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Abstract: The efficient uptake of decentralized solar rooftop photovoltaics (PV) is in some cases
hindered by ineffective energy and political framework conditions. These may be based on inaccurate
and uncertain potential assessments in the early development stage of the solar market. This paper
develops a more accurate, cost-effective, and robust potential assessment for emerging and developing
economies. Adjusting the module efficiency corresponding to regional and household conditions
improves the output accuracy. The rooftop PV market changes are simulated regarding different input
changes and policy designs, including changing the Feed-In Tariff (FIT), grid tariff, and technology
development. In the case study, the market potential in Vietnam is estimated at 260–280 TWh/a and is
clustered into six groups in priority order, in which Hanoi and Ho Chi Minh need the most policy
focus. Changing the FIT from 8.83 to 9 Euro cent/kWh and using different regional FITs can activate an
additional 16% of the market and lead to a possible 28 million Euro benefit. Increasing the grid tariff
to 8.7 cents/kWh could activate the self-consumption model, and the self-sufficient market can be
guaranteed in the case of CAPEX and OPEX being lower than 650 Euro/kWp. Future developments of
the method should focus on combining this top-down method with detailed bottom-up approaches.

Keywords: rooftop PV; resource assessment; renewable support policies; self-consumption;
developing countries

1. Introduction

Renewable energy technologies have gained momentum in cost competition with conventional
thermal electricity generation and have become significant in the global electricity transition. They had
a share of 14% in global electricity generation by 2018, with around 53% of all renewable energy
investments in developing and emerging economies [1]. In the countries concerned, distributed solar
PV systems not only play a prominent role in spreading energy access to households in remote areas [1]
but also promise an effective alternative to serving the highly increased urban electricity demand [2–4].

Many sub-national governments have become leaders of solar development by setting even more
ambitious targets than their national counterparts [1]. However, national and local governments in the
countries are dependent on generic rooftop PV assessments. These assessments often have a rather
low accuracy, which could direct investors into suboptimal locations and configurations [5,6]. As a
result, the diffusion of PV power projects is spatially heterogeneous between the different regions in a
country [7–9]. If the development goes in one direction only, this could have a far-reaching impact on
both grid and market congestion [9–12]. To avoid this, policymakers urgently need a superior method
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to provide their market with transparent targets and stable policies so that the market will continue
growing without threatening the stability of national electricity systems.

Previous studies focus on investigating rooftop areas for solar PV with many different
methodologies such as GIS [13–17], 3D models [18–20], and LIDAR technology [16,19,21–23]. The 3D
model is the most advanced and accurate method that allows the digitization of features, followed by
simulations of insolation and shading of buildings [5,18–21]. However, it is challenging to employ
this approach at the national level in developing countries because their data conditions and financial
budgets will take years to reach the sufficiency for 3D model estimation.

In this context, this paper proposes an accurate, cost-effective, and transferable potential assessment
method with a geostatistical approach across cities to assist policymakers in assessing their local
and national rooftop PV potential. The proposed method is suitable for application in a country
with unfavorable data conditions and a meager investment budget for conducting a high-resolution
assessment. To improve the accuracy of the technical assessment, this paper adjusts solar irradiation
and corrects the module efficiency of the PV system corresponding to the geographic and climate
conditions, as well as dwelling design. A novel approach to control model accuracy is introduced by
identifying and classifying the impact level of the uncertain parameters used in this paper. Considering
the findings, we build different scenarios to observe market reactions as a result of various technological,
investment, and policy changes. The paper comprehensively presents a three-step model, which is
instantly applicable to different levels of detail of rooftop PV potential assessment and policy design,
such as sub-regional, regional, and national scales. This model is used for deploying the rooftop PV
potential strategically, and for preventing aggressive local development and structure-inherent rooftop
PV conflicts between different regions. The results provide a more realistic picture of the medium-term
growth and the interaction of various impacts, e.g., technology and policy changes, on the rooftop PV
market in the considered country.

The paper is structured into six sections. Section 2 provides a succinct comparison between
different levels of spatial resolution techniques and points out the advantages of our methodology.
The detailed method is described in Section 3, including the methodology flow chart, methods for
geographical, technical, and economic potential assessments as well as the case study. Section 4 reports
the study results, and Section 5 contains the discussion and suggestions for policymakers based on
shifting and bending market distribution under different possible framework conditions. The final
section is the conclusion and outlook.

2. Literature Review of Potential Assessments for Rooftop PV

The studies of photovoltaic energy potential assessment can be categorized into three groups: low-,
medium-, and high-level spatial resolution techniques [24,25]. Low-level assessment is usually based on
statistical data, which are supposed to be homogeneous throughout the investigated area [24,26]. It can
be employed on a large scale, e.g., many cities all around the world, based on the correlation between
solar insolation and population density. However, due to the uneven distribution of population and
buildings between different areas, this type of assessment provides poor quality and inaccurate results
due to the general assumptions.

The existing medium-resolution assessment is claimed to be inaccurate for tailored policy
designs [24]. Because they are faced with the uncertainty caused by using many assumptions due
to data deficiency [27], their outputs tend to vary widely from 16% to 207% when compared with
other resolution assessments over the same geographies [5,6]. To conquer the uncertain and applicable
issues, studies in this field usually focus on developing high-level assessments on a small scale, e.g.,
for buildings [18,21,22] or district(s) [5], to avoid inaccurate results. When studying a larger scale,
e.g., at city-level or multi-cities level, researchers are limited to estimating only geographic potential
based on different assumptions such as roof area available [15,26,28,29], land use data [8,26], and type
of building [26]. Some studies investigate the technical potential [14,16,30], but detailed uncertainty
analyses to measure the error are not covered.
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To calculate a high-resolution PV potential, previous studies have used advanced and accurate
technologies such as 3-D models to calculate geometry, insolation, and shading of buildings [5,18–21].
Even though the methods are more precise, the main barrier to employing them at national and
international scales is the associated challenge of an exponentially increasing number of uncertain
parameters with an increase in the sample size or studied space. This leads to computationally intensive
models and expensive data collection [25], especially for 3D models [18–20] or solar detective models [31].
Therefore, these methods are not currently economically viable for developing countries [24,27].

This paper provides a less costly and more accurate solution that is able to cover a large
scale by estimating rooftop PV potential for each region corresponding to its climatic, geographic,
and demographic conditions. The available roof for installing solar PV and the expected electricity
production are calculated based on housing characteristics such as the type of roof, the azimuth of the
building, and the roof. Statistical data and previous research results are used to determine housing
architecture. Uncertainty in the data coming from the natural variability of the data generating,
measuring, and sampling processes is then simulated by using an iterative process. The results of
the simulation are the output distributions (Section 5.3). The details of the method are presented in
Section 3.

3. Methodology for Rooftop PV Potential Assessment

Figure 1 describes the method of PV potential assessment proposed in this paper. The outputs of
each step are highlighted in blue, and the dark blue arrows show the direction of the mathematical flow.
Input data are collected from (*) national/international statistical sources, (**) the assumptions based
on previous studies, and/or (***) a collection from manufacturers’ catalogues. The iterative process to
create datasets are represented by orange arrows. There are in total four different loops numbered in
Figure 1.
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Figure 5. Maps of distributed electricity potential (a) and average LCOE (b) of rooftop PV by regions.
Please refer to the online version of the article for references to color in this figure. Detailed region and
province can be found in Figure A2. Detailed maps are extracted from the library of The University of
Texas at Austin. http://legacy.lib.utexas.edu/maps/topo/vietnam/. Latest access on 20.05.2019.

The method proposed in the paper consists of three steps. The first step is determining the
geographical potential using ArcGis and geostatistical analysis (Section 3.1), which is proposed in
previous studies [25]. The second step is identifying the technical potential (Section 3.2), in which
the authors improve the assessment accuracy by determining the electricity output of the solar cell
regarding the expected operating temperature of the PV module and the corresponding solar cell
efficiency for the specific considered region. The last step is the economic and sensitivity analyses
(Section 3.3). Section 4 presents data, assumptions and results for our case study, which is used to
illustrate the methodology proposed.

3.1. Geographical Potential

In the case of unavailable high-resolution street maps, household data from government statistical
offices can be used to calculate the available roof area for PV installation Aroo f (m2) for detached houses
and apartment buildings. Equation (1) is suggested based on previous studies [25].

Aroo f = Sroo f × µ×
1

cos(ν)

=

 Detached house : SF × (1− b1) × µ×
1

cos(ν)

Apartment building :
(
SF ×

nA
F

)
× (1− b1 + b2) × µ×

1
cos(ν)

(1)

The total roof area, Sroo f (m2), is calculated by subtracting the exterior area, b1 (percent of total
roof area), such as garden, back yard, etc., and adding the interior area, b2(percent of total roof area),

http://legacy.lib.utexas.edu/maps/topo/vietnam/
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such as stairway, corridors, etc. for an apartment building, to the ground area of a household SF (m2).
For apartment buildings, nA

F is the average number of apartments, nA, in a building on one floor, F.
The available roof for installing rooftop PV, Aroo f (m2), is determined by multiplying the total roof

area, Sroo f (m2), with the utilization factor, µ (%), which is a percentage of the roof area that can be used
for PV installations. The factor µ excludes the utilized area of antennas, chimneys, HVAC systems,
and unusable area such as shades from the total roof area, Sroo f (m2). It can be identified based on
national statistical data of household architecture or based on previous studies [25]. ν is the average
house/building roof slope (degrees).

Figure 2 demonstrates the two angles related to the sun position, which are the solar altitude
angle αs, and the solar azimuth angle γs, the angles β and γ that define the PV module position. β is
the tilt angle, and γ is the surface azimuth angle. Further, the angle θ between the normal to the PV
surface and the incident beam radiation is indicated [33,34].

The solar irradiation at different azimuths, inclination angles, and horizontal positions regarding
different locations is calculated as in Equation (2), in which SIdir and SIdi f f are the direct and diffuse
solar irradiations, respectively.

SI = f (SIdir, β, θ) = SIdir × cosθ+ SIdi f f × cos
(
β

2

)
(2)

The geographical potential is determined by using ArcGis to match available roof area, Aroo f ,
and relative solar irradiation with data of the topographic, population distribution, and cadastral maps.

The raster maps [17,35] only provide the solar irradiation at 90◦ to the horizontal.
However, the irradiation changes depending on the solar position and its relation to an oriented panel.
To improve the accuracy of the geographical potential, this paper calculates relative solar irradiations
corresponding to the northern, central, and southern horizontal surface in different azimuth and
inclination angles.

The geographical potential is determined by using ArcGis to match available roof area, Aroo f ,
and relative solar irradiation with data of the topographic, population distribution, and cadastral maps.

3.2. Technical Potential

A PV module will typically be rated at standard test conditions (STC), which indicates a
condition of a cell temperature of 25 ◦C and an irradiance of 1000 W/m2 with an air mass 1.5 (AM1.5)
spectrum [36], ensuring a relatively independent comparison and output evaluation of different
modules. However, when operating in the field, they typically operate at higher temperatures and at
somewhat lower insolation conditions. To improve the accuracy of technical potential assessments,
the paper determines the power output of the solar cell regarding the expected operating temperature
of the PV module and the corresponding solar cell efficiency.

First, the paper identifies the operating cell temperature Tmod (◦C) based on nominal operating
cell temperature (NOCT ◦C) Equation (3).

Tmod = Tair + (NOCT− 20) ×
Gmod

GNOCT
(3)

NOCT is defined as the temperature reached by open-circuited cells in a module under the
conditions of the maximum irradiance, GNOCT = 800 W/m2, air temperature is 20 ◦C, wind velocity is
1 m/s, and an open rear surface mounting. NOCT can be calculated from the NOCT model [37] or taken
from the information given by the module specification. The equation is a literature model [38] that
gives a reasonable estimate of the operating temperature of the module as a function of the ambient
temperature (Tair

◦C) and the irradiance at the instant Gmod (W/m2) when the ambient temperature is
Tair (◦C). Tair (◦C) can be obtained from Raster data or extracted manually from the climate map [39].
As can be seen in Equation (3), because the irradiance and temperature changes over a calendar year,
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we would see an effect of both irradiance and temperature on the electricity output of a solar cell across
the seasons.

Another factor that affects the electricity output is the solar cell efficiency. Because the efficiency
depends on the spectrum and intensity of the incident sunlight and the temperature of the solar cell [40],
the paper calculates the corrected energy conversion efficiency (ηcor) of a solar cell corresponding to
the operating temperature Tmod, which is reflected in the latitude and climate of the considered region.
The corrected temperature factor ηTC and the corrected efficiency of the module cell ηcor are determined
via Equation (4). A constant value (CT) can be extracted from the module datasheet (%/K). TSTC and
ηSTC are the temperature and efficiency at STC conditions.

ηcor = f (Tmod) = ηCT × ηSTC =
[
1 +

CT
100
× (Tmod − TSTC)

]
× ηSTC (4)

Moreover, to be more precise in assessing technical potential, this paper identifies the least space
distance between PV modules to minimize shading effects. To calculate the module row spacing
between two lines of modules, the first step is to calculate the height difference, HD (m), from the back
edge of the module to the surface [34]. Equation (5) is used for this purpose. β (degrees) is the tilt angle
and Wmod (m) is the module width.

HD = sin(β) ×Wmod (5)

The module row spacing (MRSmod) is determined by using the Sun Elevation Angle. The row
width, Wrow, which is the distance from the trailing edge of one row to the trailing edge of the
subsequent row, is calculated as in Equation (6), in which α is the solar elevation angle (degrees)
(Figure 3) and κ is the azimuth correction angle (degrees) (Figure 4). The shadow between rows falls
perpendicular to a south-facing array only when the sun is located at true south in the sky. At solar
noon, the length of the shadow cast between rows would be equal to the minimum row spacing
(MRSmod). In this paper, MRSmod is calculated in the worst case from 9 AM to 3 PM of the winter
solstice, therefore an azimuth angle correction is required (Figure 4).

Wrow = MRSmod × cos β×Wmod =
HD

tan(α)
× cosκ× cos β×Wmod (6)

The number of PV modules, nmod, on a rooftop for each raster map unit corresponding to the
available roof area for PV, Aroo f , is obtained from Equation (7), in which Lmod is the length of the PV
module (m).

nmod = f
(
Aroo f , Amod, HD

)
=

Aroo f

Lmod ×Wrow
=

Aroo f

Amod ×
HD

tan(α) × cosκ× cos β
(7)

The electricity output of the solar system, Mel, is obtained from Equation (8), in which PR is
performance ratio of the module, SI is the adjusted solar irradiation (kWh/m2) and Amod is the module
area (m2)

Mel = PR×Amod × f (Tmod) × f
(
Aroo f , Amod, HD

)
× f (SIdir, β, θ)

= PR×Amod × ηcor × nmod × SI
(8)

3.3. Levelized Cost of Electricity (LCOE)

The Levelized Cost of Electricity (LCOE) is a measure of the average net present cost of electricity
generation for a generating plant over its lifetime, which is assumed to be 20 years in this study [41].
The LCOE depends on costs (i.e., the initial capital investment, maintenance, and operational costs),
local condition (load profile), and financial condition (i.e., the discount rate).
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The LCOE is calculated as in Equation (9) [42]

LCOE = f (I0, At, Mel) =
I0 +

∑ns
t=1

At
(1+i)t∑ns

t=1
Mel

(1+i)t

(9)

where I0 (Euro) stands for the total initial investment, which is the product of module size (in kW)
and specific investment i0 as the investment cost per installed kW (€/kW); At (Euro) is the yearly
operating cost; i (%) is the discount rate; ns (year) is the life span; and Mel (kWh) is the annual
electricity production.

3.4. Sensitivity Analysis

The proposed model is computationally intensive and highly parameterized with model input
uncertainty, which can reduce the accuracy of the model outputs. To provide a robust assessment at
medium resolution, this paper suggests a solution to estimate the impact and significance of uncertain
parameters in the model by using variance-based sensitivity analysis. A variance-based method is a
probabilistic approach, which quantifies the input and output uncertainties as probability distributions
and decomposes the output variance into parts attributable to input variables and combinations
of variables.

The sensitivity of the output to an input variable is therefore measured by the amount of variance
in the output caused by that input.

Considering our model in Equation (10): Mel = PR×Amod × f (Tmod) × f
(
Aroo f , Amod, HD

)
× f (SIdir, β, θ)

LCOE = f (I0, At, Mel)
(10)

As Y = f (X) for X = {X1, X2, . . . , Xk}, a measure of the sensitivity of the ith variable Xi is given
as{\displaystyle \operatorname {Var} \left(E_{{\textbf {X}}_{\sim i}}\left(Y\mid X_{i}\right)\right)}
Var(EX∼i(Y

∣∣∣Xi)) , where “Var” and “E” denote the variance and expected value operators, respectively,
and X∼i denotes the set of all input variables except Xi. This expression essentially measures the
contribution of Xi alone to the uncertainty (variance) in Y (averaged over variations in other variables)
and is known as the first-order sensitivity index or main effect index, Si, which is determined as
in Equation (11). Importantly, it does not measure the uncertainty caused by interactions with
other variables.

Si =
VarXi(EX∼i(Y

∣∣∣Xi))

Var(Y)
(11)

This method allows exploration of the input space, accounting for linear and nonlinear responses.
As demonstrated in Figure 1, four loops, represented by orange arrows, repeatedly run to generate the
final outputs until all the possibilities of the inputs are covered. The first input set is built based on the
available data and assumptions from previous studies.

Subsequently, this paper fits a linear and/or nonlinear regression to the model response and the
standardized regression coefficients are used to measure the level of impact of each uncertain parameter
on the output. The relationship between the uncertain parameters and the output is presented as in
Equation (12), for example.

∆y j = a1∆xi
2 + a2∆xi + b (12)

This paper uses hierarchal clustering in the manner of the Pareto principle to generate the
ranking of the uncertainty factors xi according to their relative contribution to the output variability.
The influencers are categorized into different groups, including “strong influencer”, “moderate
influencer”, and “negligible influencer”. The goals of the analysis are to provide different references
for policymakers and stakeholders to choose an appropriate interaction with the current rooftop PV
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market status. One goal focuses on quantifying the uncertainty in the output of the model, thus it is
used as a control tool for modelers and policymakers in order to ensure the accuracy of the output.
The other goal focuses on apportioning output uncertainty to the different sources of uncertainty
inputs and will be used for designing policy and for supporting the decision-making of investors in
the rooftop PV market.

4. Case Study and Results

4.1. Data and Assumptions

Vietnam is taken as a case study for demonstrating our method and findings. It is one of the
65 emerging countries in the world with typical features and struggles to develop solar PV [2–4].
The Vietnamese population is 94 million people, with annual GDP growth of around 7%, the total
electricity demand of 227,421 GWh, total supply capacity of 48.57 GW [43], and power demand surging
at an average rate of 12% per year since 2010 and expected to continue growing by 8%/year until 2030
(Vietnam energy outlook 2018). Residential demand for electricity accounts for almost a third of the
total electricity demand [43], with the average retail tariff of 9.3 Euro cents/kWh (Appendix A Table A1).
However, during the period 2016–2030, the original estimation of the additional capacity is estimated
to be decreased by 16% (~15.2 GW) because of the delay of some natural gas projects. This would be
likely to increase the power shortage in the south, especially from 2022 onwards (EVN June 2019).

Under these circumstances, solar and wind power are expected to play significant roles as
alternative resources and turn Vietnam into a hot spot for energy investors. Renewable energy supply,
including small hydro, wind, solar, and biomass power plants, currently covers 7.16% of total national
supply [43]. However, given a local overload, transmission losses, and uneven infrastructure between
different regions, the Vietnamese government has been provoking significant investment in power
infrastructure with net metering. As a result, by June 2019, the country has shown a surge of centralized
solar capacity connected to the national grid of 4.46 GW. This accounts for 8.28% of the Vietnamese
electricity supply mix, which is far more than the 1000 MW target set for 2020 (EVN report, June 2019),
while PV rooftop projects only grow at a very modest level. Moreover, because of lacking integrating
policy, management, and compensation mechanisms to support rooftop PV development in the whole
country, it has developed rapidly solely in Ninh Thuan. This region accounts for 90% of the total
national solar capacity, which has caused significant grid congestion and reduced the spread of
the development.

To solve the issue of the lacking integrating policy and mechanisms to support rooftop PV
development, this paper focuses on assessing rooftop PV potentials in 63 provinces in Vietnam and
proposes different suggestions for the government to unleash their PV potentials.

This paper uses a previous study of house design in Vietnam [32], in which the average number
of apartments on one floor of the building, nA

F , is 5, the exterior area, b1, is 0.2, and the interior area, b2,
is 0.1 to calculate the available roof area for installing rooftop PV. The roof of the apartment buildings
is considered flat, so ν for them is 0. For single-detached houses, ν is presented in Table 1. A sensitivity
analysis for these assumptions is conducted in this paper.

Table 1. Average of relative solar irradiation in accordance with different roof slopes in Vietnam.

Region Detached House Roof Slope—ν (degrees) Average of Relative Solar Irradiation—SI

North Vietnam
25 0.95
32 0.93

Central Vietnam
25 0.95
26 0.95

South Vietnam
34 0.90
24 0.93
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The utilization factor of the flat roof is estimated to be 50% based on previous studies [5,9,14,44],
which concluded that 35% to 65% of residential flat roofs are available for PV because 5% of the roof is
covered by HVAC equipment or other building components, which would shade over 35% of the entire
rooftop, and trees and other construction would shelter from 0% to 30% of the rest. The utilization
factor of a slanted roof is assumed to be 58%, which considers that a north-facing roof also has the
potential for installing PV systems [25].

Based on Equation (2), the relative solar irradiation for different roof types in three different parts
of Vietnam is calculated. The results are presented in Table 1.

In this paper, two main models of PV modules, i.e., monocrystalline and polycrystalline, are
considered. The characteristics of these two models, extracted from the catalogue, are given in Table 2.
The performance ratio is considered as 0.85 [25].

Table 2. Specifications of the PV modules.

Module Type
Watt

Price—I
(Euros/W)

Maximum
Power—E

(W)

Efficiency of
Module—STC

(%)

Performance
Coefficient—CT

(%K)

Length—Lmod
(mm)

Width—Wmod
(mm)

Monocrystalline [45] NeMo 0.59 275 16.4 −0.4 1670 1006
Polycrystalline [46] NeMo 0.53 260 16 −0.42 1640 991

To assess the effect of uncertainty parameters on the outputs, this paper alters the assumptions and
the values of input variables, which have been referenced from other studies but for which sensitivity
analyses have not been performed in previous studies. The used values of these inputs and the
considered variation range are presented in Table 4.

4.2. Results of the Potential Analysis

Section 4.2.1, firstly, presents the spatial potential distribution of rooftop PV with detailed
potential for 63 provinces as well as the cumulative potential for eight classified territories of the
country: Northern Midlands (NML), Northern Mountains (NM), Red River Delta (RRD), North-Central
Coast (NCC), South-Central Coast (SCC), Central Highlands (CH), Southeast (SE), and Mekong River
Delta (MRD). Section 4.2.2 then presents the results of the sensitivity analysis for two purposes:
(1) to control the accuracy of the output; and (2) to measure the output variability regarding possible
input changes in order to support policy decision making.

4.2.1. Spatial Potential Distribution of Rooftop PV

This paper breaks down the estimated theoretical potential of solar with a total of around
120 thousand TWh per year (TWh/a) from the solar irradiation raster map [17,34,49] to geographical
and technical potentials of rooftop PV with 1407.2 km2 available rooftop and 278 TWh/a, respectively.
The technical potential is calculated with the results of roof-mounted solar cells in the whole country
being 228.3 and 215.8 GWp or 278.1 and 262.7 TWh/a with monocrystalline and polycrystalline solar
cells, respectively (detailed results for each region are given in Table A3).

Comparing different regions in Vietnam, 58% of the total national rooftop PV potential is
concentrated in three territories, including the two river deltas and the southeast with an almost
equally divided potential of around 20%, equivalent to an average installable capacity of 43.9 GWp.
The remaining potential is divided among the coastal areas and the midlands at approximately 10% or
22 GWp, and the mountains and highlands have the lowest potential with about 5% or 11 GWp in
each territory.

Taking economic factors into account, the cost per kWh of rooftop PV varies greatly depending on
the region and the prevailing economic conditions, in particular regarding different capital costs and
discount rates. This paper determines the LCOE (Euro/kWh) of rooftop PV for each province in order
to assess the economic attractiveness of the rooftop PV assumed at the current discount rate of 8%.
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The distributed PV potentials, including the specific production potential per total area (GWh/km2)
and the LCOE (Euro/kWh) in Vietnam, are shown in Figures 5 and 6. The potential density is significantly
high in the two river delta regions, which are Red River Delta (RRD) and Mekong River Delta (MRD)
in Vietnam, especially in the two largest cities of the country, Hanoi (in the RRD) and Ho Chi Minh
(in the MRD), with the most enormous potential of electricity production of about 12 and 5 GWh/km2

(Figure 6) or around 24.8 and 15.2 TWh/a or 18 and 15.1 GWp, respectively. These cities are the largest
metropolitans and most populous cities with an estimated population of 7.7 million and 8.4 million,
corresponding to 8.6% and 9.3% of the national population, respectively, and they also have the
largest household area in Vietnam (Government statistical reports, 2018). Hanoi has 407 km2 of
housing land, of which around 93.9 km2 rooftop available to install solar cells, while Ho Chi Minh
City has about 282 km2 housing land but can provide an estimated 110 km2 roof for installing solar.
Moreover, since Ho Chi Minh City is in the southern part of Vietnam, it could potentially generate in
total 24.8 or 23.4 TWh/a with monocrystalline or polycrystalline solar cells, respectively, which is nearly
60% more than the electricity production potential from solar in Hanoi. This gives Ho Chi Minh City
the most significant potential for solar power throughout the country, while Hanoi is ranked second.
Currently, Ho Chi Minh City has only installed around 44.56 MWp of its 18 GWp total potential [50].Energies 2020, 13, x FOR PEER REVIEW 13 of 46 
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The LCOE ranges from 7.5 to 9.2 Euro cents/kWh at a discount rate of 8% across 63 provinces
in Vietnam (Figure 5). In the regions with a vigorous radiation intensity such as Central Highland,
Mekong River Delta, South Central Coast, and Southeast (see Figure 5 for regions), rooftop PV is more
economical than in other areas with the LCOE being around 0.075 Euro/kWh. Among the eleven cities,
which account for 50% of the total specific potential (GWh/km2) in the whole country, there are only
four cities, namely Ho Chi Minh City, Can Tho, Tien Giang, and Vinh Long, with the average LCOE
being less than 0.076 Euro/kWh (Figure 6). Despite having a sizeable available roof area, Hanoi and
the rest do not have a convincing economic potential due to their low radiation intensity, which leads
to a relatively high LCOE of around 0.085–0.089 Euro/kWh. The other quarter of potentials consists
of 12 provinces that are relatively promising for investment with high potentials of approximately
2–3 GWh/km2 and a low LCOE of about 0.075–0.080 Euro/kWh, except for Vinh Phuc and Ninh Binh.
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However, Ninh Thuan and Binh Thuan, which are the best places for investing in rooftop PV with the
lowest LCOE in Vietnam at around 0.073 Euro/kWh, have relatively small solar resources at about only
0.6 GWh/km2.

Figure 7 illustrates the cost–potential curves for monocrystalline solar deployment in Vietnam at
different discount rates ranging from 5% to 11%. With varying rates of discount, the cost curve for solar
PV in Vietnam shifts vertically. The total electricity potential in the case of considering monocrystalline
and polycrystalline cells adds up to around 278 and 262 TWh/a, respectively. The total electricity
demand in 2018 in Vietnam is 192.36 TWh, which implies that the total solar rooftop could cover the
current demand of the country. However, Vietnam has only exploited about 0.1% of its potential [43].Energies 2020, 13, x FOR PEER REVIEW 14 of 46 
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Figure 7. The cost–potential curves for electricity generation from monocrystalline solar cells at different
discount rates and the average FIT 2.0 of 0.088 Euro/kWh as a dashed line.

The step in the curve (see Figure 7) results from the LCOE jumping from high irradiation in the
southern part to low radiation to the northern part of Vietnam. It reveals the significant difference in
solar irradiation along with the country, which causes a drastic increase in LCOE from south to north.
Referring the LCOE results to FIT [51] reveals a favorable condition for the rooftop solar development
because the FIT can cover the LCOE cost. Details of the relation between LCOE and FIT are discussed
in Section 5.2.

Finally, we analyze the results of the present paper in the context of additional studies relating to
rooftop PV in Vietnam. As compared to other studies in Vietnam, this method poses its advantages
of providing a reasonably accurate result at low-cost (Table 3), even though it deals with insufficient
data and meager budget. When normalizing for the area covered to 80% of the cities’ area, this paper
determines the potentials for rooftop PV in HCM and DN with a relative error of 4% and 6% compared
with the field study, respectively.
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Table 3. Comparison of the results of the suggested model and the field study in Ho Chi Minh (HCM)
and Da Nang (DN).

Subject This Paper Field Study [52]

Coverage Whole country Only urban areas of HCM and DN

Method to identify
technical potential

Geostatistical analysis, GIS, Monte
Carlo Simulation

Deep learning, Photogrammetry, GIS,
Image processing, Digital surface,

and elevation models

Production potential for the
specific cities (TWh/a)

HCM: 23.4 (100% of the city area)
DN: 2.7 (100% of the city area)

HCM: 18 (80% of the city area)
DN: 2.3 (80% of the city area)

4.2.2. Sensitivity Analyses

Similar to many other developing countries, Vietnam has deficient and inadequate data conditions
even to estimate rooftop PV potential at medium spatial resolution. It is worth mentioning that
conducting such an assessment for countries with similar unfavorable data condition requires significant
manual processing of inputs and maps, for example matching geographic and population distributions
and building densities with 11,050 clusters of the topographic map in the case of Vietnam.

This section assesses the effect of each mentioned input or assumption on technical and economic
potentials and identifies an acceptable confidence interval of every particular variable required to
achieve specific confidence in the result. The results are demonstrated in Figures 8 and 9.
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The results show that, among the uncertain parameters that are used to calculate the geographical
and technical potentials, the utilization factors for flat and slanted roofs and the efficiency or performance
ratio of a considered PV system are the most critical parameters influencing the accuracy of the technical
potential output (Figure 8). Considering the economic potential, all the uncertain geographical inputs,
such as the average number of apartments on one floor in a building, area added to the ground floor area,
and utilization factors for different roofs, are irrelevant to the LCOE output. However, technical inputs,
especially the efficiency of the PV module, show significant effects on the LCOEs. Lastly, the economic
data, such as costs and interest, have the most significant impact on the LCOE output, especially the
capital cost (Figure 9).

To verify the correlation of the variation of these variables with the output, we use regression
techniques, including curve fitting and linear fitting, to specify the model that provides the best
explanation of the relationships between the uncertain parameters and outputs. The considered outputs
are the technical potential (y1) and the LCOE (y2). The uncertain parameters are indicated below:

x1 Area added to a ground floor area x6 Azimuth of building
x2 Utilization factor for flat roof x7 Capital cost
x3 Utilization factor for slanted roof x8 O&M cost
x4 Average number of apartments on one floor x9 Discount rate
x5 Performance ratio

Figure 10 shows the strong influence of the uncertain parameters on the outputs in descending
order. Using the Pareto principle [53,54] indicating that roughly 80% of the effects come from 20% of
the causes, this paper divides them into three groups. The first group is called “strong influencer”,
which consists of x3, x5, x5, and x7 that are responsible for more than 80% of the impact on the technical
and economic outputs, respectively. The second one is the “moderate influencer”, which includes x2

for technical output and x8 for economic output, and accounts for the next 15% of the impact on the
outputs. The other factors belong to the “negligible influencer” group. By selecting impacts based on
their strength, we can measure the change of the outputs based on the different possible alterations of
the uncertain parameters, as in Equations (13) and (14).

y1 = 0.2851 x2 + 0.7401 x3 + x5 + 0.025 (13)

y2 = −0.6908 x5 + 0.6827 x7 + 0.3173 x8 + 0.3128x9
2 + 0.1965x9 + 0.364 (14)
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The results show how dependent the output is on a particular input value. The performance
ratio - x5 has the most significant impact on both outputs of the model, which are the electricity
potential - y1, and the LCOE - y2. While the electricity potential is also changed considerably when the
utilization factors change, the LCOE is not be affected by these two variables. It alters when the costs
and discount rates vary.

These results can be used to assist policymakers for decision making by predicting the outcome of
a decision in case they intend to change inputs using policy incentive/subsidy. It helps in assessing the
riskiness of a strategy and in making informed and appropriate decisions. A detailed discussion of
and examples for this argument are presented in Section 5.

5. Deriving Policy Implications from the Potential Assessment Results

Based on the results from the sensitivity analysis, we identified that factors including the
performance ratio of the PV system, capital and O&M costs, and the discount rate are the variables
with the most significant impact on the results of LCOE. To design a practical and transferable tool for
policymakers in planning rooftop PV and a reference for stakeholders, this paper explores changes in
each area when these variables change. First, we identify target groups based on their PV potential
and demographic characteristics (Section 5.1). Then, we build the market distribution curves based on
the techno-economic results and then observe the possibilities of shifting and bending distribution
curves under different possible impact changes (Sections 5.2 and 5.3). This paper compares different
desirable policies to help policymakers select effective strategies to promote their desire for the rooftop
PV market.

5.1. Defining Target Groups

From the results in Section 4.2.1, national and regional governments can choose the most economic
provinces directly from the potential ranking in Figure 6. However, the main drivers for solar
development in developing countries are urbanization and GDP [2,55]. This means the chance of
higher-income people investing in rooftop solar PV is higher in urban than in rural areas.

Figure 11 shows the available rooftop PV distribution corresponding to the level of urbanization
(left) and the GDP per capita in 2018 (right) distributions in 63 regions in Vietnam. The distributions
highlighted in red, which consist of 14 provinces, indicate the minimal potential area, with less than
5 km2 of roof area, 15% of urbanization, and 1000 Euro/a income. The green distributions illustrate
the outstanding potential area, including nine provinces with more than 35 km2 of the available roof,
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60% of urbanization, and 2000 Euro/a income. Details of potential assessment results and demographic
indicators can be found in Tables A2 and A3.Energies 2020, 13, x FOR PEER REVIEW 18 of 46 
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Table 4. Employed values of the uncertain parameters and their considered variation range in this study.

Uncertain
Parameter Variable Symbol Used Value (unit) [ref] Variation

Range

Geographical
input

Utilization factor for flat roof M 50 (%) [16] ±40%
Utilization factor for slanted roof M 58 (%) [25] ±33%

The average number of apartments on
one floor of the building

nA
F 10 (-) [47] ±60%

Added area to the ground floor area b 10 (%) [47] ±50%

Technological
input

The azimuth of the slanted roof γ 90 (degrees) [32] ±100%
Performance ratio PR 85 (%) [25] ±10%

Economic
input

O&M cost At 0.036 (Euro/kWh) [48] ±50%
Capital cost I0 0.59 (Euro/W) [48] ±50%

Discount rate i 8 (%) [47] ±50%

Because most of the provinces have a relatively low (15–60%) urban rate and humble economic
(1000–2000 Euro/a income) development, the success of the first adopters plays a crucial role in the
new market due to their potential impacts on followers. To improve rooftop solar development,
the role of local and government authorities is equally essential. However, in practice, sub-national
or local governments are constrained by limited resources, weak institutional capacity, inadequate
mechanisms, and limited availability of information [3,7,26,29]. These circumstances, as well as the
complication of land ownership and attractiveness, constitute a narrow space for the policymakers to
encourage rooftop PV development at the local level without significant support from the government.
This means that there is an obvious need for selecting target groups that is unified from national to
local levels.

Based on the market characteristics, this paper suggests determining target groups based on
k-means clustering of the development dynamics of 63 provinces in Vietnam with the criteria, i.e.,
their techno-economic potentials including the available roof (km2), the production potential (TWh/a),
LCOE (Euro cent/kWh), the level of urbanization (%) [47], and GDP (Euro/a) [47] (See Table A2 for
detailed information). The results are shown in Table 5, Figure 12, and Figure A1. Because there are
more than two dimensions (variables), Table 5 shows the principal component analysis and plots the
data points according to the first two principal components (Dim1 and Dim2) that explain the majority
of the variance and shows an illustration of the clusters. Figure A1 shows the clusters corresponding
to their geographic position in the country.

Table 5. Priority groups and their specific characteristics.

Priority Cluster
Name

Available
Roof km2

Average LCOE
(euro cent/kWh)

Production Potential
(TWh/a)

GDP per
Capita (Euro)

Urban
Rate

No.
Province

1 6 101.95 8.25 20.20 2260.53 65% 2
2 2 17.11 8.06 3.51 1558.96 51% 7
3 1 29.04 7.59 6.59 1431.55 29% 9
4 3 26.12 8.92 4.42 1307.08 22% 13
5 5 17.03 7.69 3.74 1143.27 26% 18
6 4 12.57 8.96 2.07 794.10 19% 14
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Ranked in order of priority for rooftop PV policies, Hanoi and Ho Chi Minh are classified as
Priority 1, which requires the most policy focus due to their most favorable condition for rooftop PV
development, followed by Ba Ria Vung Tau, Binh Duong, Can Tho, and Da Nang. Detailed clustering
and priority ranking results for each region can be found in Table A4.

The results do not only recommend policy priority but also support national policymakers to
redirect and balance the PV development between different regions. For example, the government
can provide a favorable policy to the higher LCOE but potentially fast-uptake regions, e.g., cities and
provinces of Priorities 1 and 2.

5.2. Assessing the Market Attractiveness and FIT

Rather than just analyzing the sensitivity of the output analysis to changes in the variable
assumptions, as above, this section also looks at the probability distribution of the outcome in order to
make decisions or take actions accordingly. Scenario analysis is designed to analyze the change of
output regarding the different sets of inputs and then based on the various possible outcomes. In this
paper, we use competitive prices to compare the potential benefit of installing rooftop PV between
different scenarios. The competitive prices are the differences between the FIT and LCOE and between
LCOE and the grid tariff (TG) (Equation (15)).{

Delta1 = FiT− LCOE
Delta2 = TG − LCOE

(15)

Table 6 summarizes the different possibilities of different metering models concerning LCOEs
and grid tariffs. The business model indicates that residential customers can sell generated electricity
on the grid to the system operator. The self-consumption model indicates that consumption of PV
electricity takes place directly at the house/building—either immediately or delayed through the use of
storage systems.
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Table 6. Competitive prices and corresponding metering models in the rooftop PV market
(“x”, beneficial; “-”, not beneficial).

Competitive Price Metering Model

Delta1 Delta2 Business Self-Consumption

>0 >0 x x
>0 <0 x -
<0 >0 - x
<0 <0 - -

The results support policymakers in making decisions and testing the robustness of an effect.
By understanding the relationships between input and output variables, policymakers can encourage
rooftop PV market development in certain areas by keeping the risk of investors at a comfortable level.
With each specific decision, policymakers can measure the effect coverage, as well as the cost and
benefit of their choice, and can compare and therefore decide which action should be taken.

Vietnam has an attractive solar market. However, it is undergoing a period of intense
transformation. In 2017, the Vietnamese Ministry of Industry and Trade (MOIT) introduced the
first FIT, called FIT 1.0, of 8.83 Euro cent/kWh for all solar projects under Decision No. 11. It officially
laid the primary foundation for solar power development. To promote market development,
in February 2019, MOIT released the draft Decision with new FITs, called FIT 2.0, of an average
of 9 Euro cents/kWh for rooftop solar [56] to replace Decision No. 11. FIT 2.0 proposed FITs ranging
from 7.45 to 10.26 Euro cents/kWh depending on the four classified irradiation regions of Vietnam.
However, in December 2019, a final draft submission letter from MOIT (with a signature but no stamp)
for another FIT, called FIT 2.1, has been internally circulated. The FIT 2.1 for rooftop PV projects would
be set at 7.91 Euro cents/kWh (Currency exchange rate (Nov 2019): 1 Euro = 1.06 Dollar US), which is
around 1 Euro cent/kWh less than the first proposal.

This paper compares the effect of the three FITs on the fledgling market (Figure 13). FIT 1.0, set at
8.83 Euro cent/kWh, generated significant interest in the whole market, especially in the southern
regions of Vietnam, which have the highest levels of irradiation. If this price was maintained,
the Vietnamese rooftop market would continue to flourish. The expected total return per kWh of
the whole market for rooftop PV would be 0.56 Euro cents (blue line). However, 24% of areas would
remain unattractive.
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0.12 cents in all localities (orange line). By increasing 0.07 cents/kWh of the average FIT and specified
regional price, FIT 2.0 would increase the possible activated market from 76% to 92% and create an
additional exploitable 56 TWh potential, equivalent to a possible of 28 million Euro of profits. More than
30 provinces could show their aggressive competition of more than 1 Euro cent profit per kWh.

While the FIT 2.0 promises a bright future for rooftop PV, only some areas may qualify for the FIT
2.1 if the Prime Minister agrees with this approach. More than 60% of the market would be pushed
into a difficult situation (red line), causing damage of 900 million Euro in the whole market (Table A5).
The possibility of suppressing development or even market recession due to this FIT 2.1 needs to be
borne in mind [57].

5.3. The Role of Grid Tariffs and PV Module Costs in Self-Sufficiency Developments

According to Vietnam EVN reports, the country’s retail electricity price is projected to gradually
increase by around 6.12% per year so that the electricity supply units, including EVNs, can offset
costs. This paper analyzes the grid tariff changes reflecting on the self-consumption rooftop PV
market by ranging it from 7.2 Euro cent/kWh in 2018 to a projected tariff of 8.7 Euro cent/kWh in
2025 (Figure 14). The left chart displays the current market with the grid tariff of 7.2 Euro cent/kWh
with different discount rates of 4% and 12%. The right one presents the market when the grid tariff
increases to 8.7 Euro cent/kWh. Increasing the grid tariff undeniably creates a favorable condition
for the self-consumption business by increasing the expected benefit to −0.5 and 1.2 Euro cent/kWh
at a 12% and 4% discount rate, respectively. Detail results for each region can be found in Table A6.
As the grid tariff increases, the chance for self-consumption will also increase. However, it should
be noted that, even though the policy seems to be effective in encouraging rooftop PV development,
it faces many mixed reactions from the public. While researchers and banks complain that electricity
price policy in Vietnam is inappropriate for investment because of its relative low grid tariff compared
with the grid tariff in neighbor countries [58,59], the increasing grid tariff has led to an increase in the
price of finished products, making it particularly tricky for domestic manufacturing enterprises and
public consumers.Energies 2020, 13, x FOR PEER REVIEW 22 of 46 
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In this paper, we observe the effect of the reduction in specific investment for rooftop PV in
Vietnam by adjusting the capital expenditure (CAPEX) of the small rooftop PV systems (1–15 kWp),
which will also affect O&M costs (OPEX). The current total costs (CAPEX + OPEX) range from 635 to
1038 Euros/kWp in Vietnam. At a discount rate of 8% and under the FIT 1.0 or FIT 2.0, the business
project can expect an average benefit ranging from −1.7 to 3.3 Euro cent/kWh and the self-consumption
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project can expect from −3.5 to 1.5 Euro cent return per kWh (Figure 15). If the total cost is lower
than 650 Euros/kWp, it is feasible to invest in either of the metering models. However, the projects,
whose total cost is higher than 836 Euros/kWp, are not recommended in Vietnam.

Energies 2020, 13, x FOR PEER REVIEW 22 of 46 

 

 
(a) (b) 

Figure 14. Competitive prices change in accordance with the projected grid tariff increases from (a) 
7.2 to (b) 8.7 Euro cent/kWh. 

In this paper, we observe the effect of the reduction in specific investment for rooftop PV in 
Vietnam by adjusting the capital expenditure (CAPEX) of the small rooftop PV systems (1–15 kWp), 
which will also affect O&M costs (OPEX). The current total costs (CAPEX + OPEX) range from 635 to 
1038 Euros/kWp in Vietnam. At a discount rate of 8% and under the FIT 1.0 or FIT 2.0, the business 
project can expect an average benefit ranging from −1.7 to 3.3 Euro cent/kWh and the self-
consumption project can expect from −3.5 to 1.5 Euro cent return per kWh (Figure 15). If the total cost 
is lower than 650 Euros/kWp, it is feasible to invest in either of the metering models. However, the 
projects, whose total cost is higher than 836 Euros/kWp, are not recommended in Vietnam.  

Rooftop PV technology is becoming more efficient and cost-competitive compared to other 
traditional energies. A dramatic decrease in the average wholesale price for crystalline modules is 
reported in China with a reduction from about 530 to 400 Euros/kWp in less than two years from 2016 
to the first quarter of 2018 [60]. Moreover, while in 2005 solar modules constituted almost 75% of the 
system costs, this share amounts to around 50% today, even for rooftop PV systems [60]. In light of 
the reduced prices for crystalline modules in the global market [60,61], if the total cost for a rooftop 
PV system is lower than 650 Euros/kWp, it will provide a significant impetus to self-sufficient 
developments for the rooftop PV market in Vietnam.  

 
(a) (b) 

Figure 15. Expected business market (a) and expected self-consumption (b) surplus change in 
accordance with investment costs increase from 635 to 1038 Euros/kWp. 

5.4. Critical Discussion 
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accordance with investment costs increase from 635 to 1038 Euros/kWp.

Rooftop PV technology is becoming more efficient and cost-competitive compared to other
traditional energies. A dramatic decrease in the average wholesale price for crystalline modules is
reported in China with a reduction from about 530 to 400 Euros/kWp in less than two years from
2016 to the first quarter of 2018 [60]. Moreover, while in 2005 solar modules constituted almost
75% of the system costs, this share amounts to around 50% today, even for rooftop PV systems [60].
In light of the reduced prices for crystalline modules in the global market [60,61], if the total cost for a
rooftop PV system is lower than 650 Euros/kWp, it will provide a significant impetus to self-sufficient
developments for the rooftop PV market in Vietnam.

5.4. Critical Discussion

A cost-effective and transferable methodology for rooftop PV potential assessment in developing
countries has been developed. The accuracy of the proposed method has been improved.
However, challenges related to the data input still exist. The paper uses digital maps, which are
prepared by using satellite imagery, combined with a manual spatial data collection method to
conduct geospatial analysis. For example, the final map of Vietnam requires matching geographic and
population distributions and building densities within 11,050 clusters of the topographic map in the
case of Vietnam. The uncertainty issue arises when different maps often exhibit different accuracy
levels depending on their application and spatial extent. The final map incorporates the mistakes of all
component maps. The geo-referencing errors, the tilt angle of the sensor, the spatial resolution of the
digital data, etc. affect the accuracy of the final map. The performance of the raster map of Vietnam
in monthly means compared to measurements at 11 ground stations results in a mean bias error of
−0.05 kWh m−2 day−1 (which represents −1.2% in relative mean bias error) and a root mean square
error of 0.32 kWh m−2 day−1 (8.3% in relative root mean square error) [49]. The data collecting methods
and the limitations/errors associated with those methods disturb the spatial accuracy. For example,
different classification and interpolation methods were used in preparing the population distribution
map for data presented with different errors of around 2–5% in the final map [47]. This paper conducts
a sensitivity analysis to assess the effect of these uncertainties on the final results.

This paper considers the temperature and solar radiation, which have significant effects on the
performance of photovoltaic (PV) systems; PV cell temperature, which is related to the ambient
temperature; and the solar radiation incident on the PV surface, which depends on the slope and
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azimuth of the PV panels. Another factor that affects the solar radiation incident on the PV surface and
hence influences its performance is the ground reflectance (albedo). This paper does not consider this
factor due to the renowned complicated vertical distribution of cloud and aerosol layers of Vietnam [62].
Moreover, based on the literature, the albedo effect seems to be relatively small in Vietnam. Vietnam
has a diffuse broadband solar irradiance (310–2100 nm) with the normalized solar wavelength of
532 mm [62]. The corresponding albedo spectrum and the effective albedo value, thus, range from
around 5% to 15% and 0.1 to 0.35, depending on the rooftop materials such as brick, red shingle,
ceramic tiles, and green paint, respectively [63]. The effective albedo can lead to errors of less than 1.6%
and 6.7% for the module tilt angles from horizontal of 40◦ and 90◦ [64]. Further studies, especially field
studies on a small scale, can use this effective albedo value to optimize PV system design and take
advantage of the reflected albedo resource.

This study improves the accuracy of technical potential output by calculating the corrected
temperature based on the NOCT model. As mentioned in Section 3, NOCT is obtained under
predetermined environmental conditions, while STC is the test condition used to rate the performance
of a PV panel. STC is the idealized condition, which can overpredict PV performance [65,66]. Since the
NOCT is based on realistic data, it is simple and easy to apply. Manufacturers usually include NOCT
in the module characteristic data. However, NOCT can overpredict the PV cell temperature by around
10% [67], and can also vary around 2–5 ◦C, depending on the module materials [68]. Thus, it can
underpredict the PV performance [36]. Another option for calculating the expected PV system yield
for specific provinces or even buildings is the free online tool PVGIS, provided by the European
Commission [69]. The tool uses the real measured values of solar radiation at specific location and
provides an overview information about PV system performance. However, while PVGIS is certainly
more accurate for a specific building, it would not be feasible to perform a national analysis with
this tool.

When calculating the cost for decentralized PV generation technologies, this paper uses LCOE,
which is the most widely used metric for a cost comparison between different generation technologies.
However, since the renewable energy share in total electricity supply increases, it poses a difficulty for
LCOE to make comparisons between different categories of supply, e.g., residual load, load following,
and variable load. Another concern regarding LCOE is that it is becoming more difficult to justify
applying the same weighted average cost of capital to technologies with very different climate policy
risks. To deal with these drawbacks, the new measure, called the Value-Adjusted Levelized Cost of
Electricity (VALCOE), is now recommended by the IEA [70], which includes three adjustments to
LCOE: energy, value, and flexibility. Although the VALCOE may be a better measure of cost for grid
managers, the IEA needs to provide the data for the added factors from their World Energy Model
(WEM) regional hourly dispatch models. Once these data are available and the flexibility value, outside
of the WEM model, in the VALCOE equation, are well defined, future studies can replace LCOE by
this new measurement.

6. Conclusions and Policy Implications

Rooftop PV is driving the decentralization of electricity production, which is a cornerstone of the
sustainable development concept, whereby households become more independent of the electricity
grid due to a thorough integration of renewable energy sources. However, it is still often seen as
a novelty, and legally, local authorities have difficulties enforcing this specific technology in their
detailed development plans partly because of the lack of expertise and capital. Therefore, it is relevant
to address decentralized PV potentials as early as possible when the state and local governments start
planning for the type of energy source. Since different regions have different climatic, geographic,
and demographic profiles, this paper provides an affordable, robust and high-resolution potential
assessment for rooftop PV and suggests target groups alongside policy solutions with clear national
and local goals, based on the findings. The proposed method considers construction and design
constraints, obstacles on the rooftop, and the proper orientation on the roof, including shading effects
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and the slum areas (informal settlements). The paper considers Vietnam as an example for other
emerging countries to apply the method. The results can provide an overview plan as well as an
integrated strategy for developing rooftop PV between different administrative levels.

The physical potential in the raster maps, which encompasses the maximum amount of solar energy
received in a particular area, is broken down into the geographic potential of in total 1407 km2 available
rooftop by gradually excluding the zones reserved for other uses and restricting the locations where
solar energy can be gathered. The technical potential is calculated with the results of roof-mounted
solar cells in the whole country being about 228 and 216 GWp or about 278 and 263 TWh/a with
monocrystalline and polycrystalline solar cells, respectively. The LCOE is also calculated, ranging from
about 7.6 to 9.2 Euro cents/kWh at a discount rate of 8% in 63 provinces in Vietnam. However, since the
techno-economic potential of PV is associated with a certain degree of uncertainty, we measure the error
regarding the uncertainty of data assumptions and inputs and the inherently unknowable reaction of
the market. Overcoming the unfavorable data conditions, this paper provides a practical and useful
tool for policy-making processes. We suggest dividing the market by target group and priority level
based on their PV potentials, demographics, and economic status. Hanoi and Ho Chi Minh City should
be classified as the highest priority cities for policy focus based on their high potential and robust
internal economic and demographic conditions.

This paper also provides systematic guidance to help policymakers design political strategies
to support market development. For example, only projects with total costs (CAPEX + OPEX) and
discount rates lower than 850 Euros/kWp and 8% respectively, can be beneficial in the current market.
With total costs of around 650–850 Euros/kWp, the only attractive investment option is the business
model, which is selling generated PV electricity directly on the state grid, while total costs lower than
650 Euros/kWp make a choice between the business and the self-consumption models possible for
their rooftop PV projects. For self-consumption, there is no clear strategy, but the situation improves
due to increasing grid tariffs. Consumers must, however, wait until around 2025 when their grid
tariff should rise to at least about 8.7 cents/kWh and self-consumption will become attractive, but this
date could be sooner if costs for solar technology continue to decrease. By simulating the rooftop PV
market in different projected FITs, we recommend that the government consider their tariff strategies
carefully. In the case of changing the average FIT from 8.83 to 9 Euro cents/kWh and establishing
regional FITs, they can activate an additional 16% of the total market, equivalent to around 56 TWh and
approximately 28 million Euro of profit. However, if they were to reduce the FIT to 7.79 Euro cents/kWh,
it would deactivate about 60% of the rooftop PV market and would reduce total market benefits of
approximately 900 million Euro (Table A5).

This paper presents a methodology to carry out resource assessments for rooftop PV in developing
countries, as applied to Vietnam. The method is a top-down method that can be employed
where detailed, accurate data on buildings, their outlines, and associated infrastructure are lacking.
It represents an improvement beyond state of the art and has an absolute error of about 5% compared
to detailed bottom-up city models, which is very low for a method at this spatial scale and resolution.
Uncertainties relating to the input data are significant but are considered in the sensitivity analysis,
which should be borne in mind when interpreting the results. Especially the accuracy of the assumptions
relating to the building location, size, orientation, and shading impacts are country-specific and require
further research to be employed elsewhere. One promising avenue in this context is the combination
of open mapping data with satellite images to automatically identify suitable geometries for rooftop
PV [31]. By further validating the top-down results from this study with bottom-up results from 3D
models (e.g., Effigis Geo-Solutions 2018), the method could be improved and applied to other contexts.
Finally, this and related studies have tended to focus on the supply side for rooftop PV, but there is a
need for future research to analyze the demand side, especially public opinion and willingness to pay
for PV systems.
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Nomenclature

PV Photovoltaics
LIDAR Light detection and ranging
HVAC Heating, Ventilation and Air Conditioning
STC Standard test conditions
AM Air mass
NOCT Nominal operating cell temperature
CT Constant value
HD Height difference
MRS Module row spacing
PR Performance ratio
LCOE Levelized Cost of Electricity
GDP Gross domestic product
Dim Dimension
FIT Feed-in tariff
MOIT Vietnamese Ministry of Industry and Trade
EVN Vietnam Electricity Enterprise
CAPEX Capital expenditure
OPEX Operational and maintenance expenditure

Appendix A

Table A1. Retail electricity tariff for household customers (published 20/03/2019).

Customer Group Rate
(VND/kWh) Rate (Euro cents/kWh)

1 Retail price for household electricity

Rate 1: For 0–50 kWh 1678 6.33

Rate 2: For 51–100 kWh 1734 6.54

Rate 3: For 101–200 kWh 2014 7.60

Rate 4: For 201–300 kWh 2536 9.57

Rate 5: For 301–400 kWh 2834 10.69

Rate 6: For 401 kWh onwards 2927 11.05

2 Retail price for household electricity via prepaid card meter 2461 9.29
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Table A2. Provinces in Vietnam and their demographic characteristics.

ID Province Region Total Area
(km2)

Household
Area (km2)

% of Household
Area Population Urban Rate

2018 (%)
Gdp/a/person
2018 (Euro/a)

1 An Giang Mekong river delta 3536 135 3.8% 2164.2 30.8% 1612.1

2 Ba Ria-Vung Tau Southeast 1979 71 3.6% 1112.9 52.4% 2210.3

3 Bac Giang Northern midlands 3895 185 4.7% 897.0 11.5% 1562.3

4 Bac Kan Northern midlands 4860 26 0.5% 327.9 18.8% 880.8

5 Bac Lieu Mekong river delta 2668 49 1.8% 1691.8 29.1% 1222.2

6 Bac Ninh Red river delta 822 104 12.7% 1247.5 28.3% 2466.1

7 Ben Tre Mekong river delta 2395 81 3.4% 1268.2 10.8% 1543.7

8 Binh Dinh South central coast 6066 94 1.5% 2163.6 31.0% 1369.4

9 Binh Duong Southeast 2696 136 5.0% 1534.8 39.4% 3089.7

10 Binh Phuoc Southeast 6878 65 0.9% 979.6 22.0% 1632.0

11 Binh Thuan South central coast 7946 89 1.1% 1239.2 78.2% 1560.0

12 Ca Mau Mekong river delta 5221 65 1.2% 1229.6 22.7% 1352.2

13 Can Tho Mekong river delta 1439 82 5.7% 540.4 67.3% 1979.3

14 Cao Bang Northern midlands 6701 56 0.8% 1282.3 23.2% 840.5

15 Da Nang South central coast 1286 75 5.8% 1080.7 87.8% 2493.3

16 Dak Lak Central highlands 13030 150 1.2% 1919.2 24.7% 1244.4

17 Dak Nong Central highlands 6513 55 0.8% 645.4 15.3% 1372.1

18 Dien Bien Northern Mountains 9542 50 0.5% 3086.1 15.1% 668.8

19 Dong Nai Southeast 5863 177 3.0% 1693.3 35.6% 2400.0

20 Dong Thap Mekong river delta 3383 146 4.3% 576.7 17.8% 1584.9

21 Gia Lai Central highlands 15511 183 1.2% 1458.5 30.9% 1171.0
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Table A2. Cont.

ID Province Region Total Area
(km2)

Household
Area (km2)

% of Household
Area Population Urban Rate

2018 (%)
Gdp/a/person
2018 (Euro/a)

22 Ha Giang Northern midlands 7929 71 0.9% 846.5 15.1% 781.1

23 Ha Nam Red river delta 859 63 7.3% 808.2 15.9% 1633.8

24 Ha Noi Red river delta 3360 407 12.1% 7520.7 64.6% 2741.4

25 Ha Tinh North central coast 5990 121 2.0% 1277.5 18.7% 1287.8

26 Hai Duong Red river delta 1666 167 10.0% 1807.5 25.3% 1672.3

27 Hai Phong Red river delta 1561 145 9.3% 2013.8 46.8% 2316.7

28 Hau Giang Southeast 1622 45 2.8% 776.7 25.4% 1606.6

29 Ho Chi Minh City Mekong river delta 2062 282 13.7% 8598.7 80.5% 2797.1

30 Hoa Binh Northern Mountains 4591 140 3.0% 846.1 14.8% 1039.2

31 Hung Yen Red river delta 929 96 10.3% 3558.2 13.0% 1740.2

32 Khanh Hoa South central coast 5139 67 1.3% 1188.9 45.0% 1564.5

33 Kien Giang Mekong river delta 6348 137 2.2% 1232.4 29.2% 1711.2

34 Kon Tum Central highlands 9675 84 0.9% 1810.5 35.5% 908.8

35 Lai Chau Northern Mountains 9069 29 0.3% 535.0 17.3% 676.1

36 Lam Dong Central highlands 9780 125 1.3% 790.5 39.8% 1648.8

37 Lang Son Northern midlands 8310 81 1.0% 1312.9 20.3% 926.9

38 Lao Cai Northern Mountains 6366 52 0.8% 456.3 22.9% 1052.4

39 Long An Mekong river delta 4496 266 5.9% 705.6 18.0% 1908.7

40 Nam Dinh Red river delta 1669 112 6.7% 1503.1 18.7% 1532.4

41 Nghe An North central coast 16482 256 1.6% 1854.4 15.1% 1151.5

42 Ninh Binh Red river delta 1385 68 4.9% 3157.1 21.1% 1191.4



Energies 2020, 13, 2501 28 of 46

Table A2. Cont.

ID Province Region Total Area
(km2)

Household
Area (km2)

% of Household
Area Population Urban Rate

2018 (%)
Gdp/a/person
2018 (Euro/a)

43 Ninh Thuan South central coast 3354 49 1.5% 973.3 36.2% 1710.8

44 Phu Tho Northern midlands 3535 106 3.0% 611.8 19.1% 1309.6

45 Phu Yen South central coast 5022 54 1.1% 1404.2 29.1% 1284.7

46 Quang Binh North central coast 7999 63 0.8% 909.5 63.9% 1207.2

47 Quang Nam South central coast 10574 204 1.9% 887.6 19.8% 1315.9

48 Quang Ngai South central coast 5157 116 2.2% 1501.1 30.3% 1313.2

49 Quang Ninh Northern midlands 6179 82 1.3% 1272.8 24.3% 2163.2

50 Quang Tri North central coast 4623 43 0.9% 1266.5 15.2% 1151.5

51 Soc Trang Mekong river delta 3314 57 1.7% 630.6 30.6% 1654.2

52 Son La Northern Mountains 14124 86 0.6% 1315.9 13.7% 671.5

53 Tay Ninh Southeast 4042 92 2.3% 1242.7 22.6% 1928.2

54 Thai Binh Red river delta 1588 136 8.6% 1133.4 10.5% 1818.1

55 Thai Nguyen Northern midlands 3526 123 3.5% 1793.2 35.3% 1606.2

56 Thanh Hoa North central coast 11116 552 5.0% 1268.3 17.3% 1365.3

57 Thua Thien Hue North central coast 4901 95 1.9% 1163.6 48.9% 1396.5

58 Tien Giang Mekong river delta 2512 100 4.0% 1762.3 15.5% 1804.1

59 Tra Vinh Mekong river delta 2356 49 2.1% 1049.8 18.3% 1299.2

60 Tuyen Quang Northern midlands 5868 61 1.0% 780.1 13.9% 1024.3

61 Vinh Long Mekong river delta 1524 60 3.9% 1051.8 25.0% 1398.8

62 Vinh Phuc Red river delta 1237 79 6.4% 1092.4 17.0% 1675.0

63 Yen Bai Northern Mountains 6887 54 0.8% 815.6 20.7% 1037.0
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Table A3. Results of potential assessment.

ID Province
Available

Roof
(km2)

LCOE
Mono

(Euro cents/
kWh)

LCOE
Poly

(Euro cents/
kWh)

Production
Potentials

Mono
(TWh/a)

Production
Potentials

Poly
(TWh/a)

Installable
Potentials

Mono
(GWP)

Installable
Potentials

Poly (GWP)

Specific
Potential

Mono
(GWh/ km2)

Specific
Potential

Poly (GWh/
km2)

1 An Giang 28.2 7.6 7.2 6.3 6 4.6 4.4 1.8 1.7

2 Ba Ria-Vung Tau 17.7 7.6 7.2 4 3.8 2.9 2.7 2 1.9

3 Bac Giang 18.8 9 8.5 3.1 2.9 3 2.8 0.8 0.8

4 Bac Kan 7.2 9.3 8.7 1.1 1.1 1.2 1.1 0.2 0.2

5 Bac Lieu 13.8 7.8 7.4 3 2.8 2.3 2.1 1.1 1.1

6 Bac Ninh 17.6 8.9 8.4 2.9 2.8 2.8 2.7 3.6 3.4

7 Ben Tre 23.5 7.7 7.2 5.3 5 3.9 3.6 2.2 2.1

8 Binh Dinh 23 7.7 7.3 5.1 4.8 3.8 3.6 0.8 0.8

9 Binh Duong 22.6 7.6 7.2 5.2 4.9 3.7 3.5 1.9 1.8

10 Binh Phuoc 27.5 7.5 7.1 6.4 6 4.5 4.2 0.9 0.9

11 Binh Thuan 19.1 7.3 6.9 4.6 4.4 3.1 2.9 0.6 0.6

12 Ca Mau 24.5 7.9 7.5 5.2 4.9 4 3.8 1 0.9

13 Can Tho 16.5 7.7 7.3 3.6 3.4 2.7 2.6 2.6 2.4

14 Cao Bang 11 9.2 8.7 1.7 1.6 1.7 1.7 0.3 0.2

15 Da Nang 13.7 8 7.6 2.8 2.7 2.2 2.1 2.2 2.1

16 Dak Lak 22.4 7.6 7.2 5.1 4.8 3.6 3.4 0.4 0.4

17 Dak Nong 7.5 7.5 7.1 1.7 1.6 1.2 1.1 0.3 0.2

18 Dien Bien 10.7 8.4 7.9 1.9 1.8 1.7 1.6 0.2 0.2

19 Dong Nai 43.8 7.6 7.2 9.9 9.4 7.1 6.8 1.7 1.6

20 Dong Thap 24.9 7.6 7.2 5.7 5.3 4.1 3.8 1.7 1.6

21 Gia Lai 19.3 7.6 7.2 4.3 4.1 3.1 2.9 0.3 0.3
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Table A3. Cont.

ID Province
Available

Roof
(km2)

LCOE
Mono

(Euro cents/
kWh)

LCOE
Poly

(Euro cents/
kWh)

Production
Potentials

Mono
(TWh/a)

Production
Potentials

Poly
(TWh/a)

Installable
Potentials

Mono
(GWP)

Installable
Potentials

Poly (GWP)

Specific
Potential

Mono
(GWh/ km2)

Specific
Potential

Poly (GWh/
km2)

22 Ha Giang 13.2 9.3 8.7 2 1.9 2.1 2 0.3 0.2

23 Ha Nam 13 8.9 8.4 2.2 2.1 2.1 2 2.5 2.4

24 Ha Noi 93.9 8.9 8.4 15.6 14.8 15.1 14.3 5 4.7

25 Ha Tinh 27.4 8.9 8.4 4.6 4.3 4.4 4.2 2.8 2.6

26 Hai Duong 24.7 8.9 8.3 4.2 3.9 4 3.8 2.7 2.6

27 Hai Phong 19.2 8.8 8.3 3.4 3.2 3.2 3 0.6 0.5

28 Hau Giang 11.9 7.9 7.4 2.5 2.4 2 1.8 1.6 1.5

29 Ho Chi Minh City 110 7.6 7.2 24.8 23.4 18 17 11.8 11.2

30 Hoa Binh 10 8.9 8.4 1.7 1.6 1.6 1.5 0.4 0.3

31 Hung Yen 16.6 8.9 8.4 2.8 2.6 2.7 2.5 3 2.9

32 Khanh Hoa 16.7 7.6 7.2 3.8 3.6 2.7 2.6 0.7 0.7

33 Kien Giang 31.7 7.8 7.4 6.8 6.5 5.2 4.9 1.1 1

34 Kon Tum 7.5 7.7 7.3 1.6 1.5 1.2 1.1 0.2 0.2

35 Lai Chau 9.5 8.6 8.1 1.6 1.6 1.5 1.4 0.2 0.2

36 Lam Dong 17.2 7.5 7.1 3.9 3.7 2.8 2.6 0.4 0.4

37 Lang Son 14.6 9.1 8.6 2.3 2.2 2.3 2.2 0.3 0.3

38 Lao Cai 10.8 9.2 8.7 1.7 1.6 1.7 1.6 0.3 0.3

39 Long An 29.6 7.6 7.2 6.8 6.4 4.8 4.6 1.5 1.4

40 Nam Dinh 27.1 8.8 8.3 4.7 4.4 4.4 4.1 2.8 2.7

41 Nghe An 45.4 8.6 8.1 8.1 7.7 7.4 7 0.5 0.5

42 Ninh Binh 16.3 8.9 8.3 2.8 2.6 2.6 2.5 2 1.9
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Table A3. Cont.

ID Province
Available

Roof
(km2)

LCOE
Mono

(Euro cents/
kWh)

LCOE
Poly

(Euro cents/
kWh)

Production
Potentials

Mono
(TWh/a)

Production
Potentials

Poly
(TWh/a)

Installable
Potentials

Mono
(GWP)

Installable
Potentials

Poly (GWP)

Specific
Potential

Mono
(GWh/ km2)

Specific
Potential

Poly (GWh/
km2)

43 Ninh Thuan 7.8 7.3 6.9 1.9 1.8 1.3 1.2 0.6 0.5

44 Phu Tho 17.9 9.1 8.6 2.9 2.7 2.9 2.7 0.8 0.8

45 Phu Yen 13.4 7.7 7.3 3 2.8 2.2 2.1 0.6 0.6

46 Quang Binh 17.1 8.7 8.2 3 2.9 2.8 2.7 0.4 0.4

47 Quang Nam 25.6 8 7.6 5.3 5 4.2 4 0.5 0.5

48 Quang Ngai 18.3 7.8 7.4 3.9 3.7 3 2.8 0.8 0.7

49 Quang Ninh 43.8 9.2 8.6 7 6.6 7 6.6 1.1 1.1

50 Quang Tri 10.3 8.4 7.9 1.9 1.8 1.7 1.6 0.4 0.4

51 Soc Trang 20.9 7.8 7.4 4.5 4.3 3.4 3.2 1.4 1.3

52 Son La 19.7 8.5 8 3.5 3.3 3.1 3 0.2 0.2

53 Tay Ninh 24.5 7.4 7.1 5.8 5.4 4 3.8 1.4 1.3

54 Thai Binh 26.9 8.9 8.3 4.6 4.3 4.3 4.1 3 2.8

55 Thai Nguyen 16.5 9.3 8.7 2.6 2.4 2.7 2.5 0.7 0.7

56 Thanh Hoa 42.8 8.7 8.2 7.5 7.1 6.9 6.6 0.7 0.6

57 Thua Thien Hue 16.5 8.3 7.8 3.2 3 2.7 2.5 0.6 0.6

58 Tien Giang 28.6 7.6 7.2 6.4 6.1 4.7 4.4 2.6 2.4

59 Tra Vinh 16.8 7.7 7.3 3.7 3.5 2.7 2.6 1.6 1.5

60 Tuyen Quang 11.7 9.3 8.7 1.8 1.7 1.9 1.8 0.3 0.3

61 Vinh Long 16.5 7.7 7.3 3.6 3.4 2.7 2.6 2.4 2.3

62 Vinh Phuc 18.9 9 8.5 3.1 2.9 3 2.9 2.2 2.1

63 Yen Bai 13.1 9.2 8.7 2.1 1.9 2.1 2 0.3 0.3
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Table A4. Results of clustering.

ID Province Available Roof
(km2)

LCOE
Mono (Euro cents/kWh)

Production Potentials
Mono (TWh/a)

Urban Rate
2018 (%)

gdp/a/Person
2018 (Euro/a)

Clustering
Result Priority

1 An Giang 28.2 7.6 6.3 30.8% 1612.1 1 5

2 Ba Ria-Vung Tau 17.7 7.6 4.0 52.4% 2210.3 2 3

3 Bac Giang 18.8 9.0 3.1 11.5% 1562.3 3 4

4 Bac Kan 7.2 9.3 1.1 18.8% 880.8 4 6

5 Bac Lieu 13.8 7.8 3.0 29.1% 1222.2 5 2

6 Bac Ninh 17.6 8.9 2.9 28.3% 2466.1 3 4

7 Ben Tre 23.5 7.7 5.3 10.8% 1543.7 5 2

8 Binh Dinh 23.0 7.7 5.1 31.0% 1369.4 5 2

9 Binh Duong 22.6 7.6 5.2 39.4% 3089.7 1 5

10 Binh Phuoc 27.5 7.5 6.4 22.0% 1632.0 1 5

11 Binh Thuan 19.1 7.3 4.6 78.2% 1560.0 2 3

12 Ca Mau 24.5 7.9 5.2 22.7% 1352.2 5 2

13 Can Tho 16.5 7.7 3.6 67.3% 1979.3 2 3

14 Cao Bang 11.0 9.2 1.7 23.2% 840.5 4 6

15 Da Nang 13.7 8.0 2.8 87.8% 2493.3 2 3

16 Dak Lak 22.4 7.6 5.1 24.7% 1244.4 5 2

17 Dak Nong 7.5 7.5 1.7 15.3% 1372.1 5 2

18 Dien Bien 10.7 8.4 1.9 15.1% 668.8 4 6

19 Dong Nai 43.8 7.6 9.9 35.6% 2400.0 1 5

20 Dong Thap 24.9 7.6 5.7 17.8% 1584.9 1 5

21 Gia Lai 19.3 7.6 4.3 30.9% 1171.0 5 2
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Table A4. Cont.

ID Province Available Roof
(km2)

LCOE
Mono (Euro cents/kWh)

Production Potentials
Mono (TWh/a)

Urban Rate
2018 (%)

gdp/a/Person
2018 (Euro/a)

Clustering
Result Priority

22 Ha Giang 13.2 9.3 2.0 15.1% 781.1 4 6

23 Ha Nam 13.0 8.9 2.2 15.9% 1633.8 3 4

24 Ha Noi 93.9 8.9 15.6 64.6% 2741.4 6 1

25 Ha Tinh 27.4 8.9 4.6 18.7% 1287.8 3 4

26 Hai Duong 24.7 8.9 4.2 25.3% 1672.3 3 4

27 Hai Phong 19.2 8.8 3.4 46.8% 2316.7 2 3

28 Hau Giang 11.9 7.9 2.5 25.4% 1606.6 5 2

29 Ho Chi Minh City 110.0 7.6 24.8 80.5% 2797.1 6 1

30 Hoa Binh 10.0 8.9 1.7 14.8% 1039.2 4 6

31 Hung Yen 16.6 8.9 2.8 13.0% 1740.2 3 4

32 Khanh Hoa 16.7 7.6 3.8 45.0% 1564.5 5 2

33 Kien Giang 31.7 7.8 6.8 29.2% 1711.2 1 5

34 Kon Tum 7.5 7.7 1.6 35.5% 908.8 5 2

35 Lai Chau 9.5 8.6 1.6 17.3% 676.1 4 6

36 Lam Dong 17.2 7.5 3.9 39.8% 1648.8 5 2

37 Lang Son 14.6 9.1 2.3 20.3% 926.9 4 6

38 Lao Cai 10.8 9.2 1.7 22.9% 1052.4 4 6

39 Long An 29.6 7.6 6.8 18.0% 1908.7 1 5

40 Nam Dinh 27.1 8.8 4.7 18.7% 1532.4 3 4

41 Nghe An 45.4 8.6 8.1 15.1% 1151.5 3 4

42 Ninh Binh 16.3 8.9 2.8 21.1% 1191.4 4 6
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Table A4. Cont.

ID Province Available Roof
(km2)

LCOE
Mono (Euro cents/kWh)

Production Potentials
Mono (TWh/a)

Urban Rate
2018 (%)

gdp/a/Person
2018 (Euro/a)

Clustering
Result Priority

43 Ninh Thuan 7.8 7.3 1.9 36.2% 1710.8 5 2

44 Phu Tho 17.9 9.1 2.9 19.1% 1309.6 4 6

45 Phu Yen 13.4 7.7 3.0 29.1% 1284.7 5 2

46 Quang Binh 17.1 8.7 3.0 63.9% 1207.2 2 3

47 Quang Nam 25.6 8.0 5.3 19.8% 1315.9 5 2

48 Quang Ngai 18.3 7.8 3.9 30.3% 1313.2 5 2

49 Quang Ninh 43.8 9.2 7.0 24.3% 2163.2 3 4

50 Quang Tri 10.3 8.4 1.9 15.2% 1151.5 4 6

51 Soc Trang 20.9 7.8 4.5 30.6% 1654.2 5 2

52 Son La 19.7 8.5 3.5 13.7% 671.5 4 6

53 Tay Ninh 24.5 7.4 5.8 22.6% 1928.2 1 5

54 Thai Binh 26.9 8.9 4.6 10.5% 1818.1 3 4

55 Thai Nguyen 16.5 9.3 2.6 35.3% 1606.2 3 4

56 Thanh Hoa 42.8 8.7 7.5 17.3% 1365.3 3 4

57 Thua Thien Hue 16.5 8.3 3.2 48.9% 1396.5 2 3

58 Tien Giang 28.6 7.6 6.4 15.5% 1804.1 1 5

59 Tra Vinh 16.8 7.7 3.7 18.3% 1299.2 5 2

60 Tuyen Quang 11.7 9.3 1.8 13.9% 1024.3 4 6

61 Vinh Long 16.5 7.7 3.6 25.0% 1398.8 5 2

62 Vinh Phuc 18.9 9.0 3.1 17.0% 1675.0 3 4

63 Yen Bai 13.1 9.2 2.1 20.7% 1037.0 4 6
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Table A5. Market benefit changes according to different FIT strategies.

ID Province FIT_2.0 (Euro
cents/kWh)

Delta_1_1.0 (Euro
cents/kWh)

Delta_1_2.0 (Euro
cents/kWh)

Delta_1_2.1 (Euro
cents/kWh)

Benefit_1.0
(10ˆ6 Euro)

Benefit_2.0
(10ˆ6 Euro)

Benefit_2.1
(10ˆ6 Euro)

1 An Giang 7.95 1.23 0.35 0.31 77.49 22.25 19.53

2 Ba Ria-Vung Tau 7.95 1.23 0.35 0.31 49.20 14.13 12.40

3 Bac Giang 10.32 −0.17 1.32 −1.09 −5.27 40.90 −33.79

4 Bac Kan 10.32 −0.47 1.02 −1.39 −5.17 11.21 −15.29

5 Bac Lieu 7.95 1.03 0.15 0.11 30.90 4.60 3.30

6 Bac Ninh 10.32 −0.07 1.42 −0.99 −2.03 41.16 −28.71

7 Ben Tre 7.95 1.13 0.25 0.21 59.89 13.42 11.13

8 Binh Dinh 7.95 1.13 0.25 0.21 57.63 12.91 10.71

9 Binh Duong 7.95 1.23 0.35 0.31 63.96 18.37 16.12

10 Binh Phuoc 7.95 1.33 0.45 0.41 85.12 29.01 26.24

11 Binh Thuan 7.48 1.53 0.18 0.61 70.38 8.47 28.06

12 Ca Mau 7.95 0.93 0.05 0.01 48.36 2.77 0.52

13 Can Tho 7.95 1.13 0.25 0.21 40.68 9.12 7.56

14 Cao Bang 10.32 −0.37 1.12 −1.29 −6.29 19.03 −21.93

15 Da Nang 8.88 0.83 0.88 −0.09 23.24 24.61 −2.52

16 Dak Lak 7.48 1.23 −0.12 0.31 62.73 −5.91 15.81

17 Dak Nong 7.95 1.33 0.45 0.41 22.61 7.70 6.97

18 Dien Bien 8.88 0.43 0.48 −0.49 8.17 9.10 −9.31

19 Dong Nai 7.95 1.23 0.35 0.31 121.77 34.97 30.69

20 Dong Thap 7.95 1.23 0.35 0.31 70.11 20.13 17.67

21 Gia Lai 7.48 1.23 −0.12 0.31 52.89 −4.98 13.33
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Table A5. Cont.

ID Province FIT_2.0 (Euro
cents/kWh)

Delta_1_1.0 (Euro
cents/kWh)

Delta_1_2.0 (Euro
cents/kWh)

Delta_1_2.1 (Euro
cents/kWh)

Benefit_1.0
(10ˆ6 Euro)

Benefit_2.0
(10ˆ6 Euro)

Benefit_2.1
(10ˆ6 Euro)

22 Ha Giang 10.32 −0.47 1.02 −1.39 −9.40 20.38 −27.80

23 Ha Nam 10.32 −0.07 1.42 −0.99 −1.54 31.22 −21.78

24 Ha Noi 10.32 −0.07 1.42 −0.99 −10.92 221.40 −154.44

25 Ha Tinh 10.32 −0.07 1.42 −0.99 −3.22 65.29 −45.54

26 Hai Duong 10.32 −0.07 1.42 −0.99 −2.94 59.61 −41.58

27 Hai Phong 10.32 0.03 1.52 −0.89 1.02 51.65 −30.26

28 Hau Giang 7.95 0.93 0.05 0.01 23.25 1.33 0.25

29 Ho Chi Minh City 7.95 1.23 0.35 0.31 305.04 87.60 76.88

30 Hoa Binh 10.32 −0.07 1.42 −0.99 −1.19 24.13 −16.83

31 Hung Yen 10.32 −0.07 1.42 −0.99 −1.96 39.74 −27.72

32 Khanh Hoa 7.48 1.23 −0.12 0.31 46.74 −4.40 11.78

33 Kien Giang 7.95 1.03 0.15 0.11 70.04 10.42 7.48

34 Kon Tum 7.95 1.13 0.25 0.21 18.08 4.05 3.36

35 Lai Chau 10.32 0.23 1.72 −0.69 3.68 27.51 −11.04

36 Lam Dong 7.95 1.33 0.45 0.41 51.87 17.68 15.99

37 Lang Son 10.32 −0.27 1.22 −1.19 −6.21 28.04 −27.37

38 Lao Cai 10.32 −0.37 1.12 −1.29 −6.29 19.03 −21.93

39 Long An 7.95 1.23 0.35 0.31 83.64 24.02 21.08

40 Nam Dinh 10.32 0.03 1.52 −0.89 1.41 71.40 −41.83

41 Nghe An 10.32 0.23 1.72 −0.69 18.63 139.26 −55.89

42 Ninh Binh 10.32 −0.07 1.42 −0.99 −1.96 39.74 −27.72
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Table A5. Cont.

ID Province FIT_2.0 (Euro
cents/kWh)

Delta_1_1.0 (Euro
cents/kWh)

Delta_1_2.0 (Euro
cents/kWh)

Delta_1_2.1 (Euro
cents/kWh)

Benefit_1.0
(10ˆ6 Euro)

Benefit_2.0
(10ˆ6 Euro)

Benefit_2.1
(10ˆ6 Euro)

43 Ninh Thuan 7.48 1.53 0.18 0.61 29.07 3.50 11.59

44 Phu Tho 10.32 −0.27 1.22 −1.19 −7.83 35.36 −34.51

45 Phu Yen 7.48 1.13 −0.22 0.21 33.90 −6.48 6.30

46 Quang Binh 10.32 0.13 1.62 −0.79 3.90 48.58 −23.70

47 Quang Nam 8.88 0.83 0.88 −0.09 43.99 46.58 −4.77

48 Quang Ngai 8.88 1.03 1.08 0.11 40.17 42.08 4.29

49 Quang Ninh 10.32 −0.37 1.12 −1.29 −25.90 78.35 −90.30

50 Quang Tri 8.88 0.43 0.48 −0.49 8.17 9.10 −9.31

51 Soc Trang 7.95 1.03 0.15 0.11 46.35 6.89 4.95

52 Son La 10.32 0.33 1.82 −0.59 11.55 63.67 −20.65

53 Tay Ninh 7.95 1.43 0.55 0.51 82.94 32.09 29.58

54 Thai Binh 10.32 −0.07 1.42 −0.99 −3.22 65.29 −45.54

55 Thai Nguyen 10.32 −0.47 1.02 −1.39 −12.22 26.50 −36.14

56 Thanh Hoa 10.32 0.13 1.62 −0.79 9.75 121.44 −59.25

57 Thua Thien Hue 8.88 0.53 0.58 −0.39 16.96 18.52 −12.48

58 Tien Giang 7.95 1.23 0.35 0.31 78.72 22.61 19.84

59 Tra Vinh 7.95 1.13 0.25 0.21 41.81 9.37 7.77

60 Tuyen Quang 10.32 −0.47 1.02 −1.39 −8.46 18.35 −25.02

61 Vinh Long 7.95 1.13 0.25 0.21 40.68 9.12 7.56

62 Vinh Phuc 10.32 −0.17 1.32 −1.09 −5.27 40.90 −33.79

63 Yen Bai 10.32 −0.37 1.12 −1.29 −7.77 23.50 −27.09

Note: FIT 1.0 = 8.83 Euro cents/kWh & FIT 2.1 = 7.91 (Euro cents/kWh) are applied for all regions.
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Table A6. Market benefit changes according to different grid tariff strategies.

ID Province Delta_2_2019 (Euro cents/kWh) Delta_2_2025 (Euro cents/kWh) Benefit_2019 (10ˆ6 Euro) Benefit_2025 (10ˆ6 Euro)

1 An Giang −0.40 1.10 −25.20 69.30

2 Ba Ria−Vung Tau −0.40 1.10 −16.00 44.00

3 Bac Giang −1.80 −0.30 −55.80 −9.30

4 Bac Kan −2.10 −0.60 −23.10 −6.60

5 Bac Lieu −0.60 0.90 −18.00 27.00

6 Bac Ninh −1.70 −0.20 −49.30 −5.80

7 Ben Tre −0.50 1.00 −26.50 53.00

8 Binh Dinh −0.50 1.00 −25.50 51.00

9 Binh Duong −0.40 1.10 −20.80 57.20

10 Binh Phuoc −0.30 1.20 −19.20 76.80

11 Binh Thuan −0.10 1.40 −4.60 64.40

12 Ca Mau −0.70 0.80 −36.40 41.60

13 Can Tho −0.50 1.00 −18.00 36.00

14 Cao Bang −2.00 −0.50 −34.00 −8.50

15 Da Nang −0.80 0.70 −22.40 19.60

16 Dak Lak −0.40 1.10 −20.40 56.10

17 Dak Nong −0.30 1.20 −5.10 20.40

18 Dien Bien −1.20 0.30 −22.80 5.70

19 Dong Nai −0.40 1.10 −39.60 108.90

20 Dong Thap −0.40 1.10 −22.80 62.70

21 Gia Lai −0.40 1.10 −17.20 47.30
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Table A6. Cont.

ID Province Delta_2_2019 (Euro cents/kWh) Delta_2_2025 (Euro cents/kWh) Benefit_2019 (10ˆ6 Euro) Benefit_2025 (10ˆ6 Euro)

22 Ha Giang −2.10 −0.60 −42.00 −12.00

23 Ha Nam −1.70 −0.20 −37.40 −4.40

24 Ha Noi -1.70 -0.20 -265.20 -31.20

25 Ha Tinh -1.70 -0.20 -78.20 -9.20

26 Hai Duong -1.70 -0.20 -71.40 -8.40

27 Hai Phong -1.60 -0.10 -54.40 -3.40

28 Hau Giang -0.70 0.80 -17.50 20.00

29 Ho Chi Minh City -0.40 1.10 -99.20 272.80

30 Hoa Binh -1.70 -0.20 -28.90 -3.40

31 Hung Yen -1.70 -0.20 -47.60 -5.60

32 Khanh Hoa −0.40 1.10 −15.20 41.80

33 Kien Giang −0.60 0.90 −40.80 61.20

34 Kon Tum −0.50 1.00 −8.00 16.00

35 Lai Chau −1.40 0.10 −22.40 1.60

36 Lam Dong −0.30 1.20 −11.70 46.80

37 Lang Son −1.90 −0.40 −43.70 −9.20

38 Lao Cai −2.00 −0.50 −34.00 −8.50

39 Long An −0.40 1.10 −27.20 74.80

40 Nam Dinh −1.60 −0.10 −75.20 −4.70

41 Nghe An −1.40 0.10 −113.40 8.10

42 Ninh Binh −1.70 −0.20 −47.60 −5.60
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Table A6. Cont.

ID Province Delta_2_2019 (Euro cents/kWh) Delta_2_2025 (Euro cents/kWh) Benefit_2019 (10ˆ6 Euro) Benefit_2025 (10ˆ6 Euro)

43 Ninh Thuan −0.10 1.40 −1.90 26.60

44 Phu Tho −1.90 −0.40 −55.10 −11.60

45 Phu Yen −0.50 1.00 −15.00 30.00

46 Quang Binh −1.50 0.00 −45.00 0.00

47 Quang Nam −0.80 0.70 −42.40 37.10

48 Quang Ngai −0.60 0.90 −23.40 35.10

49 Quang Ninh −2.00 −0.50 −140.00 −35.00

50 Quang Tri −1.20 0.30 −22.80 5.70

51 Soc Trang −0.60 0.90 −27.00 40.50

52 Son La −1.30 0.20 −45.50 7.00

53 Tay Ninh −0.20 1.30 −11.60 75.40

54 Thai Binh −1.70 −0.20 −78.20 −9.20

55 Thai Nguyen −2.10 −0.60 −54.60 −15.60

56 Thanh Hoa −1.50 0.00 −112.50 0.00

57 Thua Thien Hue −1.10 0.40 −35.20 12.80

58 Tien Giang −0.40 1.10 −25.60 70.40

59 Tra Vinh −0.50 1.00 −18.50 37.00

60 Tuyen Quang −2.10 −0.60 −37.80 −10.80

61 Vinh Long −0.50 1.00 −18.00 36.00

62 Vinh Phuc −1.80 −0.30 −55.80 −9.30

63 Yen Bai −2.00 −0.50 −42.00 −10.50

Note: Grid tariff in 2019 = 7.2 Euro cents/kWh & Grid tariff in 2025 = 8.7 (Euro cents/kWh) are applied for all regions.
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Figure A1. The clustering distribution on map. 
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Figure A1. The clustering distribution on map.
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23. Lukač, N.; Seme, S.; Žlaus, D.; Štumberger, G.; Žalik, B. Buildings roofs photovoltaic potential assessment
based on LiDAR (Light Detection And Ranging) data. Energy 2014, 66, 598–609. [CrossRef]

24. Castellanos, S.; Sunter, D.A.; Kammen, D.M. Rooftop solar photovoltaic potential in cities: How scalable are
assessment approaches? Environ. Res. Lett. 2017, 12, 125005. [CrossRef]

25. Mainzer, K.; Fath, K.; McKenna, R.; Stengel, J.; Fichtner, W.; Schultmann, F. A high-resolution determination
of the technical potential for residential-roof-mounted photovoltaic systems in Germany. Sol. Energy 2014,
105, 715–731. [CrossRef]

26. Byrne, J.; Taminiau, J.; Kurdgelashvili, L.; Kim, K.N. A review of the solar city concept and methods to
assess rooftop solar electric potential, with an illustrative application to the city of Seoul. Renew. Sustain.
Energy Rev. 2015, 41, 830–844. [CrossRef]

27. Bódis, K.; Kougias, I.; Jäger-Waldau, A.; Taylor, N.; Szabó, S. A high-resolution geospatial assessment of the
rooftop solar photovoltaic potential in the European Union. Renew. Sustain. Energy Rev. 2019, 114, 109309.
[CrossRef]

28. Defaix, P.R.; van Sark, W.G.J.H.M.; Worrell, E.; de Visser, E. Technical potential for photovoltaics on buildings
in the EU-27. Sol. Energy 2012, 86, 2644–2653. [CrossRef]

29. Kabir, M.H.; Endlicher, W.; Jägermeyr, J. Calculation of bright roof-tops for solar PV applications in Dhaka
Megacity, Bangladesh. Renew. Energy 2010, 35, 1760–1764. [CrossRef]

30. National Renewable Energy Laboratory. Rooftop Solar Photovoltaic Technical Potential in the United States:
A Detailed Assessment. In U.S. Department of Energy; 2016. Available online: https://www.nrel.gov/docs/
fy16osti/65298.pdf (accessed on 31 January 2020).

31. Mainzer, K.; Killinger, S.; McKenna, R.; Fichtner, W. Assessment of rooftop photovoltaic potentials at the
urban level using publicly available geodata and image recognition techniques. Sol. Energy 2017, 155, 561–573.
[CrossRef]

32. Nguyen, A.-T.; Tran, Q.-B.; Tran, D.-Q.; Reiter, S. An investigation on climate responsive design strategies of
vernacular housing in Vietnam. Build. Environ. 2011, 46, 2088–2106. [CrossRef]

33. Rosaclot, M.; Tina, G.M. Submerged and Floating Photovoltaic Systems. Modelling, Design and Case Studies;
Academic Press: London, UK, 2018; ISBN 9780128121498.

34. Duffie, J.A.; Beckman, W.A. Solar Engineering of Thermal Processes, 4th ed.; John Wiley: Hoboken, NJ, USA,
2013; ISBN 9780470873663.

35. World Bank Group. Solar Resource Mapping in Vietnam. Implementation Plan. 2017.
Available online: http://documents.worldbank.org/curated/en/134421495707128537/Solar-resource-mapping-
in-Vietnam-implementation-plan-selection-1231900 (accessed on 31 January 2020).

36. Ciulla, G.; Lo Brano, V.; Moreci, E. Forecasting the Cell Temperature of PV Modules with an Adaptive System.
Int. J. Photoenergy 2013, 2013, 1–10. [CrossRef]

37. Neises, T.W.; Klein, S.A.; Reindl, D.T. Development of a Thermal Model for Photovoltaic Modules and
Analysis of NOCT Guidelines. J. Sol. Energy Eng. 2012, 134. [CrossRef]

38. Reinders, A.; Verlinden, P.; van Sark, W.; Freundlich, A. Photovoltaic Solar Energy. From Fundamentals to
Applications; Reinders, A., Verlinden, P., van Sark, W., Freundlich, A., Eds.; John Wiley & Sons Ltd.: Chichester,
West Sussex, UK; Hoboken, NJ, USA, 2017; ISBN 1118927486.

39. Singh, P.; Ravindra, N.M. Temperature dependence of solar cell performance—An analysis. Sol. Energy
Mater. Sol. Cells 2012, 101, 36–45. [CrossRef]

40. World Bank Climate Change Knowledge Portal. Available online: https://climateknowledgeportal.worldbank.
org/download-data (accessed on 9 May 2020).

41. Jordan, D.C.; Kurtz, S.R. Photovoltaic Degradation Rates-an Analytical Review. Prog. Photovolt. Res. Appl.
2013, 21, 12–29. [CrossRef]

42. Konstantin, P. Praxisbuch Energiewirtschaft. Energieumwandlung, -Transport und -Beschaffung,
Übertragungsnetzausbau und Kernenergieausstieg, 4th ed.; Springer: Berlin/Heidelberg, Germany, 2017;
ISBN 9783662498224.

http://dx.doi.org/10.14246/irspsd.1.1_49
http://dx.doi.org/10.1016/j.scs.2013.01.002
http://dx.doi.org/10.1016/j.energy.2013.12.066
http://dx.doi.org/10.1088/1748-9326/aa7857
http://dx.doi.org/10.1016/j.solener.2014.04.015
http://dx.doi.org/10.1016/j.rser.2014.08.023
http://dx.doi.org/10.1016/j.rser.2019.109309
http://dx.doi.org/10.1016/j.solener.2012.06.007
http://dx.doi.org/10.1016/j.renene.2009.11.016
https://www.nrel.gov/docs/fy16osti/65298.pdf
https://www.nrel.gov/docs/fy16osti/65298.pdf
http://dx.doi.org/10.1016/j.solener.2017.06.065
http://dx.doi.org/10.1016/j.buildenv.2011.04.019
http://documents.worldbank.org/curated/en/134421495707128537/Solar-resource-mapping-in-Vietnam-implementation-plan-selection-1231900
http://documents.worldbank.org/curated/en/134421495707128537/Solar-resource-mapping-in-Vietnam-implementation-plan-selection-1231900
http://dx.doi.org/10.1155/2013/192854
http://dx.doi.org/10.1115/1.4005340
http://dx.doi.org/10.1016/j.solmat.2012.02.019
https://climateknowledgeportal.worldbank.org/download-data
https://climateknowledgeportal.worldbank.org/download-data
http://dx.doi.org/10.1002/pip.1182


Energies 2020, 13, 2501 45 of 46

43. Vietnam Electricity. EVN Annual Report 2018. 2019. Available online: https://www.evn.com.vn/userfile/

User/tcdl/files/2019/8/EVNAnnualReport2018(1).pdf (accessed on 31 January 2020).
44. Wiginton, L.K.; Nguyen, H.T.; Pearce, J.M. Quantifying rooftop solar photovoltaic potential for regional

renewable energy policy. Comput. Env. Urban Syst. 2010, 34, 345–357. [CrossRef]
45. Heckert Solar. Datenblatt NeMoM 60 2.0 Monokristallines PV-Modul dunkelblau. Available online:

https://www.rw-energy.com/fileadmin/rwenergy/bilder/Downloads/Module/Heckert/NeMo_2.0_60_M_
270-290_Watt.pdf (accessed on 22 April 2020).

46. Heckert Solar NeMo 60P, 260W polykristallines Solarmodul. Available online: https://www.oeko-
energie.de/shop1/de/Heckert-Solar-NeMo-60P--260W-polykristallines-Solarmodul-1429.html (accessed on
22 April 2020).

47. General Statistics Office of Vietnam. General Statistics Office of Vietnam. Available online: https://www.gso.
gov.vn/default_en.aspx?tabid=773 (accessed on 31 January 2020).

48. Solar, V.P. [Bảng Giá 2019] So Sánh Tấm Pin Năng Lượng Mặt Trời Cao Cấp ở Việt Nam. Available online:
https://vuphong.vn/danh-muc/tam-pin-nang-luong-mat-troi/ (accessed on 31 January 2020).

49. Polo Martinez, J. Maps of Solar Resource and Potential in Vietnam; Ministry of Industry and Trade of Vietnam
(MoiT): Hanoi, Vietnam, 2015.

50. EVNHCMC. 3.923 Khách Hàng Lắp Điện Mặt Trời Trên Mái Nhà. Available online:
http://www.tietkiemnangluong.vn/d6/news/EVNHCMC-3923-khach-hang-lap-dien-mat-troi-tren-
mai-nha-111-135-12512.aspx (accessed on 9 March 2020).

51. Vietnam Electricity. Regulations. Available online: https://en.evn.com.vn/c3/gioi-thieu-l/Regulations-2-10.
aspx (accessed on 31 January 2020).

52. Effigis Geo-Solutions. Assessment of Rooftop Photovoltaic Solar Energy Potential in Vietnam. 2018. Available
online: https://effigis.com/en/case-studies/assessment-rooftop-photovoltaic-solar-energy-potential-vietnam/

(accessed on 9 March 2020).
53. He, K.; Tang, R.; Jin, M. Pareto fronts of machining parameters for trade-off among energy consumption,

cutting force and processing time. Int. J. Prod. Econ. 2017, 185, 113–127. [CrossRef]
54. Kramp, K.H.; van Det, M.J.; Veeger, N.J.G.M.; Pierie, J.-P.E.N. The Pareto Analysis for Establishing Content

Criteria in Surgical Training. J. Surg. Educ. 2016, 73, 892–901. [CrossRef] [PubMed]
55. Spencer, T.; Mathur, A. Thomas Spencer and Ajay Mathur. Energy Transition in Emerging and Developing

Countries: Promoting the New Paradigm. In Proceedings of the G20 2019 Japan, Osaka Summit, Osaka,
Japan, 28–29 June 2019.

56. Ministry of Industry and Trade of Vietnam. Legal Documents. Available online: https://moit.gov.vn/van-
ban-phap-luat (accessed on 14 March 2020).

57. Khuong, P. (Ed.) Boosting Residential Rooftop Solar by Using Financial Incentives—A Comparison Analysis.
A Case Study in Vietnam. In Proceedings of the 4th AIEE Symposium on Current and Future Challenges to
Energy Security, Rome, Italy, 10–12 December 2019.

58. Nguyen, T.C.; Chuc, A.T.; Dang, L.N. Green Finance in Vietnam: Barriers and Solutions. ADBI Working Paper
Series. 2018. Available online: https://www.adb.org/sites/default/files/publication/466171/adbi-wp886.pdf
(accessed on 31 January 2020).

59. Garg, V.; Bridle, R.; Clarke, K. Energy Pricing, Energy Supply and FDI Competitiveness in Viet Nam.
An Assessment of Foreign Investor Sentiment. 2015. Available online: https://www.iisd.org/gsi/sites/default/
files/ffs_vietnam_fdi.pdf (accessed on 14 March 2020).

60. Kost, C.; Shivenes, S.; Verena, J.; Huyen-Tran, N.; Thomas, S. Levelized Cost of Electricity—Renewable
Energy Technologies. 2018. Available online: https://www.ise.fraunhofer.de/content/dam/ise/en/documents/
publications/studies/EN2018_Fraunhofer-ISE_LCOE_Renewable_Energy_Technologies.pdf (accessed on
31 January 2020).

61. The International Renewable Energy Agency. Renewable Power Generation Costs in 2018. Available online:
https://www.irena.org/publications/2019/May/Renewable-power-generation-costs-in-2018 (accessed on
31 January 2020).

62. Reid, J.S.; Hyer, E.J.; Johnson, R.S.; Holben, B.N.; Yokelson, R.J.; Zhang, J.; Campbell, J.R.; Christopher, S.A.;
Di Girolamo, L.; Giglio, L.; et al. Observing and understanding the Southeast Asian aerosol system by remote
sensing: An initial review and analysis for the Seven Southeast Asian Studies (7SEAS) program. Atmos. Res.
2013, 122, 403–468. [CrossRef]

https://www.evn.com.vn/userfile/User/tcdl/files/2019/8/EVNAnnualReport2018(1).pdf
https://www.evn.com.vn/userfile/User/tcdl/files/2019/8/EVNAnnualReport2018(1).pdf
http://dx.doi.org/10.1016/j.compenvurbsys.2010.01.001
https://www.rw-energy.com/fileadmin/rwenergy/bilder/Downloads/Module/Heckert/NeMo_2.0_60_M_270-290_Watt.pdf
https://www.rw-energy.com/fileadmin/rwenergy/bilder/Downloads/Module/Heckert/NeMo_2.0_60_M_270-290_Watt.pdf
https://www.oeko-energie.de/shop1/de/Heckert-Solar-NeMo-60P--260W-polykristallines-Solarmodul-1429.html
https://www.oeko-energie.de/shop1/de/Heckert-Solar-NeMo-60P--260W-polykristallines-Solarmodul-1429.html
https://www.gso.gov.vn/default_en.aspx?tabid=773
https://www.gso.gov.vn/default_en.aspx?tabid=773
https://vuphong.vn/danh-muc/tam-pin-nang-luong-mat-troi/
http://www.tietkiemnangluong.vn/d6/news/EVNHCMC-3923-khach-hang-lap-dien-mat-troi-tren-mai-nha-111-135-12512.aspx
http://www.tietkiemnangluong.vn/d6/news/EVNHCMC-3923-khach-hang-lap-dien-mat-troi-tren-mai-nha-111-135-12512.aspx
https://en.evn.com.vn/c3/gioi-thieu-l/Regulations-2-10.aspx
https://en.evn.com.vn/c3/gioi-thieu-l/Regulations-2-10.aspx
https://effigis.com/en/case-studies/assessment-rooftop-photovoltaic-solar-energy-potential-vietnam/
http://dx.doi.org/10.1016/j.ijpe.2016.12.012
http://dx.doi.org/10.1016/j.jsurg.2016.04.010
http://www.ncbi.nlm.nih.gov/pubmed/27267561
https://moit.gov.vn/van-ban-phap-luat
https://moit.gov.vn/van-ban-phap-luat
https://www.adb.org/sites/default/files/publication/466171/adbi-wp886.pdf
https://www.iisd.org/gsi/sites/default/files/ffs_vietnam_fdi.pdf
https://www.iisd.org/gsi/sites/default/files/ffs_vietnam_fdi.pdf
https://www.ise.fraunhofer.de/content/dam/ise/en/documents/publications/studies/EN2018_Fraunhofer-ISE_LCOE_Renewable_Energy_Technologies.pdf
https://www.ise.fraunhofer.de/content/dam/ise/en/documents/publications/studies/EN2018_Fraunhofer-ISE_LCOE_Renewable_Energy_Technologies.pdf
https://www.irena.org/publications/2019/May/Renewable-power-generation-costs-in-2018
http://dx.doi.org/10.1016/j.atmosres.2012.06.005


Energies 2020, 13, 2501 46 of 46

63. Brennan, M.P.; Abramase, A.L.; Andrews, R.W.; Pearce, J.M. Effects of spectral albedo on solar photovoltaic
devices. Sol. Energy Mater. Sol. Cells 2014, 124, 111–116. [CrossRef]

64. Andrews, R.W.; Pearce, J.M. The effect of spectral albedo on amorphous silicon and crystalline silicon solar
photovoltaic device performance. Sol. Energy 2013, 91, 233–241. [CrossRef]

65. Liao, W.; Heo, Y.; Xu, S. (Eds.) Evaluation of Temperature Dependent Models for PV Yield
Prediction. In Proceedings of the 4th Building Simulation and Optimization Conference, Cambridge,
UK, 11–12 September 2018.

66. Louwen, A.; de Waal, A.C.; Schropp, R.E.I.; Faaij, A.P.C.; van Sark, W.G.J.H.M. Comprehensive characterisation
and analysis of PV module performance under real operating conditions. Prog. Photovolt: Res. Appl. 2017,
25, 218–232. [CrossRef]

67. Appelbaum, J.; Maor, T. Dependence of PV Module Temperature on Incident Time-Dependent Solar Spectrum.
Appl. Sci. 2020, 10, 914. [CrossRef]

68. Chakraborty, S.; Kumar, R. Comparative analysis of NOCT values for mono and multi C-Si PV modules in
Indian climatic condition. World J. Eng. 2015, 12, 19–22. [CrossRef]

69. European Commission. JRC Photovoltaic Geographical Information System (PVGIS). Available online:
https://re.jrc.ec.europa.eu/pvg_tools/en/tools.html (accessed on 21 April 2020).

70. IEA. World Energy Model. Available online: https://www.iea.org/reports/world-energy-model (accessed on
15 April 2020).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.solmat.2014.01.046
http://dx.doi.org/10.1016/j.solener.2013.01.030
http://dx.doi.org/10.1002/pip.2848
http://dx.doi.org/10.3390/app10030914
http://dx.doi.org/10.1260/1708-5284.12.1.19
https://re.jrc.ec.europa.eu/pvg_tools/en/tools.html
https://www.iea.org/reports/world-energy-model
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Literature Review of Potential Assessments for Rooftop PV 
	Methodology for Rooftop PV Potential Assessment 
	Geographical Potential 
	Technical Potential 
	Levelized Cost of Electricity (LCOE) 
	Sensitivity Analysis 

	Case Study and Results 
	Data and Assumptions 
	Results of the Potential Analysis 
	Spatial Potential Distribution of Rooftop PV 
	Sensitivity Analyses 


	Deriving Policy Implications from the Potential Assessment Results 
	Defining Target Groups 
	Assessing the Market Attractiveness and FIT 
	The Role of Grid Tariffs and PV Module Costs in Self-Sufficiency Developments 
	Critical Discussion 

	Conclusions and Policy Implications 
	
	References

