Methane Hydrate Formation, Storage and Dissociation Behavior in Unconsolidated Sediments in the Presence of Environment-friendly Promoters

Pandey, Jyoti Shanker; Daas, Yousef Jouljamal; von Solms, Nicolas

Publication date: 2020

Document Version Peer reviewed version

Link back to DTU Orbit

Paper No. SPE-200532-MS
Methane Hydrate Formation, Storage and Dissociation Behavior in Unconsolidated Sediments in the Presence of Environment-friendly Promoters

Jyoti Shanker Pandey, Yousef Jouljamal Daas, and Nicolas von Solms
Technical University of Denmark
Presentation Outline

- Introduction
- Objective
- Experimental setup
- Experimental results
- Conclusion

SPE-200532-MS, Methane Hydrate Formation, Storage and Dissociation Behavior in Unconsolidated Sediments in the Presence of Environment-friendly Promoters MS• Jyoti Shanker Pandey
Introduction: Gas Hydrates & Applications

- What Are Gas Hydrates
- Applications

- Ice-like, crystalline structures
- Common hydrate formers: methane, ethane, propane, carbon dioxide, hydrogen sulfide, nitrogen, hydrogen

Gas storage capacity in hydrates

- Natural Gas Hydrate
 - Permafrost onshore
 - Methane Production & CO$_2$ Storage

- Man Made Hydrate
 - Gas Storage
 - CO$_2$/CH$_4$ Separation
 - Desalination
 - CO$_2$ hydrate based
 - Refrigeration
 - CO$_2$ hydrate based

Flow Assurance in Oil & gas

Methane Hydrate Formation

Gas capture & separation
Introduction: Role of Chemicals in Gas Hydrates

Type of Chemicals

- Accelerate hydrate formation
 - Thermodynamic enhancement
 - Kinetic enhancement
- Delay hydrate formation
 - Thermodynamic delay
 - Kinetic Delay

Why Amino Acids?

Available Chemicals
- Toxic
- Create foam
- Expensive/Large Quantity
- Environment Friendly
 - Biodegradable

Amino Acids
- No Foam
- Expensive/Large Quantity

Chemicals can influence:
- Surface tension
- Solubility
- Gas diffusion

Promoters
- Amino Acids?

Inhibitors
Introduction Porous Media & Promoter

- Mass transfer
- Promoters
- Concentration
- Specific area
- Particle size
- Heat transfer
- Porous medium
Objective

• To study the methane hydrate formation kinetics
 – Change in particle size
 – Presence of chemicals (Amino acids & Surfactant)
• To study the dissociation kinetics
Experimental Setup

Rocking Cell (PSL Germany)

- Rocking Rate, Rocking Angle
- Volume
- Temperature Ramping, Constant Temperature

- A - Bathtub
- B - High Pressure Cell
- C - Rocking Balls
Experimental Setup: Method and Materials

<table>
<thead>
<tr>
<th>Sand</th>
<th>Silica Sand (4 Particle Sizes)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• 46.4-245 µm</td>
</tr>
<tr>
<td></td>
<td>• 160-630 µm</td>
</tr>
<tr>
<td></td>
<td>• 480-1800 µm</td>
</tr>
<tr>
<td></td>
<td>• 1400-5000 µm</td>
</tr>
<tr>
<td>Amino acids (3000 ppm concentration)</td>
<td>• L-valine</td>
</tr>
<tr>
<td></td>
<td>• L-methionine</td>
</tr>
<tr>
<td></td>
<td>• L-histidine</td>
</tr>
<tr>
<td>Sodium dodecyl Sulfate (SDS)</td>
<td>500-3000 ppm (500,1000,2000,3000 ppm)</td>
</tr>
<tr>
<td>Experimental conditions</td>
<td>100 bar, 1°C, Isothermal experiments</td>
</tr>
<tr>
<td>Parameter calculated</td>
<td>Induction time, gas uptake & dissociation rate below 0°C</td>
</tr>
</tbody>
</table>
Experimental Results - Formation Kinetics

• Hydrate morphology
 – Pore filling
 – Grain coating

• Formation kinetic (Gas-liquid contact interface)
 – Grain coating – Particle surface area
 – Pore filling - Pore space
 – Large particle size: higher pore space- Large gas-liquid contact area
 – Small particle size : weak pore connectivity, barrier to mass transfer due to high capillary forces in smaller pore space

• $S_{wi} = 35\%$ change in grain coating to pore filling
Formation-Induction time

- Pressure variation during isothermal experiments at $P=100$ bar and $1^\circ C$
- For given sand particle size
- Induction time is lower for SDS / hydrophobic amino acids for any given particle size
- Induction time is lower for SDS / Hydrophobic amino acids for any given particle size.
- Increase in particle size lead to decrease in induction time.
- L-methionine and SDS have similar induction time.
- Histidine could only formed hydrate at higher sand particle size.
- Enhanced driving force due to large gas-liquid interface.
Gas Uptake

- Pressure variation during Isothermal experiments at P= 100 bar and 1°C

- For low concentration (500 ppm), increase in particle size lead to decrease in gas uptake.

- At higher concentration, effect of sand particle size reduce and role of mass transfer increase.

- For large particle size, change in concentration marginally affect gas uptake.

- For smaller particle size, change in concentration had dominating effect on gas uptake.
Experimental Results - Dissociation

- Dissociation under $T = 266.7$ K at starting pressure $P = 1$ bar.
- Self preservation of hydrates, Surrounded by ice sheet
- Dissociation rate is dependent on initial hydrate saturation.
- SDS/Hydrophobic amino acids dissociate faster
- SDS dissociate fastest for given sand particle while amino acids dissociated slower due to enhance hydrogen bonding
Conclusions

• S_{wi} controls formation kinetics.
• Low promoter concentration, particle size effect dominates the formation kinetics dominates
• Hydrophobic amino acids have similar kinetic behavior as SDS. Less deviation between amino acids and SDS at large particle size.
• Methane hydrate self preservation in the presence of hydrophobic amino acids enhanced.
Relevant Papers

ACKNOWLEDGEMENTS / THANK YOU / QUESTIONS

For further discussion
jyshp@kt.dtu.dk