

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Jun 04, 2024

Hybrid Logic in the Isabelle Proof Assistant: Benefits, Challenges and the Road Ahead

From, Asta Halkjær

Publication date:
2020

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
From, A. H. (2020). Hybrid Logic in the Isabelle Proof Assistant: Benefits, Challenges and the Road Ahead. 23-
27. Paper presented at Advances in Modal Logic 2020.

https://orbit.dtu.dk/en/publications/7dc0d9ed-4d69-4cb4-853d-4c3ec96065ea

Hybrid Logic in the Isabelle Proof Assistant:
Benefits, Challenges and the Road Ahead

Asta Halkjær From

DTU Compute — Technical University of Denmark

Abstract

We outline benefits of formalizing a proof system for hybrid logic in the proof assistant
Isabelle/HOL, showcase how the process of formalization can shape our proofs, and
describe our current work on formalizing completeness of a more restrictive system.
Formalization: https://devel.isa-afp.org/entries/Hybrid_Logic.html

Keywords: Hybrid logic, Seligman-style tableau, Isabelle/HOL

1 Introduction

Basic hybrid logic extends ordinary modal logic with nominals, a special sort
of propositional symbol true at exactly one world, and satisfaction statements,
@iφ, which are true if and only if the formula φ is true in the world named by
nominal i. The well-formed formulas of the basic hybrid logic are defined as
follows, where x is a propositional symbol and we use i, j, k, a, b for nominals:

φ,ψ ::= x | i | ¬φ | φ ∨ ψ | ✸φ | @iφ

The language is interpreted on Kripke models M, consisting of a frame
(W,R) and a valuation of propositional symbols V . Here W is a non-empty set
of worlds and R is a binary accessibility relation between them. To interpret
nominals we use an assignment g mapping them to elements of W ; if g(i) = w
we say that nominal i denotes w. Formula satisfiability is defined as follows:

M, g, w |= x iff w ∈ V (x)
M, g, w |= i iff g(i) = w
M, g, w |= ¬φ iff M, g, w �|= φ
M, g, w |= φ ∨ ψ iff M, g, w |= φ or M, g, w |= ψ
M, g, w |= ✸φ iff for some w�, wRw� and M, g, w� |= φ
M, g, w |= @iφ iff M, g, g(i) |= φ

We have just presented basic hybrid logic using (semi-formal) natu-
ral language, but we could have presented it using a proof assistant like
Isabelle/HOL [7] instead. This forces us to be more precise: we would have to
define hybrid logic in the proof assistant’s logic (here, higher-order logic). But

24 Hybrid Logic in the Isabelle Proof Assistant: Benefits, Challenges and the Road Ahead

we can then do our metatheory in higher-order logic and machine check its cor-
rectness. This leaves no room for ambiguity or mistakes since every statement
compiles to the primitives of the proof assistant (that we trust to be correct).
Of course, we will have to supply more proof detail which can result in more
verbose proofs; nonetheless, used skillfully, formalization can help guide our
exploration of metatheory, and suggest new ideas, as we hope to show.

Hybrid logic has received little such treatment. Doczkal and Smolka for-
malize hybrid logic with nominals but no satisfaction operators in constructive
type theory using the proof assistant Coq. They give algorithmic proofs of
small model theorems and computational decidability of satisfiability, validity,
and equivalence of formulas [3]. In Isabelle/HOL, Linker formalizes the seman-
tic embedding of a spatio-temporal multi-modal logic that includes a hybrid
logic-inspired at-operator but has no proof system [6]. The present work is the
first sound and complete formalized proof system for hybrid logic that we know
of. We have briefly described an earlier version of the formalization in a short
paper for an automated reasoning audience [4], but that paper did not cover
the notion of “potential” for restricting the GoTo rule.

2 Seligman-Style Tableau System

The proof system must handle the fact that a hybrid logic formula is true
relative to a given world. Figures 1a and 1b depict two strategies for this.

...

@iφ1

@iφ2

...

@jψ1

...

(a) Internalized.

...

i
φ1

φ2

...

j
ψ1

...

(b) Seligman-style.

0. a
1. ¬(¬@iφ ∨@iφ) [0]
2. ¬¬@iφ (¬∨) 1 [1]
3. ¬@iφ (¬∨) 1 [2]
4. @iφ (¬¬) 2 [3]

5. i GoTo [2]
6. ¬φ (¬@) 3 [3]
7. φ (@) 4 [4]

×
(c) Seligman-style tableau example.

Fig. 1. Tableau styles. (c) displays potential in the fourth column.

Internalized tableau systems work exclusively with satisfaction statements
while the Seligman-style tableau system handles arbitrary formulas, giving a
more local proof style, by dividing branches into blocks of formulas that are all
true at the same world. Each pair of blocks is separated by a horizontal line
and every block starts with a nominal dubbed the opening nominal, denoting
that world. We call a block with opening nominal i an “i-block.”

Figure 2 gives the tableau rules. Every rule has input formulas above the
vertical line(s) and output below. The output of GoTo is a new block with
corresponding opening nominal, while the other rules extend the last, so-called

From 25

“current” block. When a rule has multiple input formulas we write them next
to each other. Above each input formula, we write the opening nominal of the
block it occurs on. Similarly, the opening nominal of the current block is the
first thing below the horizontal line. Any formula on the current block may be
used as input under the same restrictions on opening nominals. The system
resembles (and simplifies) the one developed by Blackburn et al. [1], notably
by having single-input (@) and (¬@) rules and assuming that all blocks have
an opening nominal causing us to omit a rule.

Figure 1c gives an example tableau for the formula ¬@iφ ∨ @iφ which is
negated and placed on a block with an arbitrary opening nominal. Note how
the GoTo rule switches perspective to the world denoted by i while consuming
a unit of potential in the fourth column.

a
φ ∨ ψ

a
/ \

φ ψ

a
¬(φ ∨ ψ)

a
|
¬φ
¬ψ

a
¬¬φ
a
|
φ

a
✸φ

a
|
✸i
@iφ

a a
¬✸φ ✸i

a
|

¬@iφ

(∨) (¬∨) (¬¬) (✸)1 (¬✸)

b b a
i φ i

a
|
φ

|
i

i i
φ ¬φ

a
|
×

b
@aφ

a
|
φ

b
¬@aφ

a
|
¬φ

Nom GoTo2 Closing (@) (¬@)

1 i is fresh, φ is not a nominal.
2 i is not fresh.

Fig. 2. Tableau rules

We formalize this proof system as an inductive predicate, �, in Isabelle
by specifying for which branches � holds. For example, the closing condition
becomes the following code that allows you to close any branch where, for some
p and i, both p and ¬p occur on i-blocks (“at i”) in the branch:

Close: �p at i in branch =⇒ (¬ p) at i in branch =⇒ n � branch�

Here, n is the “potential” from Figure 1c. After defining all cases we can
type in a closing tableau and have the computer check that every rule is applied
according to our definition: we get a proof checker for free. Moreover, we can
machine verify proofs of soundness and completeness.

26 Hybrid Logic in the Isabelle Proof Assistant: Benefits, Challenges and the Road Ahead

3 Rule Induction

When we define the proof system, Isabelle provides a principle for proving
statements by induction on the construction of a closing tableau. We consider
a special case of the principle here, which is used to show lemmas of the form
“if the branch Θ closes then so does f(Θ)” where f is some transformation of
the branch. Examples of transformations could be to rename nominals or to
omit redundant occurrences of formulas.

The induction principle then instructs us, for each rule, to assume that the
branch extended by that rule’s output has a closing tableau when transformed
and show that a closing tableau exists without the extension, typically by ap-
plying the rule in question. For instance, in the (¬¬) case we assume, first, the
premise of the rule, that ¬¬φ occurs on an a-block in Θ where a is the opening
nominal of the current block. Second: we assume as induction hypothesis that
the transformation of Θ extended by φ has a closing tableau. To prove the case
we need to show that the transformation of just Θ has a closing tableau.

This induction principle is our motivation for rephrasing the following re-
striction on the proof system by Blackburn et al. [1]:

Original R4 The GoTo rule cannot be applied twice in a row.

Current R4 The GoTo rule consumes one potential. The remaining rules add
one potential and we are allowed to start from any amount of potential.

1. a
2. ¬¬φ

...

3. a GoTo
4. φ (¬¬) 2
5. i GoTo

(a) Starting point.

1. a
2. ¬¬φ
3. φ

...

4. a GoTo
5. φ (¬¬) 2
6. i GoTo

(b) Transformed. 5 and 6 are now illegal.

Fig. 3. Unjustified GoTo after weakening on line 3. We assume restriction R1 [1],
that extensions must be new.

The original restriction rules out infinite branches that consist of repeated
applications of GoTo. Potential does the same because it decreases with each
application. This new formulation, however, works better with the induction
principle outlined above, since that principle may force us to apply GoTo twice
in a row. Consider Figure 3b where the transformation of the branch means
we should not apply GoTo on line 4 as in the tableau we are mimicking but go
directly to line 6. With the original R4 we would need a more intricate trans-
formation of the branch (or a weaker lemma), but with the current restriction
we can simply assume that we start with more potential, making the detour
benign. The restriction preserves completeness as any closed tableau is finite.

From 27

Also, we can always start from a single unit:

Theorem 3.1 (Potential) If a branch can be closed then it can be closed
starting from a single unit of potential. (cf. “No detours” in the formalization.)

4 Current Work

We have lifted equivalents of the four relevant restrictions by Blackburn et al. [1]
(R1, R2 and R5) in previous work [4]. Unfortunately, the Nom rule as given
can still be used to construct infinite branches [1]. Blackburn et al. replace it
with a three-part Nom* rule without this problem and show that it is sufficient
for their translation-based completeness proof [1]. Instead of splitting it, we
may impose the following, equivalent restriction on the general Nom rule:

Nom* i = a and φ is not k or ✸k for any k introduced by the (✸) rule.

This restriction means that “(✸)-produced” nominals can only appear on
their own as opening nominals. This breaks a symmetry otherwise present in
exhausted branches: if nominal i appears on a k-block then k also appears on
an i-block. The synthetic completeness proof by Jørgensen et al. [5] that we
have previously formalized [4] makes use of this symmetry in their modeling of
open exhausted branches and their model existence result. We have overcome
this by (a) updating the definition of Hintikka sets to model our non-symmetric
branches and (b) applying the model existence result by Bolander and Black-
burn for a terminating internalized calculus [2] to our synthetic setting.

5 Conclusion

Modern proof assistants are more than capable of handling non-trivial proof
systems and their metatheory. It can still be beneficial to shape our proofs
such that they work well with the tools provided by the assistant, but in return
we gain precision and absolute trust in the correctness of our results.

References

[1] Blackburn, P., T. Bolander, T. Braüner and K. F. Jørgensen, Completeness and
Termination for a Seligman-style Tableau System, Journal of Logic and Computation
27 (2017), pp. 81–107.

[2] Bolander, T. and P. Blackburn, Termination for Hybrid Tableaus, Journal of Logic and
Computation 17 (2007), pp. 517–554.

[3] Doczkal, C. and G. Smolka, Constructive Formalization of Hybrid Logic with
Eventualities, in: Certified Programs and Proofs (CPP). Proceedings, 2011, pp. 5–20.

[4] From, A. H., P. Blackburn and J. Villadsen, Formalizing a Seligman-style Tableau
System for Hybrid Logic, in: N. Peltier and V. Sofronie-Stokkermans, editors, Automated
Reasoning (2020), pp. 474–481.

[5] Jørgensen, K. F., P. Blackburn, T. Bolander and T. Braüner, Synthetic Completeness
Proofs for Seligman-style Tableau Systems, in: Advances in Modal Logic, Volume 11,
2016, pp. 302–321.

[6] Linker, S., Hybrid Multi-Lane Spatial Logic, Archive of Formal Proofs (2017), http:

//isa-afp.org/entries/Hybrid_Multi_Lane_Spatial_Logic.html, Formal proof.
[7] Nipkow, T., L. C. Paulson and M. Wenzel, “Isabelle/HOL - A Proof Assistant for Higher-

Order Logic,” Lecture Notes in Computer Science 2283, Springer, 2002.

