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Abstract

This paper proposes and investigates two formulations to topology optimization of compliant mechanisms considering
stress constraints, manufacturing uncertainty and geometric nonlinearity. The first formulation extends the maximum
output displacement robust approach with stress constraints to incorporate the effects of geometric nonlinear behavior
during the optimization process. The second formulation relies on the concept of path-generating mechanisms, where
not only the final configuration is important, but also the load-displacement equilibrium path. A novel path-generating
formulation is thus proposed, not only to achieve the prescribed equilibrium path, but also to take stress constraints and
manufacturing uncertainty into account during the optimization process. Although both formulations have different
goals, the same main techniques are employed: density approach to topology optimization, augmented Lagrangian
method to handle the large number of stress constraints, three-field robust approach to handle the manufacturing
uncertainty, and the energy interpolation scheme to handle convergence issues due to large deformation in void regions.
Several numerical examples are addressed to demonstrate applicability of the proposed approaches. The optimized
results are post-processed with body-fitted finite element meshes. Obtained results demonstrate that: (1) the proposed
nonlinear analysis based maximum output displacement approach is able to provide solutions with good performance
in situations of large displacements, with stress and manufacturing requirements satisfied; (2) the linear analysis based
maximum output displacement approach provides optimized topologies that show large stress constraint violations and
rapidly varying stress behavior under uniform boundary variation, when these are post-processed with full nonlinear
analysis; (3) the proposed path-generating formulation is able to provide solutions that follow the prescribed control
points, including stress robustness.

Keywords: Topology optimization, Robust design, Compliant mechanisms, Manufacturing uncertainty, Stress
constraints, Geometric nonlinearity

1. Introduction

Topology optimization is an important tool employed in the design of high performance structures [1, 2]. One

important application is the design of compliant mechanisms [3]. This paper proposes and investigates two formulations

to topology design of compliant mechanisms subjected to: (1) geometric nonlinearity; (2) stress constraints; and (3)

manufacturing uncertainty.

It is acknowledged in the literature, that each of these three topics is a challenge by itself. The consideration of

geometric nonlinear behavior in topology optimization, for instance, introduces serious convergence issues in the
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problem when fictitious domain approaches are employed, in which void regions are modeled as solid material with

very low stiffness [4]. These convergence issues are due to excessive distortion of elements in regions under very

large deformation, as related by several works on finite strain topology design [4–13]. Even if the solid phase of

the optimized topology contains regions of small strain only, the void phase may contain regions of large strain, in

order to accommodate the large displacements of the solid phase [4]. In order to handle these convergence issues,

some techniques were proposed in the past: relaxation of the convergence criterion for the equilibrium iterations

[5], the element removal and reintroduction strategy [7], the element connectivity parameterization [8], the additive

hyperelasticity technique [11], and the energy interpolation scheme [4]; to name a few. Some authors show that use

of nonlinear material models, instead of the traditional Saint Venant–Kirchhoff model, also helps at alleviating the

convergence issues during the equilibrium iterations [9, 14], although it is not completely effective to handle regions

under very large deformation [4].

The other two topics also present several challenges, and are still subject to intensive research in the literature.

Since the pioneering work of Duysinx and Bendsøe [15], researchers have proposed several techniques to address stress

constraints in continuum topology optimization (see, e.g., [16–30]). Among these works, there are some recent papers

that specifically address the compliant mechanism design problem [26–30]. The main challenges associated with the

stress failure criterion in continuum topology optimization are the singularity phenomenon and the large number of

local stress constraints [15]. Among the several techniques proposed to alleviate these difficulties, we have the stress

constraint relaxation techniques [15, 31, 32], to handle the singularity phenomenon, and the aggregation approaches

[17, 21, 33], to handle the large number of stress constraints, as the most popular ones. Recent papers on stress-based

topology optimization also address the problem under the effect of geometric nonlinearity [10], and manufacturing

uncertainty [34, 35]; however, to the authors’ best knowledge, the simultaneous consideration of stress constraints,

geometric nonlinearity and manufacturing uncertainty has not been addressed before.

In order to address manufacturing uncertainty in continuum topology design, Sigmund [36] and Wang et al. [37]

proposed the three-field density projection approach, where eroded and dilated density fields are employed together with

the actual (intermediate) topology, to simulate extreme uniform manufacturing errors during the optimization process.

Since then, several techniques were proposed to handle manufacturing uncertainty in topology optimization [38–48],

including some papers addressing the topology design problem considering both the manufacturing uncertainty and

geometric nonlinear behavior [41, 46, 48]; however, without the stress considerations.

This paper proposes two formulations to address the topology design of compliant mechanisms subjected to

geometric nonlinearity, stress constraints, and manufacturing uncertainty. The first one extends the formulation

proposed by Da Silva et al. [35], which addresses the maximum output displacement stress-constrained compliant
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mechanism design problem considering infinitesimal strain theory, in order to include the geometric nonlinear behavior.

The second one is a novel path-generating approach, based on the work by Pedersen et al. [6], to handle the path-

generating problem, but also considering the stress constraints and uniform manufacturing error robustness. With

this study, we intend to take a further step towards the topology design of compliant mechanisms that satisfy realistic

engineering requirements, through the simultaneous consideration of geometric nonlinearity, stress failure criterion,

and manufacturing uncertainty in the formulation.

The paper is organized as follows: the proposed maximum output displacement and path-generating formulations

are presented in section 2; the finite strain theory is addressed in section 3; the proposed stress interpolation scheme

is shown in section 4; optimization strategy is shown in section 5; optimization examples and proper validation are

shown in section 6; and concluding remarks are given in section 7. Details on the sensitivity analyses are given in the

appendix.

2. Proposed formulations

Topology optimization of compliant mechanisms is addressed by distribution of isotropic material in a fixed design

domain. The traditional density approach to topology optimization [2] is employed: the design domain is discretized

with the finite element method [49], and each element of the mesh is associated with a relative density varying from 0

(which represents void) to 1 (which represents solid). The optimization problems are formulated to simultaneously

address the effect of stress constraints, uniform manufacturing error and geometric nonlinearity in the topology design

of compliant mechanisms. The proposed formulations are based on the three-field robust approach presented in

[37], which considers three fields of relative densities: eroded, intermediate and dilated. In this formulation, the

intermediate topology is the robust design at the end of the optimization procedure, whereas eroded and dilated designs

represent extreme manufacturing errors; the eroded being thinner, and the dilated being thicker than the intermediate

one. The eroded and dilated designs capture the variability on the boundary of the topology that may occur due to

manufacturing error, with the underlying assumption that the entire boundary is eroded or dilated by the same amount.

Two formulations are proposed:

1. Maximum output displacement formulation. The main goal is the design of compliant mechanisms with

extreme output displacements, while still satisfying the stress and manufacturing requirements. In this case,

the physical densities are given by ρ(e), ρ(i) and ρ(d); associated with eroded, intermediate and dilated designs,

respectively; these are associated with design variables ρ through a density filter with threshold projection, as

described in subsection 2.1.
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2. Path-generating formulation. The main goal is the design of compliant mechanisms that pass through specific

control points given by the designer, also considering both the stress and manufacturing requirements. The

physical densities are given by ρ
(e)

, ρ
(i)

and ρ
(d)

; these are obtained by means of the double filter approach, as

described in subsection 2.2. Use of double filter instead of standard filter proved necessary to alleviate large gray

regions, which result from use of the error function alone in this formulation, as demonstrated in subsection 6.2.

In general, simple filter operations require an active volume constraint to work well.

The resulting problems, in discretized form, are solved with use of a gradient-based algorithm, as discussed in

section 5. Both formulations are motivated and presented in detail in the next subsections.

2.1. Proposed maximum output displacement formulation

The maximum output displacement compliant mechanism design problem considering stress constraints is addressed

in [35], as an extension of the standard min-max approach developed in [37]; however, the formulation proposed in [35]

was developed to handle linear elastic problems only. In this paper, we generalize the stress-constrained formulation

presented in [35], in order to allow the design of large displacement compliant mechanisms considering both stress

constraints and manufacturing uncertainty. The proposed generalization, considering the von Mises failure criterion, is

given by

Min.
ρ

kin

fin
max

(
uout

(
ρ(e)

)
, uout

(
ρ(i)

)
, uout

(
ρ(d)

))
+ kvV f

(
ρ(d)

)

s. t. V f

(
ρ(d)

)
6 V (d)

up

V f

(
ρ(d)

)
> V (d)

low
σ(k)

eq

(
ρ( j)

)
σy

− 1 6 0 j ∈ {e, i, d} and k = 1, 2, ...,Nk

δΠ
(
ρ( j)

)
= 0 j ∈ {e, i, d}

0 6 ρe 6 1 e = 1, 2, ...,Ne

, (1)

where the equilibrium configuration is represented through stationarity of the systems total potential energy Π
(
ρ( j)

)
, as

δΠ
(
ρ( j)

)
= 0, for j ∈ {e, i, d}. The proposed generalization allows use of any specific strain energy function to represent

the stored energy in an elastic material. A hyperelastic material model based on the Green strain tensor E, for instance,

instead of the standard linear elastic model based on the infinitesimal strain tensor ε, may be employed. This allows

use of the finite strain theory in the formulation and, hence, the design of large displacement compliant mechanisms.

In Equation (1), fin/kin is the free displacement of the input actuator, which depends on both the input load fin

and input stiffness kin, employed here for the purpose of normalization; uout

(
ρ( j)

)
= ΛT

outU
(
ρ( j)

)
, for j ∈ {e, i, d}, is
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the output displacement of the compliant mechanism, which depends on the localization vector Λout, which takes

either 1 or −1 at the degree of freedom that corresponds to the output degree of freedom and zero otherwise; kv is a

weighting parameter defined by the designer (chosen as kv = 2 in this paper, based on the hints by [35]), employed here

to alleviate the spurious solid regions that may appear on the optimized topologies when the upper volume constraint is

not active (see [35] for details); V f

(
ρ(d)

)
=

V
(
ρ(d)

)
Vdomain

is the volume fraction of the dilated design; V
(
ρ(d)

)
=

∑Ne
e=1 Veρ

(d)
e

is the structural volume of the dilated topology; Ve is the volume of element e; Vdomain is the volume of the design

domain; V (d)
up and V (d)

low are upper and lower volume fractions for the dilated design, respectively; σ(k)
eq

(
ρ( j)

)
is the von

Mises equivalent stress computed at point k, for j ∈ {e, i, d}; σy is the yield stress; Nk is the number of points of stress

computation; ρe is the design variable associated with element e; and Ne is the number of elements in the finite element

mesh.

2.1.1. Density filter with threshold projection

In the proposed formulation, we employ the three-field density approach as presented in [37], which makes use

of one set of design variables, ρ, one set of filtered densities, ρ̃, and three sets of relative densities: ρ(e), ρ(i) and ρ(d);

associated with eroded, intermediate and dilated designs, respectively, that are the actual physical densities.

Relative densities are related to design variables through a density filter with threshold projection [37]. The relative

density of element e, ρe, is computed as

ρe =
tanh (βη) + tanh (β(ρ̃e − η))
tanh (βη) + tanh (β(1 − η))

, (2)

where ρ̃e is the filtered relative density of element e, obtained from a linear projection

ρ̃e =

∑
i∈ϑe

w(xi)Viρi∑
i∈ϑe

w(xi)Vi
, (3)

over the design variables ρ, in a circular neighborhood ϑe, centered in element e, which contains all the elements whose

centers are within a radius R specified by the designer.

The linear weighting function is defined as

w(xi) = R − ‖xi − xe‖, (4)

where xi are the coordinates of the center of element i and xe are the coordinates of the center of the neighborhood ϑe.

In Equation (2), β controls the non-linearity and η the projection level of the smoothed Heaviside approximation.

For β→ 0 we have a linear behavior between relative and filtered densities, whereas for β→ ∞ we have a Heaviside
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step function [37]. The parameter β is updated through a continuation strategy during the optimization procedure,

starting from a small value β(1), up to a maximum value βmax. In this paper, the value of βmax is set based on the hints

proposed in [34], in order to allow a thin smooth transition boundary of intermediate material between solid and void

phases. Da Silva et al. [34] propose the choice of βmax based on the value of βlim = 2R/le. It represents the upper bound

to parameter β in order to ensure a smooth transition boundary of intermediate material, between solid and void phases,

of length equal to the side of a square element, le. Use of βmax � βlim/2 = R/le, for instance, allows a smooth transition

boundary slightly thicker than le. Moreover, it is demonstrated that when this choice is associated with a reasonable

choice of stress constraint relaxation function, stress accuracy at the boundaries of the structure is ensured. Although

the numerical experiments shown in [34] are performed under the hypothesis of linear elasticity, we employ the same

scheme to compute βmax in this paper, since the artificial stress concentration on jagged boundaries does not affect

linear elastic problems only. Moreover, as presented later in the results section, good agreement is observed between

pixel-based and interpreted body-fitted von Mises equivalent stresses. The continuation strategy employed in this paper

to update the value of β during the optimization procedure is given in detail in [35].

The parameter η ∈ [0, 1], in Equation (2), controls the amount of filtered densities ρ̃e projected to either 0 or 1, for

β→ ∞. Each relative density field is associated with a distinct value of η, following the condition: ηe > ηi > ηd; where

e, i, d refer to eroded, intermediate and dilated designs, respectively.

2.1.2. Stress constraint relaxation

In this paper, the plane stress hypothesis is considered. In this case, one can compute the von Mises equivalent

stress at any point k as

σ(k)
eq

(
ρ( j)

)
= fσ

(
ρ

( j)
k

)
σ̂(k)

eq

(
ρ( j)

)
(5)

= fσ
(
ρ

( j)
k

) √
σ̂2

11(k)

(
ρ( j)

)
− σ̂11(k)

(
ρ( j)

)
σ̂22(k)

(
ρ( j)

)
+ σ̂2

22(k)

(
ρ( j)

)
+ 3σ̂2

12(k)

(
ρ( j)

)
+ σ2

min

where fσ
(
ρ

( j)
k

)
is the stress interpolation function at point k, σ̂(k)

eq

(
ρ( j)

)
is the solid von Mises stress at point k, σ̂11(k),

σ̂22(k) and σ̂12(k) are the components of the solid Cauchy stress tensor at point k, and σmin = 1 × 10−4σy is a small value

included in our implementations to ensure a positive number in the square root, thus avoiding numerical instabilities

during the sensitivity analysis, needed for optimization with a gradient-based algorithm. In order to compute the

components of the solid Cauchy stress tensor: σ̂11(k), σ̂22(k) and σ̂12(k); we propose a stress interpolation scheme,

Equation (29), shown in section 4, to be used with the energy interpolation scheme presented in subsection 3.1. The

components of the solid stress tensor are computed considering the constitutive tensor of the base material [17];

however, they are not appropriate to be directly used in stress-constrained topology optimization, since the solid
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stresses may remain finite and larger than the yield stress when relative densities tend to zero, leading to the singularity

phenomenon [15]. Stress constraint relaxation, in the form of a stress interpolation function in this paper, is thus

necessary in order to avoid this issue and allow optimization with gradient-based algorithm.

The ε-relaxed approach [31, 33] is employed to relax the stress constraints, thus avoiding the singularity phe-

nomenon, with fσ
(
ρ

( j)
k

)
=

ρ
( j)
k

ε
(
1−ρ( j)

k

)
+ρ

( j)
k

. As presented in [34], the proper choice of ε associated with a smooth transition

boundary of proper thickness, between solid and void phases, can ensure stress accuracy and low stress oscillation after

uniform boundary variation. When ε is too small, the stresses at the jagged edges of the structures are overestimated

and strong stress oscillations may occur. On the other hand, when ε is too large, the stresses are underestimated.

Following [34], we choose ε = 0.2, which is a reasonable choice when using βmax � R/le.

2.2. Proposed path-generating formulation

The path-generating formulation proposed in this paper is based on the work by Pedersen et al. [6], who proposed

the minimization of an error function between prescribed and computed output displacements, in order to ensure that

the resulting output point follows the prescribed control points for a given set of input loads. The main idea of the

path-generating formulation is that not only the final configuration is important, but also the equilibrium path. The

main novelty of the formulation proposed in this paper, Equation (6), with respect to the path-generating formulation

proposed in Pedersen et al. [6], is the additional consideration of both stress constraints and manufacturing tolerance.

The proposed path-generating formulation is given by

Min.
ρ

(
kin

fin,M

)2 ∑
j∈{e,i,d}

M∑
m=1

(
uout,m

(
ρ

( j)
)
− u∗out,m

)2

s. t. V f

(
ρ

(d)
)
6 V (d)

up

σ(k)
eq

(
ρ

( j)
)

σy
− 1 6 0 j ∈ {e, i, d} and k = 1, 2, ...,Nk

δΠ
(
ρ

( j)
)

= 0 j ∈ {e, i, d}

0 6 ρe 6 1 e = 1, 2, ...,Ne

, (6)

where M is the number of control points prescribed by the designer; uout,m is the computed displacement at the output

port for the m-th input load fin,m; and u∗out,m is the m-th prescribed output displacement, which is also associated with

fin,m. The constant
(

kin
fin,M

)2
is employed here for the purpose of normalization, where fin,M is the largest input load in

absolute value, associated with the final prescribed output displacement u∗out,M . The stress constraints,
σ(k)

eq

(
ρ

( j)
)

σy
− 1 6 0,

are applied for the largest input load in absolute value, fin,M .
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Note that a min-max type formulation could be employed to address the path-generating problem as well: as the

minimization of the maximum difference among all computed and prescribed displacements. However, we preferred to

base our path-generating formulation on the original approach by Pedersen et al. [6], where the least squares fitting is

employed. Moreover, although not implemented herein, use of a min-max formulation in this case would put too much

weight on the largest displacement case and may ignore the smaller displacement cases.

While the maximum output displacement formulation, Equation (1), does not take the equilibrium path into account,

the path-generating formulation, Equation (6), can be employed to control the equilibrium path, to a certain extent,

depending on the control points given by the designer. Use of the path-generating formulation allows for example to

control the shape of the fin × uout graph of the resulting mechanism.

Pedersen et al. [6] observed that use of the minimum error formulation alone, without any additional requirement to

increase the ability of the mechanism to transfer force from the input point to the output point, may lead to topologies

entirely comprised of intermediate material. To prevent this issue, they proposed use of a modified objective function,

introducing the additional requirement that the resulting mechanism also has to pass through the control points when

two separate counter load cases are applied at each control point. Pedersen et al. [6] demonstrated, through numerical

experiments, that when such a requirement is included in the formulation, the resulting mechanism is stiffer and more

black and white, with less regions of intermediate material.

During our numerical investigations with the path-generating formulation, we confirmed that use of the minimum

error formulation alone may lead to topologies comprised of large regions of intermediate material. Moreover, we

verified that use of the standard density filter with threshold projection in Equation (6) may not be sufficient to remove

all grey areas of the resulting mechanism, as shown later in the results section. However, instead of including additional

stiffness requirements as suggested by [6], we decided to employ the novel double filter technique proposed by

Christiansen et al. [45], i.e., use of ρ to represent the actual physical densities, since this approach turns out to be a

powerful tool to alleviate the numerical instabilities which arise from use of the error function alone in the formulation.

It should be emphasized that the grey regions, resulting from use of the error function alone in the path-generating

formulation, have different cause from the spurious solid regions that may appear in the maximum output displacement

formulation, when the upper volume fraction is not active. The main issue associated with spurious material in the

path-generating formulation is that, as soon as the path is prescribed, there may be no need to use material the best

possible way, regarding the ability to transfer force from the input to the output, making room for the appearance of

gray regions [6]. On the other hand, the spurious material issue associated with the maximum output displacement

formulation arises from the fact that the upper volume fraction is sometimes not active, due to the very small stress

level employed, enforcing lower volume fractions to the structure and making room for the appearance of spurious
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material regions, mainly on the dilated topology, as described in [35]. In theory, both issues could be handled by the

proper adjustment of an ideal upper volume fraction. However, the choice of a proper volume fraction varies from

problem to problem, being impractical in most cases. In order to handle the spurious material issue in the maximum

output displacement problem, Equation (1), we follow the hints by [35] and add the volume of the dilated topology

in the objective function, resulting in topologies without grey regions, as shown in the results section. Use of this

same strategy in the path-generating formulation, Equation (6), does not work properly, since the algorithm often

prioritizes the volume minimization instead of the design of the path, making the choice of the weight of the dilated

volume in the objective function a challenging and problem dependent task. Use of the double filter approach, thus,

arises as an effective solution to alleviate these issues, associated with the path-generating problem. We observed that

the extra regularization over the filtered density field helps the achievement of almost black and white topologies for

relatively small values of β, in which eroded and dilated designs actually represent near-uniform boundary variations.

For the cases we investigated using the double filter approach, there was no need to use additional volume nor stiffness

considerations.

Although not implemented herein, we realize that the double filter approach could also be employed to address the

maximum output displacement problem. However, we preferred to follow the approach by Da Silva et al. [35] and

simply add the volume of the dilated structure in the objective function instead. As discussed in [35], when the volume

of the dilated structure is included in the objective function, the optimizer sometimes prefers to minimize the volume

instead of the displacements, leading to a void design. Since the stress constraints are relaxed, the void solution is

accepted by the algorithm, since zero densities mean zero stresses, i.e., a feasible design in this case. The lower volume

fraction limit, as considered in the maximum output displacement formulation, Equation (1), acts to preventing this

situation. Note that since the volume is not considered as objective in the path-generating problem, Equation (6), the

lower volume constraint is not necessary there. The investigation of the double filter approach in the maximum output

displacement formulation is beyond the scope of this work.

2.2.1. Double filter approach

In the path-generating formulation, we employ the double filter approach as presented in [45], which makes use of

one set of design variables, ρ, one set of first level filtered densities, ρ̃, one set of first level projected densities, ρ, one

set of second level filtered densities, ρ̃, and three sets of second level projected densities: ρ
(e)

, ρ
(i)

and ρ
(d)

; associated

with eroded, intermediate and dilated designs, respectively, that are the actual physical densities.

The double filter approach is applied according to the following procedure:

1. Design variables ρ are filtered with Equation (3) for a filtering radius R1, resulting in the first level filtered

densities ρ̃;
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2. First level filtered densities ρ̃ are projected with Equation (2) for β1 and η1, resulting in the first level projected

densities ρ;

3. First level projected densities ρ are filtered with Equation (3) for a filtering radius R2, resulting in the second

level filtered densities ρ̃;

4. Second level filtered densities ρ̃ are projected with Equation (2) for β2 and three projection levels: ηe, ηi and ηd;

resulting in the second level projected densities: ρ
(e)

, ρ
(i)

and ρ
(d)

; respectively.

As discussed in [45], the double filter procedure introduces some additional parameters in the problem. In this

paper, we choose R1 = 2R2, β1 = 2β2 and η1 = ηd, based on the hints presented in [45]. Christiansen et al. [45]

demonstrated, through numerical experiments, that the double filter approach can be used to limit variations of the

filtered field ρ̃, ensuring near-uniform boundary variations for different projection levels, also in the cases where the

standard robust approach may fail, as the acoustic cavity design problem addressed in their work.

3. Equilibrium analysis

This section presents some basics regarding the equilibrium analysis in the proposed formulation. Subsection

3.1 presents the energy interpolation scheme, employed to alleviate convergence issues associated with low density

regions in finite strain topology optimization. Subsection 3.2 presents the employed specific strain energy function and

some additional considerations regarding the plane stress hypothesis. Subsection 3.3 presents the positional numerical

procedure, employed to find the equilibrium configuration of the structure.

Note that the physical densities are represented by ρ in this section, although the same equations are used for the

case where the double filter is employed, i.e., where the physical densities are represented by ρ. In these cases, we

simply replace ρ with ρ.

3.1. Energy interpolation scheme

It is acknowledged in the literature, that the convergence issues associated with low density regions under large

deformation, in finite strain topology optimization, are very difficult to overcome and still being subject of intensive

research [4, 11]. In this paper, we use the energy interpolation scheme, proposed by [4], in order to alleviate these

convergence issues.

Wang et al. [4] demonstrated, through solution of the C-shaped numerical example from [8], that when a pure

0/1 topology is considered, there is no significant difference in the equilibrium configuration of the solid region,

when modeling the void region with infinitesimal strain theory (linear analysis) or finite strain theory (nonlinear

analysis). However, they verified that it is much easier to numerically find the equilibrium configuration when the
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void regions are modeled by using linear analysis, even though the void regions present very large deformations. In

practical density-based topology optimization, however, we have to handle the intermediate densities, mainly at the

first iterations of the optimization procedure, while the topology is forming; so that we cannot simply employ a crude

interpolation scheme to model the solid regions with nonlinear analysis and the void regions with linear analysis. Wang

et al. [4] thus proposed a smooth parameterization to formulate the specific strain energy function of the solid under

analysis as a combination of linear-based ψL and nonlinear-based ψNL specific strain energy functions, as follows

ψ (ue) =
[
ψNL (γeue) − ψL (γeue) + ψL (ue)

]
fk

(
ρe

)
, (7)

where ψ (ue) is the specific strain energy function of element e, which depends on the local displacement vector ue;

fk
(
ρe

)
is the SIMP (Solid Isotropic Material with Penalization) stiffness interpolation function [50, 51], defined as

fk
(
ρe

)
= ρmin + (1 − ρmin) ρp

e , with p = 3 in this paper; and γe is a smoothed Heaviside approximation function, defined

as

γe =
tanh

(
βγηγ

)
+ tanh

(
βγ

(
ρp

e − ηγ
))

tanh
(
βγηγ

)
+ tanh

(
βγ

(
1 − ηγ

)) . (8)

The smoothed Heaviside approximation used in Equation (8), to interpolate the specific strain energy function, is

the same employed in Equation (2) to compute the relative densities; different parameters are used, though. In Equation

(8), βγ controls the non-linearity and ηγ the projection level of the smoothed Heaviside approximation. By defining a

large positive value for βγ and a small positive value for ηγ, one can ensure a linear behavior for the low density regions

and a nonlinear behavior otherwise, thus alleviating the convergence issues associated with the excessive deformation

in the void regions. In this paper, we follow the hints presented by [4], and we set βγ = 500 and ηγ = 0.01 as fixed

parameters during the whole optimization procedure.

3.2. Specific strain energy function

In this subsection, index notation is employed. The following neo-Hookean specific strain energy function, proposed

by [52, 53], and employed by [14] in compliance-based topology optimization, is employed in this paper to model the

geometric nonlinear behavior of the structure

ψNL = λ

(
J2 − 1

4

)
−

(
λ

2
+ µ

)
ln J +

1
2
µ (Ckk − 3) , (9)

where λ and µ are the Lamé constants, J is the determinant of the deformation gradient Ai j, and Ckk is the trace of the

right Cauchy-Green deformation tensor Ci j = AkiAk j. The right Cauchy-Green deformation tensor is used to compute
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the Green strain tensor as

Ei j =
1
2

(
Ci j − δi j

)
, (10)

where δi j is the Kronecker delta.

The second Piola–Kirchhoff stress is computed by the derivative of the specific strain energy function, Equation (9),

with respect to the Green strain tensor, Equation (10), as follows

S NL
i j =

∂ψNL

∂Ei j
, (11)

and is given by

S NL
i j =

λ

2

(
J2 − 1

)
C−1

i j + µ
(
δi j −C−1

i j

)
, (12)

where C−1
i j is the i j component of matrix C−1.

For plane stress problems, we have S NL
i3 = S NL

3 j = Ci3 = C3 j = 0 and C33 , 0. The component C33 of the right

Cauchy-Green deformation tensor can be obtained by substituting S NL
33 = 0 in Equation (12). After some manipulation,

one obtains

C33 =
λ + 2µ

λ J
2

+ 2µ
, (13)

where J
2

= C11C22 −C12C21. In order to obtain the analytic expression of the second Piola–Kirchhoff stress for plane

stress problems, one can substitute C33 in Equation (12), obtaining

S NL
i j =

λ

2

 J
2

(λ + 2µ)

λ J
2

+ 2µ
− 1

C−1
i j + µ

(
δi j −C−1

i j

)
, (14)

which holds for i = 1, 2 and j = 1, 2. The Cauchy stresses are then given by the following expression [9, 54]

σ̂NL
i j = J−1AikS NL

kl A jl. (15)

The derivative of the second Piola–Kirchhoff stress, Equation (14), with respect to the Green strain tensor, Equation

(10), necessary to solve the resulting system of nonlinear equations with the Newton-Raphson method, can be written

as

CNL
i jkl =

∂S NL
i j

∂Ekl
, (16)
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and is given by

CNL
i jkl =

λ

2


4µ J

2
(λ + 2µ)(

λ J
2

+ 2µ
)2 C−1

i j C−1
kl −

 J
2

(λ + 2µ)

λ J
2

+ 2µ
− 1

Di jkl

 + µDi jkl, (17)

whereDi jkl is given by [9, 54]

Di jkl = −
∂C−1

i j

∂Ekl
= C−1

ik C−1
jl + C−1

il C−1
jk . (18)

The specific strain energy function for the linear material model, based on the infinitesimal strain tensor ε, is given

by [4]

ψL =
1
2
λε2

kk + µεi jεi j. (19)

Following the same procedure as before, one can compute the first- and second-order derivatives of ψL with respect

to the infinitesimal strain tensor ε. For plane stress problems, the following expressions are obtained for the Cauchy

stress

σ̂L
i j =

2µλ
λ + 2µ

εkkδi j + 2µεi j, (20)

where εkk = ε11 + ε22, and for the material elasticity tensor

CL
i jkl =

∂σ̂L
i j

∂εkl
=

2µλ
λ + 2µ

δi jδkl + µ
(
δikδ jl + δilδ jk

)
. (21)

3.3. Positional numerical procedure

In this paper, we employ the finite element method based on nodal positions Y, instead of nodal displacements U,

following [55–57], in order to model the equilibrium configuration of the structural system. Nodal positions are related

to nodal displacements as Y = U + X, where X is the global vector of initial positions. Considering a static problem

subjected to nodal conservative loads, and a total Lagrangian description, the total potential energy of the system can

be written as

Π =

Ne∑
e=1

∫
Ωe

ψ (ue) dΩe −

Ndo f∑
i=1

f ext
i yi, (22)

where Ωe is the domain of integration of element e, f ext
i is the external load at the i-th degree of freedom, yi is the nodal

position associated with the i-th degree of freedom, and Ndo f is the total number of degrees of freedom of the finite

element mesh.

The equilibrium configuration is given by stationarity of the total potential energy of the system, as

δΠ =

Ndo f∑
a=1

∂Π

∂ya
δya = 0, (23)
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such that ∂Π
∂ya

= 0, for a = 1, 2, ...,Ndo f . The derivative of the total potential energy, with respect to a nodal position ya,

is written as
∂Π

∂ya
=

Ne∑
e=1

∫
Ωe

∂ψ (ue)
∂ya

dΩe − f ext
a , (24)

which gives, in vector form, the following equation

R (Y) = Fint (Y) − Fext, (25)

where R (Y) is the global vector of nodal residual forces, Y is the global vector of nodal positions, Fint (Y) is the global

vector of internal forces, and Fext is the global vector of external forces.

In order to compute the global vector of internal forces, one has to compute the derivative of the specific strain

energy function, Equation (7), with respect to a nodal position ya, as follows

∂ψ (ue)
∂ya

=

[
∂ψNL (γeue)

∂ya
−
∂ψL (γeue)

∂ya
+
∂ψL (ue)
∂ya

]
fk

(
ρe

)
. (26)

Each term in the square brackets, Equation (26), is computed through a chain rule, by using the first-order derivatives

of nonlinear ψNL and linear ψL specific strain energy functions with respect to E and ε, respectively. These derivatives

are given by Equations (14) and (20), respectively. The derivative shown in Equation (26) is then computed as

∂ψ

∂ya
=

[
∂ψNL (γe)
∂E (γe)

:
∂E (γe)
∂ya

−
∂ψL (γe)
∂ε (γe)

:
∂ε (γe)
∂ya

+
∂ψL

∂ε
:
∂ε

∂ya

]
fk

(
ρe

)
=

[
SNL (γe) :

∂E (γe)
∂ya

− σ̂L (γe) :
∂ε (γe)
∂ya

+ σ̂L :
∂ε

∂ya

]
fk

(
ρe

)
, (27)

where the dependence on ue was omitted for simplicity, and the symbol ” : ” means double contraction.

The resulting system of nonlinear equations, given by R (Y) = 0, is solved with the Newton-Raphson method,

requiring computation of the Jacobian matrix of the global residual forces, denoted by ∂R(Y)
∂Y . In order to compute this

matrix, one has to compute the derivative of ∂ψ
∂ya

, Equation (27), necessary in the assembling process of the internal

forces, Equation (24), with respect to a nodal position yb. This derivative is given by

∂2ψ

∂ya∂yb
=

[
∂E (γe)
∂ya

:
∂SNL (γe)
∂E (γe)

:
∂E (γe)
∂yb

+ SNL (γe) :
∂2E (γe)
∂ya∂yb

−
∂ε (γe)
∂ya

:
∂σ̂L (γe)
∂ε (γe)

:
∂ε (γe)
∂yb

+
∂ε

∂ya
:
∂σ̂L

∂ε
:
∂ε

∂yb

]
fk

(
ρe

)
. (28)

14



4. Proposed stress interpolation scheme

In finite strain theory, the Cauchy stress tensor is related to the second Piola-Kirchhoff stress tensor through

Equation (15). The second Piola-Kirchhoff stress tensor, in turn, is obtained through the derivative of the specific strain

energy function with respect to the Green strain tensor, Equation (11). In infinitesimal strain theory, on the other hand,

one can directly obtain the Cauchy stress tensor with Equation (20), which is the derivative of the specific strain energy

function with respect to the infinitesimal strain tensor.

In this paper, the specific strain energy function, Equation (7), is defined in such way as to alleviate the convergence

issues associated with the low density regions under large deformation, by modeling these regions with linear analysis.

Since we are using the energy interpolation scheme, it is necessary to employ some additional scheme to interpolate

the solid Cauchy stress tensor, to avoid its computation with the nonlinear formulation at regions modeled with the

linear formulation. Based on the already employed interpolation function used in the energy interpolation scheme, we

propose to compute the Cauchy stress tensor as

σ̂(k) = γkσ̂
NL
(k) + (1 − γk) σ̂L

(k), (29)

where σ̂(k) is the solid Cauchy stress tensor at point k, γk is the smoothed Heaviside interpolation function defined

in Equation (8), σ̂NL
(k) is the solid Cauchy stress tensor obtained using the finite strain theory, and σ̂L

(k) is the solid

Cauchy stress tensor obtained using the infinitesimal strain theory. The components of the solid Cauchy stress tensor

considering the linear analysis, σ̂L
(k), are obtained with Equation (20), whereas the components of σ̂NL

(k) are obtained

with Equation (15).

By employing the proposed stress interpolation scheme, Equation (29), we have σ̂(k) = σ̂NL
(k) for γk = 1, and

σ̂(k) = σ̂L
(k) for γk = 0. That is, the stresses in solid regions are computed with the nonlinear model, whereas the stresses

in the void regions are computed with the linear analysis. It is important to mention that the stresses in the void regions

are mostly zero, due to the stress constraint relaxation (ε-relaxed approach); thus, in these regions no accurate modeling

of stresses is required. Moreover, in the results section, the body-fitted post-processing scheme is performed over

the optimized structures considering a full nonlinear modeling, and a good fit is observed between pixel-based and

body-fitted stress responses, confirming that the proposed stress interpolation does not deteriorate the stress response of

the solid regions.
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5. Optimization strategy

In addition to the challenges originated from use of the finite strain theory, the proposed formulation is also

subjected to the main challenges arising from the consideration of stress constraints: the singularity phenomenon and

the large number of constraints. The singularity phenomenon is handled by use of the ε-relaxed scheme, as presented in

subsection 2.1.2. The large number of stress constraints may be handled by use of aggregation techniques [17, 21, 33],

active set strategies [15, 20], or some alternative technique, as the augmented Lagrangian method [16, 58]. In this paper,

we use the augmented Lagrangian method to solve both the maximum output displacement and the path-generating

problems, following [35]. We use the augmented Lagrangian formulation presented in [59].

The augmented Lagrangian method is employed to replace the original constrained optimization problem by a series

of bound constrained optimization subproblems. The subproblems associated with the maximum output displacement

problem, Equation (1), are given by

Min.
ρ

L
(
ρ(e), ρ(i), ρ(d),µ, r

)
R

(
Y

(
ρ( j)

))
= 0 j ∈ {e, i, d}

0 6 ρe 6 1 e = 1, 2, ...,Ne

, (30)

where L
(
ρ(e), ρ(i), ρ(d),µ, r

)
is the augmented Lagrangian function, given by the objective function of the original

problem weighted by both volume and stress constraints, µ is a vector which contains all Lagrange multipliers of the

problem, and r is a vector which contains all penalization parameters of the problem. The subproblems associated with

the path-generating problem, Equation (6), can also be represented by Equation (30), replacing ρ( j) with ρ
( j)

.

Next subsections present the augmented Lagrangian function for the maximum output displacement and the

path-generating optimization problems.

5.1. Maximum output displacement formulation

In our implementations, we make use of the Kreisselmeier–Steinhauser (KS) function [60] to replace the maximum

operator applied on the output displacements, in order to allow use of a gradient-based algorithm to solve the

optimization subproblems. The smoothened approximation for the maximum operator is given by

uKS
out

(
ρ(e), ρ(i), ρ(d)

)
=

1
P

ln

 ∑
j∈{e,i,d}

exp
(
P uout

(
ρ( j)

)) , (31)

with uKS
out

(
ρ(e), ρ(i), ρ(d)

)
→ max

(
uout

(
ρ(e)

)
, uout

(
ρ(i)

)
, uout

(
ρ(d)

))
for P→ ∞. In this paper, we use P = 10, since this

value provides a good compromise between accuracy and smoothness in the numerical examples addressed. One

16



alternative to the KS function is the bound formulation [61], which was developed to alleviate the non-differentiability

of min-max problems.

The augmented Lagrangian function is then given by

L
(
ρ(e), ρ(i), ρ(d),µ, r

)
=

kin

fin
uKS

out

(
ρ(e), ρ(i), ρ(d)

)
+ kvV f

(
ρ(d)

)
+

rup

2

〈
µup

rup
+

V f

(
ρ(d)

)
V (d)

up

− 1
〉2

+
rlow

2

〈
µlow

rlow
−

V f

(
ρ(d)

)
V (d)

low

+ 1
〉2

+
r
2

Nk∑
k=1


〈
µ(d)

k

r
+
σ(k)

eq

(
ρ(d)

)
σy

− 1
〉2

+

〈
µ(i)

k

r
+
σ(k)

eq

(
ρ(i)

)
σy

− 1
〉2

+

〈
µ(e)

k

r
+
σ(k)

eq

(
ρ(e)

)
σy

− 1
〉2 , (32)

where 〈·〉 = max(0, ·), µ contains the Lagrange multipliers: µup, associated with the upper volume constraint; µlow,

associated with the lower volume constraint; µ( j)
k , for j ∈ {e, i, d} and k = 1, 2, ...,Nk, associated with the stress

constraints; and r contains the penalization parameters: rup, associated with the upper volume constraint; rlow,

associated with the lower volume constraint; r, associated with all stress constraints.

In this paper, we follow the strategy presented in [35] in order to update the Lagrange multipliers µ, penalization

parameters r, upper volume fraction V (d)
up , and parameter β associated with the threshold projection, with the exact same

numerical parameters. In order to solve the optimization subproblems, the steepest descent method with move limits is

employed [62], with same parameters as described in [35]. Sensitivity analysis is shown in the appendix.

5.2. Path-generating formulation

The augmented Lagrangian function associated with the path-generating design problem, Equation (6), is given by

L
(
ρ

(e)
, ρ

(i)
, ρ

(d)
,µ, r

)
=

(
kin

fin,M

)2 ∑
j∈{e,i,d}

M∑
m=1

(
uout,m

(
ρ

( j)
)
− u∗out,m

)2
+

rup

2

〈
µup

rup
+

V f

(
ρ

(d)
)

V (d)
up

− 1
〉2

+
r
2

Nk∑
k=1


〈
µ(d)

k

r
+

σ(k)
eq

(
ρ

(d)
)

σy
− 1

〉2

+

〈
µ(i)

k

r
+

σ(k)
eq

(
ρ

(i)
)

σy
− 1

〉2

+

〈
µ(e)

k

r
+

σ(k)
eq

(
ρ

(e)
)

σy
− 1

〉2 . (33)

In order to solve the subproblems resulting from the path-generating problem, we use the same updating strategy,

with same numerical parameters, and the same algorithm employed in the maximum output displacement design

problem. Sensitivity analysis is shown in the appendix.
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6. Numerical results and discussion

This section presents some numerical investigations performed over two test problems [3]: (a) the inverter problem;

and (b) the gripper problem; see Figure 1. Subsection 2.1 presents results obtained with the maximum output

displacement formulation, Equation (1). Section 2.2 presents results obtained with the path-generating formulation,

Equation (6).

(a) (b)

Figure 1: Inverter (a) and Gripper (b) design problems. Support regions on the bottom left of both design domains have size equal to 1. Square-shaped
fixed solid regions have size equal to 4 × 4.

Input data are taken from [35] with minor modifications. Mechanic and geometric properties: Young’s Modulus

of 1, Poisson’s ratio of 0.3, thickness of 1, applied load fin = 5, and input stiffness kin = 1. The output stiffness is

considered as: a) kout = 0.001, for the inverter problem; and b) kout = 0.005, for the gripper problem.

Input data associated with filter, projection levels and design constraints are presented in each subsection. Input

data associated with the optimization algorithm, as penalization parameters and Lagrange multipliers updating scheme,

are taken from [35] without modifications, and are not repeated herein. The reader is thus invited to check [35] for

additional information.

Additional relevant data: four-node bi-linear square elements are employed to discretize the design domains. The

von Mises equivalent stresses are evaluated at the centroid of each finite element. The filter boundary padding [63]

is employed to alleviate boundary effects that may occur due to filtering, by extending the design domain with void

elements (dashed regions in Figure 1), which are not considered in the analyses, only during filter application.

Both design domains are filled with fixed solid areas in load and support regions, as indicated in Figure 1. The

stresses at these regions are set to zero, and thus not taken into account by the algorithm during the optimization

procedure.

Both the pixel-based and body-fitted post-processing schemes are employed to verify the accuracy of von Mises

stresses and output displacements of the optimized designs [34, 35]. The pixel-based post-processing scheme is

performed with the same mesh and same stress interpolation functions used in the optimization procedure; whereas the
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body-fitted scheme is performed considering a full nonlinear model, Equation (9), over finite element models with

smooth boundaries. These are obtained with software Gmsh [64], and are comprised of six-node triangle elements. In

the body-fitted cases, the smooth contour plots are directly extracted from the optimized filtered fields. In both cases,

the von Mises equivalent stresses are computed at the centroid of each element.

6.1. Maximum output displacement design problem

Input data employed in the min-max optimization procedure: Vup = 0.3 and Vlow = 0.2 as upper and lower volume

fractions, respectively; initial value of design variables of ρ(1)
e = 0.3, for e = 1, 2, ...,Ne; filter’s radius of R = 2.8; finite

element meshes with Ne = 80, 000 (inverter) and Ne = 73, 600 (gripper) elements (i.e., 400 × 200 elements). Parameter

β(1) = 1 is updated up to a maximum value βmax = 11.2, which corresponds to βmax = βlim/2 [35]. Parameters ηd, ηi

and ηe are chosen as: 0.25, 0.5 and 0.75 (inverter); and 0.4, 0.5 and 0.6 (gripper).

The Newton-Raphson method is employed, with 3 load increments, in order to find the equilibrium configuration of

the structure at each step of the optimization procedure. Convergence is reached when the ratio between the Euclidean

norm of vectors of incremental and initial positions is smaller than 1 × 10−6.

The inverter problem is solved for three situations regarding the stress constraints: no stress constraint; σy = 0.05;

and σy = 0.03. Figures 2, 3 and 4 show the optimized topologies (eroded, intermediate and dilated), pixel-based von

Mises stresses and body-fitted von Mises stresses, respectively, for the maximum output displacement inverter problem.

Topologies and stresses are shown in deformed configuration. A gray rectangle is included below each figure to serve

as reference to the undeformed design domain. Convergence histories are shown in Figure 5.

Figures 6 and 7 show the post-processing graphs for maximum von Mises stresses and output displacements,

respectively. Both graphs are plotted for η from ηd = 0.25 to ηe = 0.75. The pixel-based graphs (solid lines) are

obtained for incremental steps of 0.01, and the body-fitted graphs (points) are obtained for incremental steps of 0.05.

Analyzing stress and displacement post-processing graphs, Figures 6 and 7, respectively, one can verify a good fit

between pixel-based and body-fitted responses. One can clearly verify that the compromise relation between maximum

von Mises stresses and output displacements, observed in [35] for the linear case, is also observed herein: the smaller

the value of σy, the smaller the output displacement of the resulting mechanism, in absolute value. It is also interesting

to note that, whereas rapidly varying stress behavior is obtained for the case with no stress constraint, smooth stress

behavior after uniform boundary variation is obtained for both cases in which a stress constraint is applied. Maximum

stress constraint violations, σmax
σy
− 1, are given by: 1.20% (pixel) and 6.65% (fitted), for σy = 0.05; and 2.20% (pixel)

and 10.89% (fitted), for σy = 0.03.

Analyzing Figures 3 and 4, one can observe a good agreement between the overall quality of pixel-based and

body-fitted von Mises stress fields. It is observed that the smaller the value of σy, the more distributed the von Mises
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Figure 2: Maximum output displacement inverter problem. Optimized topologies for three levels of stress constraints: no stress constraint; σy = 0.05;
and σy = 0.03.
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Figure 3: Maximum output displacement inverter problem. Pixel-based von Mises stresses for the structures from Figure 2.

stresses are. Figure 2 shows the optimized topologies in deformed configuration. All structures have the same topology;

however, differences in shape are observed. These differences are necessary to alleviate the von Mises stresses at some

highly stressed regions, as clearly observed for the dilated topology, where the link between the structural member that
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Figure 4: Maximum output displacement inverter problem. Body-fitted von Mises stresses for the structures from Figure 2.

connects the output and the body of the inverter becomes more rounded as the value of σy decreases, confirming the

results by [35] obtained for the linear cases.

Analyzing Figure 2, one can observe that the optimized topology becomes thinner and thinner, as the value of σy

is decreased, also confirming the results in [35]. The volume fractions of the resulting intermediate topologies are:

V f = 0.2861, for the unconstrained stress case; V f = 0.2769, for σy = 0.05; and V f = 0.2163, for σy = 0.03; satisfying

both upper and lower volume fractions, Vup = 0.3 and Vlow = 0.2.

Analyzing Figure 5, one can observe that the stress-constrained problems need more iterations to satisfy convergence

criteria (580 iterations, for σy = 0.03; and 585 iterations, for σy = 0.05), when compared to the problem with no

stress constraint (421 iterations). This is justified, since stress constraints introduce additional nonlinearity that should

be handled by the optimizer. It is also interesting to note the behavior of the maximum stresses over the iterations:

while the stresses of eroded, intermediate and dilated mechanisms are unpredictable and different from each other in

the case with no stress constraints, they become uniform and equal to the yield stress in the constrained cases. In the

convergence of the output displacements, there is a tendency of rapidly increasing during the first iterations, and then

the output displacement of the intermediate topology starts to slightly overcome the outputs from eroded and dilated

topologies, as the value of β is updated. This behavior is in agreement with the standard three-field robust approach

[37]. In the stress-constrained case for σy = 0.03, one can observe the displacements deteriorate in absolute value

after 200 iterations, approximately. This is justified, since very strong stress requirements are imposed; the algorithm

21



No stress constraint

O
up

ut
 d

is
pl

ac
em

en
ts

M
ax

im
um

 v
. M

. s
tr

es
se

s

σy  = 0.05 σy  = 0.03

Figure 5: Maximum output displacement inverter problem. Convergence of maximum von Mises stresses (first row) and output displacements
(second row), for eroded, intermediate and dilated topologies.

Figure 6: Maximum output displacement inverter problem. Maximum von Mises equivalent stresses for η ∈ [0.25, 0.75] considering both pixel-based
and body-fitted nonlinear models.

prioritizes the stress feasibility instead of displacement minimization in this case in order to achieve a feasible solution.

It should be noted that the number of iterations is different from the number of objective function evaluations, since we
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Figure 7: Maximum output displacement inverter problem. Output displacements for η ∈ [0.25, 0.75] considering both pixel-based and body-fitted
nonlinear models.

employ the modified steepest descent method with a simple backtracking line search to ensure minimization of the

augmented Lagrangian function within a given subproblem. The number of objective function evaluations is: 633, for

σy = 0.03; 667, for σy = 0.05; and 500, for the case with no stress constraint.

In order to highlight the importance of the proposed approach, the same inverter problems are solved by employing

the standard linear analysis instead, in order to find the equilibrium configuration of the structures at each step of the

optimization procedure. Then, the optimized results are post-processed with both pixel-based and body-fitted schemes,

considering the same nonlinear material model employed in the nonlinear cases, Equation (9).

Figure 8 shows the optimized intermediate topologies in undeformed configuration for the three stress levels

obtained with both nonlinear and linear analyses, and Figure 9 shows the respective von Mises stress and output

displacement post-processing graphs. Since a very rapidly varying stress behavior is obtained at the post-processing

step of the linear cases, the stress graphs are adjusted with different vertical scales, so the reader can clearly identify the

differences between nonlinear and linear responses by analyzing the graphs one by one.

Analyzing Figure 8, one can verify that the same topologies are obtained for nonlinear and linear cases. However,

all topologies have different shapes. The effect of these differences can be observed in the post-processing graphs,

Figure 9. Contrary to what happens when the nonlinear analysis is employed in the formulation, the optimized designs

for the linear analysis are not robust with respect to uniform boundary variations regarding the maximum von Mises

stress. Quite the opposite: the stresses have rapidly varying behavior when uniform boundary variation is investigated.

Moreover, the results obtained with the nonlinear analysis outperform the results obtained with the linear analysis in all

the investigated cases, in both output displacements and maximum von Mises stresses. Maximum stress constraint

violations for the linear case, post-processed with the nonlinear analysis: 327.10% (pixel) and 206.27% (fitted), for
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Figure 8: Maximum output displacement inverter problem. Optimized intermediate topologies obtained with the proposed formulation considering
nonlinear analysis (first row), and with the formulation considering linear analysis (second row).
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Figure 9: Maximum output displacement inverter problem. Maximum von Mises stress (first row) and output displacement (second row) post-
processing graphs. Nonlinear refers to the nonlinear results post-processed with nonlinear analysis, and linear refers to the linear results post-processed
with nonlinear analysis.
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σy = 0.05; and 37.98% (pixel) and 20.44% (fitted), for σy = 0.03. Note that these large stress constraint violations are

due to use of the nonlinear analysis in the post-processing step; it should be clear that when the post-processing of the

linear case is performed with linear analysis, good fits are observed, as shown in [35]. However, it is acknowledged, in

the literature, that the linear analysis is not accurate to model structures under large displacements; thus, in such cases,

use of the proposed formulation is necessary.

Figure 10 shows the most critical linear case, which presented the largest stress constraint violation (eroded design,

for σy = 0.05), in deformed configuration. The body-fitted von Mises stresses are shown, and it is observed that

although the topologies are the same, a very distinct stress behavior is obtained. There are slight differences in the shape

of the mechanism that promote large nonlinear deformations in the linear result, leading mostly to the deterioration of

stress performance. This same effect is not observed in the design obtained with nonlinear analysis, since its effect is

considered during the whole optimization procedure.

(a) (b)

0.00

0.01

0.02
0.03

0.04
0.05
⩾ 0.06

Figure 10: Body-fitted eroded designs, inverter problem, for σy = 0.05: (a) solution obtained with the proposed nonlinear approach; (b) solution
obtained with the linear approach. Post-processed deformed configuration is obtained with full nonlinear analysis in both cases.

For the sake of completeness, the gripper design problem is solved, Figure 1 (b). A yield stress value of σy = 0.04 is

considered in this case. The optimized solution is obtained within 540 iterations, and 604 objective function evaluations.

Figure 11 shows eroded, intermediate and dilated topologies in deformed configuration. Analyzing the figure, one can

observe good agreement between pixel-based and body-fitted von Mises stress fields.

In order to verify the importance of using nonlinear analysis in this case, we also solve the problem considering

linear analysis during the optimization procedure. Optimized intermediate topologies, for both nonlinear and linear

cases, are shown in Figure 12, in undeformed configuration. Although the same topology is obtained, slight differences

in shape can be observed.

Both the nonlinear and linear results are post-processed with use of the body-fitted and pixel-based post-processing

schemes. The resulting graphs are shown in Figure 13. The same behavior observed earlier for the inverter case is

confirmed in the gripper case: the nonlinear result outperforms the linear result in both stress feasibility and output

performance. Moreover, one can verify a very smooth stress behavior after uniform boundary variation in the nonlinear
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Figure 11: Maximum output displacement gripper problem. Topologies (first row), pixel-based von Mises stresses (second row) and body-fitted von
Mises stresses (third row) in deformed configuration, for σy = 0.04.

LinearNonlinear

Figure 12: Maximum output displacement gripper problem. Intermediate topologies obtained with the nonlinear (left) and linear (right) analyses.

case. This same behavior is not observed in the linear case, rather the contrary: a very rapidly varying stress behavior is

observed, with large stress constraint violation considering the stress limit of σy = 0.04. Maximum stress constraint

violations are given by: 0.60% (pixel) and 10.62% (fitted), for the nonlinear case; and 80.86% (pixel) and 55.99%

(fitted), for the linear case.

6.2. Path-generating design problem

In this subsection, the path-generating problem is investigated. Only the inverter problem is addressed. Input data:

upper volume fraction of Vup = 0.25; initial value of design variables of ρ(1)
e = 0.3, for e = 1, 2, ...,Ne; filter’s radius

of R2 = 2.8; finite element mesh with Ne = 20, 000 (i.e., 200 × 100 elements). Parameter β(1)
2 = 1 is updated up to a

maximum value βmax = 11.2, which corresponds to βmax = βlim [35]. Parameters ηd, ηi and ηe are chosen as: 0.45, 0.5

and 0.55. Parameters R1, β1 and η1, related to the double filter approach, are chosen as: 2R2, 2β2 and ηd; as described
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Displacement graphsStress graphs

Figure 13: Maximum output displacement gripper problem. Post-processing graphs of maximum von Mises stresses (left) and output displacements
(right). Nonlinear refers to the nonlinear results post-processed with nonlinear analysis, and linear refers to the linear results post-processed with
nonlinear analysis.

in subsection 2.2.1. The problem is solved for three situations regarding the stress constraints: σy = 0.1; σy = 0.05;

and σy = 0.03.

We solve the inverter problem for two sets of control points, proportional (set 1) and non-proportional (set 2), with

two control points per set:

1. Output displacements: u∗out,1 = −2.5 and u∗out,2 = −5.0; input loads: fin,1 = 2.5 and fin,2 = 5.0;

2. Output displacements: u∗out,1 = −3.5 and u∗out,2 = −5.0; input loads: fin,1 = 2.5 and fin,2 = 5.0.

The difference between both sets is in the first control point. The proportional set requires that the mechanism

reaches an output displacement of u∗out,1 = −2.5 for an input load of fin,1 = 2.5, whereas the non-proportional set

requires an output displacement of u∗out,1 = −3.5 for the same load magnitude. The output displacement for the final

load level, fin,2 = 5.0, is the same, u∗out,2 = −5.0. The main goal of the problem is the design of a compliant mechanism

that passes through the prescribed control points, while still satisfying the stress requirements, and with minimum error

regarding uniform boundary variations. The stress constraints are applied for the second load level only.

In this problem, the Newton-Raphson method is employed with 4 load steps: 2 load steps are first employed to find

the equilibrium configuration due to the first load level fin,1 = 2.5, and the other 2 load steps are due to the second

load level fin,2 = 5.0. The same convergence criterion employed in the maximum output displacement problem is used

herein.

The first results presented in this subsection demonstrates the importance of using the double filter procedure to

address the proposed path-generating design problem. Figure 14 shows the optimized intermediate topologies and

respective computed displacement paths for eroded, intermediate and dilated designs. These results were obtained for

the case with stress requirement of σy = 0.1 and the proportional set of control points. The post-processed displacement
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paths are obtained with the pixel-based meshes and 10 load steps. Both the standard robust procedure, with physical

densities represented by ρ, and the robust procedure with the double filter approach, with physical densities represented

by ρ, are employed in this case. The single filter procedure is employed with same filter’s radius and same η and β

parameters used in the second filter step of the double filter approach.
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Figure 14: Path-generating inverter problem. Intermediate topologies (first row) and output displacement paths (second row), for the proportional set
of control points and σy = 0.1. Standard single filter robust approach (left), and double filter robust approach (right).

Analyzing Figure 14, one can observe that both results have an almost perfect fit between computed displacement

paths and prescribed control points; however, the optimized topology obtained with the standard robust procedure

(single filter approach) presents large regions of intermediate material, whereas the topology obtained with the robust

procedure with double filter approach does not. Intermediate material, in the latter case, is only observed at the

transition boundaries between solid and void phases, as expected. From now on, all presented results were obtained

with use of the double filter approach.

Figures 15 and 16 show the optimized intermediate topologies in undeformed configuration and the post-processed

displacement paths for eroded, intermediate and dilated designs, for both the proportional and non-proportional sets of

prescribed control points, respectively. All the post-processed displacement paths are obtained with pixel-based meshes

and 10 load steps. Table 1 shows the number of iterations until convergence and the number of objective function

evaluations for each problem.

This investigation demonstrates how the optimized paths behave for different stress requirements. We can observe
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Figure 15: Path-generating inverter problem, proportional set of control points. Intermediate topologies in undeformed configuration (first row), and
displacement paths for eroded, intermediate and dilated designs (second row).

Table 1: Path-generating inverter problem. Number of iterations and objective function evaluations to reach convergence criteria, for both proportional
and non-proportional set of control points.

Proportional set Non-proportional set
Stress constraint Iterations Obj. eval. Iterations Obj. eval.
σy = 0.1 151 311 282 400
σy = 0.05 179 397 349 513
σy = 0.03 246 397 393 544

good fit between prescribed and computed paths for both sets of control points, especially for the cases where σy = 0.1

and σy = 0.05 are used. For the cases obtained with σy = 0.03, one can observe a particularly interesting behavior.

Whereas for the non-proportional set of points the computed displacement paths start deviating slightly from the

prescribed control points, one can verify an almost perfect agreement for the proportional set of points. This behavior

is not surprising, since different paths may require different levels of deformation to be achieved. In this case, we

observed that the non-proportional set requires more deformation to be achieved, since it corresponds to a nonlinear

path with same final displacements as the almost linear path obtained with the proportional set of points.

Analyzing Table 1, two behaviors are observed: (1) the smaller the value of the yield stress, the larger the number

of iterations; and (2) the number of iterations related to the proportional set of control points is smaller than its

non-proportional counterpart, when the same yield stress is considered. This behavior, however, although intuitive
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Figure 16: Path-generating inverter problem, non-proportional set of control points. Intermediate topologies in undeformed configuration (first row),
and displacement paths for eroded, intermediate and dilated designs (second row).

from a physical point of view, cannot be adopted as a general rule, as demonstrated in subsection 6.1 when solving the

maximum output displacement inverter problem for different stress levels.

In order to check for accuracy of displacement paths and for the overall quality of the von Mises stress fields,

we employed a body-fitted post processing scheme over eroded, intermediate and dilated optimized topologies. This

study is performed over the results obtained for σy = 0.05, for both sets of control points. Figures 17 and 19 show

the optimized topologies with respective von Mises stresses, for the proportional and non-proportional sets of control

points, respectively. Figures 18 and 20 show the respective output displacement paths.

Analyzing Figures 17 and 19, one can verify good agreement between pixel-based and body-fitted von Misess

stresses. Figures 18 and 20 show the output displacement paths for both pixel-based and body-fitted cases, and good

agreement is verified as well. A slight deviation between computed and prescribed control points is observed for the

non-proportional set of points, in the body-fitted results. However, this slight deviation does not affect the applicability

of the approach. Note that, although not performed in this paper, use of finer meshes can help to alleviate the differences

between pixel-based and body-fitted results, as demonstrated in [34, 35].

In order to check for stress robustness with respect to uniform boundary variation, the same results for σy = 0.05

are also investigated with the post-processing scheme considering the final applied load of fin,2 = 5.0, associated with
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Figure 17: Path-generating inverter problem. Topologies, pixel-based and body-fitted von Mises stresses in deformed configuration, for the
proportional set of control points and σy = 0.05.

Pixel-based Body-fitted

Figure 18: Path-generating inverter problem. Output displacement paths obtained with pixel-based (left) and body-fitted (right) meshes, for the
proportional set of control points and σy = 0.05.

the final deformed configuration, in which the stress constraints are applied. Both the pixel-based and body-fitted

schemes are applied to obtain the η × σmax graphs; these are shown in Figure 21. The pixel-based graphs (solid lines)

are obtained for incremental steps of 0.005, and the body-fitted graphs (points) are obtained for incremental steps of

0.025, for η ∈ [ηd, ηe].

In these cases, we have maximum stress constraint violations of: 0.42% (fitted), for the proportional set of control

points; and 0.35% (pixel), for the non-proportional set of control points. There were no stress constraint violations for

the proportional set of control points with the pixel-based scheme and for the non-proportional set of control points
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Figure 19: Path-generating inverter problem. Topologies, pixel-based and body-fitted von Mises stresses in deformed configuration, for the
non-proportional set of control points and σy = 0.05.

Pixel-based Body-fitted

Figure 20: Path-generating inverter problem. Output displacement paths obtained with pixel-based (left) and body-fitted (right) meshes, for the
non-proportional set of control points and σy = 0.05.

with the body-fitted scheme.

7. Concluding remarks

This work has proposed and investigated two formulations to topology design of compliant mechanisms considering

stress constraints, manufacturing uncertainty and geometric nonlinearity. The first approach is an extension of

the stress-constrained maximum output displacement formulation, and the second approach is an extension of the

standard path-generating design formulation. Several numerical examples were solved to demonstrate the applicability
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Proportional set of control points Non-proportional set of control points

Figure 21: Maximum von Mises stresses for different values of η (uniform boundary variation), for the results from Figures 17 (left) and 19 (right).

of the proposed approaches. The numerical results were post-processed with use of pixel-based and body-fitted

post-processing schemes. Main conclusions are:

1. The proposed maximum output displacement formulation was able to provide optimized structures with maximum

von Mises stresses almost insensitive to uniform boundary variation. The proposed stress interpolation scheme, to

be used together with the energy interpolation scheme, worked fine in all cases, since good agreements between

pixel-based and body-fitted von Mises stresses were obtained. Moreover, small stress constraint violations were

observed in all cases where the stress constraint was applied.

2. Numerical comparisons between nonlinear and linear analyses in the maximum output displacement formulation

demonstrated the importance of using nonlinear analysis during the optimization process. Although small

differences in shape were observed, structures obtained with the maximum output displacement formulation

together with the linear analysis demonstrated instability, with rapidly varying maximum von Mises stresses

and large stress constraint violations after uniform boundary variation. Moreover, it was demonstrated that the

topologies obtained with the nonlinear formulation outperform the topologies obtained with linear analysis in

both stress requirement and output performance of the compliant mechanism.

3. The proposed path-generating formulation was able to provide optimized structures with different equilibrium

paths. Numerical examples demonstrated the importance of using the double filter approach in this case, to

provide almost black and white solutions, where the intermediate material is only present at the smooth transition

boundaries between solid and void phases.

4. An almost perfect fit was observed between computed and prescribed control points in the path-generating

design problems. A slight deviation from the prescribed path was observed for very strong stress requirements,

suggesting strong stress requirements and path-generating to be incompatible. Good fits were also observed
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between the prescribed control points and the displacement paths obtained with the body-fitted finite element

meshes.
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Appendix: Sensitivity analysis

This section develops the derivative of the augmented Lagrangian function, L, with respect to a design variable, ρm,

necessary to use a gradient-based algorithm in the optimization process.

Maximum output displacement problem

The augmented Lagrangian function for the maximum output displacement problem, Equation (32), can be properly

rewritten in order to facilitate sensitivity analysis by the adjoint technique:

L = LV + Luσ, (.1)

where LV is the term associated with the volume fraction of the dilated design

LV = kvV f

(
ρ(d)

)
+

rup

2

〈
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and Luσ is the term associated with both the output displacements and stress constraints

Luσ =
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where S = {e, i, d} is the set which contains dilated, intermediate and eroded fields of physical relative densities, and

λ( j) are arbitrary vectors, since R
(
Y

(
ρ( j)

))
= 0.
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The derivative of the augmented Lagrangian function can be computed through a chain rule [51]
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is the derivative of Equation (.2),
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The derivative of Luσ, Equation (.3), with respect to ρ( j)
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From now on, we will drop the dependence of the notation on ρ( j) for a clearer mathematical development. The

derivative of the von Mises equivalent stress at point k, Equation (5), is given by
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where the derivative of the solid von Mises stress, σ̂(k)
eq , is given by
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The derivatives of the Cauchy stress components, ∂σ̂11(k)
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n

, ∂σ̂22(k)
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n

and ∂σ̂12(k)
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n

, necessary to compute the derivative of the

solid von Mises stress, Equation (.11), are obtained through the derivative of the solid Cauchy stress tensor, Equation
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(29), as follows
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where ndo f is the number of degrees of freedom of the element which contains point k.

The derivative of the solid stress considering the nonlinear material model and finite strain theory is given by the

derivative of Equation (15), as follows
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whereas the derivative of the solid stress considering the linear material model and infinitesimal strain theory is given

by the derivative of Equation (20), as follows
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Equation (.12) is rewritten as
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) ∂γk

∂ρ( j)
n

+

ndo f∑
a=1

γk

∂σ̂NL
(k)

∂y(k)
a

+ (1 − γk)
∂σ̂L

(k)

∂y(k)
a

 ∂y(k)
a

∂ρ( j)
n

, (.15)

and then, the corresponding stress components of this derivative are substituted in Equation (.11). After proper

manipulation, Equation (.11) can be rewritten as

∂σ̂(k)
eq

∂ρ( j)
n

=
1

σ̂(k)
eq

ndo f∑
a=1

F (k)
a
∂y(k)

a

∂ρ( j)
n

+
1

σ̂(k)
eq

P(k) ∂γk

∂ρ( j)
n

, (.16)

where

F (k)
a =

(
σ̂11(k) −

σ̂22(k)

2

) γk

∂σ̂NL
11(k)

∂y(k)
a

+ (1 − γk)
∂σ̂L

11(k)

∂y(k)
a

 +

(
σ̂22(k) −

σ̂11(k)

2

) γk

∂σ̂NL
22(k)

∂y(k)
a

+ (1 − γk)
∂σ̂L

22(k)

∂y(k)
a


+ 3σ̂12(k)

γk

∂σ̂NL
12(k)

∂y(k)
a

+ (1 − γk)
∂σ̂L

12(k)

∂y(k)
a

 , (.17)

and

P(k) =

(
σ̂11(k) −

σ̂22(k)

2

) (
σ̂NL

11(k) − σ̂
L
11(k)

)
+

(
σ̂22(k) −

σ̂11(k)

2

) (
σ̂NL

22(k) − σ̂
L
22(k)

)
+ 3σ̂12(k)

(
σ̂NL

12(k) − σ̂
L
12(k)

)
. (.18)
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Substituting Equation (.16) in Equation (.10), gives

∂σ(k)
eq

∂ρ( j)
n

=
∂ fσ
∂ρ( j)

n

σ̂(k)
eq +

fσ
σ̂(k)

eq

ndo f∑
a=1

F (k)
a
∂y(k)

a

∂ρ( j)
n

+
fσ
σ̂(k)

eq

P(k) ∂γk

∂ρ( j)
n

, (.19)

which is then substituted in Equation (.8), resulting in the following equation

∂Luσ

∂ρ( j)
n

=
kin

fin

exp (P uout)

exp
(
P uKS

out

)ΛT
out

∂U
∂ρ( j)

n

+

Nk∑
k=1

h( j)
k

 ∂ fσ
∂ρ( j)

n

σ̂(k)
eq +

fσ
σ̂(k)

eq

P(k) ∂γk

∂ρ( j)
n


+

Nk∑
k=1

h( j)
k

fσ
σ̂(k)

eq

ndo f∑
a=1

F (k)
a H(k)

a
∂Y
∂ρ( j)

n

+ λT
( j)
∂R (Y)
∂Y

∂Y
∂ρ( j)

n

+ λT
( j)
∂Fint (Y)

∂ρ( j)
n

, (.20)

where the localization operator H(k)
a Y = y(k)

a is used. Exploiting the fact that ∂U
∂ρ( j)

n
= ∂Y

∂ρ( j)
n

, Equation (.20) is rewritten as

∂Luσ

∂ρ( j)
n

=

Nk∑
k=1

h( j)
k

 ∂ fσ
∂ρ( j)

n

σ̂(k)
eq +

fσ
σ̂(k)

eq

P(k) ∂γk

∂ρ( j)
n

 + λT
( j)
∂Fint (Y)

∂ρ( j)
n

+

kin

fin

exp (P uout)

exp
(
P uKS

out

)ΛT
out +

Nk∑
k=1

h( j)
k

fσ
σ̂(k)

eq

ndo f∑
a=1

F (k)
a H(k)

a
∂Y
∂ρ( j)

n

+ λT
( j)
∂R (Y)
∂Y

 ∂Y
∂ρ( j)

n

. (.21)

In order to avoid the computation of ∂Y
∂ρ( j)

n
, the adjoint vector is computed as

∂R (Y)
∂Y

λ( j) = −
kin

fin

exp (P uout)

exp
(
P uKS

out

)Λout −

Nk∑
k=1

h( j)
k

fσ
σ̂(k)

eq

ndo f∑
a=1

F (k)
a

(
H(k)

a

)T
. (.22)

After computing the adjoint vector λ( j), Equation (.22), the derivative of Luσ with respect to ρ( j)
n , given by Equation

(.21), is then obtained through local computations, as follows

∂Luσ

∂ρ( j)
n

= h( j)
n

 ∂ fσ
∂ρ( j)

n

σ̂(n)
eq +

fσ
σ̂(n)

eq

P(n) ∂γn

∂ρ( j)
n

 + λT
( j,n)

∂f(n)
int (yn)

∂ρ( j)
n

, (.23)

where λ( j,n) is the local adjoint vector associated with element n, and ∂f(n)
int (yn)

∂ρ( j)
n

is the derivative of the local internal force

vector associated with element n.

The derivative of the augmented Lagrangian function, L, with respect to a design variable, ρm, is then computed

by substituting Equations (.5), (.6), (.7) and (.23) in Equation (.4). Note that, as in the linear case [35], three adjoint

problems, Equation (.22), need to be solved per iteration, one for each relative density field, in order to evaluate the

gradient of the augmented Lagrangian function.
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Path-generating problem

The derivative of the augmented Lagrangian function associated with the path-generating formulation, Equation

(33), is developed by employing the step-by-step procedure presented for the maximum output displacement case, with

straightforward modifications; thus, it is not presented herein. We just show how the augmented Lagrangian may be

written to facilitate use of the adjoint method in this case, and the final adjoint problems. The augmented Lagrangian is

written as:

L = LV + Luσ,M +

M−1∑
m=1

Lu,m, (.24)

where LV is the term associated with the volume fraction of the dilated design

LV =
rup

2

〈
µup

rup
+

V f

(
ρ

(d)
)

V (d)
up

− 1
〉2

, (.25)

Luσ,M is the term associated with both the final control point and the stress constraints

Luσ,M =

(
kin

fin,M

)2 ∑
j∈S

(
uout,M

(
ρ

( j)
)
− u∗out,M

)2
+

r
2

Nk∑
k=1

∑
j∈S

〈
µ

( j)
k

r
+

σ(k)
eq

(
ρ

( j)
)

σy
− 1

〉2

+
∑
j∈S

λT
( j),MR

(
YM

(
ρ

( j)
))
, (.26)

and Lu,m is the term associated with the m-th control point

Lu,m =

(
kin

fin,M

)2 ∑
j∈S

(
uout,m

(
ρ

( j)
)
− u∗out,m

)2
+

∑
j∈S

λT
( j),mR

(
Ym

(
ρ

( j)
))
. (.27)

The adjoint problems are given by

∂R (YM)
∂YM

λ( j),M = −2
(

kin

fin,M

)2 (
uout,M − u∗out,M

)
Λout −

Nk∑
k=1

h( j)
k

fσ
σ̂(k)

eq

ndo f∑
a=1

F (k)
a

(
H(k)

a

)T
, (.28)

and
∂R (Ym)
∂Ym

λ( j),m = −2
(

kin

fin,M

)2 (
uout,m − u∗out,m

)
Λout. (.29)

Note that Equations (.28) and (.22) are quite similar. The differences are in the terms associated with output

displacement. The term associated with the stress constraints is the same, though.

After computing the adjoint vectors, the derivative of Luσ,M with respect to a physical variable ρ
( j)
n is given by

Equation (.23), whereas the derivative of Lu,m is given by the same equation disregarding the term associated with the

stress constraints.

38



Since the double filter approach is employed in this case, the chain rule from [45] should be employed, instead of

Equation (.4), to obtain the final derivatives. Note that, in the path-generating problem, 3M adjoint problems need to be

solved per iteration (three for each prescribed control point).
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