Carbon Neutral CH4 production during CO2 Storage in Permafrost and Marine Environment

Pandey, Jyoti Shanker; Karantonidis, Charilaos; von Solms, Nicolas

Publication date: 2020

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Carbon Neutral CH₄ production during CO₂ Storage in Permafrost and Marine Environment

Jyoti Shanker Pandey¹, Charilaos Karantonidis² and Nicolas von Solms¹, (1)Chemical Engineering, Technical University of Denmark, Copenhagen, Denmark, (2)Technical University of Denmark, Copenhagen, Denmark

Abstract Text:
CO₂-rich gas injection into natural gas hydrate reservoirs is proposed as a carbon-neutral, novel technique to store CO₂ while simultaneously producing CH₄ gas from methane hydrate deposits without disturbing geological settings. Geological sequestration of CO₂-rich gas in natural gas hydrate reservoirs for CO₂ capture and storage technique has a lower technical and cost barrier compared to other industrial alternate. This novel technique has ability to contribute to global warming mitigation strategies, including carbon capture, utilization, and storage (CCUS) and methane release prevention into the atmosphere hydrate melting caused by global warming. CO₂ storage and simultaneous CH₄ production is known as hydrate swapping. In this study, we have studied hydrate swapping in sands in the presence of low dosage chemicals including alcohols, surfactant and amino acids.

Through this study, we have demonstrated the novel application of anti-agglomerate and hydrate inhibitor additives when used in low concentration to enhance CH₄-CO₂ hydrate exchange. This research opens the possibility of CO₂ storage in methane hydrate without disturbing the geological formation using the CH₄-CO₂ hydrate exchange processes in the presence of anti-agglomeration additives. Presence of these chemicals in water would delay hydrate formation at the gas-liquid interface during CO₂ injection into methane hydrate and would create dispersed hydrate morphology. Delay in hydrate film formation and its dispersed nature would allow additional CO₂ gas molecule availability for CH₄-CO₂ swapping, thus improving both CH₄ recovery and CO₂ storage.

Session Selection:
Methane at the Interface of Science and Policy
Title:
Carbon Neutral CH₄ production during CO₂ Storage in Permafrost and Marine Environment
Submitter’s E-mail Address:
jyshp@kt.dtu.dk
Preferred Presentation Format:
Oral Preferred
Keywords:
Carbon Capture & Storage and Hydrocarbons
First Presenting Author
Jyoti Shanker Pandey
Email: jyshp@kt.dtu.dk -- Will not be published
Technical University of Denmark
Chemical Engineering
PhD Student
Copenhagen
Denmark

Second Author
Charilaos Karantonidis
Email: s182453@student.dtu.dk -- Will not be published

Technical University of Denmark
Msc Graduate
Copenhagen
Denmark

Third Author
Nicolas von Solms
Email: nvs@kt.dtu.dk -- Will not be published

Technical University of Denmark
Chemical Engineering
Professor
Copenhagen
Denmark