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Abstract

This work presents a high performance computing framework for ultra large scale,
shell-element based topology optimization. The shell elements are formulated
using a linear elastic, small strain assumption and are of the solid type, meaning
that each quadrilateral shell element is extruded and assigned 24 degrees of
freedom. The resulting linear system is solved using a fully parallelized multigrid
preconditioned Krylov method, tailored specifically for unstructured quadri-
laterial shell meshes. The multigrid approach is shown to have good parallel
scaling properties and is able to efficiently handle the ill-conditioning arising
from the ’Solid Interpolation of Material Properties’ (SIMP) method. For the
optimization, the classical minimum compliance design problem with multiple
load cases, prescribed minimum length scale and a local volume constraint is in-
vestigated. The latter is implemented through efficient PDE-filtering in contrast
to usual local image filtering based implementations. Finally, the framework is
demonstrated on two idealized examples from civil and aerospace engineering,
solving shell optimization problems with up to 11 million shell elements on 800
cores. As an example, this resolution corresponds to a minimum feature size of
1.5 cm on a high-riser of height 80 m.

Keywords: Topology Optimization, Shell Reinforcement, High-performance
Computing, Multigrid

1. Introduction

Shell structures can achieve high stiffness-to-weight ratios, and are therefore
often found in weight critical applications including aircrafts, high-risers and
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ships. On the other hand, topology optimization is a numerical optimization
tool used to create high performance structures, tailored to specific load cases,
with little or no prior knowledge of the optimal structure [1]. Thus, topology
optimization and shell structures provide a near-perfect combination in the
pursuit for stiffness optimal and light-weight constructions.

Performing structural optimization using shell elements presents several possi-
bilities and challenges. For example, the shell thickness can be optimized as a
varying field throughout the structure [2]. Alternatively, applying the regular
SIMP approach [3, 4] can be used to determine the optimal perforation of a given
shell structure. Another large class of shell topology optimization problems is
the orientation of anisotropic material features, whether it is stiffening beads
[5, 6, 7] or composite laminates [8]. Furthermore, applications of shell element
based topology optimization include [9, 10], which present simultaneous topology
and shape optimization of curved plates, where the resulting structures carry
the loads efficiently through in-plane strains. A discrete material optimization
framework is presented in [11], which is specifically developed to choose between
several laminate directions in shell structures. This framework is expanded
several times to include optimizing the shell thickness [12], and in order to
improve the discrete formulation [13]. A case study optimizing the thickness
of a reinforcing shell layer of a submarine sail, which forms part of the outer
submarine structure, is considered in [14]. Optimization of buckling phenomena
of shells is studied in [15], where regularization schemes are included to avoid
spurious buckling modes in void regions. A framework for the placement of
reinforcing patches is presented in [16], where the patches act as a reinforecement
onto an exising shell structure. A case study in which a wind turbine wing is
optimized is presented in [17], using a genetic algorithm approach for the outer
turbine skin, and topology optimization for the reinforcing spars.

Numerical analysis of shell structures using finite elements results in very high
condition numbers of the resulting stiffness matrices compared to those of
standard solid elements [18]. The high condition numbers have adverse effect on
the numerical accuracy of direct solution methods, and have significant impact
on the efficiency of iterative solution methods. The ill-conditioning occurs due
to the large difference between high frequency in-plane deformation modes,
and low frequency out-of-plane deformation modes, as shown in [18]. Usually,
direct solution methods are applied to shell structures, even when tackling
large scale problems as e.g. done in [19], which solves a finite element problem
using approximately 920,000 quadrilateral shell elements. In [20] the authors
present a multigrid method for shell structures, which shows that many iterations
are needed for convergence in thin shells, where the conditioning problem is
worst. Combining the high condition numbers of shell structures with the highly
heterogeneous material parameters encountered in topology optimization, which
further increases the condition number, presents a severe challenge that must
be overcome in order to allow for ultra high resolution topology optimization of
shells structures.

The conjecture that ultra high resolution is a necessity in order to achieve
maximum insight into a given design space, has been demonstrated in many
recent works including [21, 22, 23, 24, 25, 26]. As an example, [22] discretizes an
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entire 26m long aircraft wing, with a maximum element size of 0.8 cm, allowing
the optimization to create many local features that would not have been possible
using a coarse mesh. Moreover, the infill possibilities provided by additive
manufacturing, require a highly resolved design space in order to allow for the
formation of an intricate infill layout.

In this work, a framework for performing high resolution topology optimization
of shell structures is presented. First, a fully parallelized multigrid preconditioner
based on the approach from [22] is developed to facilitate the solving of very
large scale shell topology optimization problems. The prolongation operators
for the unstructured shell grids are obtained using a variation of the approach
presented in [20] for a continuum shell element formulation. The proposed solver
setup allows for the solution of systems with up to 11 million quadrilateral shell
elements (69 million degrees of freedom) with highly heterogeneous material
coefficients. The framework is then employed on selected design problems from
civil and aerospace engineering and the findings are summarized and discussed.

2. Shell finite element model

Throughout this work linear elasticity using small strains for shells is considered.
We present a methodology for using a continuum shell formulation defined for
hexahedral elements, on a mesh of quadrilateral shell elements. This methodology
is introduced, since continuum shell formulations have desirable properties
with respect to symmetry and multigrid methods (see section 3 for details).
Furthermore, as most available meshing software focuses on quadrilateral shell
elements, the development of this approach was necessary. The method works by
creating an equivalent hexahedral element for each quadrilateral when integrating
the element.

The methodology for creating an equivalent hexahedral requires access to the
shell normals defined on the element nodes. In order to approximate these
vectors the normal vector for each quadrilateral is computed. Then the nodal
normal vector is found by averaging the normal vectors of all connected elements,
as depicted in fig. 1. When constructing the equivalent hexahedral, all nodes are
translated by half the shell thickness h in both directions along the corresponding
nodal normal, as also depicted in fig. 1. During the assembly process the nodes
in the quadrilateral mesh can be considered as owning the degrees of freedom
corresponding to both extruded nodes in the equivalent hexahedral mesh.

A drawback of this extrusion method, is that arbitrary shell thicknesses cannot
be considered. The formation of hourglass hexahedral elements is possible if
the shell thickness is large relative to the element side length. Therefore careful
monitoring of the validity of the extruded mesh is necessary. In this work the
scaled Jacobian metric is computed for all elements, and the computations are
stopped if minimum value of the metric is unsatisfactory, which for this work is
chosen as less than 0.2.

The shell element is a slightly modified version of the continuum shell element
presented in [27]. The used formulation employs both the Mixed Interpolation
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Figure 1: Illustration of the extrusion process for interpreting quadrilateral shell elements as
hexahedrals. The red arrows indicate the normals of the quadrilateral surfaces, while V3 is
used to denote the approximated shell normal at a given node. Each node in the quadrilateral
mesh is extruded to two nodes in the corresponding hexahedral mesh, as shown in blue.

of Tensorial Components (MITC) correction when interpolating the out-of-plane
shear strains and the Assumed Natural Strains (ANS) correction when computing
the normal strain in the out-of-plane normal direction. Unlike the original
formulation from [27], this version does not employ the Enhanced Assumed
Strains (EAS) correction, as this correction negatively affects the efficiency
of iterative solvers. As in the original formulation, it is possible to include
multiple layers with varying material properties, which is used to implement
passive domains during the optimization when formulating a shell reinforcement
problem. Finally, the Scaled Thickness Conditioning (STC) [28] is applied to
the formulation, in order to reduce the condition number associated with thin
shell elements. For completeness, the full shell element formulation including
design dependence is given in appendix Appendix A.

The accuracy of the element implementation was verified using a set of standard
test examples. For the centrally loaded circular clamped plate and for the
hemispherical problem presented in [29], the element is found to converge to the
exact deformation value. For the pinched diaphragm supported cylinder study
[30], the element implementation was found to deviate by 5% of the analytical
displacement value.

3. Multigrid approach

It is well-known that solving large scale problems using direct methods is not
feasible in general. Therefore, iterative methods must be employed. Here we use
a Galerkin projection based multigrid preconditioned Krylov subspace solver in
order to efficiently solve large scale heterogeneous shell problems [31].
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The used multigrid method is based on the scheme presented in [32, 22], which
uses a standard V-cycle multigrid method with Galerikin projection as precon-
ditioner for the preconditioned flexible conjugate gradients solver [33, 34]. For
topology optimization problems the solver uses the deformation of the previous
design as initial guess for the CG iterations, allowing for fast convergence for
smaller design changes. Information about the used hierarchy of smoothers is
summarized in table 1.

Table 1: Summary of the used smoothers, preconditioners and steps used in the multigrid
preconditioner.

level(s) smoother preconditioner steps
Finest Flexible CG multigrid -
Intermediate Chebyshev [34] SOR [34] 4
Coarse GMRES [34] Algebraic multigrid (PETSc GAMG) [35] 200

The prolongation operator is based on [20] which deals with degenerated, i.e.
quadrilateral, shell elements. The prolongation operator maps the displacement
fields from a coarse mesh onto a fine mesh. In the presented approach the
displacement fields of the interior and exterior nodes of the hexahedrals are
treated separately, resulting in a prolongation for quadrilateral shell elements
which prolongs six different fields. This treatment of the displacements as two
separate fields is performed to avoid smoothing of the field through the shell
thickness, as there exists no additional nodes through the thickness in the coarser
meshes.

The operator is constructed in parallel using the shape functions of the coarse
mesh to interpolate coarse nodal values to a given node in the fine mesh. In
practice this requires some additional computations, due to both the lack of
structure in the mesh and due to the 2.5D nature of shells. The pseudo-code for
computing the prolongation operator between two meshes is shown in algorithm 1.
The KD-tree used in algorithm 1 is introduced to avoid performing a search
for all potential nodes in the unstructured meshes. Similarly, the second loop,
which handles all fine nodes, is introduced to implement a heuristic addition for
nodes which were never found to reside within a coarse element. The process of
projecting a node onto the element plane, and determining if it is within the said
element, is depicted in fig. 2. The potential nodes are identified, and projected
onto the plane of the quadrilateral, wherein it is checked whether they are inside
the quadrilateral.

3.1. Implementation

The multigrid approach is implemented using the PCMG preconditioner in
PETSc [36, 37, 38], which also contains the multigrid cycles and smoothers. The
prolongation operator is constructed in parallel as a preprocessing step. The
efficiency of the multigrid approach and element is confirmed by the strong
scaling results presented in fig. 4, where the fuselage example from fig. 3 (and
section section 5.2) is studied with approximately 45 million degrees of freedom.
A near linear speedup is observed until 480 processors, or 93000 degrees of
freedom pr. core.

5



Algorithm 1: Pseudo-code to construct prolongation

Data: Fine mesh Hi, coarse mesh Hi−1

Result: prolongation operator P
K := KD tree of all nodes in Hi;
ntouched := zero valued array of size nodes in Hi;
forall elements e ∈ Hi−1 do

ie := global indices associated with e;
ce := Center of e;
le := approximate element size of e;
nfound := nodes in K within 1.5× le of ce;
forall nodes n ∈ nfound do

ñ := projection of n onto plane of e;
if ñ is within e then

ntouched[n] := ntouched[n] + 1;
in := global indices associated with n;
N := shape functions in e corresponding to position of ñ;
Insert N into the submatrix in × ie of P ;

end

end

end
Synchronize values of ntouched across processors;
Kc := KD tree of all nodes in Hi−1;
forall nodes n ∈ Hi do

if ntouched[n] is 0 then
nfound := 3 nearest nodes to n in Kc;

wfound := 1
|nfound−n|2 ;

¯wfound := wfound∑
wfound

;

Insert ¯wfound into P such that n is coupled to nfound;

end

end

The Lotte tower design problem from fig. 5 [39] is used to examine the residual
as function of conjugate gradient iterations, see more details in section 5.1.
Figure 6 shows the convergence of the multigrid approach for various multigrid
levels using homogeneous material parameters in the domain. As can be seen,
the required number of iterations to reach a given tolerance increases with the
number of multigrid levels. However, the cost of each iteration decreases with
more levels, as the coarse problem size decreases.

A study of the residual decrease for the same domain with various shell thicknesses
is shown in fig. 7. The number of iterations required to reach convergence
increases drastically as the thickness decreases relative to the size of the shell.
This is due to the increasing condition number, as the difference between the
largest and smallest eigenvalues increases. The increasing condition number
drastically reduces the convergence rate of Krylov methods.

Figure 8 shows the required number of CG iterations for convergence during

6



(a) Elements of fine and coarse grid. (b) Projection of nodes from fine grid onto
plane of coarse element.

Figure 2: Illustration of the projection process used to evaluate if a node is within a quadrilat-
eral.

Figure 3: sketch of the used geometry for the fuselage example. The outer shell is shown in
yellow, the floor plate in green, and the various reinforcing plates are shown in blue. The three
regions with boundary conditions, are shown in red.

design iterations for a typical topology optimization problem. It can be seen that
the required number of iterations increases in the beginning, as the heterogeneity
of the material parameters increases fast. After some iterations, however, the
design changes become smaller and more localized, allowing the CG iterations
to benefit from the non-zero initial guess from the previous design iteration.

The presented multigrid approach, and associated implementation, is not limited
to shell elements. Similar performance as that presented in fig. 4 has been
observed when using the framework to solve topology optimization problems
using hexahedral elements, although far fewer iterations are needed to reach
convergence in the iterative solving process. The scaling tests, along with the
numerical results of section 5.2, were run on the DTU Sophia cluster with
two AMD EPYC 7351 16-Core processors and 128 GB memory per node and
infiniband interconnect.
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Figure 4: Speed-up factor for the first design iteration of fuselage example with approximately
45 million degrees of freedom. The parallel version with 160 cores is used as the base case, due
to memory constraints the problem is not solved on fewer compute nodes.

4. Optimization formulation

The considered optimization problem is the well-studied minimum compliance
problem for linear elasticity with multiple load cases [1]. Each element in the
mesh is assigned a design variable xe ∈ [0, 1]. The field of design variables is
modified through a set of filters in order to obtain the so-called physical density,
which is used to interpolate the stiffness and mass of the corresponding element.
The robust formulation [40, 41] is applied to ensure both a minimum length scale
and a 0-1 final design. The robust formulation removes the need for the usual
penalization of intermediate densities, as discussed in [42]. A linear Young’s
modulus interpolation scheme is used, corresponding to the ’Simplified Isotropic
Material with Penalization’ (SIMP) method with penalization value p = 1, as
shown in eq. (1).

E(xe) = Emin + xe(E0 − Emin), Emin = 10−6E0, 0 ≤ xe ≤ 1 (1)

E0 denotes the background stiffness and Emin denotes the stiffness of a weak
material used to immitate void.

To prevent numerical artifacts such as checkerboards and mesh dependency
we add regularizations in the form of the Helmholtz PDE-filter [43], and the
robust formulation [41]. Furthermore, a modified local volume constraint [23]
is developed for the problem, which uses the Helmholtz PDE-filter instead of a
local average to calculate the local volume fraction.

In order to simplify the notation the PDE filtering operator Fr : Rn → Rn for a
given radius r is introduced. Here n denotes the number of elements in the finite
element mesh. The operator is defined as y = Fr(x) where y is the solution to
the modified Helmholtz PDE with homogeneous Neumann boundary conditions
defined on the same mesh. Two realizations of this operator are used when
formulating the optimization problem; the solid filtering, which replaces the
density filter Fsolid with r = rsolid, and the local volume filter, which replaces the
neighborhood average [23] for the local volume filter FLV with r = rLV. Usually
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Figure 5: Geometry of the Lotte tower test example. The square bottom of the tower is
clamped. Two load cases, each consisting of two point loads, are depicted with green and blue
arrows.

the filter radii are chosen such that rLV � rsolid. The authors note that all of
the presented radii are corrected to obtain the scalar coefficient r∗ = r

2
√

3
used

in the PDE formulation, as discussed in [42].

As with the PDE filter, the heaviside projection is introduced using an operator
Hη : Rn → Rn which depends on two parameters η and β. The operator is
defined for a given threshold value η, while the value of β is increased throughout
the optimization using a continuation scheme. The operator is defined such that
z = Hη(y) is applied element-wise in the vectors as

ze =
tanhβη + tanhβ(ye − η)

tanhβη + tanhβ(1− η)
, ∀e ∈ {1, .., ne}. (2)

Three realizations of the Heaviside operator are used in the robust formulation;
the nominal Hηn , dilated Hηd , and eroded Hηe . In this work, the used threshold
values are ηn = 0.5, ηd = 0.4 and ηe = 0.6. The continuation scheme of β
begins by setting β := 0.01, then after every 30 iterations the value is updated
β := β + 1. When β = 8, or at iteration 240, the update scheme changes to
β := 6

5β every 30 iterations. This continues until iteration 600, where the value

9



0 5 10 15 20 25 30 35

10−1

10−2

10−3

10−4

10−5

10−6
3 levels 4 levels 5 levels

CG iteration

re
la

ti
v
e

p
re

co
n

d
it

io
n

ed
re

si
d

u
a
l

Figure 6: Residuals for the Lotte tower example (section 5.1) with various multigrid levels.
Meshed using 126,024 elements (757,560 dof) and a shell thickness of 0.1.
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Figure 7: Residuals for the Lotte tower example (section 5.1) with 4 multigrid levels, and
various shell thicknesses. Meshed using 126,024 elements (757,560 dof).

of beta β ≈ 59.4. The optimization is run for a maximum of 650 iterations. This
conservative choice of β-continuation is chosen due to the slower increase in
value, compared to the usual continuation scheme used in e.g. [41]. The slower
increase is not strictly necessary, but results in smaller jumps in β value, which
is found to improve convergence stability.

Given a set of nl load cases with their respective force vectors fi ∈ Rn, i ∈
{1, .., nl}, and corresponding weights wi ∈ R. The optimization formulation can
then be written as:
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Figure 8: Used number of CG iterations for all design iterations during the optimization of
the Lotte tower example (section 5.1). The model is meshed using approximately 11 million
elements, with a shell thickness of 0.015 m.

minimize
x∈Rne

nl∑
i=1

wiui
>fi

subject to:

state equation K(Hηe(Fsolid(x)))ui = fi, ∀i ∈ {1, .., nl}

global volume
1∑ne

e=1 ve

ne∑
e=1

ve(Hηd(Fsolid(x)))e ≤ V ∗g

local volume ||FLV(Hηd(Fsolid(x)))||plv ≤ V ∗l

(3)

Note that this is the reduced version of the robust formulation, which relies on
knowledge about the compliance and both constraints. Namely, it is known that
the compliance attains its maximum value for the eroded realization, while both
volume constraints attain their maximal values for the dilated realization.

The local volume constraint is aggregated using the p-norm approximation,
with a penalty value of plv = 16. All examples presented here are conducted
with the global and local volume fractions V ∗g = V ∗l = 0.5. It is noted that
applying the volume constraint on the dilated field does not directly control the
resulting volume in the nominal case. As all examples presented in this paper
are purely academic, with arbitrarily chosen volume constraints, a variation
in resulting volume fractions is accepted, and the resulting nominal volume
fractions are stated. If control of the nominal volume is desired, the volume
fraction update scheme presented in [41] may be used. Furthermore, the exact
control of the volume fraction is complicated by the approximate nature of the
p-norm aggregation used for the local volume constraint. The approximation
error in the local volume constraint might prevent the optimizer from using more
material, even if the global volume constraint allows for more material.

Finally, the sensitivities are obtained using the discrete adjoint method and the
optimization problem is solved using a fully parallelized implementation of the
Method of Moving Asymptotes (MMA) [44, 45].
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5. Numerical examples

5.1. Lotte Tower - Perforation Design

The first example of high resolution topology optimization using shell elements
is the Lotte Tower example, originally suggested in [39]. The tower has a square
base of size 10 m by 10 m meters which is clamped, and a circular top with radius
5 m where the loads are applied. The tower is 80 meters high, and is subjected
to two sets of point-loads of magnitude 1 N at the circular top, as depicted in
fig. 5. The tower itself is modeled as an empty shell where the cross-section
linearly varies between the square at the bottom and the circle at the top. The
geometry was meshed using Cubit [46] with a mapping algorithm, resulting in
11,637,184 elements on the finest mesh, corresponding to an average element
size of 1.6 cm. The coarser meshes were meshed independently using the same
approach but using fewer elements. This mesh refinement is so highly resolved
that an illustration of the used mesh is difficult to render. Instead, the refinement
can be inferred from the close-up of the results presented in fig. 9.

The tower is optimized using a filter radius of rsolid = 8 cm or five times average
element size. Using the expression presented in [47] it can be found that this
corresponds to imposing a length-scale of 3.2 cm or 2 times the average element
size. The local volume constraint is computed based on the dilated realization,
with a filter radius of rLV = 96 cm. The studied problem is that of optimal
perforation of a shell, i.e. no passive shell layers have been included.

A close-up of the resulting structure is shown in fig. 9 in order to illustrate the
refinement of the structure. It can be seen that the small bone-like features are
resolved with multiple elements across their thickness.

An overview of the resulting structure is shown in fig. 10. It can be seen that it is
very intricate, consisting of many small bone-like features which are oriented to
carry the loads. Arches are formed near the points where the loads are applied
and underneath. Near the corners of the square base many vertical substructures
can be found, which branch out to the arches throughout the height of the
structure. Note that the entire structure is modeled without any symmetry in
the design variables. Nevertheless, the resulting designs are near symmetric,
although not fully. This is due to numerical noise and non-convexity of the
optimization problem.

An alternate version of the tower has been run using the same parameters, with
the exception of the filter radii which are changed to rsolid = 22.5 cm (15 times
the average element size) for the solid filter, and rLV = 4.5 m for the local volume
filter. The resulting structure is shown in fig. 11, which reveals many of the
same structural features, albeit with a larger minimum member size, than the
example using a lower filter radius. The non-symmetry of the solution is much
more apparent in this example due to the large structural features. It can be
seen that the non-symmetry is particularly concentrated on the middle of the
lower flat sections, and between the loaded arches near the top of the tower.
This coincides with the areas with lower strain density, where material is applied
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Figure 9: Close up of resulting topology for the Lotte Tower example using 11.6 million shell
elements and filter radii of rsolid = 8 cm and rLV = 96 cm.

late in the optimization process, and only has little effect on minimizing the
objective function.

The resulting compliance values are 0.334 J for the rsolid = 8 cm, rLV = 96 cm
filter radii, and 0.316 J for the rsolid = 22.5 cm, rLV = 4.5 m filter radii. As the
filter radius rsolid is increased, the compliance value should increase, as a larger
feature size is enforced on the optimization algorithm. Oppositely, when the
local volume filter radius rLV is increased, the compliance values should decrease,
as less complexity is forced on the resulting structure. Thus when increasing
both radii, it is difficult to predict the effect on the compliance value, which in
this case is lower.

The final volume fractions for the two designs were 0.46 for the rsolid =
8 cm, rLV = 96 cm filter radii, and 0.45 for the rsolid = 22.5 cm, rLV = 4.5 m
filter radii. These values are lower than the maximally allowed value of 0.5 for
the reasons discussed in section 4.

Figure 12 shows the iteration history of the weighted compliance for the Lotte
tower example with filter radii rsolid = 8 cm and rLV = 96 cm from Figure 9 and
10. It can be seen that the compliance steadily decreases, with the exception
of the discontinuities which occur when the β value is increased through the
continuation scheme. As expected, the final compliance is higher than the value
found for the homogeneous design in the first iteration. This is a consequence of
the linear stiffness interpolation, which makes the compliance of the homogeneous
design lower than what is usually obtained using standard SIMP with p = 3.
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Figure 10: Resulting topology of the Lotte
tower example with filter radii of rsolid =
8 cm and rLV = 96 cm.

Figure 11: Resulting topology of the Lotte
tower example with filter radii of rsolid =
22.5 cm and rLV = 4.5 m.

14



0 100 200 300 400 500 600

10

15

20

25

design iteration

W
ie

g
h
te

d
co

m
p

li
a
n

ce
∑ w

i
J
i

Figure 12: Weighed compliance over design iterations for the Lotte tower example with filter
radius of rsolid = 8 cm and local volume filter radius rLV = 96 cm. The compliance weights are
chosen as w1 = w2 = 1.9898 × 10−2, such that w1J1 = w2J2 = 5 for the initial conditions.

Both of the tower examples ran for 650 design iterations on 25 compute nodes
on the DTU Sophia cluster, i.e. a total of 800 cores. The full optimziation
procedure takes around 17 hours, or an average of 94 seconds pr. design iteration,
and solves the state field a total of 1300 times, due to the two load cases.

5.2. Fuselage - Reinforcement Design

The second example concerns the optimal reinforcement of the fuselage of
the NASA common research model [48] depicted in fig. 3. The geometry of
the common research model is used to define the outer shell of the fuselage.
Additionally, a floor panel and some vertical stiffeners are added. The mesh is
generated using a paving algorithm implemented in Cubit [46], and consits of
7,488,576 shell elements, with an average element size of 0.95 cm. The coarse
grids for the multigrid prolongation are generated independently in a similar
fashion, targeting larger average element sizes. Like the Lotte tower, the mesh
refinement is so highly resolved that an illustration is difficult to render. However,
the elements in a close-up are shown in fig. 13 to give an impression of the mesh.
The filter size for the solid filter for the robust formulation is rsolid = 7.5 cm or
7.9 times the average element size, corresponding to imposing a length-scale of
3 cm or 3 times the average element size..

The outer shell, shown in yellow in fig. 3 and floor panel shown in green, are both
modeled as shells reinforced symmetrically from both sides. In both cases the
central 0.13 cm is modeled as a passive domain, while two outer reinforcements,
each with thickness 1.2 cm, are modeled using the SIMP approach with a single
design variable. This corresponds to the innermost 5% of the shell being passive.
The plate structures shown in blue in fig. 3 are modeled without any passive
domain and a thickness of 2.54 cm, which corresponds to a shell perforation
design problem.

Three variations of the fuselage example are considered. The two first variations
vary the local volume filter size, which is used for the local volume constraint.
The fuselage is studied using a local volume filter size of rLV = 127 cm and
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Figure 13: Small local filter size - Overview of the resulting topology of the fuselage example.
A white plate has been added to the components which have been modeled using a passive
shell. Likewise, a blue background plate is added to the reinforcing plates near the wing, in
order to improve the visualization. The example uses a filter radius of rsolid = 7.5 cm (7.9
elements) and local volume filter radius rLV = 127 cm (130 elements). The radii of the two
enlarged circles are 127 cm and 15 cm, respectively. The elements are shown in the innermost
enlargement, in order to illustrate the mesh refinement.

Figure 14: Small local filter size - Close up
of the central part of the fuselage. Com-
puted with a filter radius of rsolid = 7.5 cm
(7.9 elements) and local volume filter radius
rLV = 127 cm (130 elements).

Figure 15: Small local filter size - Close
up of the tail section of the fuselage. The
reinforcement structure of the floor can also
be seen. Computed with a filter radius of
rsolid = 7.5 cm (7.9 elements) and local
volume filter radius rLV = 127 cm (130
elements).
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Figure 16: Large local filter size - Overview of the resulting topology of the fuselage example.
It should be noted that a white plate has been added to the components which have been
modeled using a passive shell. Likewise, a blue background plate is added to the reinforcing
plates near the wing, in order to improve the visualization. Computed with a filter radius of
rsolid = 7.5 cm (7.9 elements) and local volume filter radius rLV = 300 cm (260 elements).

rLV = 300 cm, which corresponds to 130 and 260 times the average element
size respectively. The final variation studies the effects of including a thicker
passive shell in the outer skin and on the floor plate. Here, a passive shell of
40%, instead of the usual 5%, is studied. The variation in passive thickness is
performed using a local volume filter radius of rLV = 127 cm, corresponding the
first variation. The three cases are denoted as ’small local filter size’, ’large local
filter size’, and ’thick passive shell’ respectively, to help distinguish the designs.

A symmetry boundary condition is applied on the mid-plane of the fuselage,
such that only half the fuselage is modeled. A Dirichlet boundary condition
with zero displacement in the ’upwards’ direction is applied at two edges at the
intersection of the interior vertical stiffeners and the outer shell, and along the

Figure 17: Large local filter size - Close up
of the central part of the fuselage. Com-
puted with a filter radius of rsolid = 7.5 cm
(7.9 elements) and local volume filter radius
rLV = 300 cm (260 elements).

Figure 18: Large local filter size - Close
up of the tail section of the fuselage. The
reinforcement structure of the floor can also
be seen. Computed with a filter radius of
rsolid = 7.5 cm (7.9 elements) and local
volume filter radius rLV = 300 cm (260
elements).
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Figure 19: Thick passive shell - Overview of the resulting topology of the fuselage example.
It should be noted that a white plate has been added to the components which have been
modeled using a passive shell. Likewise, a blue background plate is added to the reinforcing
plates near the wing, in order to improve the visualization. Computed with a filter radius of
rsolid = 7.5 cm (7.9 elements) and local volume filter radius rLV = 127 cm (160 elements). The
outer aircraft skin and floor are modelled with a passive central shell corresponding to 40% of
the total shell thickness.

edge which connects a point from each curve. A single point on the top of the
outer shell is given a Dirichlet boundary condition in the direction along the
length of the fuselage, to avoid rigid body motion.

Two load cases are considered for the fuselage example. The first load case is an
internal pressure of magnitude 35 N/cm2 on the outer shell. In order to ensure
equilibrium in the loads along the length of the fuselage, an additional force is
distributed along the intersection of the outer shell and the vertical reinforcement
near the tail. The second load case is a simplified gravity load. It is applied as a
design independent body load of magnitude 15.6 N/cm3 on both the outer shell
and the floor panel.

The purpose of this model is to show the efficiency of the proposed method
for large unstructured meshes. It should therefore be noted that this geometry
does not represent an actual aircraft, due to the lack of windows and several
internal reinforcing beams among other things. We remark that the applied
load-cases and boundary conditions do not represent the physical loading of
a fuselage, as such were not available to the authors. Furthermore, a realistic
physical system would need to take additional effects into account, such as
buckling, dynamics, thermal and electromagnetic responses. In relation to these
considerations it is worth mentioning an additional benefit of using the local
volume constraint. This constraint ensures that the final designs are free of
long, slender and disconnected structural members, at least for the cases with
a thin passive background shell. From the work of [49] it was found that such
structures have significantly improved buckling resistance compared to designs
obtained using the classical minimum compliance formulation. However, since
this has not been proven or demonstrated by buckling analysis of the obtained
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Figure 20: Thick passive shell - Close up of
the central part of the fuselage. Computed
with a filter radius of rsolid = 7.5 cm (7.9
elements) and local volume filter radius
rLV = 127 cm (160 elements). The outer
aircraft skin and floor are modelled with a
passive central shell corresponding to 40%
of the total shell thickness.

Figure 21: Thick passive shell - Close up
of the tail section of the fuselage. The
reinforcement structure of the floor can
also be seen. Computed with a filter radius
of rsolid = 7.5 cm (7.9 elements) and local
volume filter radius rLV = 127 cm (160
elements). The outer aircraft skin and floor
are modelled with a passive central shell
corresponding to 40% of the total shell
thickness.

Figure 22: Comparison of the various fuselage examples. From top to bottom: small local
filter size, large local filter size, and thick passive shell.

shell structures, this interesting research question together with inclusion of
global buckling constraints, is left for future investigations.

Figures 13, 16 and 19 shows an overview of the resulting structures of the fuselage
for all considered cases. For all three realizations it can be seen that rings are
formed along the radial direction of the cylinder as a reinforcement against the
internal pressure. Near the center of the fuselage, the rings are also connected
by axial reinforcements, which carry the simplified gravity loading. These axial
reinforcements slowly curve into the radial reinforcements in a smooth transition.

In the realizations with a thin passive support small load carrying arms appear in
the unreinforced patches of the outer skin, as can be seen in figs. 13 and 16. These
arms appear to prevent the unreinforced patch to locally have a large deformation
by adding some additional reinforcement. The arms are not observed in the case
with a thick background plate, where the background bending stiffness is higher.
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This phenomenon is studied further in Appendix B. These two designs have
compliance values of 818 kJ and 766 kJ, for the small and large local filter size
respectively. It can be seen that the compliance value of the structure with larger
allowed feature size is lower as expected, due to the increased design freedom.

In the case with a thicker passive domain, many of the supporting structures
are not connected, as seen in fig. 19. This effect is due to the high background
stiffness of the passive shell, which will sufficiently carry the loads in areas with
low strain energy density without the need for reinforcement. This design has
a compliance value of 571 kJ, which is higher than both realizations with a
thinner passive plate. This is expected, as more material is used compared to
the two other designs. The full designs can be compared in fig. 22, where the
full fuselages are shown side by side.

It can be seen that all three realizations contain the same basic features. The
smaller feature size results in more substructures, which form web like reinforce-
ments. As the filter size is increased the optimization algorithm generates larger
substructures. In fig. 13 the first spyglass is a circle with radius corresponding
to the used local volume filter. It can be seen that even the smallest features of
the resulting structure are resolved by a large number of finite elements. It can
also be observed that even the smallest used local volume filter is quite large
compared to the overall structure. Due to the weighting factor which occurs
in the PDE filtering, the distance between elements has a large effect on the
resulting local volume fraction. Therefore, a large filter must be employed in
order to achieve the desired local volume constraint.

The internal reinforcements near the wing connection are shown in figs. 14, 17
and 20. They form a webbing support, which helps carrying the loads across the
various sections. In the intersection of the support with the other shells it can be
seen that the supporting material is placed as an extension of the reinforcements.

The floor panels are stiffened with cross beams, as shown in figs. 14, 17 and 20
for the small local filter size. A line runs along the center of the plate with no
reinforcing material, due to low bending moments at this point in the structure.

We remark that the ’small local filter size’ case has a global volume fraction of
0.4524, which is considerably lower than the constraint. Likewise, the ’large local
filter size’ case has a volume fraction of 0.4517 and the ’thick passive shell’ case
has a volume fraction of 0.4316. This is due to the application of the volume
constraint on the dilated field, and the local volume filter, which overestimates
the volume in the p-norm aggregation used for the local volume constraint,
as discussed in [23]. This could in principle be circumvented by an adaptive
constraint technique, but has not been further pursued here.

6. Conclusion

This paper presents a design approach for generating optimized reinforcement or
perforation of shell structures. The approach is based on a solid-shell element
formulation and a multigrid preconditioned Krylov iterative method, which allows
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to efficiently solve the series of state equations associated with the optimization
process. The multigrid preconditioner employs geometric multigrid restriction
for the fine levels, and an algebraic multigrid method to obtain the solution of
the coarse space problem. The approach overcomes the ill-conditioning problems
arising partly due to shell formulations and partly due to high stiffness contrast
in the element-based design parameterization. Using the proposed design method
a series of academic optimization problems are solved, each repeatedly solving
finite element problems using up to 11.6 million shell elements with +69.8 million
degrees of freedom. This paves the way for solving large unstructured systems
with shell elements for real life applications in future work.

The approach makes use of local-density control which ensures distributed mate-
rial and hence a certain robustness towards unpredicted loads. For reinforcements
problems, like the airplane fuselage problem considered, skin stiffness itself as
well as applied minimum length-scale eliminate the need for locally connected
reinforcements. This may seem counterintuitive but satisfies the applied pressure
loading and optimization setting. Future studies includes buckling constraints,
dynamics, thermal effects, electromagnetic effects, local load fluctuations or
even finer design resolutions (and correspondingly smaller length scales imposed)
which should help eliminate the aforementioned artifacts.

7. Reproducibility

The used meshes, geometry files, and final designs can be made available upon
reasonable request.
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Appendix A. Shell element formulation

This appendix provides a detailed summary of the used shell element formulation
in order to facilitate reproduction of the proposed framework. For the original
formulation, the reader is referred to [27].
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Appendix A.1. Transformation matrix

In order to perform the numerical integration a transformation matrix is con-
structed. With onset in the normal vector to the shell surface at node I, here
denoted VI

3, two additional vectors are computed using the method proposed by
[30], yielding

VI
1 = e2 ×VI

3, VI
2 = VI

3 ×VI
1. (A.1)

or as
VI

2 = VI
3 × e1, VI

1 = VI
2 ×VI

3. (A.2)

for the case where V3 and e2 are parallel. The node director basis inside a given
element Vi is found by interpolating the basis vectors defined at each node VI

i

using the quadrilatereal bilinear shape functions.

The transformation matrix from coordinate system A to coordinate system B is
constructed using direction cosines as

tij = ai · bj , vB =

t11 t12 t13

t21 t22 t23

t31 t32 t33

vA. (A.3)

which allows for the construction of the transformation matrix

T =


(t11)2 (t12)2 (t13)2 t11t12 t11t13 t12t13

(t21)2 (t22)2 (t23)2 t21t22 t21t23 t22t23

(t31)2 (t32)2 (t33)2 t31t32 t31t33 t32t33

2t11t21 2t12t22 2t13t23 t11t22 + t12t21 t11t23 + t13t21 t12t23 + t13t22

2t11t31 2t12t32 2t13t33 t11t32 + t12t31 t11t33 + t13t31 t12t33 + t13t32

2t21t31 2t22t32 2t23t33 t21t32 + t22t31 t21t33 + t23t31 t22t33 + t23t32


(A.4)

which allows the strain and constitutive laws to be transformed as follows

σB = TσA, CB = TTCAT. (A.5)

Appendix A.2. Isoparametric formulation

In the continuum shell element formulation the displacement field and physical
coordinates are interpolated using standard trilinear hexahedral shapefunctions
[30].

The Jacobian matrix used to transform from the isoparametric reference space
to the usual orthonormal basis [30] is defined as follows.
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J =


∂x
∂ξ

∂x
∂η

∂x
∂ζ

∂y
∂ξ

∂y
∂η

∂y
∂ζ

∂z
∂ξ

∂z
∂η

∂z
∂ζ

 =

8∑
I=1

NI,ξxI NI,ηxI NI,ζxI
NI,ξyI NI,ηyI NI,ζyI
NI,ξzI NI,ηzI NI,ζzI


=
[
G1 G2 G3

]
,

(A.6)

J−1 =


∂ξ
∂x

∂ξ
∂y

∂ξ
∂z

∂η
∂x

∂η
∂y

∂η
∂z

∂ζ
∂x

∂ζ
∂y

∂ζ
∂z

 =

G1T

G2T

G3T

 . (A.7)

The covariant, GI , and contravariant, GIT, bases are found directly from the
Jacobian and its inverse [27, 30].

The design dependent constitutive matrix for an isotropic material using the
SIMP model is expressed as follows

C =
ρpE0

(1 + ν)(1− 2ν)


1− ν ν ν 0 0 0

1− ν ν 0 0 0
1− ν 0 0 0

1−2ν
2 0 0

Sym. 1−2ν
2 0

1−2ν
2

 (A.8)

where ρ is the design variable and p = 1 is the penalty parameter. The consti-
tutive matrix is formulated in the contravariant basism, i.e. Equation (A.4) is
applied with tij = Vi · {Gj} to obtain TV.

C̄ = TVT
CTV (A.9)

Appendix A.3. Strain displacement matrix

The bi-linear strain interpolation matrix B interpolates deformations at element
nodes to strains in the covariant basis at an internal point defined by some given
ξ, η, ζ ∈ [−1, 1]. The matrix uses the regular interpolations for the in plane
components ε̃11, ε̃22, and γ̃12 strains, while alternative interpolations are applied
in the remaining three strains to prevent locking.

To prevent out-of-plane shear locking, i.e. in γ̃23 and γ̃31, the Mixed Integer
Tensorial Components (MITC) is employed [50] based on the four tying points
A, B, C, and D shown in table A.2.

Additionally, to prohibit locking in the shell normal direction, the Assumed
Normal Strain (ANS) interpolation is used for ε̃33 [51, 52], using four new tying
points A1, A2, A3, and A4 as depicted in table A.3.

This leads to following strain-displacement relation for node I
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Table A.2: MITC tying points.

ξL ηL ζL
A −1 0 0
B 0 −1 0
C 1 0 0
D 0 1 0

Table A.3: ANS tying points.

ξ η ζ
A1 −1 −1 0
A2 1 −1 0
A3 1 1 0
A4 −1 1 0

BI =



GT
1NI,ξ

GT
2NI,η∑4

L=1
1
4 (1 + ξLξ)(1 + ηLη)GL

3
T
NL
I,ζ

GT
1NI,η + GT

2NI,xi
1
2

[
(1− η)(GB

3
T
NB
I,ξ + GB

1
T
NB
I,ζ) + (1 + η)(GD

3
T
ND
I,1 + GD

1
T
ND
I,ζ)
]

1
2

[
(1− ξ)(GA

3
T
NA
I,η + GA

2
T
NA
I,ζ) + (1 + η)(GC

3
T
NC
I,2 + GC

2
T
NC
I,ζ)
]


(A.10)

Collecting the contribution from each of the nodal points, yields the complete
strain-displacement matrix, i.e.

B =

[
B1 B2 . . . B8

]
, (A.11)

Appendix A.4. Stiffness matrix integration and loads

The local stiffness matrix is obtained by standard Gaussian quadrature, i.e.

Ke =

∫
Ωe

BTC̄B dV

≈
∑
GP

|J |BTC̄B.
(A.12)

If multiple material layers are used a new isoparametric space is introduced for
each layer, as depicted in fig. A.23. The resulting numerical integration scheme
becomes

Ke ≈
nlay∑
L=1

∑
GP

BTCLB|Jξ||Jr|, (A.13)
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Figure A.23: Illustration of the two isoparametric spaces.

The two external force integrals can be approximated by a Gaussian quadrature in
the isoparametric space. The body force can integrated by the same quadrature
rule s the stiffness matrix

fvol =

∫
Ωe

Neb̂ dV

≈
∑
GP

|J |Neb̂.
(A.14)

The surface forces, i.e. pressure loads and tractions, are obtained by integrating
over the corresponding surface, determined by the two isoparametric coordinates
ξ1, ξ2 ∈ {ξ, η, ζ}. Let Jξ1 denote the column of the Jacobian J corresponding to
ξ1. The surface integral is then computed by Gaussian quadrature as

fsurf =

∫
∂Ωe

Net̂ dA

≈
∑
GP

||Jξ1 × Jξ2 ||2Net̂.
(A.15)

Now the resulting system of equations can be assembled using the regular

Ku = fvol + fsurf . (A.16)

We remark that the resulting system of equations is poorly conditioned and
hence, provides a challenge for iterative solvers.

Appendix A.5. Conditioning

To improve the performance of the proposed iterative solver, the Scaled Thickness
Conditioning (STC) presented by [28] is included to reduce the condition number
of the system matrix for thin continuum shells. The method uses a scaling
parameter C, which for thin shells has the following optimal value

Copt ≈ l1 + l2
2h

, (A.17)

where l1 and l2 denote the element side lengths. The nodal scaling matrices
are computed for nodes lying in the element mid-plane corresponding to the
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ANS nodes shown in table A.3. For consistency, the nodes are denoted λ ∈
{A1, A2, A3, A4} and the nodal scaling matrices are given as

sλ1 =
1

ηλ

C+1
2C 0 0
0 C+1

2C 0
0 0 C+1

2C

 , sλ2 =
1

ηλ

C−1
2C 0 0
0 C−1

2C 0
0 0 C−1

2C

 , (A.18)

where ηλ denotes the number of elements attached to node λ. Using the nodal
scaling matrices, the element scaling matrices are constructed as follows

se =



sA1
2 sA1

1 0 0 0 0 0 0

sA1
1 sA1

2 0 0 0 0 0 0

0 0 sA2
1 sA2

2 0 0 0 0

0 0 sA2
2 sA2

1 0 0 0 0

0 0 0 0 sA3
1 sA3

2 0 0

0 0 0 0 sA3
2 sA3

1 0 0

0 0 0 0 0 0 sA4
1 sA4

2

0 0 0 0 0 0 sA4
2 sA4

1


. (A.19)

The nodal scaling matrices se are assembled to a symmetric global scaling matrix
S by the regular finite element assembly. The scaling matrix is then applied to
obtain the scaled stiffness matrix and force vector, i.e.

KC = SKS, fC = Sf , u = SuC . (A.20)

The resulting scaled linear system of equations now reads

Ku = f ⇔ KCuC = fC . (A.21)

Note, that the matrix S is never assembled in order to reduce the memory
usage. Instead, the scaled stiffness and forces are obtained during assembly by
performing the corresponding local products.

Appendix B. A small study on the emergent ’arm’ supports

The occurrence of non-connected reinforcements, dubbed ’arms’, in the fuselage
example merited further study. Intuition states that closed cells provide a better
reinforcement, as the reinforcing material supports itself better and thus provides
a stiffer reinforcement. In order to study whether the ’arms’ provide some benefit
two reinforced structures, shown in figs. B.24 and B.25, are studied. Both cases
are clamped plates of size 20x20 subjected to a uniform pressure load, where a
fourth of the domain is modeled using symmetry conditions.

The reinforcement is placed on both sides of a the base plate. The total thickness
with reinforcements is set to a constant of 1, while the fraction of base thickness
to reinforcement thickness is swept. Both plates are reinforced with material
corresponding to a volume fraction of V = 0.36, such that the compliance values
can be compared directly. The plates are resolved with 100x100 elements.
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Figure B.24: Plate with overlap-
ping reinforcements shaped as a
cross.

Figure B.25: Plate with reinforce-
ment in the form of ’arms’, note
that the four reinforcements are
not connected.

Base plate thickness Cross Arms
40% 2.05229 2.442617
20% 3.629288 4.303002
10% 13.88358 12.2136
5% 94.69309 72.91165
1% 5821.474 4370.23

0.1% 11634.7 8735.052
0.01% 11708.35 8818.975

Table B.4: Compliance values for both reinforcement configurations for a series of base plate
thicknesses. It can be seen that the cross performs best when the stiffness contrast between the
reinforced an non-reinforced areas is low, while the arms perform better when this contrasts is
high.

The resulting compliance values are shown in table B.4. From there it can
clearly be seen that the cross connected reinforcement performs better when
the reinforced plate is thick compared to the reinforcement. As the thickness
decreases the ’arm’ like structure becomes better performing. Therefore it can be
concluded that the ’arm’ reinforcements which occur in the fuselage designs are
a part of the desired solution, and not some artifact due to enforced lengthscale
and volume constraint.
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