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Kenan Šehić · Henrik Bredmose · John3

D. Sørensen · Mirza Karamehmedović4
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Abstract We model shallow-water waves using a one-dimensional Korteweg-7

de Vries equation with the wave generation parameterized by random wave8

amplitudes for a predefined sea state. These wave amplitudes define the high-9

dimensional stochastic input vector for which we estimate the short-term wave10

crest exceedance probability at a reference point. For this high-dimensional and11

complex problem, most reliability methods fail, while Monte Carlo methods12

become impractical due to the slow convergence rate. Therefore, first within13

offshore applications, we employ the dimensionality reduction method called14

Active-Subspace Analysis. This method identifies a low-dimensional subspace15

of the input space that is most significant to the input-output variability. We16

exploit this to efficiently train a Gaussian process (i.e., a kriging model) that17

models the maximum 10-minute crest elevation at the reference point, and18

to thereby efficiently estimate the short-term wave crest exceedance probabil-19

ity function. The active low-dimensional subspace for the Korteweg-de Vries20

model also exposes the expected incident wave groups associated with extreme21
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waves and loads. Our results show the advantages and the effectiveness of the22

active-subspace analysis against the Monte Carlo implementation for offshore23

applications.24

Keywords Active subspaces · offshore applications · Monte Carlo methods ·25

Probability of exceedance · Reliability analysis26

1 Introduction27

Nonlinear hydrodynamic effects are a major concern in bottom-fixed offshore28

structures at shallow and intermediate depth. Structures such as wind tur-29

bines must be designed to withstand extreme waves with strongly nonlinear30

behavior. The simplest model of the waves would stem from linear wave the-31

ory and use a Gaussian stochastic model for the wave surface, resulting in a32

Gaussian response. However, this approach ignores the nonlinearity that leads33

to a marked asymmetry in the waves, which means the wave crest elevation34

systematically exceeds the trough depths at the same probability level [1]. The35

asymmetry increases with decreasing water depth, which eventually produces36

substantial instabilities resulting in breaking waves and extreme loads. A num-37

ber of uncertainty sources need to be accounted for when applying numerical38

wave simulations as an attempt to represent the real offshore conditions [2–7].39

These uncertainties are related to the long-term representation of sea-state40

parameters, wave surface elevation, kinematics, and estimation of wave loads.41

For structural reliability analysis, the probability of failure, in general, is42

written as a d-fold integral43

PF =

∫
g(θ)≤0

πd(θ)dθ, (1.1)

where θ ∈ Rd is the uncertain input of a numerical model for the limit-state44

function g(θ), πd is the joint probability density function (PDF) for θ, and45

g(θ) ≤ 0 is the failure criterion.46

For failure modes within the offshore engineering framework, g(θ) can47

model failure events related to wave load effects exceeding arbitrary specified48

resistances. We here assume the failure event to be related to the maximum49

crest elevation exceeding a critical level within a certain sea state. We choose50

the sea-state duration of 10 minutes, which can be relevant for offshore wind51

turbines. Eq. (1.1) is related to the short-term exceedance probability as stan-52

dard normal random variables θ construct random wave amplitudes for the53

wave generation with a predefined ocean-wave spectrum and the wave propa-54

gation time. If we would additionally include uncertainties/variability related55

to the sea state, we would evaluate the long-term exceedance probability PL56

related to, e.g., one year as57

PL =

∫
state

PF (state)π(state) d state, (1.2)
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where PF (state) is the probability of failure for a given sea state obtained58

by Eq. (1.1) and π(state) accounts for the long-term stochastic modeling of59

the sea state parameters. In Eq. (1.1), we assume θ are defined within the60

standard normal space. If this is not the case, the Rosenblatt transformation61

[8] or the Nataf distribution [9] can be used to transfer a non-standard in-62

put distribution to the standard normal space. In our study, we focus on the63

short-term exceedance probability PF , Eq. (1.1), for a predefined sea state64

with independent and identically distributed (iid) random variables θ drawn65

from the standard normal distribution N (0, 1). We model the wave surface ele-66

vation but do not include the effects of model uncertainties in the estimations.67

Further, we formulate the limit-state function such that failure corresponds68

to the 10-minute maximum crest elevation exceeding a threshold value γ, and69

the failure condition is rewritten as g(θ) ≥ γ, where g(θ) is recognized as the70

quantity of interest (e.g., the maximum crest elevation) of a numerical wave71

model, g : Rd → R.72

The standard reliability approach based on Taylor expansion (the first-73

order reliability method - FORM and the second-order reliability method -74

SORM) fails for multiple design points and high-dimensional cases [10]. A75

more robust approach would be to use the simple Monte Carlo (MC) method76

that can handle any numerical model. The simple MC approximates Eq. (1.1)77

by the sample mean of the indicator function I(θ), where I(θ) = 1 if g(θ) ≥ γ78

and I(θ) = 0 otherwise. The major disadvantage of MC is its inefficiency.79

Following the mean squared error indicator for a finite sampling of Eq. (1.1)80

[11], we would need to evaluate a numerical model 5 · 104 times to estimate81

the exceedance probability of 2 · 10−3 with the relative error less than 0.1. It82

would take approximately 35 days to estimate the sample mean of Eq. (1.1)83

for a numerical model that runs for 1 minute. Specific variance reduction84

and surrogate approximation methods such as Polynomial Chaos expansion85

[7, 12] and Gaussian (Kriging) process [13] were proposed to improve the86

performance. However, their requirements would exponentially grow with the87

dimension. For Gaussian process regression, a large covariance matrix would88

need to be inverted several times to produce a prediction.89

Therefore, a solution is to search for and exploit a low-dimensional sub-90

space of the input space of initial uncertainties that captures the variability of91

the quantity of interest and that constitutes a suitable low-dimensional foun-92

dation for surrogate models. This method is called active-subspace analysis93

(ASA) [14]. Previously, similar work had been done in the Ph.D. thesis by94

Trent M. Russi [15]. It is based on the gradients of the system output, in95

our case the gradients of the maximum crest elevation, and it can be seen as96

a principal component analysis in the input space. The gradients can reveal97

hidden correlation between linear combinations of the input parameters θ of98

a numerical wave model g and the variability of the quantity of interest g(θ).99

We hence determine a low-dimensional subspace by rotating the input space,100

separating the directions of substantial variability from directions where the101

quantity of interest changes insignificantly on average [16]. Gradients can be102

estimated numerically by adjoint methods [17, 18], finite difference approxima-103
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tions or automatic differentiation [17, 19]. For this paper, we employ forward104

automatic differentiation (F-AD). In high-dimensional numerical experiments,105

F-AD is inefficient as it requires one realization per input parameter. However,106

combining F-AD with an adjoint equation, gradients of the quantity of interest107

with respect to the input parameters can be estimated within one numerical108

realization. We here do not include the adjoint approach. We apply the active-109

subspaces method on a simplistic, yet nonlinear, shallow-water wave model110

that is a reasonable intermediate step towards a fully nonlinear model. This111

model is thus used here to test the advantages and disadvantages of the active-112

subspace analysis within offshore applications against the standard methods.113

We examine the implementation of the active-subspace analysis within114

Gaussian process regression to efficiently and accurately evaluate the short-115

term exceedance probability for the maximum 10-minute crest elevation at the116

reference point. Section 2 briefly introduces Gaussian process regression, which117

we use to define a surrogate model for the numerical wave model, while Section118

3 outlines the theoretical background of active-subspace analysis utilized to re-119

duce the computational load of the Gaussian process regression by obtaining120

a low-dimensional subspace within the input parameters of the wave genera-121

tion. In Section 4, we describe the shallow-water wave model, and Section 5122

contains the numerical results. There, we demonstrate that Gaussian process123

regression based on the active-subspace analysis can estimate the exceedance124

probability based on only 1% of the required Monte Carlo evaluations. The125

paper closes with the conclusions in Section 6.126

2 Gaussian process regression - Kriging127

Quantification of extreme events for expensive numerical models such as128

OceanWave3D [20] or other high-order numerical models [7] is generally im-129

practical due to the intensive computation load. A standard approach would130

be to evaluate an expensive numerical model at only a few carefully designed131

points, that are then used within simple polynomial regression, to formulate132

(i.e., to train) a cheap replacement (i.e., a surrogate model). However, the133

limitation of simple polynomial regression is the assumption that the errors of134

observations are independent, which may not be true in most cases. In addi-135

tion, it requires an optimal polynomial degree that is difficult to know prior to136

training. Therefore, Gaussian process regression (GP, also known as kriging)137

utilizes a probabilistic framework via a kernel function to describe the corre-138

lation (i.e., interaction) of observations within simple regression, which results139

eventually in the most probable behaviour of a function (i.e., an expensive140

numerical model) based on the training data (i.e., the sample set). The ap-141

proach typically does not require a large sample set, even for high-dimensional142

problems, as a GP model is primarily built on simple regression. The prob-143

abilistic framework within a GP model provides an uncertainty measure for144

predictions via a confidence interval, which is a very powerful property that145

can be employed for the sequential design and generally as an error indicator.146
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With the assumption that the quantity of interest is a smooth function,147

Gaussian process regression describes g(θ) as a realization of an underlying148

Gaussian process [13]149

g(θ) ≈ ĝ(θ) = βT · fT (θ) + σ2ZGP(θ, ωz), (2.1)

where βT ·fT (θ) is the trend of the GP which is a simple regression form, e.g.,150

linear or quadratic, σ2 is the Gaussian process variance and ZGP(θ, ωz) is a151

zero-mean, unit-variance stationary Gaussian process with ωz an elementary152

event (i.e., a sample point) in the probability space. The trend describes the153

global behavior of the quantity of interest g(θ). The probabilistic foundation of154

a Gaussian process is a kernel matrix Kij = K(|θi− θj |;Θ) with hyperparam-155

eters Θ (such as the overall correlation of samples or smoothness). The overall156

performance is sensitive to the selection of the optimal kernel function and of157

the design points. Generally, finding an optimal number of design points N for158

Gaussian process regression is a standard challenge. Gramacy and Apley [21]159

suggested selecting the number of design points which minimizes the mean160

squared predictive error.161

Define the input matrix X = (θij) ∈ RN×d and write the corresponding162

evaluations of a numerical wave model g as Y = (Yi = g(θi)) ∈ RN×1, where163

N is the number of observations and corresponding numerical evaluations with164

d as the dimension of the input parameters θ ∈ Rd. Firstly, the parameters165

β, σ2 are generated by a generalized least-squares regression [13]. For a kernel166

matrix Kij , the hyperparameters Θ are estimated by the maximum likelihood167

estimation. Finally, for predictions, we define the prediction mean µg(θ) and168

the corresponding variance σ2
g(θ) for the quantity of interest g(θ) as [13]169

µg(θ) = fT (θ) · β + k(θ)TK−1(Y − FTβ), (2.2)

σ2
g(θ) = σ2

(
1− 〈fT (θ)T k(θ)T 〉

[
0 FTT

FT K

]−1 [
fT (θ)
k(θ)

])
. (2.3)

Here k(θ) is the correlation between the prediction and the rest of the samples170

within the set and FT is the information matrix regarding the GP trend. Now,171

instead of using an expensive numerical model g to evaluate, e.g., the maximum172

crest elevation at an offshore application, we can use a cheap surrogate model,173

Eq. (2.2), and estimate the short-term exceedance probability, Eq. (1.1), by174

simple MC. The second moment, Eq. (2.3), quantifies uncertainties in the175

predictions. The MATLAB function fitrgp from the Statistics and Machine176

Learning Toolbox trains a Gaussian process regression model based on design177

points.178

However, for higher dimensions, e.g., d = 100, the process of estimating179

the GP parameters becomes time-consuming as it requires repeated inversion180

of the N ×N kernel matrix, incurring a O(N3) cost. Also, to estimate the hy-181

perparameters with the maximum likelihood approach, the kernel matrix Kij182

needs to be inverted. The process can be improved if we find a low-dimensional183
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optimal representation of θ for g(θ). We assume that it is inexpensive to esti-184

mate gradients numerically for the quantity of interest g(θ).185

3 Active-subspace analysis186

Active-subspace analysis (ASA) is a dimensionality reduction approach that187

has been studied in detail in the book [14] by Paul G. Constantine. It is based188

on identifying and exploiting the most important linear combinations of the189

input parameters concerning the quantity of interest, e.g., in our case, the190

maximum crest elevation at the reference point. A split between important191

and less important linear directions in the input space is usually defined by a192

spectral gap in the eigenvalues of the gradient data.193

We assume that g : Rd → R is a differentiable function that is square194

integrable with respect to a probability density πd for the initial uncertainties195

θ. An active subspace, i.e., a subspace of the input space with significant196

variation of the output, is ideally spanned by a relatively small number (� d)197

of eigenvectors of the symmetric positive semi-definite d× d matrix C, which198

is an uncentered covariance matrix of the output gradients. Thus, we write the199

expected value of the outer product of the gradients as [14, 16, 22]200

C =

∫
∇θg(θ)∇θg(θ)Tπd(θ)dθ = WΛWT , (3.1)

where g(θ) is the quantity of interest, ∇θg is the gradient of g(θ) with respect201

to θ, the non-negative eigenvalues of C are sorted in descending order along202

the diagonal of the diagonal matrix Λ, and W is the orthogonal matrix of203

eigenvectors d× d.204

As shown in Lemma 3.1. [14, p. 23], each eigenvalue λi is the expected205

squared directional derivative of g(θ) along the corresponding eigenvector wi,206

λi =

∫
(∇θg(θ)Twi)

2πd(θ)dθ. (3.2)

Hence, if there is a significant spectral gap after the first r largest eigenvalues207

of C, with Wr being the first r columns of the orthogonal eigenvector matrix208

W, then it should be possible to construct a reasonable approximation of g(θ)209

in terms of [14, 16]210

g(θ) ≈ ĝ(WT
r θ), (3.3)

where ĝ is a surrogate model obtained using, e.g., a regression. The reduction211

of the input space dimension helps to build efficiently a surrogate model ĝ and212

eventually to quantify uncertainties in an otherwise infeasible setting.213
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3.1 Active subspace estimation214

The covariance matrix C, Eq. (3.1), cannot be computed exactly. Therefore,215

we employ the simple Monte Carlo method to approximate it as [14, 16]216

C ≈ Ĉ =
1

M

M∑
i=1

(∇θig(θi))(∇θig(θi))
T . (3.4)

The estimation of how many samples are required to approximate the co-217

variance matrix accurately is heuristic. At least, to have full rank, we need to218

have M = d. Constantine [14, p. 35] recommends M = αAkA log(d), where αA219

is an oversampling factor between 2 and 10, and kA is the number of eigenvalues220

to approximate. If we can evaluate the gradients analytically, it is straightfor-221

ward to use Eq. (3.4). However, this is not the case with numerical models222

in general. At least, we can approximate the gradients. First-order finite dif-223

ferences (FD) require M · (d + 1) model evaluations per gradient evaluation,224

which is infeasible for high-dimensional computations. Instead, to employ the225

FD approach, we use forward automatic differentiation, as described in Section226

3.1.1. The active-subspace analysis based on singular value decomposition is227

outlined in Algorithm 1.228

Algorithm 1 Monte Carlo Estimation of Active Subspace [14, 16]

1: procedure ASA(g(θ),πd)
2: Draw M iid θi from πd. // Use M = αA · kA · log (d). To have at least a full matrix

rank, we should have M ≥ d.
3: For each θi, define ∇θgi = ∇θg(θi). // Use an adjoint solver or a finite difference

approach.
4: Define the matrix G following the relation Ĉ = GGT as

G =
1
√
M

[
∇θ1g(θ1),∇θ2g(θ2), ...,∇θN g(θN )

]
. (3.5)

5: Compute the singular value decomposition G = Ŵ
√

Λ̂V̂T .
6: end procedure

Following Line 5 in Algorithm 1, we search for a spectral gap in the229

singular values of the matrix G as a means of identifying the important (active)230

and the unimportant (inactive) directions in the input space θ. If the singular231

values do not present a significant spectral gap, an alternative is to estimate232

the distance between the true r-dimensional active subspace and the estimated233

(i.e., approximated) r-dimensional active subspace as follows [14, p. 32]234

dist(ran(Wr), ran(Ŵr) ≤
4λ1ε

λr − λr+1
, (3.6)

where Wr is the true subspace, Ŵr is the estimated subspace, the denominator235

is the spectral gap, ’ran’ with a matrix argument is a shorthand notation for236
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the range of the columns of the matrix, and ε is the relative accuracy. The237

distance, Eq. (3.6), also depends on the spectral gap λr − λr+1 meaning the238

larger this gap is, the better the estimate. The relative accuracy ε can be239

estimated, following Corollary 3.10 [14, p. 32], by240

ε ≤ λr − λr+1

5λ1
. (3.7)

As pointed out by Constantine [14, p. 32], this bound could perhaps be241

improved. Evidently, Eq. (3.6) requires ran(Wr) and ran(Ŵr) to be uniquely242

defined, i.e., λr ≥ λr+1. The spectral gap equal to zero would result in in-243

finitely many solution, because the subspace approximation error is inversely244

proportional to the corresponding gaps in the singular values. Furthermore,245

this means also that, for example, the estimate of a three-dimensional active246

subspace is more accurate than the estimate of a two-dimensional active sub-247

space, if the spectral gap is larger between λ3 and λ4 than between λ2 and248

λ3.249

3.1.1 Gradient approximations by Automatic Differentiation (AD)250

To construct the gradients for the active-subspace analysis without using the251

FD approach, forward automatic differentiation (AD) is applied on subroutine252

by subroutine basis to the code required to compute the quantity of interest.253

The main strategy behind AD is to define the input parameter θ with an ad-254

ditional second component, θ + θ̇Γ . Here, Γ is a symbol distinguishing the255

second component analogous to the imaginary unit i =
√
−1, but in the AD256

case Γ 2 = 0 as opposed to i2 = −1. The input parameters have been converted257

from type ”real” to type ”complex”. The ”real” part will remain unchanged,258

and the ”imaginary” part can be used to approximate the derivative of vari-259

ables for a single design variable. We add an imaginary perturbation to the260

desired complex input parameters to determine the corresponding imaginary261

part of the quantity of interest. When the process is generated and validated,262

forward differentiation can be performed. In this paper, the forward differ-263

entiation is done using the ADiMat software from the Institute for Scientific264

Computing of TU Darmstadt [23].265

3.1.2 Constructing a regression surface266

Once the spectral gap is identified, the function g(θ) is replaced by its low-267

dimensional surrogate by expressing the initial uncertainties θ ∈ Rd in terms268

of the active part {yA} and inactive part {zA}, [14, p. 24]269

θ = WWT θ = WrW
T
r θ + Wd−rW

T
d−rθ = WryA + Wd−rzA. (3.8)

In particular, this means that g(θ) is expressed as g(WnyA+Wm−nzA). Small270

perturbations of zA change the quantity of interest g(θ) insignificantly on271
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average. Thus, the optimal approximation of g(θ) is to calculate the conditional272

expectation for each fixed active point yA, and we define ĝ(yA) as273

ĝ(yA) =

∫
g(WryA + Wd−rzA)πzA|yA(zA)dzA, (3.9)

where πzA|yA(zA) is a conditional probability density [14, p. 49]. One can argue274

that we are going back to multidimensional integration again, however using275

MC has its advantages in this specific case as the variation of g(θ) in the276

inactive subspace is significantly small and requires only a small number of277

samples. Therefore, we write g(yA) based on MC as278

ĝ(yA,j) ≈
1

Z

Z∑
i=1

g(WryA,j + Wd−rzA,i), (3.10)

where Z is the number of samples in the inactive directions and {zA,i} are279

random sample points from the conditional probability density πzA|yA(zA) [14,280

p. 51]. If the function g(θ) is constant in an inactive direction, meaning that281

the eigenvalue for this direction is zero, then we need to sample only once to282

account properly for the variation of g(θ) along this direction.283

Hence, to construct a low-dimensional approximation of g(θ), we generate284

a number Ny of fixed active points yA,j in the active subspace and collect285

their corresponding conditional expectations {ĝ(yA,j)} (i.e., Eq. (3.10)). Based286

on the pairs {yA,j , ĝ(yA,j)} along the active directions Wr, we generate a287

regression surface for ĝ(yA) that is a low-dimensional approximation of the288

function g(θ),289

g(θ) ≈ ĝ(WT
r θ). (3.11)

Thus, instead of training a Gaussian process (i.e., a kriging model) in the origi-290

nal, high-dimensional space Rd, we first project the training set onto the active,291

low-dimensional subspace Rr (r � d) using the active directions WT
r and then292

train a Gaussian process efficiently and accurately between WT
r θ ∈ Rr as the293

input parameters and the corresponding evaluations Y ∈ R as demonstrated294

in Section 2.295

4 A simple 1D Korteweg-de Vries model296

While our long-term goal is the accelerated load statistics for fully nonlinear297

models, we here use a much simpler wave model to investigate the feasibility298

of the active-subspace analysis for rare events. This section describes the back-299

ground of the simple wave model g used to propagate waves until a reference300

location. Initially, we describe the numerical implementation of the model, for301

which the goal is to define a cheap replacement (i.e., a surrogate model) with302

Gaussian process regression. The second part explains the wave generation303

(i.e., the boundary condition for the model) that defines a random surface304

elevation used for the propagation.305
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We consider unsteady water waves defined by the Korteweg-de Vries equa-306

tion (KdV) for uni-directional nonlinear surface waves under the influence307

of gravity. The original KdV equation, derived by Korteweg and de Vries308

(1895), describes weakly nonlinear and weakly dispersive shallow-water waves309

by adding one dispersive term to the nonlinear shallow water equation. There310

are different modifications of the KdV equation, and we here use KdV22 [24],311

ηt(x, t) +
√
g · h · ηx(x, t) +

3

2

√
g

h
η(x, t)ηx(x, t)+

+ (β +
1

6
)

√
g

h
h3ηxxx(x, t) + βh2ηxxt(x, t) = 0, (4.1)

with β = 19/60. The KdV22 equation is derived by multiplication of the orig-312

inal KdV equation by (1 + β∂xx) and retainment of only the leading order313

nonlinear and dispersive terms. The β factor allows for adjustment of the dis-314

persive behaviour of the equation. For β = 19/60, the linear phase speed is315

the Padé [2,2] approximation of the fully dispersive result. Further, h is the316

seabed depth, x is the spatial-domain variable, g is the gravitational accelera-317

tion, ηt represents (∂η/∂t)(x, t) and ηx represents (∂η/∂x)(x, t). The nonlinear318

term ηηx accounts for the steepening of the waves, while ηxxx and ηxxt are the319

leading-order dispersive terms, that describe the effect of frequency dispersion,320

that makes long waves travel faster than short waves. For the KdV22 model,321

which does not describe breaking waves, we assume inviscid and irrotational322

flow. The seabed is assumed to be flat at the depth of h = 20m as illustrated323

in Fig. 1.324

Fig. 1 Illustration of the propagation of the surface elevation η(x, t) via the generation
zone, Eq. (4.2), and the KdV22 wave model, Eq. (4.1), up to the fixed spatial location
x = x∗.
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4.1 Numerical solution and wave generation325

The KdV22 equation is solved numerically by the method of lines. The spatial326

domain is extended periodically along the x-axis, to allow spectral computation327

of spatial derivatives by forward and inverse fast Fourier transform (FFT). To328

this end, we neglect the spectral content above 60% of the Nyquist frequency to329

avoid aliasing from the quadratic nonlinearity. The time integration is carried330

out by the classical fourth-order Runge-Kutta method.331

We are interested in the nonlinear wave propagation of a known wave field332

ηBC, Eq. (4.4), from x = 0 to a down-wave location x = x∗, that represents333

a potential wind turbine location as illustrated on Fig. 1. In a classical non-334

periodic wave model, this is achieved by either imposing ηBC as a boundary335

condition or by enforcing it in a generation zone (see e.g. [20]). We use the336

latter technique here, and enforce a known wave solution ηzone in an embedded337

generation zone from x = 0m to x = 300m.338

The generation zone damps the numerical solution that propagates into339

the zone as its ’outer edge’ and transforms it continuously to the ηzone field,340

Eq. (4.5), out of the zone by enforcing the correction341

ηt = [ηt]KdV22 − γforceχ(ξ)(η − ηzone), (4.2)

where γforce = 3.5, χ is the spatial weighting factor [25]342

χ(ξ) = 1− exp(ξβshape)− 1

exp(1)− 1
, (4.3)

and βshape = 3.5 is a factor that governs the spatial variation of the weighting343

factor. Finally, ξ ∈ [0, 1] is a local coordinate, equal to zero at the outer edge344

and to one at the inner edge of the generation zone.345

Fig. 2 Graph of the spatial weighting factor, χ(ξ), used for matching the periodic boundary
condition [25].

Ocean waves are stochastic and can be reasonably well described as Gaus-346

sian and ergodic processes. This description provides a good starting point for347



12 Kenan Šehić et al.

numerical wave simulations. Therefore, the unidimensional free surface eleva-348

tion used in this paper as the boundary condition is349

ηBC := η(0, t) =

d/2∑
n=1

√
S(fn) ·∆f

[
An cos(2π · fnt)+

+Bn sin(2π · fnt)

]
.

(4.4)

Here, S(fn) is the JONSWAP spectrum value (Section 4.1.1) for the corre-350

sponding frequency value fn = n∆f , ∆f = 1/T is the inverse of the wave351

simulation duration T , and An and Bn are independent and uncorrelated ran-352

dom variables drawn from the standard normal distribution N (0, 1). In order353

to simplify the notation, we write θ = (A1, . . . , Ad/2, B1, . . . , Bd/2) ∈ Rd for354

the active-subspace analysis with πd as the standard normal density function,355

i.e., defined for N (0, 1).356

Inside the wave generation, see Fig. 1, ηBC is extended with its solution of357

the linearized version of the KdV22 equation such that358

ηzone := η(x, t) =

d/2∑
n=1

√
S(fn) ·∆f

[
An cos(2π · fnt− knx)+

+Bn sin(2π · fnt− knx)

]
,

(4.5)

which satisfies ηBC = ηzone(0, t) and is further a solution of the linearized field359

equation Eq. (4.1). Outside of the generation zone, the wave field is propagated360

nonlinearly towards x = x∗, where it is collected. The wave numbers kn are361

the solutions of the linear dispersion relation for Eq. (4.1).362

A power spectrum such as the JONSWAP is defined within a certain fre-363

quency range. Thus, the frequency step ∆f determines the number of elements364

n within Eq. (4.4), i.e., the parameter d. Therefore, 1-hour of wave propaga-365

tion, Eq. (4.4), with the frequency interval from 0.05Hz to 0.3Hz generates366

d ≈ 1802 number of elements, which results in a highly complex uncertainty367

quantification problem.368

4.1.1 Wave spectrum369

The wave spectrum density S(f) describes the power spectrum of the free370

surface elevation. There are many wave spectra used for offshore applications371

in deep water. A fundamental spectrum is the PiersonMoskowitz spectrum372

(PM), which describes a fully developed sea. PM is used for fatigue analysis373

and extreme analysis. We write [26]374

SPM(f) = 0.3125 ·H2
S · f4P · f−5 · exp

(
− 1.25 ·

(
fP
f

)4)
, (4.6)
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where HS is the significant wave height [m], fP is the peak frequency [Hz]375

related to the peak period TP by fP = 1/TP and f is the frequency [Hz].376

Fig. 3 JONSWAP spectrum for different significant wave heights HS and wave periods TP .

The JONSWAP (JS) spectrum is a modification of the PM spectrum for a377

developing sea state in a fetch limited region. JS accounts for a higher peak and378

a narrower spectrum in a storm situation. Hence, it is often used for extreme379

events analyses [7]. JS has additional two parameters: a peak enhancement380

factor γα and a normalizing factor CJS(γ). Here γα increases the peak and381

narrows the spectrum, and CJS(γ) modifies the spectral amplitude to maintain382

the area under the spectrum. Thus, we write [26]383

S(f) = CJS(γ) · SPM(f) · γα. (4.7)

Figure 3 shows examples of the JS spectrum energy distribution curve with384

different significant wave heights HS and time periods TP . We can see that385

JS is a narrow-banded spectrum. Its energy is mainly focused in a certain386

frequency band. The JS spectrum was developed to describe storm waves in387

the North Sea. Since the active subspace method is intended for eventual use in388

offshore design, we use it in the present study, although the simplistic KdV22389

model has its origin in shallow water wave propagation.390

5 Results391

The KdV22 wave model, Eq. (4.1), is not fully nonlinear but still represents392

a first natural step towards a fully nonlinear and dispersive model. Expensive393

numerical wave models such as OceanWave3D [20] require a substantial com-394

putational effort to produce reference results, due to the slow convergence rate395
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of MC methods. Thus, we have chosen a simple but representative replacement396

such as KdV22 to test and investigate the active-subspace analysis.397

In our study, unidirectional water waves propagate in a predefined sea state398

for T = 600 seconds. The usual length of a predefined sea state is 1 hour or 3399

hours. We use the length of 10 minutes due to computation limitations. The400

idea is to have a fast solver to test different approaches before implementing an401

expensive, fully nonlinear model with longer realisations. Usually, 10 minutes402

are used for wind load modeling as a time interval with stationary conditions403

for the wind field turbulence. The significant wave height and the peak period404

have been specified as Hs = 6.8 meters and Tp = 15 seconds, as these con-405

ditions describe a typical storm conditions with 100-year return period at a406

typical site of interest.407

At the start of the simulation, the d random variables θ are drawn from408

the standard normal distribution N (0, 1) to determine A and B of ηBC for409

Eq. (4.4). The time integration is then started with the initial condition410

η(x, 0) = 0. While solving Eq. (4.1), ηBC is enforced through the generation411

zone (4.2). The KdV22 model thereby propagates the input from ηBC in space412

until the reference point x = x∗, illustrated in Fig. 1. As we are interested in413

estimating the short-term exceedance probability, i.e. Eq. (1.1), the quantity414

of interest g(θ) is defined here as the maximum crest elevation ηmax of the415

surface elevation η within T = 600s at the reference point x = x∗,416

ηmax = max{η(x∗, t), 0 ≤ t ≤ T}. (5.1)

As explained previously in the section 4.1, the dimensionality d of the input417

parameter θ (i.e., the total number of An and Bn in Eq. (4.4)) is derived418

based on a predefined frequency range and the duration of wave propagation.419

In our case, we have a 10-minute wave simulation with the frequency interval420

between 0.05Hz and 0.3Hz, which results in d = 302. It represents a complex421

and high-dimensional problem for which standard reliability and surrogate422

methods become impractical. Initially, we generate NMC = 5 · 104 evaluations423

of KdV22 for iid θ drawn from N (0, 1) to produce the reference probability424

density function for ηmax as well the reference short-term exceedance probabil-425

ity for ηmax as demonstrated in Fig. 4. In Fig. 4a we recognize a heavy-tailed426

distribution with µηmax
≈ 5.7m. The exceedance probability levels lower than427

10−4 with respect to the maximum crest elevations above 10m as shown in428

Fig. 4b require more numerical evaluations to have the confidence interval nar-429

rowed. The confidence interval of 95% is defined as approximately two standard430

deviations from the mean estimation. More numerical evaluations for the sim-431

ple Monte Carlo method would reduce the variance and eventually improve432

the confidence interval. However, for offshore wind turbines, the short-term433

exceedance probability typically ranges between 10−2 and 10−4. The wind434

turbine standards [27, 28] indicate a target reliability level corresponding to435

an annual probability of failure 5 · 10−4 and 10−4, respectively. These reliabil-436

ity levels are related to the convolution of long-term statistics of mean wind437

speed, significant wave height, short-term statistics of maximum, e.g., 1-hour438
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response and etc. As we consider the short-term statistics, which range of ex-439

ceedance probabilities depends on the relative magnitude of all uncertainties440

(short-term, long-term, and resistances), the exceedance levels between 10−2441

to 10−4 are sufficient for analysis. In addition, similar considerations for the442

reliability of offshore oil-gas platforms with a higher required reliability level443

indicate that this range is acceptable.444

Fig. 4 (a) The probability density function of ηmax for 10-minutes, based on NMC = 5 ·104

numerical evaluations of the KdV22 model. (b) The corresponding short-term exceedance
probability of ηmax.

5.1 Dimensionality Reduction445

We employ the dimensionality reduction approach outlined in Algorithm 1446

for the maximum crest elevation ηmax and estimate the corresponding matrix447

Gmax, by using the relation448

M = αAkA log(d)

proposed by Constantine [14, p. 35] for the number of samples M sufficient to449

estimate the covariance matrix adequately. We define heuristically the over-450

sampling factor αA = 2.45 and are interested in the first 100 eigenvalues,451

therefore M = 544 for d = 302. We experimented with different numbers of452

samples and found M = 544 to provide a good balance between the number453

of gradient evaluations and the approximation quality of the matrix Gmax.454

Fig. 5a shows the singular values of the matrix Gmax, and its corresponding455

bootstrap replicates. We notice relatively insignificant values, less than 0.2, for456

all singular values. Thus, the quantity of interest (ηmax) has low variability in457

each subspace direction. (Recall that a singular value expresses the expected458

variation of the square of the quantity of interest in the direction of its singular459
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vector in input space.) Hence we do not need to sample significantly in these460

directions to have a good overall estimate of ηmax.461

Fig. 5 (a) The singular values Λ for the matrix Gmax from the active-subspace analysis
with the 500 bootstrap replicates. (b) The singular values Λ of the active-subspace analysis
for the gradient matrices at the wave generation, Eq. (4.4), x = 0 and the reference point
x = x∗.

Fig. 5b shows the effect of the weakly nonlinear propagation on the singular462

matrix spectrum of Gmax. Compared with the matrix spectrum of the bound-463

ary condition, the tail of the propagated matrix spectrum shows an earlier464

decay at high frequencies and a seemingly more pronounced variation at low465

frequencies. This may indicate that a matrix spectrum propagated by a fully466

nonlinear model, such as OceanWave3D [20], will feature a prominent spectral467

gap. As the maximum frequency for the KdV22 wave model is fmax = 0.2889,468

the input parameters θ above j = 149 in Eq. (4.4) are disregarded. This prop-469

erty is recognized as well in Fig. 5b as the singular values above the index470

value of 289 are insubstantial. The bootstrap replicates in Fig. 5a show the in-471

significant sample variation of the estimation, which indicates that the singular472

values are well estimated.473

As we cannot find a clear spectral gap in Fig. 5a, we need to estimate474

the subspace errors using Eq. (3.6). The upper bounds on the subspace er-475

rors, Fig. 6, suggest that the 17-dimensional subspace might be the optimal476

choice for ηmax as it generates the lowest distance between the true active sub-477

space and its approximation. The bootstrap procedure in Figure 6 reveals a478

linear increase in the approximation error with increasing dimension. In view479

of Eq. (3.6), this may be due to the overall flattening of the singular value480

spectrum with increasing index, that, due to λr − λr+1 approaching zero (on481

average) with increasing r.482

To additionally support our choice of the 17-dimensional subspace, we em-483

ploy the coefficients of the singular vectors as the design parameters for the484

boundary condition in Eq. (4.4). Figure 7 reveals the first singular vector w1485
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Fig. 6 The estimated error Eq. (3.6) in subspaces of dimension 1 to 49 with the 500
bootstrap replicates.

Fig. 7 The boundary condition signals for free surface elevation ηBC(t), Eq. (4.4), for the
singular vectors w1, w17 and w289.

(the most active direction in the input space) to be a focused wave group,486

while the effect diminishes in singular vectors such as w17 that correspond487

to smaller singular values (the less important directions). The singular vec-488

tor w289 corresponds to the insignificant singular value λ289, and it therefore489

represents insignificant free surface variations. It is well-known that extreme490

waves are associated with wave groups, cf. New Wave theory [29–33]. The abil-491

ity of the active-subspace analysis to pick out initial conditions that produce492

a high degree of wave grouping at the structure confirms the relevance of the493

method. This way, we can construct active focused wave groups for future494

numerical or even laboratory measurements. The singular vector w17 retains495

some of the localization, and it makes sense to keep it as an active direction.496
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The matrix spectrum above the index 17 is treated as measurement noise, for497

which Gaussian process regression is suitable [16].498

Fig. 8 The ratio κ between λ1 + ... + λr and λ1 + ... + λd with the green and red line as
the 90% threshold for ηmax(0, t) and ηmax(x∗, t).

The identification of the important directions can alternatively be based499

on a conservative approach [34] that uses the total variation of the singular500

values,501

κ =

∑r
i=1 λi∑d
i=1 λi

. (5.2)

The active-subspece dimension r is then selected to preserve a certain per-502

centage, say 90%, of the total variation as shown in Fig. 8. It is clear that503

the singular values with index above 150 are negligible, and the variation κ504

is preserved 100%. For practical reasons, we might select 90% as our thresh-505

old, which would result in a 58-dimensional active subspace for the KdV22506

model. In the following, we shall work both with a 17-dimensional and a 58-507

dimensional active subspace. It is interesting to note in Fig. 8 that the weakly508

nonlinear wave propagation decreases the dimension of the active subspace for509

the same level of total variation κ. We expect this effect to also be present510

when using fully nonlinear models.511

Figure 9 includes the boundary condition signals for free surface elevation512

for the directions of the singular vectors close to index 58. The results expose513

insignificant permutations of the surface elevation without clear wave groups.514

Hence, the influence of these singular vectors on the overall result is insignifi-515

cant as demonstrated in Fig. 8. For their singular values, we can expect that516

the Gaussian process architecture can easily control the error produced by517

neglecting the less important directions.518
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Fig. 9 The boundary condition signals for free surface elevation ηBC(t), Eq. (4.4), for the
singular vector w58, w59 and w60.

5.2 Active-GP model519

The active-subspace analysis based on (3.6) and (5.2) uses 17-dimensional and520

58-dimensional active subspaces. We now construct the Gaussian process archi-521

tecture on these low-dimensional subspaces, selecting the anisotropic squared522

exponential kernel which for the original high-dimensional space Rd is defined523

by524

K(|θi − θj |;Θ) = Θ0 exp

[
− 1

2

d∑
m=1

|θi,m − θj,m|2

Θm

]
, (5.3)

where Θ = (Θ0, . . . , Θd) are the hyperparameters. The hyperparameter Θ0525

is related to the output variance that is how much samples diverge from the526

mean. While the hyperparametes Θm are the length-scale weights. With the527

active low-dimensional projections WT
r θ, the kernel is now defined for Rr by528

K(|WT
r θi −WT

r θj |;Θ) = Θ0 exp

[
− 1

2

r∑
m=1

|(WT
r θi)m − (WT

r θj)m|2

Θm

]
, (5.4)

which reduces the computation load since r � d.529

The hyperparameters Θ are found using maximum likelihood estimation530

that is maximizing a likelihood function. This means that under a surrogate531

model based on Gaussian process regression the observed data within the532

training set is most probable. As previously explained, typically a specific533

amount of variation of the quantity of interest is associated with each singular534

vector, with most variation occurring along the first singular vector. Thus, an535

anisotropic kernel is a natural choice. A squared exponential part is also an536

adequate choice as θ is recognized as a set of random Fourier coefficients drawn537
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Fig. 10 The mean-squared error estimations εMSE for the cross-validation tests of (a) 17-
dimensional active-GP model and (b) 58-dimensional active-GP model.

from the standard normal distribution and the wave generation, Eq. (4.4), as a538

Fourier series, i.e. a modified white-noise. The trend (i.e, the global behaviour539

of numerical evaluations) is based on the pure quadratic regression.540

Our active-subspace analysis is based on M = 544 evaluations of ηmax,i =541

g(θi), and their input parameters θi are split randomly into the mutually542

disjoint training set and test set. The size of the training set depends on the543

active-subspace dimension. The rest of the samples are used as test cases.544

As we mentioned previously, finding the number of samples to be used for545

active-GP regression is a well-known problem. We used N17
GP = 100 for the546

17-dimensional subspace and N58
GP = 200 for the conservative approach. We547

do not claim that this choice is the most efficient and accurate one.548

Based on the cross-validation procedure, we draw randomly 100 distinct549

NGP-combinations of design points θi from the M initial observations, and we550

also record the corresponding evaluations ηmax,i. For each drawn combination,551

we train an active-GP model and estimate the mean-squared error (MSE) for552

the short-term exceedance probability based on the test data. We select the553

optimal design set that achieves a minimal MSE. Here, in both cases, the min-554

imal MSE is achieved with the order of approximately 10−4 as demonstrated555

in Fig. 10. The corresponding active-GP model is kept and used to evaluate all556

M samples used in the active-subspace analysis. Based on these predictions,557

Fig. 11 shows the relative error in the predictions against the true evaluations558

for these M samples. As we need to increase the sample set to N58
GP = 200 for559

the 58-dimensional subspace, the performance of the active-GP models is not560

directly comparable. However, we can discuss the overall performance. The561

17-dimensional active-GP model based on the optimal cross-validation design562

set attains a relative error of ≈ 13% on average, which is ≈ 15% less than the563
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Fig. 11 The relative error estimations ε for (a) 17-dimensional active-GP model and (b)
58-dimensional active-GP model.

relative error on average for the 58-dimensional active-GP model. The maxi-564

mum peaks of the relative error for these GP models are at ≈ 0.85 and ≈ 0.77,565

respectively. By adding singular vectors up to w58, we build up a Gaussian566

process architecture that would require a bigger kernel matrix and more de-567

sign points to describe g(θ) properly. This can easily give poor performance568

for relatively small numbers of samples. In light of the singular values in Fig. 5569

and of the boundary condition signals for the less important directions in Fig.570

7, we know that our quantity of interest changes on average insignificantly in571

the directions spanned by wj with j > 17. We can expect that the active-GP572

architecture will compensate for the errors in the less important directions573

by treating them as measurement noise, and that an active-subspace analysis574

based on Eq. (3.6) is sufficient for this work.575

As we want to recreate the reference short-term exceedance probability,576

we evaluate the 17-dimensional active-GP model for N = 5 · 104 and compare577

the performances with the simple Monte Carlo as shown in Fig. 12. Figure578

12b demonstrates how well the active-GP model reproduces the performance579

of the simple Monte Carlo. The green lines are the 95% confidence interval as580

a quality prediction measure because the Gaussian process method employs a581

distribution over the design points. The active-GP model shows slight under-582

prediction around the exceedance order of 10−4 with a relative error of 6.3% on583

average. The histograms, Fig.12a, are also almost identical with the `2-distance584

(i.e., the Euclidean distance) of 0.2. As already mentioned, for offshore wind585

turbines, the short-term exceedance probability typically ranges between 10−2586

and 10−4. Therefore, the maximum crest elevation ηmax at 10−3 for the simple587

Monte Carlo is ηMC
max ≈ 9.45m. The active-GP model based on N17

GP = 100588

points estimates the maximum crest elevation as ηGP
max ≈ 9.45m for the same589
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Fig. 12 (a) The short-term probability density function for ηmax for 10-minutes based on
the active-GP model. (b) The associated exceedance probability of ηmax.

exceedance level, which gives a relative error of 0.1%. For the exceedance590

level of 10−4, the simple MC estimates ηmax ≈ 10.5m, while the active-GP591

model generates ηGP
max ≈ 10.65m with a relative error of 1.4%. These results592

are collected based on only 544 evaluations, used to estimate the matrix Gmax593

and to design the active-GP model. This is a reduction in the number of594

evaluations of 99% compared to simple Monte Carlo.595

5.3 A global sensitivity measure596

Active-subspace analysis can also provide a sensitivity measure of the quantity597

of interest, in our case ηmax, regarding the original input parameters θ. In Fig.598

13 we plot the components of the singular vectors wj and their corresponding599

frequencies for j = 1, 17, 58 and 289. We discover that the frequencies above600

0.1Hz are negligible for the singular vectors w1−17 that span the active sub-601

space. This indicates that 66% of the defined JONSWAP spectrum does not602

significantly affect the quantity of interest. The lower frequencies contribute603

most to the expectation value of ηmax. While moving in the directions of the604

less important vectors, e.g., w58 and w289, contributions from the higher fre-605

quencies (smaller waves) become more prominent as seen in Fig. 13.606

We construct a global sensitivity metric, shown in Fig. 14, by multiplying607

the singular values λj , as the main indicator of the directional importance,608

with the squared components of the singular vectors. The so-called activity609

score for the j’th component of the input θ, or the j’th initial uncertainty610

parameter, is then defined by611

sj =

r∑
i

λiw
2
i,j ,
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Fig. 13 The components of singular vectors w1, w17, w58 and w289 for the corresponding
An (blue) and Bn (orange) as a function of the frequency f .

Fig. 14 The activity scores for the input parameters θ = (A1, . . . , Ad/2, B1, . . . , Bd/2) ∈
Rd=302 in the direction of (a) w1 and (b) w1−17.

where j ∈ Rd [35]. It is interesting to notice in Fig. 14 the second shorter peak612

for the input parameters with the indexes j = 120 and j = 240 that correspond613

to the frequency value of 0.11Hz. A wave spectrum, such as a JONSWAP614

spectrum, is typically a global sensitivity measure with respect to the initial615

uncertainties θ ∈ Rd. We expect those input parameters that correspond to616

the peak of a wave spectrum to be the most important input parameters617

as we can see in Fig. 14, which resembles to some extent a wave spectrum618

Fig. 3. While, for a wave spectrum, higher frequencies over the peak reveal the619

exponential decay in the importance of the corresponding input parameters,620

the global sensitivity measure based on the activity scores indicates the second621

shorter peak of the importance around 0.11Hz (i.e., the index j = 120 for622



24 Kenan Šehić et al.

Fig. 15 Bootstrap histograms of the components of the active subspace singular vector w1

for the maximum crest elevation ηmax.

An and j = 240 for Bn), which can be related to the modification of the623

wave spectrum due to wave propagation. This change within a wave spectrum624

for higher frequencies can be found also in the offshore literature [7], which625

additionally proves the value of the active-subspace analysis.626

To estimate the variability within, e.g., the components of w1, we em-627

ploy the bootstrap approach with 500 replicates for the covariance matrix C628

and Line 5 of Algorithm 1. This cost is negligible because the bootstrap629

approach uses only the available model evaluations. The sharp peaks in the630

histogram around the expected value suggest confidence in the computed direc-631

tions [14]. However, the relatively wider histograms as seen in Fig. 15 are due632

to the insufficient number of gradient evaluations M for the active-subspace633

analysis.634

6 Conclusion635

We applied a dimensionality reduction method called the active-subspace anal-636

ysis (ASA) to a high-dimensional offshore problem. We modeled shallow-water637

waves using a simple but credible weakly nonlinear numerical model based on638

the Kortweg-de Vries equation (KdV22) with a high-dimensional initial Gaus-639

sian input. Our approach can be seen as an intermediate step towards a fully640

nonlinear model. For this high-dimensional complex problem, the standard641

offshore methods have an infeasible convergence rate in providing accurate642

results. The active-subspace analysis uses gradient evaluations to identify a643

low-dimensional subspace within the input space that is most significant in644

terms of the sensitivity of the output.645

In contrast to Principal Component Analysis (PCA), the ASA reduces di-646

mensionality while retaining information about the numerical model. However,647
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estimating gradients is typically challenging and requires an adjoint solver for648

optimal efficiency. We perform our analysis using forward automatic differen-649

tiation despite the large required number of realizations.650

We apply the ASA to the maximum crest elevation at the reference point651

to reduce the uncertainty dimension at the wave generation within 10-minute652

wave propagation for a predefined sea state. The singular value decomposition653

(SVD) of the gradient evaluations reveals the slow spectral decay for the sin-654

gular values without a clear spectral gap, which is crucial for accurate active655

subspace estimation. However, we can construct the low-dimensional active656

subspace based on the error bound, which exploits the relation between the657

true and estimated active subspace. Also, the active subspace exposes a focused658

wave group associated with extreme waves and loads. The global sensitivity659

of the ASA demonstrates the wave spectrum modification due to wave propa-660

gation. Based on the numerical evaluations used for SVD, we train efficiently661

Gaussian processes on the active subspace for different batches (i.e., different662

training and test sets) and select the Gaussian process with the lowest mean-663

squared error. Finally, by using the simple Monte Carlo method, the trained664

Gaussian process accurately estimates the short-term exceedance probability665

with the relative error of around 6% on average. The reference short-term ex-666

ceedance probability is obtained by 5 · 104 numerical evaluations, while the667

active-subspace analysis and Gaussian process regression use only 1% of the668

required Monte Carlo evaluations to provide the comparable result efficiently.669
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6. Schløer S, Bredmose H, Ghadirian A (2017) Analysis of experimental data:690

The average shape of extreme wave forces on monopile foundations and691

the NewForce model. Energy Procedia 137:223–237692

7. Yildirim B, Karniadakis GE (2015) Stochastic simulations of ocean waves:693

An uncertainty quantification study. Ocean Model 86:15–35694

8. Rosenblatt M (1952) Remarks on a multivariate transformation. Ann695

Math Stat 23(3):470–472696

9. Liu P, Der Kiureghian A (1986) Multivariate distribution models with697

prescribed marginals and covariances. Probabilistic Eng Mech 1(2):105–698

122699

10. Rackwitz R (2001) Reliability analysis - a review and some perspectives.700

Struct Saf 23(4):365–395701

11. Owen AB (2013) Monte Carlo theory, methods and examples. Open Access702

12. Li J, Xiu D (2010) Evaluation of failure probability via surrogate models.703

J Comput Phys 229(23):8966–8980704
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