34 in 2016 (summer) for Line 23 of Fig. 6. Top: Line loading and dynamic rating in pu. Bottom:
Wind speed (m/s) and wind direction (°) with respect to Line 23.
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4.4. Analysis for summer week with increased wind generation capacity

The optimal day-ahead power dispatch is performed for week 34 in
summer 2016. The transformer and line loading results in Fig. 16 and
17 present a similar but contrasting picture as compared to winter. The
dynamic rating of line is often utilized completely for the DTR+DLR
case and the maximum HST for transformer is not reached as fre-
quently. This is because the real-time line ratings are reduced during
low wind speed and high ambient temperature periods, which are more
common during summer. Nevertheless, the utilization of transformer
and OHL is improved significantly by employing DTR+DTR.

The hourly dispatch cost analysis and wind energy utilization is
presented in Fig. 18. For the warmest week in 2016, the reduction in
dispatch cost is not as significant as for winter. However, this is pri-
marily because the wind generation in this period is extremely low,
which results in almost no wind energy curtailment for the STR+SLR
case.

4.5. Future improvements

This paper discusses the novel application of DLR and DTR together
in a grid for load dispatch and cost optimization. More accurate thermal
models for OHLs and transformers could be chosen and adapted to
convex optimization problems for power system dispatch. The IEEE
model [4] used for thermal estimation of transformer does not account
for the oil viscosity variation with respect to temperature. This varia-
tion can be significant for low ambient temperatures, which is often the
case in Scandinavia or other parts of the world during winter. The
utilization of more advanced models including Susa [6] can help re-
solve this issue. Moreover the different transformer cooling modes af-
fecting the values of ν and μ are to be employed as well.

Nevertheless, the employment of these modifications would make
the problem highly nonlinear and issues due to local minima will have
to be resolved for the resulting non-convex optimization problem.
Therefore, the trade-off between accuracy and computational com-
plexity should be further investigated. The proposed methodology
opted for a compromise that favoured the ease of implementation and
that could always guarantee an optimal solution, hence the use of
convex optimization. Also, the incorporation of existing thermal models
that are widely adopted in the industry has been done with only minor
modifications in order to preserve their appeal.

Another aspect that is not treated in this study is the uncertainty

associated with dynamic ratings as they depend on aleatory weather
variables. Unexpected changes in temperature and wind power forecast
errors may require additional corrective actions in order to keep the
system balanced. These aspects may be more relevant close to real-time
operation of the power system rather than in the day-ahead planning
phase. However, should the uncertainty be considered, the proposed
methodology could be extended accordingly by means of various ap-
proaches in the literature such as stochastic programming or chance-
constrained programming [27].

The focus of this work is rather to show positive synergies between
dynamic rating of various components across a power system and how a
coordinate approach to dynamic rating could increase network capa-
city.

5. Conclusion

This paper proposes a novel methodological approach where both
dynamic line rating (DLR) and dynamic transformer rating (DTR) are
adopted for optimizing the day-ahead energy dispatch. The optimiza-
tion problem based on DC optimal power flow is devised and the
thermal models for OHLs and transformers are modified to fit a convex
optimization problem. Conic inequality constraints are adopted to in-
corporate IEEE transformer thermal models into the base DC Optimal
Power Flow, thus preserving the convexity of the original linear pro-
blem. The proposed methodology is then tested on the modified IEEE
RTS 24-bus system with additional wind generation for daily and
weekly load dispatch using weather, load and generation patterns of an
actual transmission power system. Results demonstrate the synergy of
combining DLR and DTR for maximising the integration of low-cost,
decentralized and wind-based energy resources. Most importantly, it is
highlighted how only the combination of the DLR and DTR yields a
substantial increase in network capacity that translates into reduced
dispatch cost. Dynamic rating of individual components would still
result in a more flexible and efficient power system, but assessing their
impact would require to consider the system as a whole. Results also
indicate that although cost optimization is more prominent in winter
due to low ambient temperatures and higher wind speeds, the applic-
ability of the proposed methodology remains relevant during summer
season as well.

Fig. 18. Results for cost-optimized hourly load dispatch for week 34 in 2016 (summer). Top: Hourly dispatch cost in pu. Bottom: Available and dispatched wind
generation in pu.
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Abstract—Power transformers are critical power system com-
ponents that are generally loaded conservatively, resulting in
marginal utilization of their designed lifetime. Dynamic Trans-
former Rating (DTR) increases the utilization of this asset by
limiting its Hot Spot Temperature (HST) rather than the per unit
load, thereby increasing available network capacity. However,
residual lifetime would still be unutilized according to current
dimensioning criteria and state-of-the-art lifetime aging models.
This paper proposes a novel methodology for DTR, where both
thermal and aging dynamics are accounted for in a multi-period
DCOPF formulation. Power losses are accounted for by means of
an iterative approach that preserves convexity of the optimization
problem. The proposed methodology leads to an optimal lifetime
utilization of transformers and favours the integration of wind
power generation. This novel DTR approach can be beneficial for
applications with limited asset lifetime like offshore windfarms
or for postponing grid reinforcements for short period of time.

Index Terms—DCOPF, dynamic transformer rating, lifetime
model, losses, wind power integration

I. INTRODUCTION

The integration of renewable-based energy sources, with
particular regard to wind power generation, can be hindered by
limitations in the thermal overload capability of the existing
network. Power transformers in transmission and distribution
systems are critical components that may constitute a bot-
tleneck as they are conservatively operated. Dynamic Trans-
former Rating (DTR) can help resolve these bottlenecks by
allowing the transformers to be loaded beyond their nameplate
rating according to the actual thermal state [1].

Loading guides [2] and [3] allow large power transformers
to be dynamically rated up to the Hot Spot Temperature (HST)
of 160 ◦C. However, the traditional operation philosophy and
protection design prevent transformers from being operated
beyond HST of 110 ◦C, which is rarely reached because of
favorable ambient conditions. Consequently, transformers are
distinctly underutilized and the remaining lifetime by the end
of designed period (usually 35-40 years) is significant. This
can heavily influence the business case for applications like
offshore windfarms, which are traditionally designed to oper-
ate for 25 years only. Moreover, optimal transformer utilization
can help increase the economic turnover and decrease the Cost
of Energy (CoE) for such applications.

Unlike offshore windfarms, transmission and distribution
utilities may keep old transformers in operation with in-
creased care and condition-based maintenance. In this case,
the increased network capacity provided by DTR can help to
defer investments for transmission system operators, which are
facing a large and rapid growth of renewable energy sources.

This paper builds upon a recent work in [4], where trans-
former loadability is directly accounted for in a multi-period
DC - Optimal Power Flow (DCOPF) algorithm. The novelty of
the proposed DTR approach consists in assessing the remain-
ing transformer lifetime using [2] and [3], based on historical
load and ambient conditions. Based on this assessment, the
solution of the DCOPF considers not only transformer thermal
dynamics, but aging rate and cumulative lifetime utilization as
well. This loading approach results in a controlled accelerated
aging but without breaching the designed lifetime limit. As a
result, the transformer is used more effectively compared to
common loadability practices as well as other DTR approaches
suggested in [5] and [6].

The IEEE RTS 24-bus network with additional wind genera-
tion [7] is used as a test system based on actual weather, load
and generation data from the Danish system. The presented
case study demonstrates the relevance of the method as a
means to improve the utilization of low-cost wind energy while
accounting for power losses in the transmission system. The
proposed methodology could also be incorporated in more de-
tailed cost-benefit analysis and grid expansion planning studies
due to its ability to account for transformers’ degradation
under variable conditions.

The remainder of the paper is organized as follows. The
DTR models from [2] are discussed in Section II. Section III
elaborates the thermal aging phenomena in transformer and
presents the novel DTR approach. The optimization problem
for day-ahead dispatch is formulated in Section IV. The case
study is presented in Section V, while the results are discussed
in Section VI. Section VII concludes the paper.

II. DYNAMIC TRANSFORMER RATING MODEL

Dynamic loading of transformers can be performed by
determining two critical temperatures: Top-Oil Temperature
(TOT) and Hot-Spot Temperature (HST). This estimation is
performed by using the ANSI/IEEE Clause 7 model [2],



because of the well-established popularity in the industry and
mathematical suitability as compared to other models [3] [8].

These temperatures are calculated using the non-linear dif-
ferential equations (1) - (2) which require further simplification
to prevent non-convexity of the optimization problem [2].

τ0
dϑtop

dt
+ ϑtop = ϑamb + ϑor

(
I2

trfR+ 1

R+ 1

)ν
(1)

τh
dϑhst

dt
+ ϑhst = ϑtop + ϑhr I

2µ
trf (2)

where τ0 and τh are the thermal time constants for oil and
winding respectively which are expressed in hours; ϑamb is the
ambient temperature in ◦C; ϑtop and ϑhst represent top-oil and
hot-spot temperatures respectively in ◦C; Itrf is the transformer
load current in p.u. with rated load current as base; R is ratio
of load losses to no-load losses at rated load; ϑor in ◦C is
the top-oil rise over ambient temperature ϑamb at rated load,
while ϑhr in ◦C is the rated HST rise over TOT for rated
load. The empirically derived exponents ν and µ represent
the impact of transformer cooling mode (ONAN, OFAF etc.)
on the change in thermal resistance and oil viscosity. The
constants have different values for different cooling modes,
which are provided in [2].

In order to keep the optimization problem convex, some
simplifications are made to the TOT and HST models of (1)
and (2). Firstly, the selected transformer is assumed to op-
erate continuously at Oil-Directed-Air-Forced (ODAF) mode,
allowing both the constants ν and µ to be set to 1, as in
the linearized model in [9]. Secondly, hot-spot temperature is
modelled in terms of its steady state value, since hourly values
are used in the optimization problem. Therefore it is assumed
that short term thermal transients would be extinguished within
one hour due to the small thermal time constant, as verified
by authors of [4]. As opposed to oil time constant τ0, which
is in the range of 60 to 90 minutes, winding time constant τh
is approximately 7-8 minutes. Resulting top-oil and hot-spot
temperature dynamics are modelled by means of linearized
IEEE thermal models shown in (3) and (4), respectively.

ϑtopt = K1I
2
trft +K2ϑambt +K3ϑtopt−1

+K4 (3)

ϑhstt = ϑtopt + ϑhrI
2
trft (4)

Top-oil temperature depends on the squared per unit load
I2

trf, ambient temperature ϑamb and value of top-oil temper-
ature reached in the previous time step. This latter term is
responsible of coupling top-oil temperature values in time
thus reflecting the importance of considering recent loading
history for transformers. Lastly, Coefficients K are constants
that solely depend on transformer construction.

III. OPTIMAL LIFETIME EVALUATION OF TRANSFORMERS

A. Thermal Aging of Transformers

The limit for thermal capacity of a transformer is based
on the maximum allowable stress on relevant materials. These
limits are effectively explored and defined in [2] and [3]. The

TABLE I
TEMPERATURE LIMITS FOR TRANSFORMERS [2] [3]

Normal Cyclic
Load

Emergency Load
(long-term)

Emergency Load
( <30 min )

Hot Spot
Temp. 120 ◦C 140 ◦C 160 / 180 ◦C

Top Oil
Temp. 105 ◦C 115 ◦C 115 / 110 ◦C

thermal limits for power transformers greater than 100 MVA
rating are provided in Table I for different types of dynamic
loading beyond nameplate rating. However, the continuous
HST limit for designed transformer lifetime is 110 ◦C for ther-
mally upgraded paper. This temperature ceiling is scarcely ever
reached because of over-dimensioning, protection philosophies
and favorable ambient conditions. The thermal stress is known
to be maximum at HST location. The heat transfer from HST
serves as catalyst for chemical reactions, which accelerates
the aging of insulation paper [1]. The Arrhenius reaction rate
theory has been adapted in [2] to calculate the transformer
loss of life. The relative aging rate for a transformer, also
called aging acceleration factor Λ, with thermally upgraded
insulation paper is given by (5), while the transformer loss of
life is given by (6)

Λ(t) = e

(
15000

110 + 273
−

15000

ϑhst(t) + 273

)

(5)

λ(t) =

∫ t

t0

Λ(τ) dτ (6)

where Λ is unit-less and represents the aging acceleration
factor for reference HST of 110 ◦C for thermally upgraded
insulation paper; ϑhst(t) is the actual hot spot temperature in
◦C at time t; λ(t) represents the cumulative loss-of-life for
time period from t0 up to t and in this paper it is expressed in
years. Hence the lifetime utilization of transformer is directly
dependent on HST. It must be mentioned that the factor Λ
represents the thermal aging of paper insulation only and the
impacts of residual moisture content in paper and oil along
with other aging phenomena on transformer lifetime are not
assessed in this paper.

B. Dynamic Rating and Improved Lifetime Utilization

Static Transformer Rating (STR) limits continuous load
current to 1 pu for power transformers and cyclic load current
to 1.3 pu [2]- [3]. In contrast to this approach, DTR allows the
transformer to be loaded based on HST instead of the rated
capacity and thereby prevents this temperature from violating
the limits of Table I [5] - [6]. The methodology for DTR used
in this paper additionally evaluates the consumed lifetime λ
of a transformer and it sets the loadability accordingly.

Referring to Fig. 1, it is assumed that until time t0 the
transformer has continuously operated at HST of 98 ◦C. The
relative aging rate Λ is 0.282, which is represented by the slope
of black line in the figure. Consequently, the transformer loss-
of-life at this point would be λA = 0.282 t0. The difference



Fig. 1. Methodology for optimal transformer utilization. (a) Fixed HST limit
of 110 C. (b) Utilized lifetime (λ) dependent HST limit (ϑhst,max = 140 C)

between designed loss-of-life λD for HST of 110 ◦C and
actual λ would continue to increase, if the transformer would
keep this loading strategy. DTR can prevent this difference
from increasing further by loading the transformer in a way
that keeps the HST closer to the design limit of 110 ◦C, as
shown in Fig. 1a. But even with this approach, the residual
transformer lifetime by the end of design life would be sig-
nificant.Therefore, the transformer loading strategy proposed
in this paper is meant to maximize component’s utilization by
considering not only temperature dynamics, but aging rate as
well. Fig. 1b illustrates the underlying concept of Enhanced
Dynamic Transformer Rating (DTR+).For the period between
t0 and t1, the limiting factor consists in the designed loss-of-
life λD, i.e. the red dashed line, rather than the maximum slope
associated with HST of 110. As a result, the upper temperature
limit is increased to 122◦C and the transformer could be
loaded even more, thus decresing the unitilized lifetime.

IV. PROBLEM FORMULATION

In this section the multi-period DCOPF is formulated, where
transformer thermal and aging dynamics are directly accounted
for along with transmission system losses. The proposed
contribution is based on piece-wise linearized transformer
aging functions that are incorporated into a DCOPF problem.
The same approach could be embedded equally in a ACOPF
framework for a more detailed approach.

A. Base DCOPF with quadratic losses

In the considered system the sets of buses, branches, con-
ventional generators and windfarms are indicated with N, L, G
and W, respectively. While the transformers subsets with STR,
DTR and DTR+ are identified with LSTR, LDTR and LDTR+ .

This study adopts a DC approximation of the full AC
power flow equations. The active power flow on each branch
is modelled by means of the Power Transfer Distribution
Factor matrix M . The matrix M ∈ R|L|×|N| expresses the
sensitivities of the power flow on each line with respect to
the nodal power injections, where the |·| operator indicates
the cardinality of the set. The power flow f` on branch ` can
then be expressed as f` = M`P

inj, where M` is the `-th row

of matrix M and P inj represents a column vector of per unit
power injection at each bus in the system.

Branch power losses L that are dissipated on transmission
lines and transformers are expressed in terms of additional
load demand Lbus at each bus. Losses that occur on branch
` are equally divided between sending and receiving bus by
means of a loss allocation matrix Y ∈ R|N|×|L| whose (n,`)
component is defined in (7).

Y (n, `) =

{
0.5 if line ` is connected to bus n
0 otherwise

(7)

The nodal power injection at bus n can then be written as

P inj
n = Pg + Pw −

(
Pn − P sh

n + Lbus
n

)
(8)

where Pg and Pw represent thermal and wind power genera-
tion; Pn and P sh

n represent net load demand and load shedding;
Lbus
n expresses nodal power losses where Lbus

n = YnL and Yn
is the n-th row of the loss allocation matrix.

In order to consider quadratic power losses in the DCOPF
while preserving its convexity, an iterative approach has been
implemented. This method is inspired by existing algorithms
in the literature that account for power losses by means of
quadratic inequality constraints [10]. However, as discussed
in [11], these approaches may introduce additional fictitious
losses in the presence of negative locational marginal prices
due to congestions in the transmission system. Therefore, the
iterative approach adopted in this study introduces an upper
bound for power losses which is lowered accordingly at each
iteration, should the losses be overestimated. The main steps
are:

1) Set the upper bound for power losses to the value
corresponding at the maximum power flow and set a
tolerance δ for the convergence.

Lmax
(1) = Rfmax2 (9)

2) Solve DCOPF (12) and obtain resulting power flows f(k)

and power losses L(k) for the k-th iteration.
3) Compute the difference between estimated losses and

actual losses for the resulting power flows.

∆L(k) = L(k) −Rf2
(k) (10)

If ∆L(k) ≤ δ a solution is found, otherwise proceed to
next step.

4) Update the upper bound for power losses with the losses
corresponding to the power flows at step k, plus a small
margin ε. Then return to step 2.

Lmax
(k+1) = Rf2

(k) + ε (11)

This iterative approach allows to solve the DCOPF with a
quadratic representation of power losses while still preserving
the original convexity, which guarantees uniqueness of the
solution. This is achieved by gradually reducing the size of
the feasible region for branch losses.

The optimization problem in (12) is the base multi-period
DCOPF for a generic iteration (k), where losses are accounted



for. The objective is to find the optimal 24-hours day-ahead
energy dispatch, which minimizes total generation cost over
the period T, where all constraints have to hold ∀t ∈ T. The
base lossy-DCOPF is formulated in a compact form in (12)
and it is solved in the matlab-based modeling system CVX
[12] using a Mosek academic license.

min
Ξ

∑

t∈T


∑

g∈G
cgPg,t +

∑

w∈W
cwPw,t +

∑

n∈N
cshP sh

n,t




(12a)
s.t.∑

g∈G
Pg,t +

∑

w∈W
Pw,t −

∑

n∈N
(Pn,t − P sh

n,t + Lbus
n,t) = 0, (12b)

Pmin
g ≤ Pg,t ≤ Pmax

g ∀g ∈ G, (12c)

−∆Pmax
g ≤ Pg,t − Pg,t−1 ≤ ∆Pmax

g ∀g ∈ G, (12d)

− fmax ≤ f`,t ≤ fmax ∀` ∈ L, (12e)

Rf2
`,t ≤ L`,t ≤ Lmax

(k) ∀` ∈ L, (12f)

0 ≤ Pw,t ≤ P av
w ∀w ∈W, (12g)

0 ≤ P sh
n,t ≤ Pn ∀n ∈ N (12h)

where Ξ = [Pg,t, P
sh
n,t, Pw,t, L`,t] is the set of decision vari-

ables that for each time step t represent scheduled generator’s
output Pg,t, shed load P sh

n,t and dispatched wind power Pw,t
for every generator, bus and wind farm, respectively. Branch
power losses L`,t are modelled by means of an auxiliary
decision variable in conjunction with quadratic and linear
inequality constraints.

The objective function in (12a) consists of three terms: the
cost of dispatching conventional generators in the system over
period T considering linear generation cost functions; a small,
negligible cost for dispatching wind power in order to improve
convergence of the algorithm; the additional cost of preemptive
corrective actions such as load shedding. Constraint (12b)
enforces system day-ahead power balance for each hour in the
considered time period. Constraints (12c) and (12d) impose
operational limits on conventional generators in terms of their
power outputs and ramping capabilities, whereas branch power
flow are limited by constraints (12e). Branch power losses
are bounded by constraints (12f). The lower bound consists
in their correct quadratic representation, whereas the upper
one is necessary to avoid the introduction of fictitious losses.
This term is the sole to be iteratively reduced whenever power
losses do not lie close enough to the lower boundary in terms
of the chosen tolerance δ. Lastly, constraints (12g) and (12h)
impose physical limitations on the availability of wind power
generation at each bus and the amount of load that can be
shed, respectively. Available nodal wind power injections P av

w

is modelled as in [4], where time series of wind speed at
several locations in the Danish power system are converted
to wind power generation time series by means of a multi-
turbine wind power curve fitted on historical data. Decision
variable Pw in the optimization problem selects the available
amount to be dispatched depending on the load demand or the
presence of congestions in the grid.

B. Additional constraints for STR

In order to express the loading of the transformer on branch
`, the power flow f` is scaled accordingly with the ratio of
base system per unit power Sbase to the nameplate rating of the
transformer Strf

` . This scaling factor allows to show the loading
Itrf` defined in (13) relatively to the size of the transformer.

Itrf`,t = f`,t
Sbase

Strf
`

(13)

The subset LSTR of transformers that are statically rated can
then be represented in the base DCOPF (12) by introducing
additional constraints (14) that limit the power flow on the
corresponding branch ` for all considered time periods.

−1 ≤ Itrf`,t ≤ 1, ∀` ∈ LSTR, ∀t ∈ T (14)

C. Additional constraints for DTR

The loading of transformers that are dynamically rated is
limited by operating hot-spot and top-oil temperatures rather
than per unit load. Top-oil and hot-spot temperature variations
are bounded by predefined values that ensure transformers are
used within their thermal capabilities, according to state-of-
the-art loading guidelines. As discussed in [4], ϑtop and ϑhst are
modelled by means of quadratic inequality constraints which
keep the resulting optimization problem a convex one. The
extensive form of such values is provided in expressions (3)
and (4) in Section II.

ϑtop`,t ≤ ϑmax
top ∀` ∈ LDTR, ∀t ∈ T (15)

ϑhst`,t ≤ ϑmax
hst ∀` ∈ LDTR, ∀t ∈ T (16)

Adding (15) and (16) to the base DCOPF formulation in (12)
will consider the effect of having transformers dynamically
rated during the 24-hours dispatch period.

D. Additional constraints for DTR+

The third loading strategy proposed in this paper takes into
account not only temperature dynamics, but also transformer
aging rate. This aspect is likely to play a role only in the
long term, but it provides indication of how the transformers
loading could be affected by cumulative lifetime consumption
during continued high temperature operation. In order to do so,
the exponential aging acceleration factor Λ defined in Section
III is included in the base DCOPF (12) by means of a set
of linear inequality constraints that form a convex piece-wise
linear approximation. Coefficients mi and qi in (17) are the
slope and intercept values of the i-th tangent line that forms
the approximation of Λ.

∆λt = max
i
{miϑhstt + qi} ≈ Λt (17)

The expression in (17) relates the transformer hot-spot operat-
ing temperature ϑhstt to the corresponding incremental lifetime
utilization ∆λt. The cumulative lifetime utilization λt is then
evaluated in a discrete form in (18)

λt = λt−1 + ∆λt (18)



Fig. 2. Modified IEEE RTS 24-bus system [7]

As the transformer is dynamically rated considering lifetime
consumption as well, constraints (15) and (16) are added to
the base DCOPF (12) together with (19), where λ0 represents
the initial lifetime of the component, α the desired maximum
aging rate which in this study has been assumed 1 and t is
the time counter during the simulation.

λ`,t ≤ λ0 + αt ∀` ∈ LDTR+ , ∀t ∈ T (19)

Ultimately, this approach allows to set a higher temperature
limit on transformer operation as long as the designed lifetime
consumption limit is not reached. Once the upper boundary of
lifetime utilization is met, the binding constraint will switch
from hot-spot temperature to used cumulative lifetime, thus
limiting the operation of the component accordingly.

V. CASE STUDY

The IEEE RTS 24-bus network with additional wind gen-
eration from [7] has been adopted in this study with some
modifications. Referring to Fig. 2, wind generation is con-
centrated at Bus 16, 21 and 23, whereas different nameplate
ratings are considered for the transformer located between bus
3 and 24, namely 150, 175 and 200 MVA. The data used to
model transformer thermal dynamics is provided in [8].

The multi-period DCOPF problem of Section IV is solved
in a moving window of 24 hours for the 3-year period between
2014 and 2016. Different test cases compare the system and
transformer performance for STR, DTR with ϑmax

hst at 110 ◦C
and DTR+ with ϑmax

hst at 140 ◦C combined with optimal lifetime
utilization. The assumptions for the DTR+ test case are quite
conservative. The transformer is assumed to be in operation
for 3 years with DTR resulting in cumulative loss-of-life of
1.5 years, which is cautiously chosen based on operational
experience of large transformers.

Historical daily load profiles from the Danish power system
have been scaled accordingly with respect to the peak demand

in [7]. Total load demand is then increased by 25 percent
during the central hours of each day in order to account
for future network changes and to enhance the need for
DTR in the given system. Lastly, historical time series of
ambient temperature from the same system have been used
in the thermal rating algorithm for transformers. This allows
to take the weather correlation between wind speed and
ambient temperature into account. Such a correlation will be
reflected between the available wind power generation and the
loadability of transformers.

VI. RESULTS AND DISCUSSION

The analysis starts from considering the overall impact
of the tested loading strategies on the cumulative lifetime
utilization of a 175 MVA transformer, shown in the left part
of Fig. 3. It stands out as the STR approach practically does
not cause any significant aging over the entire 3-years period,
in agreement with conservative common loading practices.
As opposed to STR, DTR+ pushes the utilization of the
component to the designed limit in less than 1 year. Once the
maximum aging rate is met, the component will keep using
the available designed lifetime at disposal, according to the
proposed loading strategy presented in this paper.

The resulting aging profiles can be motivated by considering
a three-day period in Fig. 4, where transformer loading and
corresponding hot-spot temperatures are shown. As long as the
transformer load is limited in terms of its per unit nameplate
rating, the associated hot-spot temperature remains well below
the allowed operational limits due to favourable weather condi-
tions and dimensioning criteria. The resulting low HST profile
coupled with the exponential aging acceleration factor shown
in the right part of Fig. 3 will yield a close-to-zero aging rate
for STR. However, in this condition the transformer branch
constitutes a bottleneck in the grid, thus causing increased
dispatch costs for the system.

Moving the transformer limiting factor from the per unit
load to the hot-spot temperature by means of DTR allows
to significantly increase the power flow. This would help
releasing grid congestions and dispatching more wind power
generation from the buses where it is located, at a cost of

Fig. 3. Cumulative lifetime utilization over the 3-years period for different
loading strategies (left). Exponential aging acceleration factor and fitted linear
approximations (right).



Fig. 4. Transformer hot-spot temperature (above) and transformer load
(below). Focus on three days for STR, DTR and DTR+

increasing the lifetime utilization of the component. This
mechanism is further enhanced by considering DTR+, which
allows the transformer hot spot temperature to be set even
higher, as long as the aging rate does not reach the predefined
limit, as shown in Fig. 3. Once the maximum aging rate
is reached, the constraint on lifetime utilization will prevent
the hot-spot temperature to reach the maximum value, thus
resulting in a lowered loading capability.

The operation beyond nameplate rating causes additional
power losses, not only in the component that is being dynam-
ically rated, but in the remainder of the system as well. This
aspect can be seen in Fig. 5, where transformer and system
losses are shown for the same 3-days period. Relieving grid
congestions by means of DTR or DTR+ will result in increased
power flows across the grid, which will in turn cause additional
system losses. Despite increasing system losses, the solution
of the multi-period DCOPF suggests that there would still be
economic benefits from the increased power flow in the grid,
as summarized in Table II, where losses are taken into account.

TABLE II
COST REDUCTION AND LIFETIME USE AFTER 1 YEAR COMPARED TO STR

Transformer Size
(MVA)

Cost Reduction
(%)

Used Lifetime
(%)

DTR DTR+ DTR DTR+

150 -10.1 -11.5 +41.5 +166
175 -8.1 -8.8 +31.1 +166
200 -6.4 -7.1 +24.2 +166

VII. CONCLUSION

This paper proposes a novel approach for optimal trans-
former lifetime utilization. This approach incorporates both
thermal and aging dynamics into a convex optimization prob-
lem based on a multi-period DCOPF, while accounting for
quadratic power losses in the system. The proposed algorithm
maximizes the transformer utilization ensuring that neither

Fig. 5. Total system losses (above) and transformer losses (below). Focus on
three days for STR, DTR and DTR+

thermal nor aging rate limits are violated during operation.
The results suggest that the proposed DTR algorithm reduces
the cost of load dispatch and yields a substantial increase in
network capacity. It is also observed that accounting for the
temperature-dependent aging rate can allow a better utilization
of the transformer designed lifetime. This aspect is likely to
improve the business case for applications with limited asset
lifetime like offshore windfarms. It could also be beneficial
for TSO which have to face rapid growth of renewable-based
generation and postpone the required grid reinforcements.
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A B S T R A C T

Compared to Seasonal Line Rating (SLR), Dynamic Line Rating (DLR) allows for higher power flows on overhead
transmission lines, depending on the actual weather conditions. Nevertheless, the potential of DLR has to be
traded off against the additional uncertainty associated with varying ratings. This paper proposes a DC-Optimal
Power Flow (DCOPF) algorithm that accounts for DLR uncertainty by means of Chance-Constraints (CC). The
goal is to determine the optimal day-ahead dispatch taking the cost of reserve procurement into account. The key
contribution of this paper consists in considering both non-parametric predictive distributions of DLR and the
combined wind power uncertainty in the optimization problem. Our results highlight the benefits of DLR in
wind-dominated power systems, assuming typical risk aversion levels in the line rating estimation.

1. Introduction

Overhead transmission lines are traditionally dimensioned in a
conservative way by assuming constant and unfavourable thermal
conditions which restrict the power flow. Guidelines for thermal rating
of conductors [1] suggest that DLR could yield a substantial upgrade,
especially under windy conditions. Nevertheless, the potential of DLR
has to be traded off against the additional uncertainty associated with
varying ratings, which may compromise security. In this regard, several
studies have investigated how the uncertainty associated with DLR can
be accounted for in the power system operation.

Various methodological approaches have been explored in the lit-
erature with a strong focus on considering both energy and reserve
dispatch under different sources of uncertainty. Authors in [2] propose
a two-stage stochastic optimization problem coupled with a probabil-
istic forecasting model. This approach optimizes the day-ahead sche-
duling with a risk-neutral approach towards the realization of uncertain
variables, i.e., line ratings, wind power and line outages. The study in
[3] instead considers uncertainty in load demand and wind power
generation by combining affine arithmetic and probabilistic methods
such as Monte Carlo. Authors of [4] have addressed the influence of
DLR on the security constrained unit commitment, whereas in [5] this
problem is considered in a stochastic programming framework together
with network topology changes.

One of the major aspects that is investigated in the literature is how

to set the dynamic line ratings while keeping the required level of
conservatism during power system operation. To this extent, a robust
optimization framework is proposed by authors of [6], where corrective
actions for dealing with uncertain ratings are discussed. A similar ap-
proach is followed in [7] where a distributionally robust optimization
algorithm is implemented to co-optimize energy and reserves in large
scale power systems, whereas authors in [8] compared various meth-
odologies for the optimal line rating selection for different market
structures and grid operators’ objectives. Lastly in [9], DLRs are in-
corporated into a N-1 security assessment using CC and a copula ap-
proach to model the correlation structure between ratings. The CC
formulation approach in particular allows to evaluate the margin for
higher utilization of the grid, assuming the same risk level that the TSOs
accept with SLR and thus it is preferred in this paper over other
methodologies.

As discussed in [10], when the uncertainty in the chance constraints
is modelled with elliptical distributions, the constraint is convex, given
that the safety level is high enough. The Normal distribution is part of
this class of distributions and it is commonly used to reformulate chance
constraints analytically, thus preserving the convexity of the optimi-
zation problem.

However, this assumption introduces an approximation error
whenever the uncertainty does not follow a distribution from this class.
Authors of [11] show that weather-dependent line ratings follow non-
parametric probability distributions, thus leading to potential
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inaccuracies. Furthermore, existing studies which adopt a CC approach
do not account for other sources of uncertainty, e.g., wind power
forecast errors. This limitation is likely to yield a higher re-dispatch cost
since potential synergies and correlations between power flows and
DLRs are not taken into account.

The key contribution of this paper is to propose a methodological
approach based on CC-Optimal Power Flow (CC-OPF), considering non-
parametric predictive distributions of DLR and the combined wind

power uncertainty. We account for the positive correlation structure of
line ratings and nodal wind power injections across the system by
means of their joint predictive distribution. This approach allows the
grid operator to handle probabilistic forecast of line ratings dropping
any assumption on the shape of their distribution, while considering
their correlation with wind power. Using non-parametric predictive
distributions of DLR, as opposed to the prevailing assumption of nor-
mality, sets the framework for relying upon more detailed DLR

Nomenclature

Subscripts

line index
g conventional generator index
m Gaussian component
n bus index
t time index
w wind farm index

Superscripts

cut wind power curtailment
dw downward reserve
inj nodal injection
max upper bound of variable
min lower bound of variable
sh load shedding
tot total value of variable over the corresponding set
up upward reserve

Sets

G G/ Set/Number of conventional generators
L L/ Set/Number of lines in the system
L L/dlr dlr Set/Number of lines with DLR
L L/slr slr Set/Number of lines with SLR
N N/ Set/Number of nodes
W W/ Set/Number of wind farms

Parameters

,g n participation factors per generator Gg and per bus
Nn .

column vector of nodal participation factors
= …( , , )N1

, 0 coefficients of linear quantile regression
f probabilistic forecast
a coefficients for linear summation of random variables in

power flow constraint, L

B B,bus line bus and line admittance matrix
S Power Transfer Distribution Factor matrix
xt point forecast time series of weather variables

F power flow uncertainty, L

Ptot total power imbalance in the system
Trd conductor radial temperature drop
+, uncertainty margins for power flow, Lslr

adjustable parameter set for GMM
F expected line power flow, L

Pw wind power point forecast for day-ahead, Ww
µ, , mean value, covariance matrix and weight of Gaussian

component
number of regression variables in probabilistic forecast
Spearman’s rank correlation matrix

number of quantiles in probabilistic forecast
risk aversion level

c linear costs terms in objective function
d dimension of Gaussian component
F line power flow, L

+f f, chosen upper and lower bound for power flow constraints,
Ldlr

h lead time of probabilistic forecast
I maximum conductor current
M number of Gaussian components
qc convective cooling
qj joule heating
qr radiative cooling
qs solar heating
r r,g g

up dw bounds for probabilistic reserve procurement constraints,
Gg

Tav average conductor temperature in cross-section
Tc conductor core temperature
Ts conductor surface temperature

Decision variables

PP , gg scheduled power output per generator Gg and per bus
vector notation

PP , nn
sh sh load shedding Nn ; scalar and vector notation

PP , ww
cut cut curtailed wind power per wind farm Ww and per bus

vector notation.
Rg

dw downward reserve procurement Gg
Rg

up upward reserve procurement Gg

Random variables

X x, multivariate random variable for line rating and nodal
wind power generation, Ldlr

PP , ww wind power forecast error for wind farm Ww and per
bus vector notation

Fmax dynamic line rating Ldlr, static line rating Lslr
PP , ww available wind power generation per wind farm Ww

and per bus vector notation
+Y Y y, , univariate random variables for stochastic part of bidir-

ectional power flow constraint, L

Abbreviations

CC Chance-Constraints
CDF Cumulative Distribution Function
DLR Dynamic Line Rating
GMM Gaussian Mixture Model
HBE Heat Balance Equation
OPF Optimal Power Flow
PDF Probability Density Function
RMS Root Medium Square
SLR Static Line Rating
TSO Transmission System Operator
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forecasting algorithms, such as the one presented in [12].
The objective of the proposed model is to seek the optimal day-

ahead system dispatch for typical risk aversion levels of the TSO, con-
sidering the procurement cost of reserve necessary for real-time re-
dispatch actions. This methodology can serve as a decision-support tool
for the TSO who has to set the line ratings in its network before the day-
ahead market clearing, accounting thought for possible deviations
during real-time operation. A quantile regression algorithm is used to
provide non-parametric probabilistic forecasts of DLRs, which are then
incorporated in the CC-OPF formulation. This latter step is performed
by adapting the methodology presented in [13], where Gaussian Mix-
ture Models are used to represent correlated non-Gaussian random
variables in an optimal power flow algorithm.

The paper is structured as follows. Section 2 introduces the princi-
ples of DLR modelling whereas Section 3 describes how probabilistic
forecasts have been obtained. The Chance-Constrained problem for-
mulation is presented and a solution methodology is described in Sec-
tions 4 and 5, respectively. The proposed methodology is tested in a
case study presented in Section 6 whereas numerical results are given in
Section 7. Lastly, Section 8 concludes the paper.

2. Modelling of dynamic line ratings

Overhead line ratings are simulated by means of a modified model
based on the Cigré guide for thermal rating calculations [1]. In the
Cigré guide, line ratings are determined by solving the heat balance
equation (HBE)

+ =q I q q q( ) 0j s c r (1)

which describes the thermal equilibrium between several heating and
cooling mechanisms of the conductors, such as Joule losses qj, solar
heating qs, convective and radiative cooling denoted as qc and qr , re-
spectively. In steady state conditions the HBE can be solved directly for
the RMS current I, which solely appears in the Joule losses term. For a
detailed description of the estimation of the q terms in (1) the reader is
referred to [1]. The modified rating algorithm adopted in this study has
been proposed by the authors in [14] and accounts for the radial
temperature drop in the conductors. As the line current approaches the
thermal limit, the assumption of constant temperature distribution
within the conductors may lead to excessive heating in the core. Vio-
lating the maximum operating temperature would cause the line to
elongate and sag beyond the limits set by the TSO [15]. In order to
account for this aspect, the following system of non-linear equations

+ =q I T q q T q T( , ) ( ) ( ) 0j s c s r sav (2)

=T T T I T( , )c s cs av (3)

+ =T T T2c s av (4)

is solved for the current I, the average temperature Tav and the surface
temperature Ts of the conductor. Core temperature Tc is set beforehand
to the maximum operating temperature of the line. Eq. (2) is the HBE
where the dependency upon the current, the surface temperature and
the average temperature of the conductors is stressed. Eq. (3) expresses
the difference between the core and the surface temperature with a
simplified relation Tcs presented in [1]. This quantity depends upon
several properties of the conductor as well as the current and the
average temperature. The explicit form is omitted in this paper being
outside the scope of the study. Lastly, (4) couples the variablesTs andTav
assuming that the radial temperature is linear in the cross-section. Ul-
timately, as opposed to (1) the solution of (2)–(4) yields a more con-
servative rating especially under high windy conditions, when the ra-
dial temperature drop is not negligible. All terms that appear in the HBE
are highly weather dependent. The weather variables that have been
considered for the estimation of the thermal ratings are wind speed,
wind direction, air temperature and solar radiation. This study relies on

hourly weather data over a three-year period time that have been si-
mulated across the Danish power system. Time series of weather vari-
ables have been simulated with the mesoscale downscaling method
presented in [16].

3. Probabilistic forecasts

In this study, both DLRs and wind power generation are modelled as
random variables described by certain predictive probability density
distributions.

3.1. DLR forecasts

Probabilistic forecasts of DLR are derived with a multivariate linear
quantile regression algorithm [17] trained on two years of simulated
data. The remaining data from the third year is considered as a point-
forecasts time series xt available to the TSO. Wind speed, wind direc-
tion, air temperature and solar radiation were considered as the re-
gressors for the line ratings estimated as described in Section 2. Matrix

×v contains the coefficients of the linear regression per quantile,
where indicates the number of quantiles and v the number of vari-
ables, whereas ×h

0 collects all the intercept terms. The prob-
abilistic forecast for lead time h issued at time t is determined by col-
lecting all the predictions per quantile in +ft h using the following
expression

= ++ +f x .t h t h 0 (5)

The same lead time =h 1 is considered for all the forecasts, thus not
accounting for the increasing uncertainty in the prediction, as the lead
time increases. The probabilistic forecast is then found by linearly in-
terpolating the values of ft between quantiles with a chosen granu-
larity.

Fig. 1(a) shows an example of probabilistic forecast for a certain
time t given the point forecasts of wind speed (7.64m/s), wind direc-
tion (56.4°), air temperature (3.26 °C) and solar radiation (100W/m2).
The probabilistic forecast increases the awareness regarding the

Fig. 1. (a) Example of predictive probability density function of DLR and fitted
distributions. Point forecasts of weather variables are: wind speed= 7.64m/s,
wind direction=56.4 °, air temperature= 3.26 °C and solar
radiation= 100W/m2. (b) QQ-Plot for testing normality of the distribution.
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uncertainty on DLR, as opposed to the deterministic rating which is
found by applying the thermal model to the point forecasts values. This
can help the TSO in setting the rating in advance with a chosen con-
fidence level, thus keeping an appropriate distance from the true
thermal limit of the lines.

The assumption of normality in the predictive distribution of DLR is
tested with an Anderson-Darling hypothesis test that rejects the null
hypothesis at a 5 % significance level. This result can also be visualized
with the quantile-quantile (QQ) plot in Fig. 1(b), from which it is clear
that the predictive distribution does not follow a Gaussian distribution.
The assumption of normality in particular is found to overestimate the
lower tail region of the probabilistic forecast. This is of special interest
in chance-constrained optimization, since the TSO seeks high con-
fidence in the minimum capacity of the transmission system.

The need to replicate closely the true distribution of line ratings
motivated the adoption of a non-parametric probability distribution
such as the Gaussian Mixture Model (GMM). Using the notation of [13],
the PDF of a random variable X can be approximated as a convex
combination of M Gaussian distributions

=
=

x xN µPDF ( ) [ ( ; , )]X
m

M

m m m m
1 (6)

= >
=

m1, 0
m

M

m m
1 (7)

where = …m M1, , indicates the components in the GMM. An ad-
justable set of parameters = … … …µ µ{ , , , , , , , , }M M M1 1 1 is esti-
mated in order to approximate any shape of the original distribution,
where m is a weight coefficient, µm

d is the vector of mean values
and ×

m
d d is the variance-covariance matrix for the m-th Gaussian

component with d dimensions. The scalar weights ={ }m m
M

1 are part of
the unit simplex.

The flexibility of a non-parametric probability distribution is par-
ticularly useful for modelling the uncertainty in DLR forecasts, since the
shape of the predictive distributions is found to vary greatly within
short time frames. The GMM fit has been performed using dedicated
MATLAB functions. The number of components in the mixture has to be
fixed before estimating the adjustable set of parameters . There are
several methods discussed in the literature on how to fix the number of
components in the mixture. Authors of [19] optimize it by minimizing
the Euclidean distance between the fitted and the actual PDF in a two-
stage optimization model. This paper adopts a simplified approach,
similarly to [20], where the number of components is fixed to 10 based
on preliminary tests. The Bayesian Information Criterion (BIC) is used
to find the best trade-off between computational performance and
goodness of fit.

3.2. Wind power forecasts

A similar approach is adopted to generate probabilistic forecasts of
wind power production in various sites. The average wind speed at each
time step is used as the sole regressor for the aggregate wind power
production from the Danish power system. Then, a piecewise poly-
nomial quantile regression is used to fit the data shown in Fig. 2. A
linear model is adopted below 1.5m/s and above 13m/s, whereas for
the intermediate wind speed range a polynomial of degree 7 is found to
best fit the available data. The solid red line shows the fitted error
function erf x( ) which is used as a multi-turbine wind power curve
model in order to transform wind speed time series into wind power
production.

In this study, GMMs are used to model both univariate predictive
distributions of DLR and wind power generation, as well as their joint
density distributions. The methodology adopted to derive the joint
distribution is described in Section 5. Fig. 3 shows the marginal pre-
dictive distribution of wind power for a given site and time that has

been obtained using of the non-linear quantile regression algorithm. In
order to account for the double-bounded nature of wind power gen-
eration, the GMM distributions are truncated accordingly as in [18], in
order to respect the capacity limitation of each wind farm.

4. Chance-Constrained OPF

In the considered transmission system,N indicates the set of nodes,
G the set of conventional generators,W the set of wind farms andL the
set of transmission lines. The subsets of L indicated with Ldlr and Lslr
differentiate the lines equipped with DLR between those that are not. The
size of each set is given by N G W L L, , , , dlr and Lslr, respectively.

4.1. Power flow model

This study uses a DC approximation of the full AC power flow
equations. The active power flow on each line is modelled as a function
of the nodal power injections Pinj and the Power Transfer Distribution
Factor matrix S[21]. The matrix ×S L N expresses the constant
coefficients of the linear relationship between the power injections and
the power flows on the lines. It is defined as =S B Bline bus

1 and it is a
function of the line admittance matrix Bline and the bus admittance
matrix Bbus, in which the row and column corresponding to the slack
bus are deleted. The power flow F on line can then be expressed as

=F S P( ,·)
inj, where S( ,·) is the -th row of the matrix S.

4.2. Reserve activation policy

The policy for reserve activation across the power system is set
according to a linear decision rule. All conventional generators are
assumed to respond proportionally to the fluctuations in the system in
case of a deviation from the expected wind power generation. Total
wind power forecast errors are expressed as =P P Pw w w

tot , with Pw

and Pw being the actual and the expected wind power generation of
wind farm w, respectively. This mechanism enables a decentralized
real-time operation of the power system, since upward and downward
reserve deployment from each unit g compensate a portion g of the
total power imbalance. The values of g are predefined constant inputs
that are set prior to the optimization in order to preserve the convexity
of the problem. In particular, their values are defined as

=
P P

P P
g

g g

g
g g

max min

max min

(8)

where Pg
max and Pg

min are the maximum and minimum capacity of
generating unit g. This predefined policy corresponds to the case de-
scribed in [22], where the TSO does not consider the location of the
reserve during the procurement phase.

Fig. 2. Scatter plot of aggregated wind power production as a function of mean
wind speed in the Danish power system and fitted error function.
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4.3. Problem formulation

To find the optimal day-ahead dispatch and reserved capacity for
each generator, we employ a Chance-Constrained DC-Optimal Power
Flow (CC-DCOPF) model formulation, where forecast errors in wind
power generation and transmission line ratings are treated as random
variables. The associated probability density distributions are assumed
to be known in advance by means of the probabilistic forecasting al-
gorithm described in Section 3. The CC-DCOPF optimization problem is
formulated as follows

G W N

+ + + +c P c R c R c P c Pminimize
g

g g g g g g
w

w
n

n
up up dw dw cut cut sh sh

(9a)

G W N

+ =P P P P P

subject to

0,
g

g
w

w w
n

n n
cut sh

(9b)

G+P R P g ,g g g
up max (9c)

GP R P g ,g g g
dw min (9d)

LS P F{ } 1 ,( ,·)
inj max (9e)

LS P F{ } 1 ,( ,·)
inj max (9f)

GP R g{ } 1 ,g g g
tot up (9g)

GP R g{ } 1 ,g g g
tot dw (9h)

WP P w0 ,w w
cut (9i)

NP P n0 n n
sh (9j)

GP R R g, , 0g g g
up dw (9k)

where G W= P R R g P P w{ , , , ; , , }g g g w w
up dw cut sh is the set of op-

timization variables. Variable Pg denotes the scheduled power output
for conventional generator g, whereas Rg

up and Rg
dw represent upward

and downward reserve capacities, respectively, to be procured by the
TSO. Additionally, wind curtailment Pw

cut and load shedding Pw
sh have

been considered in order to guarantee feasibility at the day-ahead stage.
These last variables should be considered as last-resort corrective ac-
tions that could be implemented in real-time operation.

The first term in the objective function (9a) represents the linear
dispatch cost for generator g at the day-ahead market stage. The second
and third terms account for the upward and downward reserve pro-
curement cost, respectively. The equality constraint (9b) models the
system day-ahead power balance based on expected value of wind
power generation. Inequality constraints (9c) and (9d) impose the

upper and lower bounds for active power generation considering both
the scheduled generation and the activation of the reserves. Probabil-
istic constraints in (9e) and (9f) ensure that the power flow on line
does not exceed the rating Fmax with a probability greater than 1 .
Among these constraints, those referring to lines that are dynamically
rated have to be distinguished from those that are operated with con-
ventional SLR. In the former case, the rating itself is considered as a
random variable, whereas in the latter it is assumed to be fixed. This
will lead to different reformulations, as detailed in the next section.

The vector notation is used to express the various power injections
terms Pinj on a per-bus basis, whereas the scalar terms Pw

tot and Pw
tot

represent the total wind power production available in the system and
its predicted value, respectively. The power injections Pinj at each bus
are modelled as

= +P P P P P P P( ) ( )g w w n n
inj tot cut sh (10)

where it can be seen the dependence upon the total power imbalance
=P P Pw w

tot tot tot. The linear decision rule coefficient per bus is defined
as =n g G gn

and indicates the share of imbalance that is com-
pensated by the set of generatorsGn at bus n, whereas the column vector

= …( , , )N1 collects together all n Other probabilistic constraints
(9g) and (9h) guarantee that the upward or downward reserve procured
by generator g is sufficient to cover the imbalance with a probability not
lower than 1 g. Hence, reserve requirements do not need to be spe-
cified ex-ante since they are endogenously optimized by the model.
Constraints (9i) and (9j) limit the auxiliary variables so that wind
curtailment and load shedding are bounded by wind availability and
load level. Finally, constraints (9k) declare the remaining design vari-
ables to be non-negative.

5. Solution methodology

Chance constraints in optimization problem (9) are re-formulated
into linear deterministic inequalities by adopting the method presented
in [13], that is extended in order to treat overhead line ratings as ad-
ditional random variables.

5.1. Power flow constraints

The proposed methodology is shown for the probabilistic power
flow constraints on the -th line equipped with DLR (9e), assuming a
positive power flow F 0. The corresponding extensive form can be
rearranged in (11)

+ + +F S P S P S P P P P P{ ( )}w w g w w n n
max

( ,·)
tot

( ,·) ( ,·)
cut sh

(11)

= ++Y F S P S Pw w
max

( ,·)
tot

( ,·) (12)

= + +F S P P P P P( )g w w n n( ,·)
cut sh (13)

Let the left hand side of the inner inequality of (11) be denoted +Y
and the right hand side F , as in (12) and (13), respectively. Notice that
F collects either decision variables of the original problem or quantities
that are assumed to be known in advance, such as the wind power point
forecasts. Also notice that F represents the expected power flow on line
, i.e., the value corresponding to the scenario in which no reserve is

activated and wind power realizations assume the point forecast values.
Variable +Y instead consists of a linear summation of variables that
have been considered random, i.e., line rating Fmax and wind power
forecast errors Pw at various locations in the system. Constraints in the
form of (11) can be reformulated to linear inequalities using the fol-
lowing relationships

+ + +Y F F F{ ^ } CDF ( ^ ) ^ CDF ( ).Y Y
1

(14)

The quantity =+
+f CDF ( )Y
1 represents the upper bound for power

Fig. 3. Probabilistic forecast of wind power from one site at a given time with
fitted GMM distribution.
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flow on line , which guarantees that any realization of wind power and
DLR will not lead to a violation probability higher than . Therefore,
the challenge is to model the univariate random variable +Y in order to
calculate its inverse cumulative distribution function (CDF) at the de-
sired confidence levels . To achieve this goal, a new multivariate
random variable X is defined so that the target variable +Y can be
expressed as a linear combination of the elements of X , as shown in
(15)–(17), where = …P P P( , , )w w w N,1 , represents the wind power
forecast errors per bus

=+Y a X (15)

= …X F P P( , , , )w w N
max

,1 , (16)

= + … +a S S S S(1, , , ).N( ,1) ( ,·) ( , ) ( ,·) (17)

Therefore, X collects all the random variables that affect the sto-
chastic line flow on the -th line and a comprises a combination of
fixed values that depend on the system topology and the chosen reserve
policy. Similar coefficients a and the corresponding value of f can be
derived for constraint (9f). For those lines that are not dynamically
rated, the term Fmax can be included in the right hand side of (11), thus
not appearing in X .

In order to capture the observed historical correlation between DLR
and wind power production at various sites, their joint probability
distribution is estimated with a Normal copula [23]. As discussed in
[23], rank correlation is preferred over the common linear correlation
matrix, which measures the degree of linear relationship between
random variables. Rank correlation instead is found to be more ap-
propriate to model stochastic dependence as it measures the similarities
in the respective rankings. Spearman’s correlation matrix is therefore
adopted to model the correlation structure.

This step is preliminary to fitting a multivariate GMM to the joint
probability density distribution. Fig. 4 shows an example of such mul-
tivariate GMM for a bivariate case with one line being dynamically
rated and a single bus with wind power production. It can be noticed
the high correlation between the two quantities, which in this way is
accounted for in the solution of the CC-DCOPF. As discussed in [13], the
use of GMM is preferred to copulas because of the linear invariance
property of the former, which allows a straightforward manipulation of
the PDF of X , shown in (18), into the PDF of +Y as shown in (19)

=
=

µx N xPDF ( ) [ ( ; , )]X
m

M

m m m m
1 (18)

=
=

+ µy N y a a aPDF ( ) [ ( ; , )].Y
m

M

m m m m
1 (19)

Having the PDF of +Y , its inverse CDF is obtained numerically with
a look-up-table, as opposed to the analytical way based on polynomial
approximations described in [13].

The following methodology is adopted for reformulating all chance
constraints in the original problem. This leads to various univariate
random variables that model the stochastic part of each constraint. The
term denoted = +F S P S Pw w( ,·)

tot
( ,·) expresses the power flow

uncertainty on line due to nodal wind power injections and the
generators’ reserve activation in real time. This term can be used to
express +Y and Y in (20) and (21), which are necessary to distinguish
the two cases of bidirectional power flow, i.e., original constraints (9e)
and (9f)

L

L
=+Y F F

F

max
dlr

slr (20)

L

L
= +Y F F

F .

max
dlr

slr (21)

For lines that are not equipped with DLR, the proposed

methodology coincides with the one presented in [13], where the un-
certain variables consist in non-Gaussian correlated wind power fore-
cast errors Pw. The quantities + and defined in (22) and (23), re-
spectively, represent uncertainty margins to be introduced in the static
line ratings in order to respect the risk aversion level requirements set
by the TSO

L=+
+CDF ( )Y
1 slr (22)

L= CDF ( ) .Y
1

slr (23)

5.2. Reserve procurement constraints

A similar procedure is adopted to reformulate the probabilistic re-
serve procurement constraints (9g) and (9h), where the uncertain
variable is the total power imbalance Ptot due to forecasts errors. The
associated univariate PDF is modelled with a GMM, whose mean µw

tot
m

and standard deviation w
tot

m are derived for each component m as

= = …µµ m M1, ,w w
tot

m m (24)

= = …m M1, ,w w
tot

m m (25)

where W is a vector of ones, µwm and wm are the vector of mean
values and the covariance matrix for the m-th component in the GMM,
respectively. The inverse CDF of the total wind power forecast error is
then used to reformulate the chance constraints. Upper and lower
bounds for the probabilistic reserve procurement constraints are de-
rived in (26) and (27), respectively

G=r gCDF ( )g P g
up 1

w
tot (26)

G=r gCDF 1 .g P g
dw 1

w
tot

(27)

5.3. Deterministic equivalent problem

The final optimization problem with re-formulated chance con-
straints is presented in (28)

G W N

+ + + +c P c R c R c P c Pminimize
g

g g g g g g
w

w
n

n
up up dw dw cut cut sh sh

(28a)

G W N

+ =P P P P P

subject to

0,
g

g
w

w w
n

n n
cut sh

(28b)

G+P R P g ,g g g
up max (28c)

GP R P g ,g g g
dw min (28d)

L+f F f ,dlr (28e)

L+ +F F F ,max max
slr (28f)

GR r g ,g g g
up 1 up (28g)

GR r g ,g g g
dw 1 dw (28h)

WP P w0 ,w w
cut (28i)

NP P n0 ,n n
sh (28j)

GP R R g, , 0 ,g g g
up dw (28k)

where the objective function and the decision variables remain the
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same of the original problem as well as constraints (28b)–(28d) and
(28i)–(28k). Constraints in (28e) account for power flow limits on lines
equipped with DLR considering positive and negative direction of the
flow. The upper and lower bounds +f and f inherently account for the
correlated uncertainty in wind power injections and line ratings. Si-
milarly, (28f) limit the bidirectional power flow on lines with SLR,
where the rating Fmax is a parameter of the problem and not a random
variable. Lastly, (28h) and (28i) are the reformulated chance con-
straints for the adequacy of the reserve procurement Rg

up and Rg
dw.

The values of the inverse CDFs are calculated with a look-up-table
approach and they are passed on to the optimization problem as
parameters. Therefore, the resulting optimization problem has linear
objective function and linear constraints and can thus readily solved
with existing solvers in a computationally efficient way. The optimi-
zation problem has been solved with the Matlab-based programming
language CVX [24].

6. Case study

The proposed methodology is tested on a modified IEEE RTS 24-bus
system [25], shown in Fig. 5, where selected transmission lines are
dynamically rated on an hourly basis. The original rating of lines
marked in red is reduced in order to stress the grid and introduce
bottlenecks, as suggested in [25]. These lines are considered the can-
didates for DLR in order to verify the benefits of increased power flows
in congested networks with a high share of renewable energy produc-
tion from wind power. This paper focuses on a case where wind farms
are located far from the main load centers. This condition is modelled
by localizing wind power generation in the upper part of the system at
buses 16, 21 and 23, while doubling the installed capacity. Ad-
ditionally, the reference peak load demand in [25] has been increased
by 10%. Overall, these assumptions are expected to further stress the
grid as most of the load demand is located in the lower part of the
system.

A 24-h dispatch period is considered using simulated weather data
corresponding to the 30-01-2016. This time frame simulates a period
with moderate to high wind speed (4m/s to 13m/s) and low ambient
temperature (3 °C), thus offering the opportunity to study the effect of
positive correlation between wind power production and DLR on a
system level. The advantage of the proposed formulation is that it al-
lows to compare the use of DLR with the traditional practice to set SLR,
but keeping the same accepted risk of overload on the transmission
system, i.e., typically 5%.

A total of 5 cases is considered in order to test the impact of cor-
relation and the use of GMM on the final results:

1. Deterministic: this case serves only as a benchmark and it assumes
that random variables take the corresponding point forecast values.
This implies that no reserve is procured and that DLR is computed

with expected values of weather variables.
2. Normal without correlation: Normal distributions are fitted to both

wind power forecast errors and DLR marginals. No correlation is
assumed neither between wind power from different sites nor be-
tween wind power and DLR. The correlation matrix is therefore set
to the identity matrix.

3. Normal with correlation: Wind power and DLR are modelled with
normal distributions. Spatial correlations are taken into account in
the joint probabilistic forecasts descried in Section 5.

4. GMM without correlation: Wind power and DLR are modelled with
non-parametric distributions, as described in Section 3. Correlation
matrix is set to the identity matrix.

5. GMM with correlation: Wind power and DLR marginal distributions
are modelled with non-parametric distributions as well as the cor-
responding joint predictive distribution. Spatial correlation is in-
cluded.

This set of cases highlights the impact of GMM vs Normal dis-
tributions with or without spatial correlation. Spearman’s rank corre-
lation matrix used in the simulations is

(29)

where the upper-left block contains the correlation between DLR of
different lines, namely lines 25, 22 and 23, whereas the lower-right
corresponds to the correlation matrix of wind power at buses 21, 23 and
16. The off-diagonal block matrices express the correlation between
DLR and wind power at various sites. Matrix (29) is based on simulated
historical weather data from the Danish power system, which are de-
rived in [16].

Fig. 5. IEEE RTS 24-bus test system where lines equipped with DLR are marked
in red and the bus with wind power generation in blue. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 4. Example of multivariate joint predictive probability density distribution
of one line with DLR and one wind farm.
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The robustness of each solution is tested by counting the number of
violations of each chance constraint in (9), following a realization of the
uncertainty. A high number of samples, =N 10s

4, is generated from the
joint predictive distribution formed with the marginals of all the un-
certain variables, i.e., wind farms and DLR. Wind power and line rating
realizations are then substituted in the corresponding constraints to-
gether with the solutions of (28) for each tested case. While different
cases assume different distributions of the uncertainty, the realizations
are always generated from the same multivariate distribution that is
modelled with GMM and it considers spatial correlation. This procedure
allows to capture the realization of correlated random variables and
their impact on constraint violations.

7. Numerical results

This section presents the resulting violation probabilities of each
group of chance constraints. The influence of DLR on the energy dis-
patch and reserve procurement problem is tested in 5 different cases
and it is expressed in terms of total cost reductions over the considered
period.

7.1. Reserve procurement

Probabilistic constraints on reserve procurement in the CC-DCOPF
problem (9) depend on the total wind power realization. Table 1 and
Table 2 present the violation probabilities from time step 15 to 19 of
constraints (9g) and (9h), respectively.

The violation probability depends on the modelling assumption on
wind power uncertainty. As expected, the deterministic model always
violates either one of the two constraints as it does not account for any
stochastic behavior. Constraints (9g) and (9h) are mutually exclusive,
thus the sum of their violation probabilities indicates the total prob-
ability of violating reserve requirement.

Unlike other cases, modelling wind power uncertainty with GMM
ensures that the actual violation probability is close to the sought risk
level in either directions, i.e., 2%. The results obtained in this test are
motivated with Fig. 6 that shows the histogram of wind power reali-
zations for a given time step. The corresponding distributions that are
assumed in the solution of the chance constraints are shown as well.
Neglecting correlation in wind power generation causes the variance of
the overall distribution to be underestimated. Therefore those cases that
do not account for it largely violate the 2% limit.

As far as the use of the Normal distribution is concerned, it can be
seen that due to the skewness of wind power realizations, upward and
downward reserve requirements are over- and underestimated, re-
spectively. Furthermore, the fitted normal distribution does not respect
the limits on installed capacity as the tail crosses the line indicating the
maximum.

7.2. Power flows

Table 3 and Table 4 report the violation probabilities for line 23
with SLR and DLR, respectively, as this line in particular is the mostly
loaded in the CC-DCOPF solution. It stands out that the deterministic
approach consistently violates the line ratings, whereas the use of GMM
better approximates the chosen risk level of 5% when the power flow
constraint is binding.

7.2.1. Lines with SLR
Fig. 7 shows the expected power flow on line 23, i.e., the value

corresponding to wind power point forecasts at the day-ahead stage, as
well as 20 power flow realizations in real time. For a given time step,
the chosen rating for line is found by keeping a margin from the
SLR. The variability of the power flow on a line with SLR reflects the
uncertainty in wind power generation across the system that is mapped
to the line through the power transfer distribution matrix S. Therefore,
violation probabilities in Table 3 are strongly related to how wind
power uncertainty is modelled. Those cases that do not account for
correlation clearly result in more violations. Underestimating the var-
iance of the power flow leads to a smaller uncertainty margin , thus
the expected power flow is closer to the rating of the line and violations
in real time are more likely to occur.

The Normal distribution is found to either under- or overestimate
the power flow depending on the skewness of the associated distribu-
tion. Negative skewness in the actual power flow distribution lead to an
overestimated margin from the actual rating and viceversa. As far as
line 23 is concerned, violation probability is close to 5% meaning that
for this line the use of the normal distribution is a conservative ap-
proach. Any deviation from the 5% level has been attributed to ap-
proximations in the fitting of GMM.

7.2.2. Lines with DLR
For lines equipped with DLR, the uncertainty associated to the

power flow constraints depends not only on wind power realizations,
but on line rating realizations too. This aspect is taken into account by
the chosen rating f . The correlation between wind power and DLR
plays an important role, as it allows to respect the desired violation
probability, despite significant overlapping between the marginal dis-
tributions. Fig. 8 shows power flow and rating realizations on line 23
with DLR, whereas Fig. 9 shows the corresponding probability

Table 1
Upward reserve violation probabilities.

Time step

t = 15 t= 16 t=17 t= 18 t= 19

Determ. 43,8% 43,0% 44,1% 44,1% 43,3%
Norm. w/o corr. 11,4% 11,8% 10,7% 10,6% 11,2%
Norm. w/corr. 4,2% 4,0% 4,0% 4,5% 2,9%
GMM w/o corr. 9,6% 8,9% 9,3% 9,7% 10,5%
GMM w/corr. 2,1% 2,2% 1,9% 2,0% 1,9%

Table 2
Downward reserve violation probabilities.

Time step

t = 15 t= 16 t=17 t= 18 t= 19

Determ. 56,2% 57,1% 55,9% 55,9% 56,7%
Norm. w/o corr. 8,8% 9,5% 8,9% 9,5% 9,7%
Norm. w/corr. 0,2% 0,1% 0,2% 0,0% 1,1%
GMM w/o corr. 11,2% 11,5% 11,2% 11,1% 10,7%
GMM w/corr. 1,8% 2,1% 2,0% 1,8% 2,1%

Fig. 6. Histogram of total wind power realizations for time step t = 7 with
distributions used to reformulate chance constraints.

N. Viafora, et al. Electrical Power and Energy Systems 114 (2020) 105389

8



distributions. If correlation is not taken into account, marginal dis-
tributions of power flow and line rating do not overlap as much. This
condition is necessary to fulfill the chosen risk level when realizations
are assumed to be independent. Consequently, when correlated samples
of wind power and DLR are generated, the violation probabilities are
well below 5%, as reported in Table 4.

As described in Section 3, the Normal distribution overestimates the
minimum rating of lines with DLR. This aspect is reflected in the vio-
lation probabilities at time =t 17 and =t 18, when the power flow
constraint is binding. The violation probability reaches a value of 8%
which exceeds the 5% level set in the optimization problem.

Overall, the proposed methodology based on GMM allows to exploit
the correlation between line rating and wind power for a desired risk

aversion level. Depending on weather conditions, power flows with
DLR can be significantly higher as opposed to SLR, thus unlocking extra
transmission capacity. Line 23 reaches the maximum expected loading
F23 of 1.66 times the static line thermal rating.

7.3. Costs

Fig. 10 highlights the trade-off between total costs and overall
number of constraint violations. The solution to the deterministic pro-
blem provides the cheapest solution, as it does not account for reserve,
but constraints would be violated following the realizations of wind
power and line ratings. It is also found that regardless of the assumption
on the shape of the distribution, modelling total wind power un-
certainty without accounting for correlation leads to underestimate the
variance of the corresponding distribution and thus the reserve re-
quirements. This also motivates the high number of total violations in
those cases that do not account for correlation, despite the lower vio-
lation probabilities of power flow constraints. The most conservative
solution would be to consider correlation between wind power, but not
between wind power and DLR. As far as the use of GMM is concerned,
Fig. 10 suggests that the difference in terms of cost and total number of
violations is negligible. However, it has been shown that assuming
normally distributed DLR leads to underestimate the actual line rating,
thus leading to higher violation probabilities when power flow

Table 4
Power flow limit violation probability for line 23 with DLR. Value in brackets
when not binding.

Time step

t = 15 t= 16 t= 17 t= 18 t=19

Determ. 36,7% 62,6% 59,1% 58,8% 51,2%
Norm. w/o corr. 1,2% 1,0% 1,4% 1,3% 1,7%
Norm. w/corr. (0,2)% (0,8)% 7,0% 8,0% (2,1)%
GMM w/o corr. 0,6% 0,6% 0,8% 0,7% 0,8%
GMM w/corr. (0,6)% (2,4)% 5,3% 4,8% (2,2)%

Fig. 7. Power flow on line 23 with SLR. Random variables are modelled by
means of GMM w/correlation.

Fig. 8. Power flow on line 23 with DLR. Random variables are modelled by
means of GMM w/correlation.

Fig. 9. Power flow and rating distribution on line 23 with DLR at t= 16.
Random variables are modelled by means of GMM with correlation.

Fig. 10. Total dispatch cost and total number of constraint violations with SLR
and DLR.

Table 3
Power flow limit violation probability for line 23 with SLR.

Time step

t = 15 t= 16 t=17 t= 18 t= 19

Determ. 55,7% 57,4% 55,8% 56,3% 56,4%
Norm. w/o corr. 8,1% 9,1% 8,6% 8,7% 9,7%
Norm. w/corr. 2,3% 2,4% 2,4% 1,4% 4,9%
GMM w/o corr. 9,8% 11,1% 10,6% 10,4% 10,7%
GMM w/corr. 4,6% 5,0% 5,3% 4,5% 5,0%
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constraints are binding.
Table 5 compares the costs obtained by solving the CC-DCOPF with

or without DLR on selected transmission lines. The relative change in
percentage is indicated with . These results refer to the case where the
uncertainty is modelled by means of GMM while accounting for cor-
relation. DLR considerably reduces the amount of curtailed wind
power, which in turn lowers the day-ahead dispatch cost. The reduction
of wind power curtailments is of special interest for TSOs that needs to
integrate large amount of renewable energy sources into existing power
systems. Reserves requirements are only marginally affected by DLR
due to the a priori reserve policy scheme with fixed participation factors

g. Overall, the use of DLR on 3 lines yields a total cost reduction of
17,6%.

8. Conclusion

This paper presented a novel methodological approach based on CC-
DCOPF, which allows to integrate non-parametric probabilistic fore-
casts of DLR and wind power generation into an energy dispatch and
reserve procurement problem. Both marginal and joint predictive dis-
tributions of DLR and wind power have been modelled with GMMs, by
means of which it possible to account for their correlated and non-
parametric nature. Individual chance constraints with separable struc-
ture are then reformulated into linear inequalities so that the original
optimization problem can be readily solved with existing solvers. The
proposed methodology has been tested on a modified IEEE RTS 24-bus
system, highlighting the effectiveness of considering the positive cor-
relation between DLR and wind power in terms of increased power
flows. Furthermore, the use of GMMs has been compared to the as-
sumption of normally distributed uncertainty. Due to the negative
skewness in the line rating probabilistic forecast, the assumption of
normality leads to increased violation probability of the power flow
constraints with DLR, whenever these are binding. Overall, the extra
transmission capacity unlocked by DLR reduces the total dispatch costs
for the day-ahead market, whereas reserve costs have been only mar-
ginally affected due to the fixed balancing scheme. The results pre-
sented indicate that the use of DLR in a wind-dominated and highly
congested network has the potential to reduce wind power curtailment
considerably.

Although DLR proved to increase the power flow significantly, a
more accurate representation of power system dynamics is required in
order to precisely quantify the benefits for TSOs. These include the use
of full AC power flow equations, ramping capabilities of generators and
other components in the power system.

Future work will address these issues, as well as the synergy of DLR
with different reserve allocation policies.
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Abstract—The large shares of wind power generation in
electricity markets motivate higher levels of operating reserves.
However, current reserve sizing practices fail to account for im-
portant topological aspects that might hinder their deployment,
thus resulting in high operating costs. Zonal reserve procurement
mitigates such inefficiencies, however, the way the zones are
defined is still open to interpretation. This paper challenges the
efficiency of predetermined zonal setups that neglect the location
of stochastic power production in the system, as well as the
availability, cost and accessibility of flexible generating units.
To this end, we propose a novel reserve procurement approach,
formulated as a two-stage stochastic bilevel model, in which the
upper level identifies a number of contiguous reserve zones using
dynamic grid partitioning and sets zonal requirements based on
the total expected operating costs. Using two standard IEEE
reliability test cases, we show how the efficient partitioning of
reserve zones can reduce expected system cost and promote the
integration of stochastic renewables.

Index Terms—Zonal reserve requirements, bilevel optimiza-
tion, stochastic programming, grid partitioning, transmission
capacity allocation.

NOMENCLATURE
A. Sets and Indices

n ∈ N Set of nodes.
` ∈ L Set of transmission lines.
g ∈ G Set of conventional generators.
j ∈ J Set of wind power generators.
z ∈ Z Set of partitions.
s ∈ S Set of scenarios.

B. Parameters

P g, P g Max/min generator’s output.
F` Line rating.
R+
g , R

−
g Up/down reserve capacity offer.

Λ+,Λ− Up/down deterministic reserve requirement.
Cg, C

+/−
g Generation and up/down reserve cost.

Csh, Cct Load shedding and wind curtailment cost.
H Incidence matrices.
M Power transfer distribution factor matrix.
Dn,D Nodal load demand.
πs Probability of scenario.
Ŵj ,Wj,s Wind power point forecast and realization.

C. Decision variables

xn,z Binary variable for grid partitioning.
yz Number of nodes per zone.
ϕ`,z Flowing units on line ` in zone z for expressing

zone connectivity.
cn,z Root node selection.
r+
g,z, r

−
g,z Up/down procured reserve.

λ+
z , λ

−
z Up/down zonal reserve requirement.

f̂`, f`,s Expected power flow and realization in scen. s.
pg,p Day-ahead dispatch of conventional generators.
p+
g,s, p

−
g,s Up/down reserve deployment per scenario.

wj , w
ct
j,s Scheduled and curtailed wind power.

dsh
n,s Nodal load shedding per scenario.
wct
j,s Wind power curtailment per scenario.

Γ` Capacity allocation margin at day-ahead market.

I. INTRODUCTION

Several studies indicate that high shares of wind power
generation require significantly more operating reserves to
accommodate the uncertainty and the variability arising from
forecast errors and inherent fluctuations in the wind regime
[1]. However, simply increasing the reserve capacity require-
ments does not guarantee that the system will have access to
sufficient flexible resources during real-time operation, since
the existing reserve capacity market is myopic about the grid
topology limitations. As a result, in cases when operating
reserves cannot be delivered due to network congestions,
system operators have to resort to more expensive corrective
actions, such as wind curtailment and load shedding.

An implicit way to account for network limitations during
the reserve procurement process is to consider a zonal rep-
resentation of the system. This approximation allows system
operators to differentiate zonal reserve requirements based on
expected congestion patterns and the location of stochastic
power production. Nevertheless, the effectiveness of this ap-
proach is limited by the ability to define and update zone
boundaries based on the operating conditions. Despite being an
approximation of the true network topology, this zonal splitting
approach is readily compatible with the current market struc-
ture and allows to convey to the reserve market more complete
information about the balancing needs of the system at specific
locations. This is a fundamental property of the more advanced
energy and reserves co-optimization models based on two-
stage stochastic programming [2], which however comes at the
expense of violating the cost recovery and revenue adequacy
properties for some uncertainty realizations [3].

This latter consideration has motivated several studies to use
a stochastic bilevel programming approach that preserves the
existing market structure and its desirable economic properties
not only in expectation, but for every uncertainty outcome.
Authors in [3] adopt this framework for optimally dispatching
wind power in an energy-only market, whereas authors in [4]
employ an analogous approach to define the optimal reserve
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requirements in view of wind power uncertainty. In a similar
vein, [5] extends this model to account for the allocation
of cross-border transmission capacity between energy and
reserves. Although these models have shown to improve the
total expected cost in a sequential market-clearing architecture,
they still lack the ability to optimally position reserves in the
system, as the ideal stochastic model does. This stems from the
merit-order principle enforced by the existing market design,
which restricts the procurement of reserves from the cheapest
generators, regardless of their location in the system.

The aforementioned studies considered either a single zone
or a predefined zonal setup for the reserve procurement. This
paper proposes a novel Zonal Preemptive methodology, where
not only zonal reserve requirements are defined, but the zone
boundaries themselves are considered as decision variables.
The goal is to improve the positioning of reserves in the
system, while remaining compatible with the current market
structure. In this work, we build upon [4] and [5] and we
embed grid partitioning algorithms in the stochastic bilevel
problem in order to identify a number of zonal reserve markets
to be cleared independently. Grid partitioning algorithms have
been used already in power system research for intentional
islanding studies in [6]-[7]. However, to the best of our
knowledge, this is the first attempt to rely on them for setting
zonal reserve requirements. The proposed approach can be
used as a decision-support tool for the grid operators for the
redefinition of reserve zones based on the location of stochastic
power production, cost and expected accessibility of flexible
generators’ reserve capacity.

While zonal reserve allocation is not a novel concept,
the way the zones are defined is still open to interpreta-
tion. Existing studies base the partitioning of the system on
heuristic methods that consider: active and reactive power
flow sensitivities [8]; data-driven clustering techniques [9];
weighted power transfer distribution factors (PTDFs) [10];
reserve market clearing prices [11] or simply use pre-defined
partitions [12] that can be based on geographical boundaries
or ownership. The proposed approach relies instead on a
partitioning scheme that is solely driven by the total expected
costs, thus without the need of any additional metric.

We extend our formulation to include the ability to exchange
reserve between neighbouring zones as in [5]. Setting aside
part of the transmission capacity for reserve accessibility has
shown to lower the total operating costs [13]. However, as
the zones are defined dynamically, so are the cross-zonal
lines eligible for reserve sharing. The proposed methodology
addresses this issue by adapting the grid partitioning con-
straints accordingly. Simulation results are showcased based
on both IEEE RTS-24 and IEEE RTS-96 systems, where we
benchmark our methodology against a sequential approach,
the stochastic energy and reserve co-optimization and the
stochastic bilevel with a single or predefined zones.

The remainder of the paper is organized as follows. Various
reserve procurement and dispatch models are reviewed in
Section II, the proposed model is explained in details in
Section III whereas a solution methodology is presented in
Section IV. Lastly, Section V elaborates on selected simulation
results and Section VI draws final conclusions.

II. RESERVE PROCUREMENT AND DISPATCH MODELS

We first provide the mathematical formulation of the exist-
ing European market design, based on the sequential clearing
of the reserve capacity, day-ahead energy and balancing mar-
kets. We then provide a compact formulation of the stochastic
energy and reserve co-optimization model, emphasizing its
main differences compared to the sequential approach.

A. Sequential Approach

Let Λ+ and Λ− indicate the upward and downward reserve
requirements. These are provided as exogenous parameters to
the reserve market clearing algorithm that is formulated as

min
ΞR

CR =
∑

g∈G

(
C+
g r

+
g + C−g r

−
g

)
(1a)

s.t.
∑

g∈G
r+
g ≥ Λ+,

∑

g∈G
r−g ≥ Λ−, (1b)

0 ≤ r+
g ≤ R+

g , 0 ≤ r−g ≤ R−g , ∀g ∈ G, (1c)

where ΞR = {r+
g , r

−
g ,∀g} is the set of free variables, i.e., up-

and downward reserve capacity procured from each generator.
Constraints (1b) guarantee that the pre-determined reserve
requirements Λ are met, whereas (1c) limit the amount of
reserve that can be procured to generators’ capacity offers.

Having reserve capacity procurement r+,∗
g and r−,∗g from

model (1) as fixed parameters, the optimal day-ahead energy
schedule for conventional pg and stochastic wj generators is
obtained solving the following problem

min
ΞD

CD =
∑

g∈G
Cgpg (2a)

s.t.
∑

g∈G
pg +

∑

j∈J
wj =

∑

n∈N
Dn, (2b)

P g + r−,∗g ≤ pg ≤ P g − r+,∗
g , ∀g ∈ G, (2c)

0 ≤ wj ≤ Ŵj , ∀j ∈ J , (2d)

f̂` = M(`,·)
(
H>G p + H>J w −D

)
, ∀` ∈ L, (2e)

− F` ≤ f̂` ≤ F`, ∀` ∈ L (2f)

where ΞD = {pg,∀g; wj ,∀j} collects the decision variables.
The day-ahead power balance is enforced by constraint (2b),
whereas the production of conventional units is bounded by
the minimum and maximum generation limits and procured
reserves in constraint (2c). Stochastic producers are assumed
to be wind power generators only, whose dispatch is limited to
the available point forecast Ŵj in constraint (2d). Employing
a DC network approximation, power flows are modelled by
(2e) using the PTDF matrix M and are in turn restricted
by the corresponding transmission capacity limits in (2f).
Appropriate incidence matrices HG and HJ map conventional
and stochastic generators to the respective buses in the system.

Approaching the hour of the delivery when wind power
realization Wj,s′ is known, the balancing market is cleared
using the following model to ensure that any deviation from
the day-ahead schedule p∗g, w

∗
j is balanced by appropriate re-

dispatch actions for the uncertainty realization s = s′.
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min
ΞB,s’

CB,s′ =
∑

g∈G
Cg

(
p+
g,s′ − p−g,s′

)
(3a)

+
∑

j∈J
Cctwct

j,s′ +
∑

n∈N
Cshdsh

n,s′

s.t.
∑

g∈G

(
p+
g,s′ − p−g,s′

)
+
∑

j∈J

(
∆Wj,s′ − wct

j,s′
)

+
∑

n∈N
dsh
n,s′ = 0

(3b)

0 ≤ p+
g,s′ ≤ r+,∗

g , ∀g ∈ G, (3c)

0 ≤ p−g,s′ ≤ r−,∗g , ∀g ∈ G, (3d)

0 ≤ dsh
n,s′ ≤ Dn, ∀n ∈ N , (3e)

0 ≤ wct
j,s′ ≤Wj,s′ , ∀j ∈ J , (3f)

− F` ≤ f`,s′ ≤ F`, ∀` ∈ L, (3g)

f`,s′ = M(`,·)
[
H>G

(
p∗ + p+

s′ − p−s′
)

+ H>J
(
Ws′ −wct)−

(
D − dsh

s′
) ]
, ∀` ∈ L (3h)

where ΞB,s′ = {p+
g,s′ , p

−
g,s′ ,∀g; wct

j,s′ ,∀j; dsh
n,s′ ,∀n} is the set

of decision variables and ∆Wj,s′ = Wj,s′ −w∗j represents the
system imbalance. The objective function (3a) includes a cost
Cg for the activation of reserves from those generators that
were cleared to provide reserves and have already received
a capacity payment. Additionally, we assume that the grid
operator has to face a cost Cct and Csh for wind power
curtailment and load not supplied, respectively. Constraint (3b)
is the real-time power balance, whereas constraints (3c)-(3d)
limit the activation of reserve to the procured values in (1).
The use of corrective actions is limited by constraints (3e)-(3f),
which model load shedding and wind curtailment, respectively.
Finally, (3g) enforce power flow limits, where real-time power
flows in each scenario are modelled in (3h).

B. Stochastic Energy and Reserve Co-Optimization
An improved method based on two-stage stochastic pro-

gramming allows the grid operator to jointly co-optimize
reserve and energy. In this framework, the first stage models
reserve as well as day-ahead energy scheduling, whereas the
second stage corresponds to the balancing market under each
considered realization of the uncertain variables. The two-
stage stochastic problem is formulated as

min
ΞS

CS = CR + CD +
∑

s∈S
πs CB,s (4a)

s.t. (1c), Reserve market
(2b)− (2e), Day-ahead market
(3b)− (3h), Balancing market, ∀s ∈ S

where ΞS = {ΞR ∪ ΞD ∪ ΞB,s,∀s} is the set of decision
variables. The stochastic co-optimization of energy and re-
serves attains perfect temporal coordination, as opposed to the
sequential model that separates the day-ahead and balancing
decisions. Each generator is pre-positioned even out of merit
order in a way that allows optimal delivery to the system
in case of deviations from the day-ahead schedule. For this
reason, we use the stochastic co-optimization approach as a
benchmark to our proposed methodology, since it provides a
lower bound to the total operational costs.

III. RESERVE AND CAPACITY ALLOCATION MODELS

This section introduces the concepts and the mathematical
formulations that underpin the contributions of this work. The
bilevel models in [4] and [5] are enhanced with a set of
upper-level grid partitioning constraints described in III-A.
These enable the operator to identify a pre-specified number
of zones in the system, where zonal reserve markets can be
cleared following the problem formulation in III-B.The model
is complemented with a set of upper-level decision variables
that account for the optimal allocation of transmission capacity
between energy trading and re-dispatch actions in III-C. Lastly,
the full problem formulation of the proposed Zonal Preemptive
methodology is presented in III-D.

A. Grid Partitioning

Let Θ = (N ,L) be a directed graph with N nodes and
L edges describing the single-phase equivalent topology of a
power system. The partition of such a graph into Z connected
sub-graphs or zones can be achieved by assigning as many
binary variables xn,z ∈ {0, 1} as the number of zones to each
node. If node n belongs to zone z, then xn,z = 1; otherwise
xn,z = 0. Three important properties need to be satisfied in
order to get the desired partition: (1) the zones are mutually
exclusive; (2) each node belongs to a zone; (3) the sub-graphs
determined by the partition are connected, i.e., whichever two
points are selected inside a zone, there always exists a path
connecting them within the same zone. The first two properties
are satisfied with

∑

z∈Z
xn,z = 1, ∀n ∈ N , (5)

whereas, to achieve the third property, this paper adopts the
single-commodity flow method presented in [6].This method
relies on flowing units, which bear no physical meaning, but
allow to express the connectivity as the ability to reach all
nodes in a zone, while staying within its boundaries. This
method works by injecting yz units, i.e., as many as the
number of nodes in the z-th zone, into a single arbitrary node
of each sub-graph and enforcing

yz =
∑

n∈N
xn,z, y

z
≤ yz ≤ yz, ∀z ∈ Z, (6)

where the quantity yz can be bounded by y
z

and yz in order
to require a minimum or a maximum size of each zone in the
system, respectively. A sub-graph is then connected if all the
injected units can flow to the nodes in that sub-graph, without
violating nodal flow balance and branch flow limit constraints.
Nodal flow balance is expressed in a matrix notation as

H>(·,n)ϕ(·,z) + cn,zyz = xn,z, ∀n ∈ N , ∀z ∈ Z, (7)

where H(·,n) indicates the n-th column of the branch inci-
dence matrix, whose `-th value is 1 if line ` enters node n,
-1 if it leaves it, or 0 otherwise and ϕ(·,z) collects the flow
of units injected in zone z over all branches in the system.
Therefore, the scalar product H>(·,n)ϕ(·,z) describes the net
in- or out-coming flow of units to or from node n in zone
z. The bilinear term cn,zyz represents instead the injection of
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yz flow units into the root nodes defined by cn,z , whereas the
right-hand-side acts as a sink, i.e., if node n is included in
zone z, it retains one unit.

Note that unlike [6], this novel version of the single-
commodity flow method does not require the root nodes cn,z
to be pre-specified. This requirement limits the degrees of
freedom of the partitioning algorithm, as it relies on the choice
of the initial nodes, from which the sub-graphs are generated.
This last step is not necessary here, since cn,z is treated as
a binary variable, which selects a node where the units are
injected. The following constraints are added to ensure that
the selected root nodes are mutually exclusive and that only
one node per zone is selected as the root, i.e,

∑

z∈Z
cn,z ≤ 1, ∀n ∈ N , (8)

∑

n∈N
cn,z = 1, ∀z ∈ Z. (9)

Finally, the branch flow limits are specifically defined to
restrict the flow of units ϕ`,z to those lines that have both
ends included in the same sub-graph. This aspect is modelled
using the following constraints

− ΦF`,z ≤ ϕ`,z ≤ ΦF`,z , ∀` ∈ L, ∀z ∈ Z, (10)
− ΦT`,z ≤ ϕ`,z ≤ ΦT`,z , ∀` ∈ L, ∀z ∈ Z, (11)

ΦF`,z = yz
(
HF(`,·)x(·,z)

)
, ∀` ∈ L, ∀z ∈ Z, (12)

ΦT`,z = yz
(
HT(`,·)x(·,z)

)
, ∀` ∈ L, ∀z ∈ Z. (13)

where HF and HT indicate “from” and “to” incidence ma-
trices, respectively. For any given sub-graph, the maximum
flow of units on each branch is bounded both by ΦT`,z
and ΦF`,z , which are equal to the injected quantity yz , if
the line is fully within the sub-graph, or 0, otherwise. This
condition is modelled with the scalar products HF(`,·)x(·,z)
and HT(`,·)x(·,z), whose values are either 1, if the “from”
or “to” node of line ` is included in zone z, or 0, if not.
Therefore, the flow of units is prevented, unless both scalar
products in (12)-(13) are equal to 1. In this case, ϕ`,z is limited
by yz , which always represents an upper bound to the highest
possible flow of units.

To summarize, the grid partitioning requires the set of deci-
sion variables ΞG = {xn,z, cn,z,∀n,∀z; yz,∀z; ϕ`,z,∀`,∀z}
constrained by (5) - (13) in the upper-level problem of the pro-
posed bilevel methodology. Section IV of the paper describes
in detail the linearization of the bilinear terms that appear in
constraints (7), (12) and (13) using the big-M approach [14].

B. Dynamic Reserve Procurement

The proposed methodology allows the grid operator to
identify and clear Z independent reserve markets, each of
them corresponding to a zone of the partition. Although the
objective remains to minimize the total procurement cost
of reserves, zonal requirements can be differentiated while
respecting the merit order of generators that participate in
each reserve market. The dynamic reserve procurement model
constitutes one of the two lower-level problems in the bilevel
structure of the proposed methodology and it is formulated as

min
ΞRz

CR,z =
∑

g∈G

(
C+
g r

+
g + C−g r

−
g

)
(14a)

s.t.∑

g∈G
r+
g,z ≥ λ+

z , ∀z ∈ Z, (14b)

∑

g∈G
r−g,z ≥ λ−z , ∀z ∈ Z, (14c)

0 ≤ r+
g,z ≤ R+

g

(
HG(g,·)x(·,z)

)
, ∀z ∈ Z, ∀g ∈ G, (14d)

0 ≤ r−g,z ≤ R−g
(
HG(g,·)x(·,z)

)
, ∀z ∈ Z, ∀g ∈ G, (14e)

r+
g =

∑

z∈Z
r+
g,z, ∀g ∈ G, (14f)

r−g =
∑

z∈Z
r−g,z, ∀g ∈ G (14g)

where ΞRz = {r+
g,z, r

−
g,z,∀g,∀z} is the set of decision vari-

ables: r+
g,z and r−g,z represent up- and downward reserve from

generator g in zone z, respectively. Note that since xn,z is an
upper-level variable, it enters (14) as a parameter, thus ren-
dering the sub-problem a linear one. This structure allows to
use the associated Karush-Kuhn-Tucker (KKT) conditions to
reformulate the bilevel structure into a mathematical problem
with equilibrium constraints (MPEC). The upward and down-
ward zonal requirements λ+

z and λ−z imposed through (14b)-
(14c) also enter this formulation as parameters, since they are
upper-level decision variables. Zonal reserve requirements λz
are fulfilled by generators that belong to the corresponding
zones. The scalar product in (14d)-(14e) between HG(g,·) and
x(·,z) indicates whether generator g is eligible for providing
reserve to zone z. Finally, (14f)-(14g) define the overall reserve
to be acquired from each generator.

C. Transmission Capacity Allocation

In cases when flexible resources are concentrated in a
certain zone of the system, the grid operator could set aside
part of the cross-zonal transmission capacity in order to
facilitate the exchange of reserves. This aspect is modelled
in the proposed formulation by means of an additional set
of upper-level decision variables ΞC = {h`,z,Γ`,z,Γ`}, which
defines the available capacity for energy trading on each cross-
zonal line. Consider, for example, Fig. 1 where a 4-bus system
is partitioned in two possible configurations. Note that as the

W1

n1 n2

n4ℓ4

ℓ2ℓ3

ℓ1

n3

zone 1 zone 2

W1

n1 n2

n4ℓ4

ℓ2ℓ3

ℓ1

n3

zone 1

zone 2

(a) (b)

Fig. 1. Illustrative case of two possible configurations of grid partitioning
on a 4-bus system. Thicker lines indicates cross-zonal interconnections.
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zones are defined dynamically, so are the cross-zonal lines
eligible for reserve exchange, i.e., lines `1 and `4 in Fig. 1(a)
as opposed to lines `2 and `4 in Fig. 1(b). Therefore, the
partitioning identifies endogenously the lines, whose capacity
can be set aside for reserve exchange, through an auxiliary
integer variable h`,z , defined as the number of nodes that a
line ` has in zone z according to the following expression

h`,z = HF(`,·)x(·,z) + HT(`,·)x(·,z), ∀` ∈ L, ∀z ∈ Z. (15)

The values that h`,z can take are: 0, 1 or 2 and they reflect
all possible configurations between lines and zones. In the
first case h`,z = 0, the line is totally outside the considered
zone, e.g., line `2 with respect to zone 1 in Fig. 1(a); in the
second case h`,z = 1, the line is cross-zonal because only one
of the two nodes is included in a zone, e.g., line `1 in Fig.
1(a); in the third case, h`,z = 2 indicates a line that is fully
included in the considered zone, e.g., `1 in Fig. 1(b). Only
when h`,z = 1 a portion of the capacity of line ` is set aside,
while the other cases identify domestic lines whose capacity is
entirely allocated for energy trading in the day-ahead market.
The following set of constraints limits the capacity allocation
for reserve exchange Γ`,z to or from zone z on line `,

Γ`,z ≤ χF` h`,z, ∀` ∈ L, ∀z ∈ Z, (16)
Γ`,z ≤ χF` (2− h`,z) , ∀` ∈ L, ∀z ∈ Z, (17)

where a predefined parameter χ is included in order to limit
the maximum capacity that can be withdrawn from day-ahead
market and F` indicates the line rating. When h`,z is either
0 or 2, one of the above constraints binds Γ`,z to be zero,
thus preventing any capacity of that line to be set aside. In
the remaining case, h`,z = 1, both (16) and (17) state that the
share of capacity can be up to the χ% of the line rating. The
remaining constraints include

0 ≤ Γ`,z ≤ Γ`, ∀` ∈ L, ∀z ∈ Z, (18)

Γ` =
1

2

∑

z

Γ`,z, ∀` ∈ L, (19)

that serve a twofold purpose. The first is to enforce non-
negativity of Γ`,z , the second is to define Γ`, which is used to
define uniquely the value of capacity to be set aside on each
line `, regardless of the zone considered. Note how the use of
1
2 prevents counting the line capacity twice in (19).

Therefore, with transmission capacity allocation day-ahead
power flows are bounded by F`−Γ`, rather than F`. This limits
the expected power flows at the day-ahead stage, in order to
ensure that enough transmission capacity is available during
real-time operation.

D. Zonal Preemptive Problem Formulation

The proposed methodology builds upon recent work that
adopted a stochastic bilevel framework for setting reserve
requirements [4]-[5]. While previous studies considered either
a single zone or a predefined zonal setup, we improve the po-
sitioning and accessibility of reserves by defining zone bound-
aries together with their reserve requirements. The complete
problem formulation, where both reserve and transmission
capacity are dynamically allocated, is formulated as

min
ΞMz

CMz = CR + CD +
∑

s∈S
πs CB,s (20a)

s.t. (r+
g , r

−
g ) ∈ arg





minimize
Ξ′Rz

CRz

subject to
constraints (14b)− (14g)




, (20b)

(pg, wj) ∈ arg





minimize
Ξ′D

CD

subject to
constraints (2b)− (2f)




, (20c)

λ+
z ≥ 0, λ−z ≥ 0, ∀z ∈ Z, (20d)

(3b)− (3h), Balancing market, ∀s ∈ S,
(5)− (13), Grid partitioning,
(15)− (19), Capacity allocation,

where ΞMz = {λ+
z , λ

−
z ,∀z ∪ ΞR ∪ ΞD ∪ ΞB,s,∀s ∪ ΞG ∪ ΞC}

is the set of upper-level decision variables. This comprises:
zonal reserve requirements λz; reserve, day-ahead and bal-
ancing market decision variables, which are constrained by
the corresponding lower level problems; grid partitioning and
transmission capacity allocation variables ΞG and ΞC, respec-
tively. Lower-level problem (20b) accounts for the dynamic
reserve allocation strategy described in III-B, whereas (20c)
is the same day-ahead market clearing model as in model (2)
where line ratings F` are substituted with (F` − Γ`).

The solution of (20) provides the grid operator with a sug-
gestion of how to split the system into a pre-defined number of
zones, where reserve markets could be cleared independently
of one another, thus remaining fully compatible with the
least-cost merit-order principle in each zonal reserve market.
Therefore, unlike the preemptive model in [4], it additionally
allows to identify those portions of the grid where reserve is
required the most and it sets different reserve requirements λz ,
accordingly. This latter property resembles the ability of the
purely stochastic model to preposition reserves anywhere in
the system down to a generator-specific resolution. However,
since such a degree of freedom cannot be attained in practice,
the proposed formulation circumvents this aspect by enforcing
a minimal zonal size.

IV. SOLUTION APPROACH

All bilinear terms that appear in the grid partitioning con-
straints can be expressed as a product between a binary and
an integer variable, i.e., yz

(
HF(`,·)x(·,z)

)
, yz

(
HT(`,·)x(·,z)

)

and cn,zyz . The linearization of these terms is illustrated for
the latter case, by introducing an auxiliary variable un,z that
replaces the product cn,zyz in (7) according to the Big-M
approach [14]. The following constraints are added

yz −M (1− cn,z) ≤ un,z ≤ yz −m (1− cn,z) (21)
m · cn,z ≤ un,z ≤M · cn,z (22)

where m = 1 and M = N , i.e., the number of nodes in the
system. Note that the specific values of m and M are used
for all the bilinear terms that appear in the grid partitioning
constraints. These values are straightforward to derive: each
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bilinear term is either 0 or equal to the sub-graph cardinality
yz , thus 1 and N always represent valid bounds.

For any feasible partition of the system defined by the
upper level variables, each lower level problem is linear
and convex. Thus, the bilevel problem is reformulated as
an MPEC, where each lower-level problem is replaced by
the corresponding KKT conditions. This step introduces ad-
ditional auxiliary binary variables in order to linearize the
complementarity slackness constraints in the KKT conditions.
The MPEC problem is then recast as a single-level mixed-
integer linear problem (MILP) by using the Big-M method.
This solution approach is typically used in power systems
research, although authors of [15] recently pointed out some
critical limitations. Finally, considering the special structure of
the problem, whose second-stage constraints are independent
per scenario, a multi-cut Bender’s decomposition scheme is
implemented [16]. The complete set of KKT conditions of
the lower-level problems, along with the formulations of the
Bender’s master problem and sub-problems, are provided in
the electronic companion of the paper.

V. RESULTS

A. Wind Power Scenarios

In this paper, probabilistic forecast errors of wind power
generation are assumed to follow a Beta distribution, whose
parameters are calculated according to [17] and the error vari-
ance follows a quadratic function of the per unit point forecast.
The spatial correlation structure in wind power generation
at different locations is modelled by means of a Gaussian
copula function with a rank correlation matrix based on actual
wind power realizations from the Danish system [18]. A
large number of scenarios is then generated by sampling the
resulting multivariate joint probabilistic forecast for a single
time-period. In order to keep computational tractability in the
stochastic programs, scenario sets Ωi are reduced accordingly
to 100 realizations using the fast-forward scenario reduction
technique [19].

B. Stability Analysis (IEEE RTS-24 System)

The proposed methodology is showcased on a modified ver-
sion of the IEEE RTS-24 system, whose detailed parameters
are available in [20]. In particular, three lines are de-rated and
six wind farms with 200 MV installed capacity are included
in the system at selected locations. Simulation results are
benchmarked against the stochastic co-optimization of energy
and reserve (4) and the conventional approach of sequentially
cleared markets, i.e., (1), (2) and (3). Reserve requirements Λ
in model (1) are calculated as

Λ+ = Ŵtot − F̂−1
W (q) (23)

Λ− = F̂−1
W (1− q)− Ŵtot; (24)

where Ŵtot and F̂W represent the expected value and the
predictive CDF of the total wind power probabilistic forecast,
respectively, while the pre-determined quantile q of the dis-
tribution is chosen in line with grid operator’s risk aversion.
The proposed methodology is tested either with or without

Sequential

Fig. 2. Stability analysis in the RTS 24 bus system. Asterisks represent the
mean values, upper and lower edges of rectangles represent max and min
values, respectively.

transmission capacity allocation, where three values of the
parameter χ are considered in the former case and a minimal
zonal size of 4 nodes is always required.

In order to test the stability of the considered models against
small deviations in the uncertain wind power generation, up-
and downward reserve levels obtained with scenario set Ω1 are
plugged into (2) and (3), where the uncertainty is described
by 10 different scenario sets Ωi (i = 2, . . . , 11), based on
the same multivariate probabilistic forecast. Figure 2 shows
the corresponding total cost, which are normalized with the
solution of the stochastic model obtained with each set Ωi. It
stands out that the zonal approach outperforms the sequential
one both in terms of stability and cost effectiveness, regardless
of the chosen quantile q for setting reserve levels. The zonal
model shows an improvement with just 2 zones, whereas it
coincides with model [4] when a single zone is considered.

The effect of allowing transmission capacity allocation on
cross-zonal lines is to lower the costs further, provided that
more than 60% of eligible line capacities is withdrawn from
the day-ahead market. This result resembles the line-switching
approach, where the cost effectiveness of a dispatch can
be improved if power flows are re-routed by switching off
selected lines. In this case, reducing the capacity allocated
to the day-ahead market ensures that enough headroom is
available for balancing the system, thus avoiding bottlenecks
that would result in expensive corrective actions.

C. Cost Breakdown

Table I shows the cost breakdown of selected models solved
with the same scenario set Ω1. The conventional model in
this case relies on the top and bottom 3% of the total wind
power distribution for setting reserve requirements. This ap-
proach results in higher cost for reserves, as it cannot account
neither for their location in the system nor for the network
constraints that might limit their accessibility. Instead, the
preemptive model with a single zone is able to regulate reserve
requirements based on expected re-dispatch actions. Although
improving the results considerably, this approach still relies
on a single reserve market and thus it follows the merit order
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TABLE I
COST BREAKDOWN OF SELECTED MODELS

Reserve
cost
[k$]

Day-ahead
cost
[k$]

Balancing
cost
[k$]

Total
cost
[k$]

Sequential 6.015 24.41 0.322 30.75
Stochastic 3.135 25.53 -0.960 27.70

No capacity allocation
χ = 0%

Z
on

al

Z = 1 3.810 24.34 0.432 28.59
Z = 2 3.861 24.09 0.455 28.40
Z = 3 3.903 24.02 0.440 28.36
Z = 4 3.901 24.01 0.434 28.35

Capacity allocation
χ = 100%

Z
on

al

Z = 1 3.810 24.34 0.432 28.59
Z = 2 3.160 25.54 -0.997 27.70
Z = 3 3.216 25.48 -0.990 27.70
Z = 4 3.169 25.54 -1.003 27.70

of generators’ reserve capacity offers. The implication is that
while total reserve levels can be fine-tuned, their location and
position in the system cannot.

This aspect motivates the introduction of a zonal setup
that provides the grid operator with additional flexibility to
approximate the ideal solution. As the number of zones
increases, so does the ability to lower the costs towards the
stochastic model and to optimally allocate reserves. Note that
the partitioning in the proposed methodology is solely driven
by the total expected costs and it does not require any root
node to be pre-specified, which could introduce a degree of
arbitrariness in the partition. Therefore, it inherently considers
the availability of reserves in the system, their procurement
and their activation costs given the network limitations. Table
II summarizes the zonal reserve costs referring to the case of 3
zones in Fig. 3. The zonal setup allows to procure nearly 60%
of total requirements from zone 2, where the cost per MW
is lower. Zone 3 instead procures less reserve, but from more
expensive generators ensuring that enough balancing power is
located close to wind farms at nodes 3 and 5.

Two effects are evident as we include transmission capacity
allocation on cross-zonal lines: the first is that reserve costs
decrease, since more power can be reserved from cheaper
generators, while ensuring that they can deliver it to the grid;
the second is that day-ahead costs increase, as we reduce the
network capacity available for energy trading. A consequence
of this latter aspect is that less wind power will be dispatched
at this stage. To compensate for that and to avoid expensive
wind curtailment penalties, more downward reserve needs to
be procured and activated, as can be seen from Table II.

D. RTS-96 Case Study

The proposed methodology is also tested in the 3-area
RTS-96 system, for which relevant data is taken from [4].
The system is considered during the peak hour with a total
demand of 7.5 GW, 18% of which is covered by wind power
located in 5 locations. Original line ratings are used, whereas
the minimum power output of controllable units is set to 0.

TABLE II
ZONAL RESERVE COST OF GRID PARTITIONS IN FIG. 3

(a) No capacity allocation
χ = 0%

(b) Capacity allocation
χ = 100%

Reserve volume
[MW]

Avg.
cost

[$/MW]

Reserve volume
[MW]

Avg.
cost

[$/MW]

Up Dw Total Up Dw Total

Zone 1 60.0 35.7 95.7 15 0 67.9 67.9 8.54
Zone 2 75.9 112.1 188.0 12 27.5 143.9 171.4 9.72
Zone 3 40.0 0 40.0 14.3 30.0 30.0 60.0 13.33

Total 175.9 147.8 323.7 12.7 57.5 241.8 299.3 10.23

  1   2

  3

  4   5

  6

  7

  8

  9   10

  11   12

  13  14  15
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  19   20

  21   22

  23

  24

  1   2
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  4   5

  6

  7

  8

  9   10

  11   12

  13  14  15

  16

  17

  18

  19   20

  21   22

  23

  24

(a) (b)

Zone 1 
Zone 2 
Zone 3

Fig. 3. Partition of the RTS-24 system into 3 zones without (a) and with
(b) transmission capacity allocation on selected lines. Triangles indicate wind
power, large markers indicate the presence of generators.

In order to exclude the generator-specific resolution of the
stochastic approach, a minimal zonal size of 10 nodes has
been enforced in this system.

Figure 4 shows the resulting total expected costs, where we
compare the proposed methodology to the sequential approach
with varying reserve requirements (i.e. corresponding to dif-
ferent quantiles q in (24) and (23)) and a zonal model with
a predetermined partitioning variable xn,z , according to the
standard partitioning of this system into three zones. In this
way, we isolate the contribution of the flexible zone boundaries
definition provided by the proposed Zonal Preemptive ap-
proach. The partition into 3 zones is shown in Fig. (5) together
with the common subdivision of the RTS-96 system into 3
areas. The total expected costs indicate that tuning reserve
requirements while considering a single reserve market, i.e.,
Z = 1, does not result in significant savings, as opposed
to the sequential approach. The Zonal Preemptive approach
with a fixed partition that adheres to the 3 areas in Fig. 5
performs better than the single zone. However, as the zones
are dynamically determined by the partitioning variables xn,z ,
the total costs fall near the lower bound represented by the
stochastic co-optimization of energy and reserve. It suffices to
split the system into 2 zones to stay within the 0.1% increase
from the lower bound, even without allocating transmission
capacity on cross-zonal lines.

The resulting large-scale MILP problem is solved with
Gurobi setting a 0.1% optimality gap on a quad-core laptop
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Fig. 4. Increase in total expected costs for the load demand peak hour in the
RTS-96 system. Costs normalized with the stochastic solution.
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Fig. 5. Partition of the 3-area IEEE RTS-96 system according to the Zonal
Preemptive model with χ = 0. Triangles indicate wind farms.

with 8 GB of RAM and 2.4 GHz of CPU. Bender’s decompo-
sition converged in 3.50 · 102 s with 1 zone, 2.15 · 103 s with
2 zones and 4.04 · 104 s with 3 zones.

VI. CONCLUSION

This paper described a novel methodology for reserve
procurement that further approximates the efficiency of the
stochastic co-optimization of energy and reserves in terms
of total operating costs, while still respecting the existing
market rules. Building upon recent work on stochastic bilevel
optimization, we embed grid partitioning constraints in the
upper-level problem and use them to determine not only the
zonal reserve requirements but the zonal boundaries as well.

Unlike other partitioning schemes, our methodology is
solely driven by the total expected system costs and the most
recent uncertainty forecasts, instead of relying on historical
data that may not reflect the actual system state. The proposed
model allows grid operators to perform a dynamic zoning of
the system for reserve procurement, depending upon gener-
ation uncertainty and network limitations. In addition, this
zonal preemptive model can contribute to the ongoing pol-
icy discussion towards a common European reserve capacity
market, where reserve zones are dynamically defined upon
system conditions instead of geographical borders. Simulation
results show that the stochastic lower bound can be adequately
approximated with only two zones, even if a minimal zonal
size is required. This result suggests that the computational
burden of the proposed approach can be reduced by limiting
the number of reserve zones, without a major efficiency loss in

terms of expected system cost. Moreover, the combination of
dynamic reserve procurement with cross-zonal transmission
capacity allocation has shown to be beneficial in highly
congested system. Setting aside part of the available trans-
mission capacity grants the grid operator additional flexibility
to approach the efficiency of the stochastic dispatch.

Future work will address the current limitations of the
proposed methodology considering inter-temporal constraints,
which may affect the partitioning of the system and the
deployment of reserves.
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COMPANION PAPER

This document serves as the electronic companion of paper
”Dynamic Reserve and Transmission Capacity Allocation in
Wind-Dominated Power Systems”. Appendix A presents the
Karush-Kuhn-Tucker (KKT) conditions of the dynamic reserve
procurement problem in Section III-B and the day-ahead
market clearing in Section II. Appendix B presents the multi-
cut Bender’s decomposition scheme that is used to solve the
proposed methodology on large-scale systems.

APPENDIX A
The dual variables in the KKT conditions are indicated as

γ∗ for constraint (∗), where equation numbers are referred
to the main paper. The corresponding optimization problems
are repeated in a standard notation to ease the identification
of dual variables. Symbol ⊥ indicates the complementarity
conditions between the constraints and the rest of the symbols
is in accordance with the nomenclature in the main paper.

A. Zonal reserve market

1) Problem formulation:
min
ΞRz

CR,z =
∑

g∈G

(
C+
g r

+
g + C−g r

−
g

)
(25a)

s.t.

λ+
z −

∑

g∈G
r+
g,z ≤ 0, ∀z ∈ Z, (25b)

λ−z −
∑

g∈G
r−g,z ≤ 0, ∀z ∈ Z, (25c)

r+
g,z −R+

g

(
HG(g,·)x(·,z)

)
≤ 0, ∀z ∈ Z, ∀g ∈ G, (25d)

r−g,z −R−g
(
HG(g,·)x(·,z)

)
≤ 0, ∀z ∈ Z, ∀g ∈ G, (25e)

− r+
g,z ≤ 0 ∀z ∈ Z, ∀g ∈ G, (25f)

− r−g,z ≤ 0 ∀z ∈ Z, ∀g ∈ G, (25g)

r+
g −

∑

z∈Z
r+
g,z = 0, ∀g ∈ G, (25h)

r−g −
∑

z∈Z
r−g,z = 0, ∀g ∈ G (25i)

2) KKT conditions:
C+
g − γ(25b)

z + γ(25d)
g,z − γ(25f)

g,z + γ(25h)
g = 0, ∀g, ∀z, (26)

C−g − γ(25c)
z + γ(25e)

g,z − γ(25g)
g,z + γ(25i)

g = 0, ∀g, ∀z, (27)

0 ≥ λ+
z −

∑

g∈G
r+
g,z ⊥ γ(25b)

z ≥ 0, ∀z (28)

0 ≥ λ−z −
∑

g∈G
r−g,z ⊥ γ(25c)

z ≥ 0, ∀z (29)

0 ≥ r+
g,z −R+

g

(
HG(g,·)x(·,z)

)
⊥ γ(25d)

g,z ≥ 0, ∀g,∀z (30)

0 ≥ r−g,z −R−g
(
HG(g,·)x(·,z)

)
⊥ γ(25e)

g,z ≥ 0, ∀g,∀z (31)

0 ≥ −r+
g,z ⊥ γ(25f)

g,z ≥ 0, ∀g,∀z (32)

0 ≥ −r−g,z ⊥ γ(25g)
g,z ≥ 0, ∀g,∀z (33)

r+
g −

∑

z∈Z
r+
g,z = 0, ∀g, (34)

r−g −
∑

z∈Z
r−g,z = 0, ∀g. (35)

B. Day-ahead market

1) Problem formulation:
min
ΞD

CD =
∑

g∈G
Cgpg (36a)

s.t.∑

g∈G
pg +

∑

j∈J
wj −

∑

n∈N
Dn = 0, (36b)

P g + r−,∗g − pg ≤ 0 ∀g ∈ G, (36c)

pg − P g + r+,∗
g ≤ 0, ∀g ∈ G, (36d)

− wj ≤ 0, ∀j ∈ J , (36e)

wj − Ŵj ≤ 0, ∀j ∈ J , (36f)

M(`,·)
(
H>G p + H>J w −D

)
− F` ≤ 0, ∀` ∈ L, (36g)

− F` −M(`,·)
(
H>G p + H>J w −D

)
≤ 0, ∀` ∈ L, (36h)

2) KKT conditions:
Cg + γ(36b) − γ(36c)

g + γ(36d)
g . . .

+
∑

`∈L
(γ(36g)
` − γ(36h)

` )M(`,·)H
>
G 1g = 0, ∀g ∈ G, (37)

γ(36b) − γ(36e) + γ(36f) . . .

+
∑

`∈L
(γ(36g)
` − γ(36h)

` )M(`,·)H
>
J 1j = 0, ∀j ∈ J , (38)

∑

g∈G
pg +

∑

j∈J
wj −

∑

n∈N
Dn = 0 (39)

0 ≥ P g + r−,∗g − pg ⊥ γ(36c)
g ≥ 0, ∀g ∈ G, (40)

0 ≥ pg − P g + r+,∗
g ⊥ γ(36d)

g ≥ 0, ∀g ∈ G, (41)

0 ≥ −wj ⊥ γ(36e)
j ≥ 0, ∀j ∈ J , (42)

0 ≥ wj − Ŵj ⊥ γ(36f)
j ≥ 0, ∀j ∈ J , (43)

0 ≥M(`,·)
(
H>G p + H>J w −D

)
− F`

⊥ γ(36g)
` ≥ 0,

∀` ∈ L, (44)

0 ≥ −F` −M(`,·)
(
H>G p + H>J w −D

)

⊥ γ(36h)
` ≥ 0,

∀` ∈ L. (45)

APPENDIX B
A multi-cut Bender’s decomposition scheme is implemented

[16]. The master problem at iteration η is formulated as

min
ΞMP

CR + CD +
∑

s∈S
πsϑs (46a)

s.t. (26) - (35), KKT of zonal reserve market
(37) - (45), KKT of day-ahead market
(20d), Zonal reserve requirements,
(5)− (9), Grid partitioning,
(15)− (19), Capacity allocation,
ϑs ≥ ϑ0 ∀s ∈ S (46b)

ϑs ≥ C(k)
B,s +

∑

g

γ(47b)(k)
g,s

(
r+
g − r+;(k)

g

)
. . . (46c)

+
∑

g

γ(47c)(k)
g,s

(
r−g − r−;(k)

g

)
+
∑

g

γ(47d)(k)
g,s

(
pg − p(k)

g

)
. . .

+
∑

j

γ(47e)(k)
j,s

(
wj − w(k)

j

)
, ∀s ∈ S, ∀k = 1, . . . , η − 1
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where γ(∗)(k) are the dual variables of constraints (∗) in the
sub-problem, whose formulation for scenario s = s′ and
iteration η is the following

min
ΞSP

CB,s′ =
∑

g∈G
Cg

(
p+
g,s′ − p−g,s′

)
(47a)

+
∑

j∈J
Cctwct

j,s′ +
∑

n∈N
Cshdsh

n,s′

s.t. r+
g = r+;(η)

g : γ(47b)(η)

g,s′ (47b)

r−g = r−;(η)
g : γ(47c)(η)

g,s′ (47c)

pg = p(η)
g : γ(47d)(η)

g,s′ (47d)

w+
j = w

(η)
j : γ(47e)(η)

j,s′ (47e)

(3b)− (3h), Balancing market, s = s′,

where first-stage decision variables r+
g , r−g , pg and wj are fixed

to the solution of the master problem at the current iteration.
As the problem has complete recourse, no need for feasibility
cuts is required and S new optimality cuts are added to the
master problem at each iteration. The algorithm converges to
a solution when the condition |∑s πsϑs −

∑
s πsC

(η)
B,s | ≤ ε is

satisfied for a predefined tolerance ε.
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