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• Silicon wafer etched thin section (DRIE)
• Pore network of Berea Sandstone
• Water wet
• Constant vertical depth = 25 µm
• Porosity=0.61
• Pore diameter = 100 µm 
• High Pressure= 100 bar
• Borosilicate glass, anionic bonding, oxide layer
• Aluminum manifold with nanoport

Capillary pressures were insignificant 
as pore sizes > 1 µm 

Water wet, so pore filling (PF) hydrates 
observed
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Hydrate Formation
Pressure = 80 bar
Temp = 0.8°C

Decrease in permeability
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Formation Mechanism

Observation
• Overall three distributions

• Hydrate Film
• Hydrate Crystals
• Hydrate Film & crystals



HC
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HF

HF
• Observation
• Hydrate can be formed

• Methane saturated water crystallize
• Gas pockets surrounded by water 

HC

Light

2 Cases

Silicon Silicon

Light

Free water Free gas but no free water, 
bound water at sediment

Darker image

Hydrate filmHydrate film

Why look darker

Take away & Known information 
• Hydrate formed at gas-water interface are more porous in nature
• Hydrate film color is based on layer of gas around it, Higher the gas thickness above, 

darker is the hydrate shells 
• Thickness of hydrate around gas is controlled by mass transfer/insufficient gas pressure
• Porous /non porous hydrate could be inferred from image analysis
• Isolated gas bubbles in small pores space converted into non porous hydrate 
• Excess gas, hydrate film, if excess water, hydrate crystals. 
• Initial water & gas availability control the hydrate redistribution & hydrate saturation
• Hydrate rearrangement is independent of driving force 
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Hydrate development at gas water 
interface for hydrate film
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Experimental Plan

Before formation After formation

run T(°C) Siw Sig SW Sg SH
Hydrate 

Saturation
Morphology 

observed 

run#1 0.9 10 % 90 % 1 % 6 % 93 % High HF, FG, FW 

run#2 0.8 93 % 7 % 92 % 0 % 8 % Low HC, FW

run#3 1.0 61 % 39 % 3 % 8 % 88 % High HF, HC, FG

run#4 1.4 57 % 44 % 1 % 5 % 95 % High HF+FG+FW

run#5 1.5 56 % 44 % 16 % 0 % 84 % High HC+FW

run#6 1.7 50 % 50 % 7 % 2 % 91 % High HF+HC+FW+FG

run#7 1.9 53 % 47 % 12 % 1 % 87 % High HF+FW+FG

run#8 2.0 87 % 14 % 74 % 1 % 25 % Low HF+HC+FW+FG
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Hydrate Hydrate

Water Free gas

gas

diffusion

gas

Continuous phase

• Take away 
• Free gas lead to accelerated hydrate dissociation by depressurization 

• Faster mass transport through continuous gas phase
• Hydrate Reservoirs with high hydrate saturation and no free gas

• Depressurization not efficient method and combination with 
other methods are recommended.  

Free gas assisted dissociation
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Hydrate Dissociation
Experiment 3

PInitial= 60 bar
Gas Δq/t = 10 mL/hour

Temp = 0.8°C
Saturation
Hydrate Crystals
Hydrate Shells



Run# T(°C) Sh Hydrate pattern
ΔP

Δt (min)
Observatio

ns
Method

Start (Pi) Pd ΔP Pf

run#1 0.9 93 % HF+FG+FW 85 34,8 50,2 14 44.4 FD Dep

run#2 0.8 8 % HC+FW 76 20,4 55,6 14 38 FD Dep

run#3 1.0 88 % HF+HC+FG 60 18,3 41,7 14 50 FD Dep

run#4 -0.5 93 % HF+FG+FW 79 23,6 55,4 20 42 FD Dep

run#5 -0.2 90 % HC+FW 71 71 1,4 2905 SP, no FD Dep plus temp

run#6 -2.8 93 %
HF+HC+FW+F

G
80 18 62 5,6 2928 SP, no FD Dep plus temp

run#7 -2.6 87 % HF+FW+FG 55 15 40 14,3 75 FD Dep

run#8 -2.6 24 %
HF+HC+FW+F

G
80 13 67 5 3438

SP, no FD, 
RF

Dep plus temp



P= 71 bar P= 12 bar Δt= 85 min P= 1.4 bar Δt= 47.8 hours P= 1.4 bar Δt= 6.15 min

P= 71 bar Δt= 33 min P= 20 bar Δt= 9 minP= 22.8 bar 
Exp -5

Exp -4

T=-0.5°C T=-0.5°C T=-0.5°C T=-0.1°C

Effect of Temperature on Dissociation Rate

T=-0.5°C T=-0.5°C T=-0.5°CHydrate shells + free gas + water

Hydrate Fully
dissociated

No Dissociation during depressurization

Hydrate Crystals

Take away 4
• No ice reformation during depressure
• Hydrate Crystals, depressurization, not sufficient 

Temperature increase



P= 80 bar P= 18.5 bar Δt= 59 min P= 5.6 bar Δt= 47.8 hours P= 5.6 bar Δt= 44 min

T=-2.5°C T=-2.5°C T=-2.5°C T=-0.9°C Exp -6

Exp -7T=-2.6°C T=-2.6°C T=-2.6°C

P= 80 bar P= 14.3 bar Δt= 73 min P= 14.3 bar Δt= 2 min

Hydrate Shells + Water + Free gas

HS+ HC+ Water + Free gas



HS+ HC+ Water + Free gas
T=-2.9°CT=-2.9°C Reformation T=-2.9°CT=-2.9°C Exp -8

P= 5 bar 
Δt= 48 mins

P= 5 bar 

Take away 5
• Ice reformation is observed during

depressurization
• High Self preservation
• Temp stimulation took longer time due to ice

melting first

Reformation

Δt= 10 mins Δt= 28 mins

T=-2.7°C T=0.4°C T=0.8°C T=1.1°C



Self preservation & reformation
• Hydrate film show weaker self preservation tendency (no self 

preservation)  compare to hydrate crystals

• Reformed hydrates are in the form of hydrate films, not crystalline 
in nature, hence porous and less stable hydrates. 

• Excess water leads to higher risk of reformation/ice formation 

• Risk of reformation higher at negative temperature 

• Permafrost gas deposits could either coexists with supercooled 
water or ice along with isolated gas pockets. 



Permafrost 
Hydrate Deposits

High Saturation Low Saturation

Hydrate Crystals Reformation Hydrate film Ice saturation

Ice formation

Self Preservation

Faster dissociation
Slower 

dissociation

Gas being trapped Self Preservation

Full depressurization is not effective technique for Gas production

Dissociation behavior in Permafrost at high 
negative temperature (-2⁰C or below) 
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Dissociation

Immobile gas 
bubbles

Immobile gas 
bubbles

Trapped in 
Hydrates 

• High saturation in pore filling hydrate, 
• Low relative permeability of gas
• low permeability
• Shield effect from reformation

Coalesce together Mobile gas phase

• Supported by free gas in surrounding, 
• low saturation, low pore filling hydrate 
• high permeability
• High relative permeability of gas

• Permeability
• Relative permeability of 

fluid phase (gas 
permeability)

Pore filling hydrates 
• Self Preservation due to ice/supercooled water
• Hydrate crystals, Hydrate films

Reformation • Water availability
• Low temperature 
• High solubility of gas in water 



Final Conclusion

• Micromodel based pore level study provide insights about
kinetics of hydrate formation and dissociation

• Initial information such as hydrate saturation, free gas presence is
critical for selection of efficient production technique.

• Subzero temperature, make dissociation slower due to self
preservation tendency shown by hydrate as well as increase risk
of ice and hydrate reformation. Thus, depressurization is not
efficient method for gas production in permafrost hydrate
reservoirs.
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