Timing of the Middle-to-Upper Palaeolithic transition in the Iberian inland (Cardina-Salto do Boi, Côa Valley, Portugal)

Aubry, Thierry; Dimuccio, Luca Antonio; Barbosa, António Fernando; Luís, Luís; Santos, André Tomás; Silvestre, Marcelo; Thomsen, Kristina Jørkov; Rades, Elke F.; Autzen, Martin; Murray, Andrew Sean

Published in:
Quaternary Research

Link to article, DOI:
10.1017/qua.2020.43

Publication date:
2020

Document Version
Peer reviewed version

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Timing of Middle-to-Upper Palaeolithic transition in Iberian inland (Cardina-Salto do Boi, Côa Valley, Portugal)

Thierry AUBRY a, b *, Luca Antonio DIMUCCIO b, c, António Fernando BARBOSA a, Luís LUÍS a, b, André Tomás SANTOS a, b, Marcelo SILVESTRE a, Kristina Jørkov THOMSEN d, Eike RADES d, e, Martin AUTZEN d, Andrew Sean MURRAY e

a Côa Parque, Fundação para a Salvaguarda e Valorização do Vale do Côa. Rua do Museu. 5150-610 Vila Nova de Foz Côa. Portugal
b UNIARQ - Centro de Arqueologia Universidade de Lisboa, Faculdade de Letras. Alameda da Universidade, 1600-214 Lisboa. Portugal
c Department of Geography and Tourism and Centre of Studies in Geography and Spatial Planning (CEGOT), Faculty of Arts and Humanities, University of Coimbra, Largo da Porta Férrea, 3004-530 Coimbra (Portugal)
d Center for Nuclear Technologies, Technical University of Denmark, DTU Risø Campus, Denmark
e Nordic Laboratory for Luminescence Dating, Department of Geoscience, Aarhus University, Risø Campus, Denmark

* Corresponding author: Côa Parque, Fundação para a Salvaguarda e Valorização do Vale do Côa, Rua do Museu, 5150-610 Vila Nova de Foz Côa, Portugal. Tel.: +351 279768260; Fax: +351 279769270.

E-mail addresses: thaubry@sapo.pt (T. Aubry), luca@ci.uc.pt (L. Dimuccio), fernandobarbosa@arte-coa.pt (A.F. Barbosa), lluis.pavc@igespar.pt (L. Luís), a.t.santos@sapo.pt (A.T.Santos), marcelosilvestre@arte-coa.pt (M. Silvestre), krth@dtu.dk (K.J. Thomsen), anmu@dtu.dk (A.S. Murray).
Abstract

The timing of the Neanderthal-associated Middle Palaeolithic demise and a possible overlap with Anatomically Modern Humans (AMH) in some regions of Eurasia continues to be debated. The Iberian Peninsula is considered a possible refuge zone for the last Neanderthals, but the chronology of the later Middle Palaeolithic record has undergone revision and has increased the debate on the timing of Neanderthal extinction. Here we report on a study of the 5-metre-thick archaeological stratigraphy of the Cardina-Salto do Boi, an open-air site located in inland Iberia, from which Optically Stimulated Luminescence (OSL) ages are obtained for Middle and Upper Palaeolithic occupations preserved in overbank alluvial deposits. Geomorphology, archaeo-stratigraphy, stone-tool evolution and OSL dating support the persistence of Neanderthals after 41 ka in central Iberia; the transition between the Middle Paleolithic material culture to the Modern Human-associated Aurignacian blade and bladelet production is estimated to lie between 34.0 ± 2.0 ka and 38.4 ± 1.9 ka. Our results demonstrate that investigations focusing on different geomorphological situations are necessary to overcome the current limitations of the evidence and to establish more consistent models for Neanderthal disappearance and AMH expansion in the Iberian Peninsula.

Keywords: Neanderthal, Modern Human, Middle-to-Upper Palaeolithic, Iberia
INTRODUCTION

Since the end of the 1980s, and based on ages of under 40,000 14C yr BP, it has been widely accepted that southern Iberia represents a possible refuge zone for the last Neanderthal population (Hublin et al., 1995; Zilhão, 2000), and that this population persisted until approximately 37,000 cal yr BP (Zilhão, 2006a; Zilhão et al., 2010), or even as late as ~28,000 cal yr BP (Straus et al., 2000; Finlayson et al., 2006). This hypothesis implies coexistence for several millennia with Anatomically Modern Humans (AMH), established in northern Iberia from around 42,000 cal yr BP (Wood et al., 2014; Hublin, 2017). It also implies the existence of a biogeographical frontier along the Ebro Basin, functioning as a barrier to migration and diffusion between Neanderthals and AMH (Zilhão, 2000).

However, new radiocarbon data from several key Late Middle Palaeolithic European sites (Higham et al., 2014), and direct radiocarbon dating of Neanderthal remains (Devièse et al., 2017) using refined sample pre-treatment measures and suitable sample selection, have pushed back some of the youngest radiocarbon ages for the Middle Palaeolithic to about 42,000 cal yr BP. The Iberian peninsula, the westernmost part of Europe, has been subject to special attention in this research. The association between dates from Sima de las Palomas, Carihuela and Gorham's Cave, and their supposed archaeological context (Fig. 1, Zilhão and Pettitt, 2006; Wood et al., 2013), has been questioned, and the dates from El Salt, Jarama VI and Zafarraya have been pushed back several millennia (Fig. 1, Maroto et al., 2012; Wood et al., 2013; Galván et al., 2014; Kehl et al., 2013).

Nevertheless, the hypothesis of a persistent Neanderthal presence in southern Iberia has not been invalidated; there remains evidence for a relatively late survival of Neanderthals (Zilhão et al., 2017, Carrión et al., 2019), and more work is needed.

The current discussion on the Middle-to-Upper Palaeolithic transition in Iberia shows clear shortcomings resulting directly from: 1) the lack of research in inland Iberia, when compared to the coastal regions; 2) the difficulties of locating open-air sites that can expand the geographic and
temporal scope of the archaeological record; and 3) the challenges of dating (especially using 14C) (Aubry et al., 2002, Alcaraz-Castaño, 2015).

Our view of the importance of the open-air Cardina-Salto do Boi site discussed in this paper is based on the above discussion. The site is located in Northeastern Portugal along the Côa River (Fig. 1), halfway between the Central Portuguese and Asturias site clusters of Middle and Upper Palaeolithic occupations. The site also presents a sequence of deposits containing artefacts from the Middle Paleolithic through to the Upper Palaeolithic. These deposits have the potential to provide an important new contribution to the ongoing debate concerning the chronological overlap between Neanderthal and AMH populations in Western Eurasia and the geographical and palaeoenvironmental context of such overlap.

CARDINA-SALTO DO BOI SITE

The Côa River is a Portuguese left-bank tributary of the Douro River, one of the major watercourses that cross the NW Iberian Mountains from east to west (Fig. 1). The 120 km long river basin is controlled by the tectonic structure of the SSW/NNE Manteigas-Vilariça-Bragança fault system, separating the basin from the Portuguese Western Mountains (Ferreira, 1978, Aubry et al., 2012a).

The Côa river basin comprises two different geological sectors. Upstream, the river flows in a deeply gorged valley, through Hercinian granites (Silva and Ribeiro, 1991). The last 17 km of the Côa, before the confluence with the Douro, grades to a meandering pattern into intensely folded and faulted metasedimentary rocks (phylitte, greywacke and quartzite), ranging in age from the Precambrian to the Ordovician (Silva and Ribeiro, 1991).

The last 22 km of the Côa river valley and its confluence with Douro are well known to preserve the largest concentration of open-air Palaeolithic rock art, classified as a UNESCO World Heritage site in 1998 (Zilhão, 1997). Since 1995, 22 open-air sites have been identified in an area of less than 400 km2, along the river’s last nine kilometres (Fig. 2). These lie in a region where Upper Palaeolithic settlement was previously unknown, and their existence partially contradicts the
accepted logistic hunting sites model for the Iberian inland’s scarce occurrences (Davidson, 1986). The sites are found both on the valley bottom and on the surrounding granite plateau, along the eastern limit of the northern Meseta (Zilhão et al., 1995; Aubry, 2009; Aubry et al., 2002).

A relative chronology for the Côa Valley Upper Palaeolithic settlement phases was established from the stratigraphic sequences identified at the sites, using a geoarchaeological approach (Aubry et al., 2010). Thermoluminescence (TL) ages were obtained from heated quartz and quartzite pebbles found at four Côa Valley sites, and optically stimulated luminescence (OSL) ages from sediments at Cardina, Olga Grande 4, Quinta da Barca Sul and Fariseu (Fig. 2, Valladas et al., 2001; Mercier et al., 2006, Aubry et al., 2010). From a radiocarbon perspective, the acid soils developed on schist and granite do not favour the preservation of macro-organic remains. However, bones and teeth fragments were recovered in the stratigraphic level 4 of Fariseu (Aubry, 2009). The nitrogen (N) content tested on Cardina-Salto do Boi faunal remains from Gravettian layers has revealed that collagen is not sufficiently preserved to be used for radiocarbon ages (Monge Soares, A., personal communication, 2008). However, two radiocarbon ages from the Early Holocene, 10,405-10,240 Cal yr BP (9,160 ± 30 \(^{14}\)C yr BP [Beta-460528] and 10,496-10,266 Cal yr BP (9,220 ± 30 yr BP [Beta-460529]), (2σ) using the IntCal13 calibration curve (Reimer et al., 2013), were obtained on cremated bones from the top of the layer 4 (Aubry et al., 2017) and from the Younger Dryas stade, 12,601-12,244 cal yr BP (10,510 ± 40 yr BP [Beta-213130]), 11,759-10,781 cal yr BP (9,830 ± 130 \(^{14}\)C yr BP [Ua-32645]) for two bones of the layer 4 at Fariseu (Aubry, 2009). In addition, a charcoal fragment from Fariseu’s layer 9 was dated by AMS to 23,175-22,595 cal yr BP (19,020 ± 80 \(^{14}\)C yr BP [GrA-40167]), demonstrating the potential conservation of last glacial maximum macro-organic material in alluvial deposits.

Cardina-Salto do Boi was the first Upper Palaeolithic site discovered in the area, in 1995, yielding the first Côa Valley rock art context (Zilhão et al., 1995). The 1-metre-thick sequence of deposits revealed by excavation between 1995 and 2001 is preserved on the top of a left bank
meander, 166 metres above sea level, and 20 metres above the Côa riverbed level, just upstream of a rhyolite dyke (Fig. 3). Four main lithostratigraphic units were defined during this first phase of excavation (1995-2001) which did not reach the bedrock. The deposits of layers 1 to 4b are interpreted as the result of slope processes initiated by surface runoff (Bergadà, 2009). The stone-tool assemblage from layer 4b and 4a can be assigned from the Late Gravettian at the bottom, through Solutrean, Magdalenian to the Azilian and Pre-Boreal at the top; this association is supported by TL (Valladas et al., 2001) and radiocarbon dates (Aubry et al., 2017). Based on ceramic fragments and flint bladelets (layer 3) and modern ceramic fragments (layer 1 and 2) the top layers contain Neolithic to Bronze Age human occupations.

A second phase of archaeological excavation began in 2014, undertaken by the PALÆCOA project, including tests in other areas, in order to define the extent of the site and to observe the entire sequence of deposits (Fig. 3, Aubry et al., 2017). Ongoing work has revealed an open-air 5-meter-thick stratigraphic succession, with remains of older human occupations. This has allowed a comprehensive archaeostratigraphic study of the site, using integrated multi/pluridisciplinary analyses, and aimed at a reconstruction of formation processes, spatial analysis, a study of stone-tool remains, and dating of the archaeological/sedimentary records.

MATERIAL AND METHODS

Geoarchaeological approach

The data from the Cardina-Salto do Boi open-air archaeological site were collected using a standard geoarchaeological approach, including a geomorphological and geological study of the site surroundings, sedimentological description and stratigraphic correlation of the siliciclastic deposits exposed during excavation, as well as a subsequent sampling program for grain-size and clay mineralogy laboratory analyses. Fieldwork involved the systematic description of exposed cross-sections and profiles to reconstruct stratigraphic events and their vertical and lateral variations.
In particular, due to the presence of a local stratigraphy with recurrent sedimentary features, the field description of the Cardina-Salto do Boi siliciclastic succession was conducted using facies analysis, which combines the physical characteristics displayed by a single layer or by a set of layers linked to a well-defined sedimentary process (e.g., Moore, 1949; Ricci Lucchi, 1980). Therefore, to be able to use the facies concept in archaeology (see Angelucci et al., 2013), informal Geoarchaeological Field Units (GFU) were identified based on sedimentological (lithostratigraphy), pedological or archaeological criteria and used as field categories. These field units were later grouped into Geoarchaeological Complexes (GC) taking into consideration major changes in the depositional style, as well as major stratigraphic unconformities (details in Angelucci, 2002).

In order to complement the observations made in the field and to better recognise the natural sedimentary processes and the anthropogenic inputs/disturbances for the siliciclastics deposits that make up the 5 metre-thick Cardina-Salto do Boi stratigraphic succession, a total of 18 samples for grain-size analysis and clay mineralogy determination were collected during 2018 fieldwork seasons. The selection of samples focused on a satisfactory coverage of the different identified facies and GFUs, as shown in the cross-section and in the composite stratigraphic log of Fig. 4 and 5, respectively. Basically, field and laboratory sediment descriptions were made using a comprehensive form addressing the sedimentary, pedogenic and anthropogenic characteristics of the deposits (e.g., Keeley and Macphail, 1981; FAO-Isric, 1990; Brown, 1997; Goldberg and Macphail, 2006), to assess the deposition and formation processes at the site.

Grain-size and clay mineralogy laboratory analyses

For each sample, grain-size analysis was carried out using a Horiba LA-950 laser particle size analyser (detection range from 0.01 µm to 3000 µm). After sieving with a 2 mm mesh to separate the coarse fragments (gravel), sample pre-treatment included suspension in sodium hexametaphosphate (5 g/L) and hydrogen peroxide (35%) for 12 h, as well as ultrasonic suspension
for 60 s in the analyser to achieve optimal dispersion. Full description of the methodology implemented in the laser diffraction particle-size analysis is laid out in the supplementary information of Sitzia et al. (2017).

Grain-size frequency-distribution curves obtained from laser diffraction were deconvoluted (parametric curve fitting) to identify the main modes (Qin et al., 2005). All grain-size analysis and measurements were processed at PACEA laboratory (University of Bordeaux, France).

Clay mineralogy was estimated by X-ray diffraction (XRD) on the <2 µm fraction, which was extracted by settling according to Stokes’s law (Moore and Reynolds, 1997). Oriented slides of clay residue were obtained from sedimentation of clay suspensions on glass slide and run in a Malvern PANalytical X-ray diffractometer AERIS, equipped with a CuKα X-ray tube and a detector that operate at 40 kV voltage and 15 mA intensity (at the Earth Sciences Department of Coimbra University). Three runs were performed for each sample to discriminate clay phases: (i) air-drying (normal run); (ii) ethylene-glycol vapor saturation for 24 h (glycol run); and (iii) heating at 550°C during 2 h (heating run), as recommended by Moore and Reynolds (1997). Continuous goniometer scans from 2° to 29° (of 2θ) were executed for normal runs and from 2° to 15° (of 2θ) for glycol and heating runs, with a step size of 0.02° (of 2θ). Clay minerals were identified using their main diffraction (d_{001}) peak and by comparing the three diffractograms obtained for each sample.

Semi-quantitative abundance of clay minerals was determined through the peak areas of the basal reflection for the main clay mineral groups present on glycolated diffractograms, weighted by empirical factors. According to various authors (e.g., Moore and Reynolds, 1997; Kahle et al., 2002), this approach allows a rough estimate of actual mineral percentages.

To be able to better understand the sediment transportation pathway, the illite crystallinity and the illite chemical index were measured on the XRD diffractograms. The illite crystallinity (or Kübler index) was measured as the full width at half maximum of the illite 10Å peak (Diekmann et al., 1996; Kübler and Jaboyedoff, 2000). Generally, low values (<0.4) of illite 10Å peak width...
indicate good crystallinities (relatively unaltered illite) and high values (>0.8) indicate poor crystallinities (highly degraded illite). The illite chemical index (or Esquevin index) was estimated using a ratio between the 5Å and 10Å peak intensities (Esquevin, 1969; Gingele, 1996). Values of 5Å/10Å illite peak intensities >0.5 indicate Al-rich illite, interpreted as formed under strong hydrolysis. Values of 5Å/10Å illite peak intensities <0.5 represent Fe/Mg-rich illite (biotite, mica), which is characteristic of physical erosion (Gingele, 1996).

202
203 Lithic analysis
204 Since 1995, all the deposits from GFU 4 to 5 have been excavated according to lithostratigraphic units, combined with 5 cm-thick artificial units (UA), used to constrain the horizontal and vertical position of non-piece-plotted or remains recovered by water sieving with 2 mm grids. From the top to bottom of each GFU, the 5 cm-thick units are numbered sequentially, per quarter of square metre unit of the excavation grid. Stone fragments of more than 5 cm, recovered in layers 4a and 4b (GFU 4), as well as in GFU 5 have been drawn, the raw material determined, and, along with all the lithic remains recovered during the excavation of GFU 6 to 8, three-dimensionally located.

205 Lithic raw material sources of stone-tools have been determined by macroscopical comparison with samples collected in the Côa Valley region and Western Iberia, and the characterization of non-local flint and silcrete was complemented by a systematic binocular examination of the microfacies and examination of thin sections for selected archaeological pieces, following the methodology discussed in previous publications (Mangado Llach, 2002; Aubry et al., 2012b).

207 The knapped lithic remains have been counted and studied using a technological approach to assess reduction sequences, and to define the blank selected and retouched tool types (Demars, Laurent, 1992; Boëda, 1993; Dibble and Bar-Yosef, 1995; Pelegrin, 1995; Zilhão, 1997, Mourre, 2003). The assemblages have been analysed in terms of variation in mass ratio of cores and blanks, blanks and tools, to demonstrate, by their technological and typological attributes, the integrity of
each assemblage and its technical and cultural affiliation.

Refitting of knapped and heated lithic remains used in fire structures to infer both anthropic and sedimentary processes, and to assess palimpsest formation and stratigraphic integrity (Villa, 1982; Hofman and Enloe, 1992; Deschamps and Zilhão, 2018), has been applied systematically to the lithic remains of the GFU 8 to 4.

Age determination

The chronological data were obtained using OSL on K-rich feldspar and quartz-rich extracts from 11 sediment samples (Table 1). Cleaned quartz and K-rich feldspar grains (180-250 µm) were derived from the sediment by sieving, soaking in HCl, H2O2, heavy liquid separation (2.58 g cm−3) and finally etching in 40% HF (quartz) or 10% HF (feldspar) before a final wash in HCl (Aitken, 1985, 1998). Only very limited amounts of feldspar could be extracted from these samples.

All OSL signals were measured using automated Risø TL/OSL Risø DA-20 readers (Bødter-Jensen et al., 2010) equipped with arrays of blue (470 ± 30 nm) and infrared (IR, 870 ± 40 nm) LEDs providing stimulation powers at the sample position of approximately 80 and 130 mW/cm², respectively. The post-IR blue quartz signals (8 mm aliquots) were detected in a UV window (Hoya U-340), whereas IR feldspar signals (2 mm aliquots) were detected in a blue-violet window (Schott BG3 and BG39).

The single-aliquot regenerative-dose (SAR) procedure (Murray and Wintle, 2000) was used for equivalent dose determination. For quartz, a double SAR procedure (Banerjee et al., 2001) employing IR stimulation (at 50 ºC for 40 s) prior to blue (at 125 ºC for 100 s) and a test dose of 20 Gy was used on all samples to minimize the effects of any feldspar contamination. A preheat temperature of 260 ºC for 10 s and a cutheat temperature of 220 ºC was used for all dose measurements. A high-temperature blue bleach at 280 ºC for 40 s was inserted in between each SAR cycle to minimise potential recuperation effects (Murray and Wintle, 2003). The signal was summed over the initial 0.5 s of stimulation and the background over the subsequent 0.5 s of
For feldspar, two post-IR IR SAR protocols (Thomsen et al., 2008; Buylaert et al., 2009; Thiel et al., 2011) were used. The pIRIR(50,225) protocol used a preheat (held for 60 s) at 250 °C, a first IR stimulation at 50 °C (200 s), a second stimulation (200 s) at 225 °C and a high-temperature (280 °C) IR exposure (200 s) after each SAR cycle. The pIRIR(50,290) protocol used a preheat of 320 °C, 60 s, a first IR stimulation at 50 °C (200 s), a second stimulation (200 s) at 290 °C and a high-temperature (320 °C) IR exposure (200 s) after each SAR cycle. For both protocols, a the test dose (TD) was chosen to approximately match the size of the natural dose (De), i.e TD/De ∈ [0.7;1.2]. Calculations were based on the signal derived from the initial 2 s of the post-IR IRSL minus a background derived from the last 50 s. Age-Depth Modelling was performed using Bayesian Statistics (Bacon script, Blaauw and Christen, 2011).

Dose rates were determined using high-resolution gamma spectrometry calibrated as described in Murray et al. (1987; 2018) and the conversion factors of Guérin et al. (2011). Before counting, crushed and homogenized samples were mixed with wax, cast in a fixed cup-shaped geometry, and stored for a minimum of 21 days (>five 222Rn half-lives) to ensure equilibrium between 222Rn and 226Ra. For K-feldspar extracts the internal beta dose rate of 40K was calculated assuming an effective K concentration of 12.5± 0.5% (Huntley and Baril, 1997). We also assume that the present-day burial depths represent the lifetime burial depths and cosmic ray contributions are based on Prescott and Hutton (1994). Lifetime water contents are based on measured (field) values.

RESULTS

Cardina-Salto do Boi site stratigraphy

The field description of the cross-section exposed in areas excavated between 1997 and 2018 revealed a 5 m-thick stratigraphic succession (on a phyllite bedrock), articulated into eight field
units (GFU 1 to 8) and grouped in two main geoarchaeological complexes (GC A and B), as shown in the Fig. 4 and 5. From top to base, GFU 1 and 2 are massive and bioturbated coarse units (slightly gravelly), with a poorly to very poorly sorted muddy sand fraction (sand 54-58%; silt 38-42%; and clay 4-5%) (Fig. 5, Supplementaries Fig. 1, 2). GFU 3 is separated from the previous uppermost units by an irregular bounding surface (d0). Both GFU 3 and 4 are distinguished from GFU 1 and 2 by relatively higher silt (44-50%) and clay (8-11%) contents, matched by a reduction in gravel content. The lower bounding surfaces of both GFU 3 and 4 are characterized by important anthropogenic processes (near d1 and d2), with a main erosive unconformity between GFU 4 and 5 (d2). The rest of the GFUs (from 5 to 8) consist of tabular fine-grained bodies with recurrent grain-size characteristics such as low gravel content (3-7%; very slightly gravelly) and a very poorly sorted sand mud fraction enriched in both silt (42-55%) and sand (33-47%), with only secondary amounts of clay (10-15%). A planar to irregular bounding surface, ranging from non-erosive to slightly erosive in nature, separates GFU 5 and 6 (d3). Some intercalation of apparent incipient pedogenetically altered horizons can be also inferred in the middle part of GFU 5, as well as along the GFU 6 and 7 boundary. GFU 6 to 8 also contain some lenticular layers of well-rounded coarse to very coarse gravel (Fig. 5). The contact between the local siliciclastic sedimentary infill and the bedrock is represented by a main erosive unconformity (d4).

Six grain-size components stand out (Supplementary Fig. 1), in decreasing order of contribution: (i) 41-55% medium to fine silt (24 µm to 14 µm; mean 18 µm) in GFU 4 to 8, slightly lower in the GFU 1 to 3 (23-30%) and higher (58%) near the d1 unconformity (with anthropogenic accumulation of material, Fig. 5); (ii) 11-33% medium to fine sand (303 µm to 206 µm; mean 241 µm) in GFU 1 to 7 and 7-9% in GFU 8; (iii) very variable amounts (8-43%) of very fine sand (98 µm to 82 µm; mean 87 µm) in all GFUs; (iv) 2-8% coarse sand (986 µm to 574 µm; mean 843 µm) in GFU 1 to 7, absent in the GFU 8; (v) 3-8% ultrafine particles (mean 0.4 µm) around the d2 main unconformity and in the middle part of GFU 5 (samples C5d-C5g), as well as in GFU 6 and 7; and
(vi) 2-4% clay (mean 3 µm) in the upper part of GFU 5 (first levels with Upper Palaeolithic remains) and in GFU 8.

Illite is clearly dominant (73-94%) in all sampled sediments, with kaolinite only 3-23%. However, clay mineralogy clearly differentiates the samples collected from the more superficial field units from those from the deeper units (Fig. 5). GFU 1 and 2 contain more illite (73-87%) than kaolinite (5-15%), small amounts of vermiculite (3%), chlorite (4-5%) and 10-14Å mixed-layer clays (1-4%). The remaining samples collected in GFU 3 to 7 almost always contain vestiges of vermiculite (2-4%), with few 10-14Å mixed-layer clays (5-7%) in the middle position of the GFU 5 (samples C5e and C5f; Fig. 5); the only exception is the set of samples from lowermost stratigraphic position (GFU 8) containing moderate amounts of smectite (2-12%) in addition to the usual illite and kaolinite. The illite to kaolinite ratio only varies slightly within all sampled sediments, although the proportion of kaolinite increases stratigraphically upwards and thus tends to be higher in the relatively coarser units (Fig. 5). In addition, kaolinite content is relatively higher (23-15%) in the samples collected immediately below the obvious unconformities (i.e., present-day surface, d0, d1 and d2; Fig. 5), as well in the sample C5d (12%).

All samples have 10Å illite peak widths of below 0.15, indicating that illite crystallinity is extremely high. Eighty-nine percent of the sediments show a ratio of 5Å/10Å illite peak intensities <0.5 (Fe/Mg-rich illite), implying little or non-chemical weathering (except in samples C5d and C8b).

Archaeostratigraphic and technological evidence

The vertical distribution of lithic remains recovered in GFU 1 to 8 of the H/I'-17/19 area (Fig. 3, section A) reveals that the highest density is found in GFU 4 (Supplementary Table 1, Fig. 6, 7). Using lithic raw material types, refitting of lithics from the base of GFU 4 to GFU 8 (recovered during excavation of the H/I'-17/19 area) has established several sets of lithic remains from layer 4b
and in the same or different UA of GFU 5 (Fig. 6). Few links at the interface between GFU 4 and GFU 5 have been identified and vertical distribution of the refitting sets (Fig 6, 7) is consistent with the main grain-size components (Fig 5, Supplementary Fig 1). Refit links show that the components of each refit unit scatter vertically over distances < 20 cm (Fig. 6, 7); this pattern is considered representative of the entire alluvial sequence (GFU 8 to 5).

Except for broken/altered heated stones used in fire structures in GFU 5/UA24 to UA29, we have obtained a low refit ratio for all the lithic assemblages (Fig. 6). This could be explained by the small area excavated (6 m², cf. total site area estimated as >1,000 m²) and by discard of flakes or tools produced outside the excavated area, as suggested by a low core/blank ratio (Supplementary Table 1).

The lithic assemblages from GFU 8, 7 and 6 are very similar in terms of raw materials and reduction method. The lithic assemblages are composed only of well preserved, fresh-edged pieces. Varieties of the local milky, translucent and smoky quartz, rhyolite and quartzite pebbles have been used (Supplementary Fig. 3). Technological study and refitting sets reveal two main different productions: (i) Rhyolithic fragments and a refitted flake could correspond to the preparation of a Levallois centripetal core (Supplementary Fig. 3, no. 3, Supplementary Table 1). Cores are under-represented, but most of the blanks correspond to a Levallois recurrent centripetal method of flake production (Boëda, 1993). Few of the flakes have been retouched into notches, denticulates or single side-scrapers (Supplementary Table 1, Supplementary Fig. 3, no. 8). Two flake-cleavers were found in GFU 7 (Supplementary Fig. 3, no. 4, 7). (ii) The second technological component comprises flakes produced by Discoid centripetal methods (Boëda, 1993; Mourre, 2003; Thiébaut, 2007). A single quartz prismatic core, from GFU 6, indicates a possible production of elongated flakes (Supplementary Fig. 3, no. 2).

Lithic assemblages from GFU 5/UA38 to UA11 are also composed of well preserved, non-patinated, fresh-edged lithic remains. However, both faces of most pieces present concretions, with
magnesium (Mg) on the upper face, and silicon (Si) on the lower. Varieties of the local milky, translucent quartz, rhyolite, quartzite pebbles and regional rock crystal have been used (Fig. 7). The lithic assemblage reveals two different methods of reduction. The most frequent corresponds to pseudo-Levallois triangular and centripetal flakes, produced by Discoid centripetal unifacial to polyhedral methods (Fig. 8). A few blanks were retouched into single, double or convergent side-scrapers, notches and denticulates (Fig. 8, Supplementary Table 1). The second component, found in fine-grained milky quartz between GFU 5/UA29 to UA24 and in rock crystal in GFU 5/UA16-18 corresponds to the production of small quadrangular flakes and possibly bladelets, on prismatic cores (Supplementary Fig. 4). One flake produced by this reduction method has been truncated (Supplementary Fig. 4, no. 5).

Lithic remains from GFU 5/UA10 to GFU 5/UA-1 show a radical change, in both technology and raw material. This assemblage was made from regional and local quartz, quartzite and rock crystal, as well as flint and silcrete from distant sources in Central Iberia (Northern Meseta) and Central Portugal, found throughout the Upper Palaeolithic in the Côa Valley (Fig. 6, Aubry et al., 2012b). GFU 5/UA10 to UA2 contain both blades, produced on prismatic unipolar cores and prepared by a central cresting (Fig. 9, no. 19, 20, 21), and bladelets, produced on carenated or burin type cores (Fig. 9, no. 1, 2, 6, 7, 8, 15, 16, 17). This lithic assemblage set is defined by the use of a specific regional filonian brown jasper (Fig. 9, no. 15-21, Fig. 8), absent in all the other stratigraphic units (although a single blade fragment, probably intrusive, has been recovered in the GFU 5/UA14, Fig. 9, no. 20) and confirmed by the vertical distribution of the refitting set (Fig. 7). None of the fragmented jasper blades was transformed into a tool. However, some bladelets of this raw material exhibit the technological characteristics of burin and carinated nose scraper core reduction strategy on blade fragment, the latter being absent from the assemblage (Fig. 9, no. 15-17). Some flint and silcrete bladelets were transformed into Dufour bladelets of the subtype Dufour (Fig. 9, no. 13), Font-Yves bladelets (Fig. 9, no. 12; Demars, Laurent, 1992) and a
Caminade endscraper (Fig. 9, no. 14, Sonneville-Bordes and Mortureux, 1956).

The first 20 cm of GFU 5 (UA1 to UA4) have yielded retouched bladelets, micro-gravette point fragments (Supplementary Fig. 5, no. 27) and several Noailles burins (Demars, Laurent, 1992), made from long-distance flint and silcrete sources and from regional rock crystal (Fig. 6, Supplementary Fig. 5, no. 28, 29, 31).

Layer 4b is represented by a large circular-shaped structure of stone fragments, mostly heated (Fig. 4), and associated with a lithic assemblage of micro-gravette points and retouched bladelet fragments (Supplementary Fig. 5, no. 1-26). Flint and silcrete long-distance sources are also represented (Aubry et al., 2012b). Bladelet reduction comprises prismatic, burin core and bipolar strategies.

Luminescence dating

The eleven sediment samples dated by luminescence (172206 to 172215 and 172219, Table 1) were collected in metal tubes from the cross-section A of the H'/T'-17/19 test area (Fig. 3), in the GFU 5, under a large circular stone structure defining the layer 4b (Fig. 4). The GFU 6, 7 and 8 were not sampled, because they were not exposed until excavation in 2018, after sampling in April 2017.

Initial quartz measurements showed that the OSL signals were not fast-component dominated and that a significant number (ranging between ~15 and 100%) of sensitivity-corrected natural OSL signals (L_o/T_{o}) appeared to be in saturation on the laboratory dose response curve. When fitting the dose response curves with a saturating exponential function (of the form $L/x=a[1-exp[-x/D_0]]$ where x is the laboratory dose, and a and D_0 are constants) the average D_0 value is 65 ± 2 Gy. Except for the youngest four samples (i.e. 172212-15) all quartz dose estimates are considerably above 2×D_0 and thus not likely to be accurate estimates of the burial dose; this is particularly true for samples 172206-11,-19.
On the other hand, the signals from the K-rich feldspar extracts are well-behaved with an average D_0 value of 392 ± 6 Gy ($n=91, \text{pIRIR}(50,225)$). All feldspar dose estimates are well below $2\times D_0$ and thus likely to be accurate estimates of the burial dose (at least from the perspective of dose estimation). A pIRIR (50,225) dose recovery experiment on sample 172209, where the aliquots were first bleached for 2 h in a solar simulator and subsequently given a beta dose of 300 Gy, gave a satisfactory dose recovery ratio of 0.96 ± 0.03 ($n=6$, using a test dose of 300 Gy). A similar experiment using the pIRIR(50,290) protocol gave an unsatisfactory dose recovery ratio of 0.78 ± 0.02 ($n=6$). Thus, based on the dose recovery results, the pIRIR(50,225) protocol is more likely to give accurate dose estimates. Nonetheless, it is informative to investigate the dose correlations between the doses measured for the different feldspar signals, bearing in mind the order of the signals IR(50)$>$pIRIR(50,225)$>$pIRIR(50, 290), in terms of both anomalous fading and bleachability (e.g. Buylaert et al., 2012). In Figure 10a, the equivalent doses measured for IR(50) and pIRIR(50,290) are plotted against those from pIRIR(50,225), together with the linear regressions of the data, $y=0.77x-0.7$ Gy and $y=1.11x+32$ Gy, where x is the pIRIR(50,225) dose, and y is the IR(50) and pIRIR(50,290) dose, respectively. It is expected that the IR(50) doses will fall below the 1:1 line and the pIRIR(50,290) doses above due to anomalous fading of both the IR(50) and pIRIR(50,225) signals. The intercept of the IR(50) fit is consistent with zero, showing that the pIRIR(50,225) signal is likely to be well-bleached (Murray et al., 2012). The pIRIR(50,290) data has an intercept of ~30 Gy, implying that this signal has a small residual dose arising because this signal is more difficult to bleach than the other two., and because of this these ages are not considered further.

Standard fading rate measurements (Auclair et al., 2003) gave a g-value of 3.29 ± 0.15 and 1.30 ± 0.16 %/decade normalised to 2 days ($n=6$) for IR(50) and pIRIR(50,225), respectively. Fading correction using these g-values increases the age estimates by ~36 and $\sim12\%$, respectively. The average ratio of the fading corrected IR(50) to pIRIR(50,225) ages is 0.92 ± 0.01 ($n=11$). Given
the smaller fading correction for the pIRIR(50,225) signal, we regard these ages as the most reliable.

A synthesis of luminescence data obtained for the GFU 5 is presented in Table 1. For the younger ages the quartz and the corrected pIRIR(50,225) ages are consistent with each other; for older ages quartz tends to underestimate, presumably because of saturation effects in quartz. Although the larger quartz uncertainties limit the value of this comparison, this agreement also suggests the pIRIR(50,225) signals were sufficiently bleached at the time of deposition (as also supported by the proportional relationship between IR(50) and pIRIR(50,225) doses in Fig. 10a).

Fig. 10b shows the fading-corrected pIRIR(50,225) ages as a function of depth. Bayesian age-depth modelling was performed using the Bacon code (Blaauw, M. & Christen, 2001). The stratigraphic boundary between the Middle and Upper Paleolithic lithic technology was discussed above as lying between 153 cm and 161 cm (Fig. 4, 6). Age-Depth modelling quantitatively constrains the timing of this Middle to Upper Paleolithic transition to between 34.0 ± 1.4 ka (153 cm) and 38.4 ± 1.1 ka (161 cm, see Fig. 10b; random uncertainties only). As is standard in luminescence dating, the uncertainties in the ages are given at the 68% confidence interval. The uncertainties derived from Bayesian modelling only include the random component; typical systematic uncertainties are ~4% and so the age of the Middle-to-Upper Palaeolithic boundary (including all known sources of uncertainty) lies between 34.0 ± 2.0 ka and 38.4 ± 1.9 ka.

DISCUSSION

Sedimentary processes and depositional environments

Facies analysis, coupled with grain-size and clay mineralogy results, allow the interpretation of sedimentary processes and provide a better understanding of changes in depositional environment of the Cardina-Salto do Boi stratigraphic succession; they can also explain some dating results.
The presence of several modes in clastic sediments from hydraulic continental environments can reflect either multiple sedimentary sources or different transport mechanisms (Sun et al., 2002; Liu et al., 2018; among others). This understanding helps in the interpretation of the results of grain-size polymodal decomposition. The first (i), third (iii) and last (vi) grain-size components, consisting of medium to fine silt, very fine sand, and clay, respectively, represent accumulation from suspension load after fluvial sediment input. This, of course, depends on the available source material and water-energy (Torres et al., 2005; Xiao et al., 2015). In contrast, the coarse particles (from ~200 µm to 1000 µm) from the second (ii) and fourth (iv) grain-size components would indicate a transport by traction-current from proximal sources (Sun et al., 2002). In addition, the ultrafine particles from the fifth (v) grain-size component (<1 µm) can be related to chemical-weathering and pedogenesis (e.g., Paton, 1978; Bronger and Heinkele, 1990).

The illite-dominated clay fraction is mainly of very high crystallinity and is Fe/Mg-rich; this indicates relatively unaltered clay mineralogy, largely determined by the geology of the sourced areas (Keller, 1970; Chamley, 1989). Here, this can be explained by the proximity to rapidly eroding mica-rich Precambrian-Palaeozoic metasedimentary rocks.

The observed slight increase in the kaolinite/illite ratio with position upwards in the studied stratigraphic succession may suggest an evolution with time towards relatively more humid conditions, but still within a generally cold context. The presence of smectite (limited to the lower part of the succession) is also compatible with climate with contrasting seasons (Singer, 1980, 1984; Chamley, 1989) during the deposition of GFU 7 and 8.

In addition, the presence of some post-depositional overprinting of the clay minerals must be also considered. This includes: (i) enrichment of vermiculite and the 10-14Å mixed-layer clays close to present-day land surface (GFU 1 and 2), and in the upper levels containing the last Middle Palaeolithic remains (in the GFU 5), presumably due to the deterioration of mica-type minerals under low pH conditions, e.g. by pedogenetic processes (Singer, 1980; Chamley, 1989; Braga et al., 1990).
(ii) alteration of muscovite/biotite and/or feldspar to chlorite in the GFU 1 and 2, also linked to pedogenesis; (iii) meteoric water infiltration and flushing, during sub-aerial exposure of the sediments, with kaolinite increasing near erosive unconformities (with anthropogenic inputs and disturbances), as well as just below an inferred non-depositional unconformity (hiatus, with no evident erosion in the GFU 5) at the archaeologically attested Middle-Uper Palaeolithic transition (Fig. 5, 6). This is confirmed by the relatively higher content of the ultrafine grain-size fraction (Supplementary Fig. 1).

In summary, in terms of formation processes at the site, the Cardina-Salto do Boi sedimentary infill started with accumulation in a fluvial environment, between 5 m and 3.5 m below the present-day surface (GFU 8 to 6), under low energy diffusive water-flow conditions with the settling of suspended fine sediments dominant over bedload deposition (overbank sedimentation). This occurred relatively closer to the palaeo-channel, where the decrease in water-flow energy (dominated by low-water vertical accretion) is most rapid. In the 3.5 m to 1 m interval (GFU 5) vertical sedimentary accretion continues, now relatively more distant from the paleo-fluvial channel; this deposition is interrupted by environmental stabilization phases with no evident erosion. A new phase of overbank sedimentation then took place before an important erosive phase (d2) and anthropogenic accumulation of material (Fig. 5). The uppermost ~1 m of sedimentary thickness (GFU 1 to 4) reflects slope deposition, under the control of gravity-driven processes, accumulating with the concurrent action of water (though with some evidence of pedogenesis) and anthropogenic inputs/disturbances and redepositions.

Thus, the two local geoarchaeological complexes identified here are interpreted in terms of depositional environment, as follows (from bottom to top): (i) GCB = a relatively stable floodplain sequence with some nuisance flooding caused either by overbank floods or by rising groundwater levels, linked to generally continuous and low intensity meteoric precipitation initially under more temperate and humid climate (with some seasonality), that evolved to colder conditions; GCA = a
subsequent period of progressive increase in humid conditions and chemical-weathering attested by the more superficial disturbed slope sequence (colluvium), driven by gravity processes and shallow surface waters flow.

Lithic remains refit links show a vertical distribution pattern over distances < 20cm in GFU 5 to 7 (Fig. 6) that should result from reworking related to the rapid decrease in water-flow energy at the end of the alluvial floodplain process of sedimentation. The 3D distribution and orientation of refitting links pieces indicate that lithic remains were affected by low magnitude post depositional non-anthropic alluvial displacement in conformity with an accumulation in a fluvial environment under low energy diffuse water-flow conditions (Fig. 7).

Cultural attribution of lithic assemblages

Technological study of Middle Palaeolithic lithic assemblages of Portugal and the Iberian inland is incipient and well-dated archaeostratigraphic sequences giving information on the techno-cultural evolution patterns of Neanderthal technology are sparse (Raposo, 1995; Zilhão, 2001; Cardoso, 2006; Zilhão et al., 2011). The Gruta da Oliveira (Fig. 1) archaeostratigraphical succession, dated by U/Th, has been studied using a taphonomical/technical approach. The study shows a shift, during late MIS 5 or early MIS 4, from the centripetal Levallois reduction, associated with rare bifaces and flake-cleavers to Discoid and Kombewa debitage (Deschamps and Zilhão, 2018). Despite the small area excavated, the lithic assemblages of GFU 8 to 6 at the Cardina-Salto do Boi site have characteristics in common with layers 15 to 27 of the Gruta da Oliveira archaeostratigraphy.

Discoid reduction methods found throughout GFU 5/UA38 to UA11 are widespread in Iberian Middle Palaeolithic assemblages dated to MIS 5 and MIS 4 (Deschamps and Zilhão, 2018). Despite some variation along the GFU 5 stratigraphy of Cardina-Salto do Boi, and possible production of small flakes and bladelets, the selection of local raw-materials and the technology used to produce flakes are similar, with no indication of the bidirectional blade reduction sequence
or bifacial technology that characterize the Middle-to-Upper transitional lithic assemblages.

The GFU 5/UA10 to UA1 lithic assemblages are distinct and can be assigned by their typology and technology to the Upper Palaeolithic. Different lithic assemblages can be defined based on raw materials, reduction strategies and tool-types. The lithic assemblage recovered from GFU 5/UA10, defined by the use of brown jasper (Fig. 8), comprises blade debitage, several examples of the Roc-de-Combe subtype Dufour and Font-Yves bladelets and a Caminade endscraper. These are typical index fossils of the Evolved Aurignacian (Rigaud, 1982; Demars, Laurent, 1992; Morala et al., 2005; Michel 2010). In Portugal, the lithic assemblages from a cluster of open-air sites in the Rio Maior basin and the Lower Mondego valley, and caves in the Alentejo and Estremadura regions, exhibit a blade debitage on prismatic unipolar core, prepared by cresting and bladelets produced on carinated or burin cores. These assemblages have previously been assigned to the Final or Evolved Aurignacian (Zilhão, 1997; 2006b; Aubry et al., 2006). The end of the Aurignacian in southern France has been dated by radiocarbon to approximately 32,000 cal yr BP (Michel, 2010; Higham et al., 2011; Rigaud et al., 2016), and the Brignol (Lot-et-Garonne, France) open-air occupation, yielding Caminade endscrapers and Roc-de-Combe Dufour bladelets, has been dated by OSL to 33–34 ka (Anderson et al., 2016).

The Noailles burins of the top of GFU 5 is a diagnostic stone-tool type only known in the Early and Middle Gravettian contexts of France, Northern Spain and Italy. Gravettian occupation with Noailles burins have provided 14C ages covering a wide period between 28,000 and 32,000 cal yr BP (Klaric, 2007; Peña Alonso, 2010; Foucher et al., 2011; Rigaud et al., 2016).

New data for the timing of the Middle-to-Upper Palaeolithic transition in Iberia

Different models have been proposed for the timing and nature of the Middle-to-Upper Palaeolithic transition in Iberia, based on radiometric dating of archaeological layers and lithic assemblage technology. The reevaluation of the stratigraphical contexts and the application of new dating
procedures have led some authors to consider that Neanderthal populations did not survive much longer in the Iberian Peninsula than in the rest of Europe (Maroto et al., 2012; Wood et al., 2013; Higham, et al., 2014; Alcaraz-Castano et al., 2017). Based on luminescence dating of loess deposits from the Upper Tagus Basin, it has been suggested that the abandonment of the interior of Iberia by Neanderthals occurred 42 ka ago, and that, as a direct consequence of a pronounced environmental aridity, inner territories were uninhabited until 28 or 25.5 ka. In this model, any persistence of Neanderthals until 37 ka was restricted to coastal areas (Wolf et al., 2018). Others have accepted a late survival of Neanderthals in Iberia and proposed possible isolation and survival of residual Neanderthal groups more recently than 30 ka in ecological refuge zones in marginal mountain areas of the Cantabrian region (Baena et al., 2018) or in the south-western Iberian Peninsula (Finlayson et al., 2008; Jennings et al., 2011).

After the recent revisions of Middle-to-Upper Palaeolithic sites, improvements in pre-treatment used for samples dated by 14C or by other dating methods, and the discovery of new sites, few Middle Palaeolithic occupation sites have provided unquestionable ages younger than 40 ka and little reliable evidence for such young existence of Aurignacian lithic technology in southern Iberia.

At the Cova de les Cendres site near Alicante (Fig. 1), level XVI, corresponding to the lower part of the Early Upper Palaeolithic sequence, has been assigned to the Evolved Aurignacian (Villaverde et al., 2019), based on the lithic assemblage and a radiocarbon date of 35,379-34614 cal yr BP (31.080±170 Cal yr BP [Beta-458,3469]) (2σ) using the IntCal13 calibration curve (Reimer et al., 2013).

Archeostratigraphy, radiocarbon and luminescence dating at Cueva Antón, located in the Mula basin of Murcia (Fig. 1, south-eastern Spain (Zilhão et al., 2016), have shown that the Mousterian layer I-k cannot be older than 37,100 cal yr BP and at the nearby rock-shelter at La Boja, the basal Aurignacian cannot be younger than 36,500 cal yr BP (Zilhão et al., 2017).
In Portugal, one bovid and two horse tooth enamel samples have been used to date the Middle Palaeolithic occupation at the open-air site of Foz do Enxarrique to 33.6 ± 0.5 ka by U-series (Fig. 1, Raposo, 1995), and the alluvial deposit containing the faunal remains and lithic assemblage provided an age of 38.5 ± 1.6 ka, using fading-corrected IRSL (Cunha et al., 2008). However, using the pIRIR dating protocol applied at Cardina-Salto do Boi, the same archaeological level provided dates of 44 ± 3 ka, 43 ± 4 ka and 37 ± 2 ka. The U-series and conventional IRSL ages are now considered as underestimates, when compared to pIRIR ages (Cunha et al., 2019) and do not provide reliable evidence of Neanderthal persistence after 40 ka.

The existence of Aurignacian occupation in South-western Iberia has been debated (Zilhão, 1997; Straus et al., 2000; Zilhão and Trinkaus, 2002; Trinkaus et al., 2007; Zilhão et al., 2010; Peña Alonso and Vega Toscano, 2013; Bicho et al., 2017). Recently, the Bj-13-12 layer lithic assemblage of the Bajondillo Cave (Fig. 1) has been attributed to the Early Aurignacian or Proto-Aurignacian, based on the presence of blades and bladelet cores and the 43-41 cal yr BP dates (Cortés-Sánchez et al., 2019). However, the lead author has previously considered the same assemblage as minimal and impracticable for a reliable techno-typological analysis (Cortés Sánchez, 2007, p.141-142), it cannot be clearly attributed to the Proto-Aurignacian or Early Aurignacian, and rather than assign it to chrono-cultural phase it would be wiser to consider it a mixed assemblage (Peña Alonso, 2019; Anderson et al., 2019). Nevertheless, at Cardina-Salto do Boi, lithic assemblages, stratigraphy and dating indicate that other reduction strategies than Discoid or Levallois flake production are already present from 80 to 50 ka cal BP, attesting to reduction scheme diversity at early stages (Supplementary Fig. 4).

Several hypotheses based on ecological factors have been put forward to explain the apparent late survival of Neanderthal populations in the southern and western regions of the Iberian Peninsula (Finlayson et al., 2004; 2006, D'Errico and Sanchez Goñi, 2004; Zilhão, 2006a; Jiménez-Espejo et al. 2013; Zilhão et al., 2017, Carrión et al., 2019). The first of these hypotheses suggests
that AMH populations bearing an Aurignacian technology may not have expanded south of the Ebro River during Interstadial 9, which occurred just prior to Heinrich Event 4 (H4, 39 ka). Based on the ages obtained in the Mula region, the spread of the Evolved Aurignacian into Southern and Western Iberia and the replacement of Iberian late-persisting Mousterian (~36.5-37.1 ka) has been interpreted as a response to the global climatic transition from Greenland Interstadial 8 to Greenland Stadial 8 (Rasmussen et al., 2014; Zilhão et al. 2017). This lack of expansion to the south may have been because these regions were significantly more wooded and thus less favourable, since the large mammals on which their subsistence systems were focused preferred open landscapes (Sepulchre et al., 2007).

The Greenland Interstadial 8, which followed Heinrich Stadial (HS) 4, lasted from ~38.2 to ~36.6 ka (Wolff et al., 2010). This period is associated with a strongly expressed vegetation gradient which developed ~40° N, with temperate (deciduous oaks) and warm-temperate (Mediterranean taxa) elements undergoing a very significant expansion to the south (Fletcher et al., 2010). The persistence of the frontier effect over several millennia has been explained by extreme aridity in the northern slopes of the Iberian Range during HS 4 and because of temperate forest expansion in its southern slopes during the interstadials that bracket it (Daura et al., 2012).

The new data obtained at Cardina-Salto do Boi in Northeastern Portugal, at the eastern limit of the northern Meseta, show clearly that the absence of evidence can not be interpreted as evidence of absence. The lithic assemblages defined, refitting set links (Fig. 6), sedimentological data (Fig. 5) indicate that the transition between Discoid reduction method technology and blade and bladelet production using non-local flint and silcrete sources can be placed between the GFU 5/UA12 and GFU 5/UA10. The blade fragment in fine-grained jasper found in GFU 5/UA 14 (Fig. 9, no. 20) is the unique piece made of non local source recovered under the GFU 5/UA 12 (Fig. 6).

The ages obtained for the samples 17208 (43.9 ± 2.1) and 17209 (42.9 ± 1.9) confirm the persistence of Middle Palaeolithic discoidal reduction strategy during the temporal range of the
Chatelperronian technocomplexe attested in France and Northern Spain (Higham et al., 2014, Marín-Arroyo et al., 2018). Considering that AMH associated with Early Aurignacian technology is established in northern Iberia from around 42,000 cal yr BP (Wood et al., 2014) the age obtained for the sample 17210 and lithic assemblage raw material and reduction strategies support the coexistence model and that Neanderthal and AMH overlapped in geographical areas at north and west of the Iberian Plateau (Fig. 1).

The boundary between the Middle and Upper Paleolithic has been identified as lying between 153 cm and 161 cm (Fig. 4, 6). From the Age-Depth modelling of the luminescence dates, the age of the Middle-to-Upper Palaeolithic boundary lies between 34.0 ± 2.0 ka and 38.4 ± 1.9 ka. Moreover, the reconstruction of the sedimentary processes and related palaeoenvironmental conditions show that like in cave and rockshelter Iberian sites (Aubry et al., 2011; Mallol et al., 2012) the Middle-to-Upper technological transition occurred during a stratigraphic disconformity (Fig. 5, supplementary Fig. 1, 2) preventing a precise characterization of the Neanderthal or AMH occupations that could have occurred during this hiatus and hampering evaluations of the continuity or discontinuity of human occupation.

The Upper Palaeolithic technology, constrained by the distribution of 28 pieces of regional filament fine-grained jasper (Fig. 7, 9) that yielded a lithic remains assemblage featuring diagnostic Evolved Aurignacian blade, crenated core reduction strategies and stone-tools (Fig. 9) is dated from 33.6 ± 2 ka (172211, GFU 5/UA10). Lithic assemblage attribution to the Aurignacian is supported by the Bayesian radiocarbon age model obtained for the end of the Aurignacian in the Cantabrian region (Marín-Arroyo et al., 2018) and for the Abri Pataud sequence in southern France (Higham et al., 2011).

The age obtained for the sample 172212 (31.5 ± 1.6 ka) could be related to the Middle Gravettian occupation associated with the Noailles burins from the top of GFU 5 in agreement with radiocarbon ages obtained for Middle Gravettian contexts (Klaric, 2007; Peña Alonso, 2010). The
ages from the samples 172213 to 172215 (28.7 ± 1.6, 25.6 ± 1.4, 27.5 ± 2.5, Table 1, Fig. 10), are statistically indistinguishable from the results obtained by TL for the base of GFU 4 (27.8 ± 1.5, 28 ± 2.1, 27 ± 1.8, 26.5 ± 1.8, 30.1 ± 1.5 ka) in the area excavated between 1995 and 2001 (Fig. 3, Valladas et al., 2001). The ages indicate an Upper or Late Gravettian chronology, probably related to a pit detected all around the excavated portion of the large circular stone structure (and corresponding to the layer 4b, Fig. 4).

CONCLUSION

The results obtained at Cardina-Salto do Boi since 1995 show that, in contrast to the largely accepted model for the Upper Pleistocene settlement of Iberia, the Côa Valley and the eastern limit of northern Meseta were occupied throughout the Middle and Upper Palaeolithic.

The Cardina-Salto do Boi archaeostratigraphy and OSL dating indicate that a Neanderthal-associated Middle Palaeolithic culture live in the Côa valley through the MIS 4 and 3. The OSL ages obtained for the samples 17208 and 17209 (43.9 ± 2.1, 42.9 ± 1.9 ka) confirm the persistence of Middle Palaeolithic technology in Central Iberia during the development of ‘transitional’ industries in Northern Spain, France and Italy. The lithic assemblage and the luminescence age obtained for the sample 172210 (39.5 ± 1.8 ka) provides new evidence of the persistence of Neanderthal-associated Middle Palaeolithic material culture in some regions of Iberia after they were replaced by AMH in the rest of Europe.

Correlatively, the Late Aurignacian affinities of the lithic assemblage recovered under GFU 5/UA10 and the OSL age obtained for sample 172211 (33.6 ± 2 ka) provide new evidence contradicting the hypothesis that AMH dispersal in southern and central Iberia only occurred during the Gravettian.

Interpretation of the evolution of the depositional environment and luminescence ages reveal that the Middle-to-Upper stone-tool technology change coincides with a minor non-depositional
unconformity (hiatus, with no evident erosion). Further work is needed to establish if this
disconformity of several millenia could be related to drastic change in climatic conditions attested
in Atlantic marine record and to characterized and establish the precise chronology of human
occupation during the sedimentary hiatus.

Even 25 years after the identification of the significance of the Côa Valley it is still
necessary to emphasise that the Iberian inland was not a human void during the Middle and Upper
Palaeolithic, and that the several colonizations, either earlier or later, were not confined to the
coastline. Cardina-Salto do Boi proves that it is possible to find, in the Iberian inland, a well
preserved and significant open-air sequence of datable deposits recording the Middle-to-Upper
transition.

Our results confirm that additional dating methods and the development of surveys focusing
on different geomorphological settings can be used to overcome the current evidential limitations of
cave and rockshelter record and to establish more consistent models for the timing of Neanderthal
disappearance and AMH expansion in the different regions of Iberian Peninsula.

ACKNOWLEDGMENTS

This study is a contribution to the Project PALÆCOA: Neanderthal to Anatomically Modern
Human transition in the Côa Valley: Environments, Symbolism and Social networks (PTDC/EPH-
ARQ/0326/2014), funded by the Fundação para a Ciência e Tecnologia (FCT) and the Europe 2020
Programme - FEDER (POCI-01-0145-FEDER-016605). The DGPC provided permit for this
project. We thank the Fundação Côa Parque for its logistical support and permission to conduct the
project on which this study is based. We also acknowledge the contribution from the Vila Nova de
Foz Côa and Santa Comba Municipalities for providing logistical help for the excavation works at
Cardina site.
AUTHOR CONTRIBUTIONS

A.T. and D.L. conceived the research; A.T. designed the research; A.T., B.A.F., L.L., S.A.T., S.M. performed the archaeological fieldwork; A.T., L.L. and S.A.T performed and interpreted archaeological data; D.L. performed the facies analysis and interpreted all the sedimentological field/laboratory data (including grain-size, and XRD data with the technical help of Mr. Carlos Maia); K.T., E.R., M.A. and A.S.M. conducted the OSL analysis. A.T. and D.L. wrote the paper; and all the authors reviewed and edited the manuscript. Furthermore, all the authors have read and approved the manuscript, declaring no conflict of interest.

REFERENCES

Aubry, T., Luís, L., Mangado, Llach, J., Matias, H. 2012b. We will be known by the tracks we leave behind: exotic lithic raw materials, mobility and social networking among the Côa Valley foragers (Portugal). *Journal of Anthropological Archaeology* 31, 528-550.

Fletcher, W., Sánchez-Goñi, M.F., Allen, J.R.M., Cheddadi, R., Combourieu Nebout, N., Huntley,

Qin, X., Cai, B, Liu, T., 2005. Loess record of the aerodynamic environment in the east Asia monsoon are since 60,000 years before present. *J. Geophys. Res. Solid Earth* 110, B01204.

Valladas, H., Mercier, N., Froget, L., Jorons, J.L., Reyss, J.L., Aubry, T. 2001. TL Dating of Upper Paleolithic Sites in the Côa Valley (Portugal). *Quaternary Science Reviews* 20, (5-9), 939-

Murcia (Spain) supports late Neandertal persistence in Iberia. *Helyion* (3).

Figure and table captions

Table 1. Summary of OSL data for the Cardina-Salto do Boi reference section. Q is quartz and KF is K-rich feldspar extracts. De is the equivalent dose estimate, nx and Nx is the number of accepted and measured aliquots, respectively. De KF has been derived from pIRIR(50,225) measurements. The fading corrected KF ages (Age KFcorr) has been derived by correction for fading (measured to be 1.30±0.15 %/decade, Auclair et al., 2003) and these ages are expected to be most accurate estimates of burial ages for these samples.

Figure 1. Location of Middle Palaeolithic and Aurignacian sites in the Iberian Peninsula, and sites mentioned in the text.

Figure 2. Location map of the Palaeolithic sites in the Côa valley.

Figure 3. Topographic map and photography of the Cardina site (from southwest). Excavated area at the end of the 2018 field season and location of the cross-section A in the excavation grid.

Figure 4. Stratigraphic sequence, field units and samples location in the reference cross-section A.

Figure 5. Cardina-Salto do Boi synthetic log showing the studied stratigraphic succession, including the location of the sampled siliciclastic sediments, the chronometric data, the grain-size and clay mineralogy results, the inferred sedimentary processes and the respective depositional environment interpretations.

Figure 6. Stratigraphical position of the radiometric luminescence data, Artificial Units by Geoarchaeological Field Unit (GFU), raw material proportions of knapped lithic remains and vertical distribution of the refitting sets.

Figure 7. 3D plot of the all lithic remains over 5 cm in the layer 4b (grey dots) and in the GFU 5 (red dots) and refitting links of knapped and heated fracture lithic remains (lines). In in GFU 6 (orange dots) and GFU 7 (yellow dots), only refitted material is presented. Jasper lithics in GFU 5
are represented in blue and dating samples in black.

Figure 8. Lithic industries from the GFU 5/UA38 to UA10 and stratigraphical position.

Figure 9. Lithic industries from the GFU 5/UA14 (no. 20), UA10 (no. 19), UA8 (no. 3), UA7 (no. 18), UA6 (no. 1, 12, 17, 21), UA5 (no. 7, 14, 15, 16), UA4 (no. 4, 5, 6, 9, 10, 11), UA3 (no. 8, 13), UA2 (no. 2). Bladelets produced on carenated or burin type cores (no.1, 2, 6, 7, 8, 15, 16, 17), retouched bladelets (no. 3, 4, 5, 9, 10, 11, 18) and Dufour bladelets of the subtype Dufour (no. 13), Font-Yves bladelets (no. 12), Caminade endscraper (no. 14.) and blades fragments (no. 19, 20, 21).

Figure 10. a) K-feldspar doses: IR(50) (squares) and pIRIR(50,290) (circles) as a function of pIRIR(50,225) doses. Also shown are the linear fits to the data. b) Fading corrected pIRIR(50,225) ages. A g-value of 1.30±0.16 %/decade (n=6) were used to correct for fading. The uncertainties quoted on these ages are at 68%. Also shown is Age-Depth Modelling using Bayesian Statistics (Bacon script; Blaauw, M. & Christen, 2001). The dotted lines represent the 68% confidence interval. Also shown (red dashed lines) is the transition from the Middle to the Upper Paleolithic occurring in the depth range between 153 cm (34.0±1.4 ka) and 161 cm (38.4±1.1 ka).
<table>
<thead>
<tr>
<th>Sample</th>
<th>Depth (cm)</th>
<th>w.c. (%)</th>
<th>Dose rate Q (Gy/ka)</th>
<th>D_e Q (Gy)</th>
<th>n_Q</th>
<th>N_Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>172219</td>
<td>270</td>
<td>0</td>
<td>4.90 ± 0.24</td>
<td>-</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>172206</td>
<td>193</td>
<td>4</td>
<td>4.96 ± 0.26</td>
<td>172 ± 21</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>172207</td>
<td>190</td>
<td>4</td>
<td>4.37 ± 0.22</td>
<td>161 ± 27</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>172208</td>
<td>179</td>
<td>4</td>
<td>4.91 ± 0.23</td>
<td>177 ± 15</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>172209</td>
<td>170</td>
<td>4</td>
<td>4.65 ± 0.22</td>
<td>171 ± 23</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>172210</td>
<td>161</td>
<td>2</td>
<td>4.82 ± 0.25</td>
<td>189 ± 40</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>172211</td>
<td>153</td>
<td>3</td>
<td>4.80 ± 0.25</td>
<td>217 ± 33</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>172212</td>
<td>145</td>
<td>3</td>
<td>4.85 ± 0.24</td>
<td>129 ± 10</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>172213</td>
<td>136</td>
<td>2</td>
<td>4.64 ± 0.23</td>
<td>136 ± 27</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>172214</td>
<td>130</td>
<td>1</td>
<td>4.75 ± 0.23</td>
<td>143 ± 11</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>172215</td>
<td>118</td>
<td>2</td>
<td>4.91 ± 0.24</td>
<td>134 ± 24</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Dose rate KF (Gy/ka)</td>
<td>D$_0$ KF (Gy)</td>
<td>n_{KF}</td>
<td>N_{KF}</td>
<td>Age Q (ka)</td>
<td>Age KF$_{uncorr}$ (ka)</td>
<td>Age KF$_{corr}$ (ka)</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------------</td>
<td>----------</td>
<td>----------</td>
<td>------------</td>
<td>------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>5.83 ± 0.25</td>
<td>417 ± 7</td>
<td>8</td>
<td>8</td>
<td>-</td>
<td>71.4 ± 3.2</td>
<td>80.3 ± 3.6</td>
</tr>
<tr>
<td>5.89 ± 0.27</td>
<td>267 ± 4</td>
<td>8</td>
<td>8</td>
<td>35 ± 5</td>
<td>45.4 ± 2.1</td>
<td>51.0 ± 2.4</td>
</tr>
<tr>
<td>5.30 ± 0.23</td>
<td>235 ± 7</td>
<td>6</td>
<td>6</td>
<td>37 ± 6</td>
<td>44.4 ± 2.4</td>
<td>49.9 ± 2.7</td>
</tr>
<tr>
<td>5.85 ± 0.24</td>
<td>229 ± 6</td>
<td>8</td>
<td>8</td>
<td>36 ± 3</td>
<td>39.1 ± 1.9</td>
<td>43.9 ± 2.1</td>
</tr>
<tr>
<td>5.59 ± 0.23</td>
<td>214 ± 3</td>
<td>18</td>
<td>18</td>
<td>37 ± 5</td>
<td>38.2 ± 1.6</td>
<td>42.9 ± 1.9</td>
</tr>
<tr>
<td>5.76 ± 0.25</td>
<td>203 ± 2</td>
<td>7</td>
<td>8</td>
<td>39 ± 8</td>
<td>35.2 ± 1.6</td>
<td>39.5 ± 1.8</td>
</tr>
<tr>
<td>5.74 ± 0.26</td>
<td>172 ± 7</td>
<td>6</td>
<td>6</td>
<td>45 ± 7</td>
<td>29.9 ± 1.8</td>
<td>33.6 ± 2.0</td>
</tr>
<tr>
<td>5.79 ± 0.24</td>
<td>163 ± 5</td>
<td>7</td>
<td>8</td>
<td>27 ± 3</td>
<td>28.1 ± 1.5</td>
<td>31.5 ± 1.6</td>
</tr>
<tr>
<td>5.58 ± 0.24</td>
<td>143 ± 5</td>
<td>6</td>
<td>6</td>
<td>29 ± 6</td>
<td>25.6 ± 1.5</td>
<td>28.7 ± 1.6</td>
</tr>
<tr>
<td>5.69 ± 0.24</td>
<td>130 ± 5</td>
<td>11</td>
<td>11</td>
<td>30 ± 3</td>
<td>22.8 ± 1.3</td>
<td>25.6 ± 1.4</td>
</tr>
<tr>
<td>5.84 ± 0.25</td>
<td>143 ± 11</td>
<td>6</td>
<td>6</td>
<td>27 ± 5</td>
<td>24.5 ± 2.2</td>
<td>27.5 ± 2.5</td>
</tr>
</tbody>
</table>
Supplementary Material

Timing of Middle-to-Upper transition in Iberian inland (Cardina-Salto do Boi, Côa Valley, Portugal)

Thierry AUBRY, Luca Antonio DIMUCCIO, António Fernando BARBOSA, Luís LUÍS, André Tomás SANTOS, Marcelo SILVESTRE, Kristina Jørkov THOMSEN, Eike RADES, Martin AUTZEN, Andrew Sean MURRAY

Supplementary Figure 1. Representative grain-size frequency-distribution curves of the sampled siliciclastic sediments from the Cardina-Salto do Boi stratigraphic succession. The location of the samples is shown in Fig. 4 and 5.
Supplementary Figure 2. Ternary diagram of sand-silt-clay (SSC) content, using the scheme proposed by Blott and Pye (2012).
Supplementary Figure 3. Lithic industries from the GFU 6 (no. 1, 2) and GFU 7 (no. 3-8).
Supplementary Figure 4. Quadrangular flakes, truncated bladelet and bladelets produced on prismatic cores from GFU 5/UA24 (no. 2, 3), UA25 (no. 6, 8, 12), UA26 (no. 4, 7), UA28 (no. 1) UA30 (no. 5), UA18 (no. 9) and UA16 (no. 10, 11).
Supplementary Figure 5. Lithic industries from the layer 4b (no. 1-26) and GFU 5/UA4 to UA1 (no. 27-31).
Timing of Middle-to-Upper transition in Iberian inland (Cardina-Salto do Boi, Côa Valley, Portugal)

Thierry AUBRY, Luca Antonio DIMUCCIO, António Fernando BARBOSA, Luís LUIS, André Tomás SANTOS, Marcelo SILVESTRE, Kristina Jarkov THOMSEN, Eike RADES, Martin AUTZEN, Andrew Sean MURRAY

<table>
<thead>
<tr>
<th>H'/I'-17/19</th>
<th>Tools</th>
<th>Cores</th>
<th>Rock fragment</th>
<th>Pebbles</th>
<th>Flakes</th>
<th>Siret flake</th>
<th>Blanks</th>
<th>Blade</th>
<th>Bladelet</th>
<th>Burin bladelet</th>
<th>Chips</th>
<th>Heated fracture</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>14</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>26</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>13</td>
<td>11</td>
<td>2</td>
<td>395</td>
<td>-</td>
<td>2</td>
<td>5</td>
<td>-</td>
<td>225</td>
<td>185</td>
<td>848</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>4</td>
<td>19</td>
<td>9</td>
<td>-</td>
<td>283</td>
<td>-</td>
<td>1</td>
<td>4</td>
<td>-</td>
<td>312</td>
<td>220</td>
<td>852</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>14</td>
<td>19</td>
<td>16</td>
<td>2</td>
<td>494</td>
<td>-</td>
<td>2</td>
<td>10</td>
<td>-</td>
<td>352</td>
<td>387</td>
<td>1296</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>13</td>
<td>18</td>
<td>16</td>
<td>-</td>
<td>493</td>
<td>-</td>
<td>2</td>
<td>20</td>
<td>-</td>
<td>487</td>
<td>328</td>
<td>1377</td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td>12</td>
<td>13</td>
<td>13</td>
<td>-</td>
<td>571</td>
<td>-</td>
<td>1</td>
<td>18</td>
<td>-</td>
<td>517</td>
<td>256</td>
<td>1401</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>10</td>
<td>13</td>
<td>8</td>
<td>-</td>
<td>309</td>
<td>-</td>
<td>3</td>
<td>15</td>
<td>-</td>
<td>346</td>
<td>146</td>
<td>850</td>
<td></td>
</tr>
<tr>
<td>4.6</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>101</td>
<td>-</td>
<td>6</td>
<td>-</td>
<td>-</td>
<td>123</td>
<td>25</td>
<td>261</td>
<td></td>
</tr>
<tr>
<td>4B.1</td>
<td>23</td>
<td>18</td>
<td>8</td>
<td>7</td>
<td>353</td>
<td>68</td>
<td>2</td>
<td>23</td>
<td>1</td>
<td>483</td>
<td>300</td>
<td>1286</td>
<td></td>
</tr>
<tr>
<td>4B.2</td>
<td>16</td>
<td>25</td>
<td>3</td>
<td>10</td>
<td>322</td>
<td>101</td>
<td>7</td>
<td>44</td>
<td>-</td>
<td>572</td>
<td>304</td>
<td>1404</td>
<td></td>
</tr>
<tr>
<td>4B.3</td>
<td>20</td>
<td>24</td>
<td>3</td>
<td>9</td>
<td>345</td>
<td>101</td>
<td>3</td>
<td>52</td>
<td>-</td>
<td>763</td>
<td>167</td>
<td>1487</td>
<td></td>
</tr>
<tr>
<td>4B.4</td>
<td>6</td>
<td>8</td>
<td>-</td>
<td>2</td>
<td>150</td>
<td>33</td>
<td>3</td>
<td>22</td>
<td>-</td>
<td>495</td>
<td>61</td>
<td>780</td>
<td></td>
</tr>
<tr>
<td>4B.5</td>
<td>-</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>36</td>
<td>-</td>
<td>7</td>
<td>-</td>
<td>-</td>
<td>70</td>
<td>2</td>
<td>119</td>
<td></td>
</tr>
<tr>
<td>5.01</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>68</td>
<td>17</td>
<td>-</td>
<td>19</td>
<td>-</td>
<td>327</td>
<td>34</td>
<td>476</td>
<td></td>
</tr>
<tr>
<td>5.02</td>
<td>11</td>
<td>9</td>
<td>1</td>
<td>2</td>
<td>173</td>
<td>40</td>
<td>-</td>
<td>34</td>
<td>-</td>
<td>766</td>
<td>71</td>
<td>107</td>
<td></td>
</tr>
<tr>
<td>5.03</td>
<td>14</td>
<td>10</td>
<td>-</td>
<td>4</td>
<td>152</td>
<td>33</td>
<td>2</td>
<td>40</td>
<td>2</td>
<td>720</td>
<td>51</td>
<td>1028</td>
<td></td>
</tr>
<tr>
<td>5.04</td>
<td>8</td>
<td>9</td>
<td>1</td>
<td>1</td>
<td>112</td>
<td>16</td>
<td>-</td>
<td>33</td>
<td>1</td>
<td>547</td>
<td>68</td>
<td>796</td>
<td></td>
</tr>
<tr>
<td>5.05</td>
<td>6</td>
<td>5</td>
<td>-</td>
<td>7</td>
<td>79</td>
<td>23</td>
<td>1</td>
<td>32</td>
<td>-</td>
<td>438</td>
<td>62</td>
<td>646</td>
<td></td>
</tr>
<tr>
<td>5.06</td>
<td>10</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>68</td>
<td>17</td>
<td>-</td>
<td>19</td>
<td>1</td>
<td>377</td>
<td>47</td>
<td>545</td>
<td></td>
</tr>
<tr>
<td>5.07</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>75</td>
<td>12</td>
<td>-</td>
<td>10</td>
<td>-</td>
<td>328</td>
<td>45</td>
<td>475</td>
<td></td>
</tr>
<tr>
<td>5.08</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>56</td>
<td>7</td>
<td>7</td>
<td>1</td>
<td>282</td>
<td>30</td>
<td>387</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.09</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>81</td>
<td>13</td>
<td>-</td>
<td>6</td>
<td>282</td>
<td>21</td>
<td>407</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.10</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>82</td>
<td>22</td>
<td>1</td>
<td>5</td>
<td>225</td>
<td>13</td>
<td>352</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.11</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>75</td>
<td>10</td>
<td>-</td>
<td>1</td>
<td>258</td>
<td>50</td>
<td>398</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.12</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>112</td>
<td>28</td>
<td>2</td>
<td>6</td>
<td>-</td>
<td>511</td>
<td>120</td>
<td>785</td>
<td></td>
</tr>
<tr>
<td>5.13</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>40</td>
<td>9</td>
<td>-</td>
<td>6</td>
<td>-</td>
<td>113</td>
<td>40</td>
<td>211</td>
<td></td>
</tr>
<tr>
<td>5.14</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>47</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>213</td>
<td>28</td>
<td>295</td>
<td></td>
</tr>
<tr>
<td>5.15</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>41</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>168</td>
<td>68</td>
<td>283</td>
<td></td>
</tr>
<tr>
<td>5.16</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>69</td>
<td>12</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>177</td>
<td>107</td>
<td>371</td>
<td></td>
</tr>
<tr>
<td>5.17</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>49</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>181</td>
<td>86</td>
<td>325</td>
<td></td>
</tr>
<tr>
<td>5.18</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>72</td>
<td>8</td>
<td>1</td>
<td>-</td>
<td>233</td>
<td>103</td>
<td>421</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.19</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>95</td>
<td>11</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>174</td>
<td>92</td>
<td>377</td>
<td></td>
</tr>
<tr>
<td>5.20</td>
<td>-</td>
<td>2</td>
<td>4</td>
<td>-</td>
<td>71</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>180</td>
<td>62</td>
<td>329</td>
<td></td>
</tr>
<tr>
<td>5.21</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>55</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>126</td>
<td>57</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>5.22</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>52</td>
<td>14</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>276</td>
<td>35</td>
<td>381</td>
<td></td>
</tr>
<tr>
<td>5.23</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>75</td>
<td>10</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>145</td>
<td>15</td>
<td>252</td>
<td></td>
</tr>
<tr>
<td>H'/I'-17/19</td>
<td>Tools</td>
<td>Cores</td>
<td>Rock fragment</td>
<td>Pebbles</td>
<td>Flakes</td>
<td>Siret flake</td>
<td>Blade</td>
<td>Bladelet</td>
<td>Burin bladelet</td>
<td>Chips</td>
<td>Heated fracture</td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>-------</td>
<td>-------</td>
<td>---------------</td>
<td>---------</td>
<td>--------</td>
<td>-------------</td>
<td>-------</td>
<td>----------</td>
<td>---------------</td>
<td>-------</td>
<td>----------------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>5_24</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>73</td>
<td>15</td>
<td>-</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>238</td>
<td>32</td>
<td>365</td>
<td></td>
</tr>
<tr>
<td>5_25</td>
<td>7</td>
<td>4</td>
<td>-</td>
<td>72</td>
<td>18</td>
<td>-</td>
<td>8</td>
<td>-</td>
<td>-</td>
<td>208</td>
<td>29</td>
<td>346</td>
<td></td>
</tr>
<tr>
<td>5_26</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>69</td>
<td>17</td>
<td>-</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>273</td>
<td>26</td>
<td>392</td>
<td></td>
</tr>
<tr>
<td>5_27</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>46</td>
<td>16</td>
<td>-</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>259</td>
<td>14</td>
<td>343</td>
<td></td>
</tr>
<tr>
<td>5_28</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>53</td>
<td>17</td>
<td>-</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>192</td>
<td>18</td>
<td>289</td>
<td></td>
</tr>
<tr>
<td>5_29</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>42</td>
<td>16</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>199</td>
<td>7</td>
<td>269</td>
<td></td>
</tr>
<tr>
<td>5_30</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>36</td>
<td>10</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>192</td>
<td>21</td>
<td>264</td>
<td></td>
</tr>
<tr>
<td>5_31</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>28</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>150</td>
<td>8</td>
<td>194</td>
<td></td>
</tr>
<tr>
<td>5_32</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>27</td>
<td>6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>125</td>
<td>7</td>
<td>166</td>
<td></td>
</tr>
<tr>
<td>5_33</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>22</td>
<td>6</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>93</td>
<td>-</td>
<td>122</td>
<td></td>
</tr>
<tr>
<td>5_34</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>9</td>
<td>7</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>95</td>
<td>1</td>
<td>113</td>
<td></td>
</tr>
<tr>
<td>5_35</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>19</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>73</td>
<td>-</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>5_36</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>17</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>44</td>
<td>3</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>5_37</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>12</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>50</td>
<td>2</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>5_38</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>9</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>29</td>
<td>5</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>6_01</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6_02</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6_05</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>6_06</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>7_01</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>7_02</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>7_03</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>8</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>7_04</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>7_05</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td>13</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>7_06</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>7_07</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>7_08</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>5</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>7_09</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>7_10</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>7_11</td>
<td>-</td>
<td>-</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>244</td>
<td>256</td>
<td>116</td>
<td>47</td>
<td>6265</td>
<td>780</td>
<td>33</td>
<td>488</td>
<td>6</td>
<td>14018</td>
<td>3869</td>
<td>26122</td>
<td></td>
</tr>
</tbody>
</table>

Supplementary Table 1. Techno-typology composition of the lithic industries from Geoarchaeological Field Unit (GFU) 8 to 4 of the H’/I’-17/19 squares.