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Mass Spectrometry Guided
Discovery and Design of Novel
Asperphenamate Analogs From
Penicillium astrolabium Reveals an
Extraordinary NRPS Flexibility Q12

Q1

Q2

Karolina Subko1, Xinhui Wang1, Frederik H. Nielsen1†, Thomas Isbrandt1,
Charlotte H. Gotfredsen2, Carmen Ramos3, Thomas Mackenzie3, Francisca Vicente3,
Olga Genilloud3, Jens C. Frisvad1 and Thomas O. Larsen1*

1 Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark Q13, 2 Department
of Chemistry, Technical University of Denmark, Kemitorvet, Lyngby, Denmark, 3 Fundación MEDINA, Granada, Spain

Asperphenamate is a small peptide natural product that has gained much interest
due to its antitumor activity. In the recent years numerous bioactive synthetic
asperphenamate analogs have been reported, whereas only a handful of natural
analogs either of microbial or plant origin has been discovered. Herein we describe
a UHPLC-HRMS/MS and amino acid supplement approach for discovery and design
novel asperphenamate analogs. Chemical analysis of Penicillium astrolabium, a prolific
producer of asperphenamate, revealed three previously described and two novel
asperphenamate analogs produced in significant amounts, suggesting a potential for
biosynthesis of further asperphenamate analogs by varying the amino acid availability.
Subsequent growth on proteogenic and non-proteogenic amino acid enriched media,
revealed a series of novel asperphenamate analogs, including single or double amino
acid exchange, as well as benzoic acid exchange for nicotinic acid, with the latter
observed from a natural source for the first time. In total, 22 new asperphenamate
analogs were characterized by HRMS/MS, with one additionally confirmed by isolation
and NMR structure elucidation. This study indicates an extraordinary nonribosomal
peptide synthetase (NRPS) flexibility based on substrate availability, and therefore
the potential for manipulating and designing novel peptide natural products in
filamentous fungi.

Keywords: natural product discovery, mass spectrometry, filamentous fungi, asperphenamate, amino acid
incorporation, biological activity, NRPS flexibility Q14

INTRODUCTION

Asperphenamate Q15(1) is a linear amino acid (AA) ester, comprised of N-benzoylphenylalanine
(2) and N-benzoylphenylalaninol (3). Asperphenamate, first discovered from Aspergillus flavipes
in 1977 (Clark et al., 1977), was since found to be produced by a wide range of Aspergillus
(Samson et al., 2011; Zheng et al., 2013; Ratnaweera et al., 2016; Hou et al., 2017) and Penicillium

Frontiers in Microbiology | www.frontiersin.org 1 December 2020 | Volume 11 | Article 618730

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2020.618730
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmicb.2020.618730
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2020.618730&domain=pdf&date_stamp=2020-12-xx
https://www.frontiersin.org/articles/10.3389/fmicb.2020.618730/full
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-618730 December 22, 2020 Time: 10:24 # 2

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

Q6

Q9

Subko et al. MS/MS Guided Discovery of Asperphenamates Q16

(Frisvad et al., 2004, 2013) species. Additionally, the compound
has also been isolated in trace amounts from a number of
unrelated plant species (Wu et al., 2004; Dang et al., 2014;
Zhou et al., 2017; Bunteang et al., 2018; Caridade et al., 2018),
suggesting endophytic fungi being the actual producers, rather
than the plants. Although asperphenamate is mainly known
for its antitumour activity and immense synthetic chemists
interest in asperphenamate backbone modification (Li et al.,
2012; Yuan et al., 2012, 2018, 2019, 2020; Liu et al., 2016),
recent studies have also shown asperphenamate to be a potential
neuroinflamatory inhibitor (Zhou et al., 2017), and to possess
anti-HIV (Bunteang et al., 2018) and antidiabetic (Del Valle
et al., 2016) properties. In recent years, a handful of new natural
analogs have been isolated, namely Asperphenamates B (4) and
C (5) (Liu et al., 2018), and 4-OMe-asperphenamate (Zheng
et al., 2013; Ratnaweera et al., 2016) (6) from filamentous fungi.
Other analogs containing partial structural similarities include:
patriscabratine (7), a N-benzoylphenylalanine phenylalanynol
acetate ester, aurantiamide (8) and aurantiamide acetate (9)
(Zhou et al., 2017), N-benzoylphenylalanine phenylalanynol
and phenylalanynol acetate amides, all isolated from plant
material; cordyceamides A (10) and B (11) (Jia et al.,
2009), a N-benzoyl-L-tyrosinyl-L-phenylalaninol and N-benzoyl-
L-tyrosinyl-L-p-hydroxyphenylalaninol acetates, from an insect
pathogen fungus (Figure 1); along with a number of tentatively
identified related metabolites (Kildgaard et al., 2014; Sica et al.,
2016).

Biosynthesis of asperphenamate was first described in the
filamentous fungus, P. brevicompactum (Li et al., 2018). Here,
a two module NRPS system was described, where the first
module, ApmA, is responsible for amide bond catalysis between
the phenylalanine and benzoic acid moieties, and subsequent
reduction to afford N-benzoylphenylalaninol (3), while the
second module, ApmB, utilizes the same substrates to produce
N-benzoylphenylalanine (2), as well as catalyses the ester bond
formation between the two intermediates to release the final
product asperphenamate (1). Assuming, that other filamentous
fungi may follow the same or a similar biosynthetic pattern, the
production of 4–5 in Penicillium sp. and 6 in Aspergillus sp.,
involving tyrosine, 4-OMe-phenylalanine and 4-hydroxybenzoic
acid instead of phenylalanine and benzoic acid as substrate
molecules, indicates promiscuity of either one or both NRPS
modules and provides new insights for production of novel
asperphenamate analogs and laying the grounds for molecular
biology work to achieve higher production of asperphenamate
and related analogs.

To contribute to a better understanding of the diversity
of asperphenamate biosynthesis and address the increasing
resistance toward anticancer drugs (Vasan et al., 2019),
P. astrolabium IBT 28865, a distant relative of P. brevicompactum
from section Brevicompacta (Serra and Peterson, 2007), was
investigated for production of asperphenamate and related
analogs. In this study, we employ an ultra-high performance
liquid chromatography diode array detection quadrupole time
of flight high-resolution tandem mass spectrometry (UHPLC-
DAD-QTOF-HRMS/MS) to dereplicate known and novel
asperphenamate analogs. As a result, 22 novel asperphenamate

analogs were characterized by HRMS/MS, of which 21 were
designed using proteogenic and non-proteogenic AAs as a
supplement to the growth media. This study has further revealed
a rare promiscuity of a fungal NRPS, laying the grounds for
future NRPS research in filamentous fungi. Altogether, this
study demonstrates the HRMS/MS based dereplication and
characterization of novel analogs of a known bioactive peptide
scaffold to be a powerful strategy in natural product discovery.

MATERIALS AND METHODS

Reagents, Strains, and Media
All solvents and reagents were purchased from Sigma-Aldrich
(St. Louis, MO, United States), for the exception of para-
substituted phenylalanines, which were acquired from Bachema
(Bubendorf, Switzerland); ultra-pure water used throughout the
study was filtered with a Milli-Q system (Millipore, Burlington,
MA, United States).

Penicillium astrolabium (IBT 28865), Penicillium olsonii (IBT
28864), Penicillium bialowiezense (IBT 28294), and Penicillium
brevicompactum (IBT 30524) are filamentous fungi from the
IBT culture collection at the Department of Biotechnology and
Biomedicine, Technical University of Denmark.

For the chemical profile analysis, P. astrolabium was cultivated
with 3-point inoculation on Czapek yeast agar (CYA), yeast
extract sucrose agar (YES) and malt extract agar (MEA; Oxoid)
for 7, 10, and 14 days at 20 and 25◦C in the dark. For large scale
cultivation, the fungus was cultivated with 3-point inoculation on
200 YES agar plates, and incubated for 10 days at 25◦C in the
dark. For a proteogenic AA incorporation study, the fungus was
cultivated with 3-point inoculation on Czapek (CZ) agar plates
(10 cm) for 14 days at 25◦C in the dark. Here, triplicates of 24
sets of supplemented media were used: 20 with all proteogenic
AAs at 5 g/L; two for anthranilic acid and 4-hydroxybenzoic
acid at 2.5 g/L, and two with additional inorganic nitrogen
supplement of NaNO3 at 5 g/L and 10 g/L. For a non-proteogenic
AA incorporation study, the fungus was cultivated with 1-point
inoculation on CZ agar plates (6 cm) for 14 days at 25◦C in the
dark. Here, triplicates of four sets of 4-chloro-L-phenylalanine, 4-
bromo-L-phenylalanine, 4-amino-L-phenylalanine, and 4-nitro-
L-phenylalanine supplemented media were used at 2.5 g/L.

For the chemical profile analysis and comparison, all four
fungi were cultivated with 3-point inoculation on minimal
media (MM), CZ, CYA, and YES 10 cm agar plates for 7 days
25◦C in the dark.

Extraction and Isolation
For chemical profiling and the asperphenamate analog design
study, five 6 mm diameter plugs taken in triplicates and extracted
with acidic (1% formic acid; FA) isopropanol (iPr) – ethyl acetate
(EtOAc) (1:3 v/v) as described by Smedsgaard (1997). All samples
were re-dissolved ultrasonically for 10 min in 100 µL methanol
(MeOH) and centrifuged prior to analysis by LC-MS.

For large-scale extraction, the agar plates were extracted twice
with acidic (1% FA) EtOAc. The liquid-liquid partitioning was
then performed on the crude extract, by dissolving it with 90%
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FIGURE 1 | StructuresQ4

Q5

of natural asperphenamate analogs.

MeOH:water and treating it with the same amounts of heptane,
resulting in two phases. After separating the heptane phase, the
90% MeOH:water fraction was then diluted with water to get
50% MeOH:water, and further treated with dichloromethane
(DCM), resulting in three phases overall. The DCM phase
was dried before loading onto a 50 g SNAP column (Biotage,
Uppsala, Sweden) with diol material (Isolute diol, Biotage). Crude
fractionation was performed using an Isolera One automated
flash system (Biotage) with stepwise increments of 25% at
50 mL/min in heptane-DCM-EtOAc-MeOH system, starting at
100% heptane, finishing at 100% MeOH, resulting in 13 fractions
(i.e., heptane, heptane 3:1 DCM, heptane:DCM, heptane 1:3
DCM, DCM, DCM 3:1 EtOAc, DCM:EtOAc, DCM 1:3 EtOAc,
EtOAc, EtOAc 3:1 MeOH, EtOAc:MeOH, EtOAc 1:3 MeOH,
and MeOH), with 300 mL each. Selected resulting fractions
were further fractionated on a 25 g SNAP column with RP C18
material (Grace, 15 µm/100 Å) at a flow rate of 30 mL/min
using a stepwise 30–100% MeOH:water (both buffered with
50 ppm TFA) gradient as follows: in 10% increments at 30–
50, 5% increments of 50–80, and 10% increments of 80–
100%, resulting in 11 fractions (i.e., 30, 40, 50, 55, 60, 65,
70, 75, 80, 90, and 100%). Further separation was achieved
on an Agilent Infinity 1290 HPLC-DAD (Agilent Technologies,
Santa Clara, CA, United States) system, with UV monitoring
at 230 and 280 nm, a flow rate of 4 mL/min and column
temperature at 40◦C as follows: Asperphenamate (1) and
Asperphenamate L (13) were purified on a Gemini C6-Phenyl
column (5 µm, 110 Å, 250 × 10 mm, Phenomenex) using a
linear gradient of 57 to 64% acetonitrile (MeCN)/water over
30 min; Asperphenamate W (12) on a Kinetex RP C18 column
(5 µm, 100 Å, 250 × 10 mm, Phenomenex) using a linear
gradient of 55 to 65% MeCN/water over 20 min at a flow rate
of 4 mL/min; Asperphenamate Y (4) and Asperphenidine F1 (1a)
on a Kinetex RP C18 column (5 µm, 100 Å, 250 mm × 10 mm,
Phenomenex) using a linear gradient of 55 to 67% MeOH/water
over 20 min at a flow rate of 4 mL/min. All solvents were buffered
with 50 ppm TFA.

Asperphenamate (1): white powder; [α]20
D −25.5◦ (c 0.11,

CHCl3); UV (MeCN) λmax 238 and 272 sh nm; 1H and 13C NMR

data, see Table 1 and Supplementary Figure S1; HRESIMS m/z
507.2279 [M+H]+ (calculated for C32H30N2O4, m/z 507.2278).

Asperphenamate Y (4): white powder; [α]20
D −25.8◦ (c 0.12,

CHCl3); UV (MeCN) λmax 239 and 275 sh nm; 1H and 13C NMR
data, see Table 1 and Supplementary Figure S2; HRESIMS m/z
523.2227 [M+H]+ (calculated for C32H30N2O5, m/z 523.2227).

Asperphenamate W (12): white powder; [α]20
D −43.6◦ (c 0.14,

CHCl3); UV (MeCN) λmax 236 and 278 nm; 1H and 13C NMR
data, see Table 1 and Supplementary Figure S3; HRESIMS m/z
546.2389 [M+H]+ (calculated for C34H31N3O4, m/z 546.2387)

Asperphenamate L (13): white powder; UV (MeCN) λmax
237 and 272 sh nm; 1H and 13C NMR data, see Table 1 and
Supplementary Figure S4; HRESIMS m/z 473.2436 [M+H]+
(calculated for C29H32N2O4, m/z 473.2435).

Asperphenidine F1 (1a): white powder; UV (MeCN) λmax 238
and 272sh nm; 1H NMR data, see Supplementary Table S5 and
Supplementary Figure S5; HRESIMS m/z 508.2230 [M+H]+
(calculated for C31H29N3O4, m/z 508.2231).

UHPLC-DAD-QTOF-MS Analysis
All samples were analyzed on an Agilent Infinity 1290 UHPLC
system (Agilent Technologies, Santa Clara, CA, United States)
equipped with a diode array detector (DAD), monitoring between
190 and 640 nm. Separation was achieved on an Agilent Poroshell
120 phenyl-hexyl column (150 mm × 2.1 mm, 1.9 µm particles)
with a flow rate of 0.35 mL/min at 40◦C, using a linear acetonitrile
(MeCN)/water (both buffered with 20 mM FA) gradient of
10 to 100% MeCN in 10 min, followed by 2 min flush at
100% MeCN, return to starting conditions in 0.1 min and
equilibration at 10% for 2 min before the following run. It
was coupled to an Agilent 6,545 QTOF MS equipped with
Dual Jet Stream ESI source with the drying gas temperature
of 250◦C and gas flow of 8 L/min and sheath gas temperature
of 300◦C and flow of 12 L/min, capillary voltage 4,000 V and
nozzle voltage of 500 V. The mass spectrometer was operated
in positive polarity, recording centroid data in m/z range 100
to 1,700 for MS mode, and 30–1,700 for MS/MS mode, with
acquisition rate of 10 spectra/s. Automated HRMS/MS was
done for ions detected in the full scan above 50,000 counts,
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TABLE 1 | 1H and 13C NMR shifts for asperphenamates F (1), Y (4), and W (12) and L (13) in chloroform (CDCl3).

1 4 12 13

Position δC* δH (J in Hz) δC δH (J in Hz) δC δH (J in Hz) δC δH (J in Hz)

1 167.7 167.6 167.8

2 133.4 133.5 133.3

3 127.0 7.70 dd (8.3, 1.1) 127.2 7.65 m 127.3 7.63 m 127.1 7.72 m

4 128.6 7.39 m 128.8 7.39 m 128.6 7.29 m 128.6 7.41 m

5 131.9 7.50 tt (7.5, 1.1) 132.2 7.50 tt (7.4, 1.2) 132.1 7.48 t (7.4) 132.2 7.52 m

1′ 172.2 172.5 173.2

2′ 54.4 4.92, q (6.6) 54.8 4.87 d (6.7) 54.3 5.04 q (6.5) 52.1 4.71 m

3′ NH 6.58 d (6.6) 6.59 d (6.6) 6.69 d (6.4) 6.46 d (6.8)

4′ 37.5 3.29 dd (14.0, 6.6) 36.9 3.20 dd (14.0, 6.5) 27.7 3.43 d (6.0) 40.8 1.79 m

3.21 dd (14.0, 7.0) 3.14 dd (14.0, 6.9) 1.69 m

5′ 127.6 110.1 25.1 1.75 m

6′ 129.1 7.21 m 130.5 7.05 m 127.5 22.2 0.99 d (6.5)

7′ 128.8 7.29 m 116 6.76 m 118.7 7.64 m 22.8 1.02 d (6.5)

8′ 126.7 7.24 m 155.3 120.1 7.12 t (7.4)

9′ 122.7 7.20 m

10′ 111.6 7.33 d (7.9)

11′ 136.4

12′ NH 8.06 s

13′ 123.1 7.06 d (2.2)

1′′ 65.3 4.54 dd (11.4, 3.4) 65.5 4.50 dd (11.4, 3.6) 65.4 4.46 dd (11.6, 3.6) 65.1 4.59 dd (11.5, 3.3)

4.04 dd (11.4, 4.4) 4.04 dd (11.4, 4.5) 4.06 dd (11.6, 4.6) 4.08 dd (11.5, 4.6)

2′′ 50.2 4.62 m 50.6 4.60 m 50.6 4.55 m 50.5 4.69 m

3′′ NH 6.67 d (8.4) 6.71 d (8.4) 6.59 d (8.4) 6.73 d (8.2)

4′′ 37.2 3.00 dd (13.7, 6.4) 37.4 3.01 dd (13.9, 6.5) 37.3 2.94 dd (13.6, 6.7) 37.3 3.10 dd (13.6, 6.5)

2.89 dd (13.8, 8.5) 2.91 dd (13.9, 8.2) 2.81 dd (13.6, 8.4) 3.01 dd (13.8, 8.2)

5′′ 137.1 137.4 137.3

6′′ 129.2 7.23 m 129.5 7.22 m 129.5 7.18 s (7.6) 129.3 7.29 m

7′′ 128.3 7.32 m 128.9 7.31 m 128.7 7.36 t (7.8) 128.7 7.32 m

8′′ ′ 127.3 7.25 m 127 7.24 m 126.9 7.23 m 126.8 7.25 m

1′′ ′ 167.8 167.4 167.3

2′′ ′ 134.1 134.4 134.3

3′′ ′ 126.9 7.65 dd (8.3, 1.1) 127.3 7.68 m 127.2 7.63 m 127.1 7.70 m

4′′ 128.6 7.31 m 128.6 7.31 m 128.8 7.29 m 128.4 7.28 m

5′′ ′ 131.3 7.43 tt (7.5, 1.1) 131.7 7.43 tt (7.4, 1.1) 131.5 7.43 t (7.4) 131.3 7.42 m

*13C NMR data available only from HSQC experiment.

with a cycle time of 0.5 s, quadrupole width of m/z ± 0.65
using fixed CID energies of 10, 20, and 40 eV with maximum
three precursor ions per cycle. A lock mass solution of 70%
MeOH was infused in the second sprayer, with an extra LC
pump at a flow of 15 µL/min using a 1:100 splitter. The
solution contained 1 µM tributylamine (Sigma-Aldrich) and
10 µM hexakis(2,2,3,3-tetrafluoropropoxy)phosphazene (Apollo
Scientific Ltd., Cheshire, United Kingdom) as lock masses. The
[M+H]+ ions of both compounds (m/z 186.2216 and 922.0098,
respectively) were used.

In-house fungal metabolite library search was done as
described by Kildgaard et al. (2014). Data files were processed
in MassHunter workstation B.07.00 with “Find by Auto
MS/MS function” with a processing limit to 200 largest
peaks and mass match tolerance m/z 0.05. HRMS/MS
library search using parent and fragment ion accuracy of

20 ppm + 2 mDa, with minimal forward score of 50 and
reverse score of 80.

Targeted analysis for the asperphenamate analog design study
was performed using expected masses of individual AA and
benzoic acid analogs, for all potential precursors, intermediates
and final products, see Supplementary Table S1. Relative
amounts of asperphenamate analogs were quantified by direct
integration of peak area of target compounds, normalized to
xanthoepocin water loss adduct peak area ([M-H2O+H]+ m/z
589.0975) in control samples. All analyses were performed in
triplicates. All MS/MS spectra reported were at 20 eV, unless
stated otherwise.

General Experimental Procedures
1D and 2D NMR analyses were performed on a Bruker Avance
800 MHz spectrometer (Bruker, Billerica, MA, United States),
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FIGURE 2 | Compounds produced by P. astrolabium based on the in-house database search.

using standard sequence pulses. Samples were analyzed in a
3 mm TCl cryoprobe using deuterated chloroform (CDCl3) and
referenced to the residual solvent signals δH = 7.26 ppm and
δC = 77.16 ppm. J-couplings are reported in hertz (Hz) and
chemical shifts (δ) in ppm. For 1D and 2D NMR data, see
Supplementary Tables 2–4 and Supplementary Figures 1–5.

Optical rotations were measured in chloroform (CHCl3)
on a PerkinElmer 341 Polarimeter (PerkinElmer, Waltham,
MA, United States).

Cytotoxicity Assay
Compounds 1, 1a, 4, 12, and 13 were tested in triplicates
against five cancer cell lines, i.e., human lung carcinoma
A549 ATCC CCL-185, breast adenocarcinoma MCF7
ATCC HTB-22, human skin melanoma A2058 ATCC CRL-
11147, hepatocyte carcinoma HepG2 ATCC HB-8065 and
pancreas carcinoma MiaPaca-2 ATCC CRL-1420 following
previously described methodology (Audoin et al., 2013;
Lauritano et al., 2020).
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FIGURE 3 | HPLC-MS analysis for asperphenamate analog production on YES media. (A) Base peak chromatogram (BPC) of crude P. astrolabium extract, with
extracted ion chromatogram (EIC) showing “bait” ions m/z 256.1334 and m/z 238.1230. (B) Zoomed BPC with EIC for asperphenamate analogs at full scan.

RESULTS

Chemical Profile of Penicillium
astrolabium
To investigate the secondary metabolite profile from
P. astrolabium, the fungus was inoculated on three media
(MEA, CYA, and YES) and incubated at 20 and 25◦C for 7,
10, and 14 days. The resulting 18 extracts were analyzed by
UHPLC-DAD-QTOF-MS and used for automated in-house
library search of fungal secondary metabolites (Kildgaard et al.,
2014). In addition to previously reported asperphenamate (1),
N-benzoylphenylalanine (2) and xantoepocin (Perrone et al.,
2015), all 18 extracts also revealed the presence of meleagrine
and its biosynthetic intermediates neoxaline, glandicoline
B, roquefortine C and histidyltryptophanyldiketopiperazine
(Ali et al., 2013), as well as cerebroside A. Other notable
secondary metabolites include ergokonin B and pyocyanine
detected on YES and CYA media extracts; citreoisocoumarin
detected only in YES extracts; griseoxanthone C mainly seen

on CYA 20◦C (Figure 2). Additionally, a series of di- and
tetracyclopeptides with varying AA composition, depending on
growth conditions, were produced.

Targetted Asperphenamate Daughter Ion
Search Reveals Novel Analogs
In the HRMS/MS analysis, asperphenamate (1) and reported
fungal analogs (4–6) share two major fragment ions m/z
256.1334 and m/z 238.1230, corresponding to ester bond
cleavage to result in a N-benzoylphenylalaninol protonated ion
[C16H18NO2]+, followed by water loss on the same moiety
to get [C16H16NO]+. In addition, a minor fragment of m/z
105.0335 [C7H5O]+ corresponding to a benzoyl loss was also
observed. To screen for potential asperphenamate analogs, the
two major fragment ions were used as “bait” (Figure 3A),
resulting in five major peaks (Figure 3B): asperphenamate
([M+H]+ m/z 507.2277, C32H30N2O4), the most abundant
analog with an extra oxygen atom ([M+H]+ m/z 523.2227,
C32H30N2O5), an analog indicating a single carbon-nitrogen
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exchange ([M+H]+ m/z 508.2232, C31H29N3O4), and two
other analogs with a significant mass differences, one 34Da
lower ([M+H]+ m/z 473.2436, C29H32N2O4) and the other
39Da higher ([M+H]+ m/z 546.2385, C34H31N3O4) to that
of asperphenamate. Subsequent MS/MS analysis revealed, that
two asperphenamate-specific fragments m/z 252.1010 and m/z
224.1064, corresponding to ester cleavage and subsequent CO
loss of an N-benzoylphenylalanine moiety (Figure 4A), have been
exchanged for fragments 16Da higher, namely m/z 268.0971 and
m/z 240.1021 (Figure 4B), for compound with m/z 523.2227.
Therefore, with the fragment of m/z 105.0331 being present
in both of compounds, and no other major differences in
fragmentation patterns observed, a phenylalanine exchange for
tyrosine in a non-reduced N-benzoyl AA moiety could be
proposed, resulting in 4. The asperphenamate analog with
m/z 546.2385 produced unique fragments of m/z 291.1121
[C18H15N2O2]+ and m/z 263.1179 [C17H15N2O]+ (Figure 4C).
Taking into account the presence of a benzoyl ion [C7H5O]+,
the rest of m/z 291.1121 fragment suggest molecular formula
C11H10N2O, corresponding to phenylalanine exchange for
tryptophan in a non-reduced N-benzoyl AA moiety. Similarly,
the differences between the unique fragments in m/z 473.2436
and the benzoyl ion led to proposal of leucine containing analog
(Figure 4D). Finally, a compound with m/z 508.2232 showed
similar fragmentation patterns to those of asperphenamate,
however, fragments corresponding to fragmentation of non-
reduced AA moiety showed a fragment mass increase by 1Da,
with fragment ion m/z 106.0286 [C6H4NO]+ indicating a
pyridinecarboxylic acid incorporation (Figure 4E). Moreover,
MS/MS data revealed trace amounts of a coeluting isomer, with
the two major ion fragments weighing 1 Da higher, namely
m/z 257.1278 and m/z 239.1175, hence indicating that the
pyridinecarboxylic acid can also be incorporated into the reduced
AA part of the molecule (Figure 4F).

NMR Confirms Phenylalanine Exchange
for Other Amino Acids in the
Non-reduced N-Benzoyl Amino Acid
Moiety
To confirm the structures proposed by HRMS/MS fragmentation
patterns, a large scale of 200 agar plates was grown for
targeted isolation of asperphenamate (1), and tyrosine (4),
tryptophan (12) and leucine (13) analogs, as well as one of
the pyridinecarboxylic acid analogs (1a). 1H and 13C NMR
data shown in Table 1, with full assignment table and spectra
available in supplementary material (Supplementary Tables 2–
4 and Supplementary Figures 1–5). Data for asperphenamate
(1) and the tyrosine analog (4) fit with previously published
data (Catalán et al., 2003; Liu et al., 2018). 1H and 13C NMR
shifts of N-benzoylphenylalaninol and the N-benzoyl part of
non-reduced AA moiety was in agreement within all four
compounds, further supported by COSY and HMBC correlations
for tryptophan (12) and leucine (13) analogs (Figure 5 and
Supplementary Tables 3–4).

The rest of the shifts corresponding to 12 showed three spin
systems, with the first comprised of an amino group at NH-3′

FIGURE 4 | MS/MS spectra and assignment of asperphenamate analogs.
(A) Asperphenamate m/z 507.2231, (B) tyrosine analog m/z 523.2227, (C)
tryptophan analog m/z 546.2387, (D) leucine analog m/z 473.2435, and (E,
F) pyridinecarboxilic acid analogs, where R1, R2, or R3 = N.
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FIGURE 5 | COSY and key HMBC correlations for asperphenamates W (12) and L (13) and proposed structure for asperphenidine F1 (1a).

FIGURE 6 | Structural overview and proposed naming system of HRMS/MS characterized asperphenamate analogs from P. astrolabium upon proteogenic amino
acid supplement study. Structures marked with asterisk indicate previously reported compounds either of natural or synthetic origin.

(δH 6.69), a methine at H-2′ (δH 5.04) and a methylene at H-
4′ (δH 3.43), the second consisted of four aromatic methines at
H-7′ (δH 7.64), H-8′ (δH 7.12), H-9′ (δH 7.20) and H-10′ (δH
7.33), and the third one included aromatic amino and methine
groups, NH-12′ (δH 8.06) and H-13′ (δH 7.06), respectively.
The HMBC correlations of the last two spin systems from H-
7′ and H-13′ to C-5′ (δC 110.1), H-8′ and H-13′ to C-6′ (δC
127.5), and H-9′ and H-13′ to C-11′ (δC 136.4), revealed the
presence of indole, which was connected to the first spin system
by H-2′ to C-5′ (δC 110.1) and H-4′ to C-13′ (δC 123.1), to
confirm presence of tryptophan. The HMBC correlations from
H-3 (δH 7.63) and H-2′ to C-1 (δC 167.6) and H-2′ and H-
1′′ (δH 4.46/4.06) to C-1′ (δC 172.5), connected tryptophan
moiety to the benzoyl and N-benzoylphenylalaninol parts of the
molecule (Figure 5).

For 13, the rest of the shifts comprised a single spin system of
amino group NH-3′ (δH 6.46), two methines at H-2′(δH 4.71) and
H-5′(δH 1.75), a diastereotopic methylene at H-4′(δH 1.79/1.69),
and two methyl groups at H-6′(δH 0.99) and H-7′(δH 1.02), to
give a leucine backbone. The spin system was connected to the
rest of the structure by H-3 (δH 7.72) and H-2′ to C-1 (δC 167.8)
and H-2′ and H-1′ (δH 4.59/4.08) to C-1′ (δC 173.2) (Figure 5).
The NMR data was eventually found to be in agreement with the
commonly overlooked lichen secondary metabolite hypothallin
(Huneck et al., 1992).

Compound 1a was purified in trace amounts (0.2 mg) and
only 1H NMR was acquired (Supplementary Figure S5). In
comparison to asperphenamate, all the proton shifts in the
aliphatic range for 3a were of same multiplicity and similar shift
values, as well as shifts for both amino groups. In the aromatic
range, three asperphenamate shifts at H-3 (δH 7.70), H-4 (δH
7.39) and H-5 (δH 7.50) were swapped for more downfield shifts

at δH 7.94 (m), δH 8.72 (dd), and δH 8.87 (d). Based on the two
latter shifts and their multiplets, they were assigned as H-5 and
H-7, respectively, with δH 7.94 (m) assigned at H-3, and the H-4
shift assigned to the general aromatic region at 7.18–7.35, led to
confirmation of pyridinecarboxylic acid moiety as nicotinic acid.
This fits with the published NMR data for nicotinic acid (Chen
et al., 1999) and the corresponding synthetic asperphenamate
analog (Liu et al., 2016).

Herein we propose a new asperphenamate analog naming
system using one letter AA abbreviation to denote a specific
AA incorporation, based on similar azaphilone pigment naming
system proposed by Isbrandt et al. (2020). Compounds 12
was named asperphenamate W, whereas compounds 4 and 13
will be referred to as asperphenamate Y and L, respectively.
Compound 1a was named asperphenidine F1, to signify it being
an asperphenamate analog, with phenylalanine incorporation
and benzoic acid exchange for nicotinic acid at the non-reduced
part of the molecule.

Amino acid Enriched Media Induces
Phenylalanine Exchange in the
N-Benzoylphenylalanine Moiety
To investigate if higher AA availability can induce AA exchange
in asperphenamate biosynthesis, the fungus was incubated
on CZ media supplemented with one of each of the 20
proteogenic AAs. Subsequently, targeted MS analysis was
performed by search of masses corresponding to phenylalanine
exchange for one AA moiety within the asperphenamate
backbone (Supplementary Table S1). In addition tyrosine (4),
tryptophan (12), and leucine (13) analogs, the novel valine
(14), methionine (15), histidine (16), alanine and isoleucine
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FIGURE 7 | Relative production of asperphenamate and asperphenidine analogs. (A) Relative production of asperphenamate amino acid analogs in control and
corresponding amino acid supplement media. (B) Production of asperphenidines F, Y, and W in control, tyrosine, tryptophan and anthranilic acid supplemented
media. Error bars show standard deviation. All data, except the ones marked with asterisk, indicate statistically significant differences compared to the control
(p < 0.05).

analogs could also be observed, and AA exchange in the non-
reduced AA part of the molecule was confirmed for compounds
14–16 by HRMS/MS fragmentation patterns (Figure 6 and
Supplementary Figure S6). The new analogs were accordingly
named as asperphenamates V, M, and H.

In comparison to non-fed control cultures of previously
characterized compounds, only small changes in production were
observed for asperphenamate Y and W production, a slight
decrease and increase, respectively (Figure 7A). However, upon
leucine supplement, asperphenamate L production increased
10-fold in comparison to the control. A similar increase
pattern was also observed in the valine supplement experiment,
whereas the production of histidine and methionine analogs
was drastically boosted upon respective AA supplement, with
33-fold increase for asperphenamate H and more than a 100-
fold increase for asperphenamate M. Although, the production
of alanine and isoleucine analogs increased by three-fold
for each, the relative amounts were still marginally lower
in comparison to other uptake experiments, and were not
sufficient for MS/MS data acquisition and assignment of
structures (Figure 7A).

Additionally, MS analysis targeting reduced and non-
reduced AA N-benzoyl precursors, and single or double AA
exchange in asperphenamate, patriscabratine, aurantiamide
and aurantiamide acetate backbones, was performed to
result in the discovery of an additional double leucine
asperphenamate analog characterized by HRMS/MS
(Supplementary Figure S6). No other AA analogs or analogs

for benzoic acid exchange for 4-hydroxybenzoic or anthralinic
acids were observed.

Tryptophan Induces Nicotinic Acid
Incorporation
In contrast to the expected asperphenamate W (12) being one of
the major metabolites upon growth on tryptophan supplemented
media, both asperphenidines F1 and F2 (1ab), with nicotinic
acid exchange on either the non-reduced or reduced part of the
molecule, respectively, showed the most drastic increase in the
relative amount in comparison to the control. With the similar
behavior observed in anthranilic acid supplement, targeted MS
analysis of all extracts was performed with masses corresponding
to the benzoic acid exchange for nicotinic acid for novel AA
analogs described above (Supplementary Table S1). The MS
profile indicated the potential for nicotinic acid incorporation in
all eight AA analogs, however, only tyrosine (4ab) and tryptophan
(12ab) analogs, with nicotinic acid incorporation in either of
two possible positions, could be confirmed by MS/MS (Figure 6
and Supplementary Figure S7). With individual analog peaks
strongly overlapping in the MS profile, MS/MS of two coeluting
analogs as well as combined peak area were used for further
structure assignment and relative quantification, respectively.

The relative amounts of the most common AA and
nicotinic acid analogs, asperphenidines Y1–Y2 (4ab), and
asperphenidines W1–W2 (12ab), were further compared to
those of the asperphenidines F1–F2 (1ab) (Figure 7B).
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FIGURE 8 | HPLC-MS analysis for asperphenamate analog production upon
para-substituted phenylalanine supplement on CZ media. BPCs of
P. astrolabium extracts of (A) control and growth (B) chloro-, (C) bromo-, (D)
amino-, and (E) nitro- phenylalanine supplemented media. EIC in dashed line
corresponds for a single amino acid, while dotted indicates a double amino
acid incorporation.

The relative production of asperphenidines followed the
same pattern as observed in asperphenamate production:
asperphenidines F1–F2 being the major nicotinic acid analogs,
followed by asperhenidines Y1–Y2 and W1–W2. Moreover,
production of all three upon growth on tryptophan supplemented

media was drastically higher in comparison to control, with
four- and five-fold increase in aspherphenidines F1–F2 and
Y1–Y2, and 12-fold increase for asperphenidine W1–W2
production. However, upon anthranilic acid supplement, a
significant increase was observed only in asperphenidine F1–
F2 production. Additionally, production of all asperhenamates
and asperhenidines was slightly lower to that of the control.
Additional analysis of other AA supplement cases or additional
inorganic nitrogen supplement experiments did not trigger
similar nicotinic acid incorporation response.

Para-Substituted Phenylalanines Are
Incorporated in Either of N-Benzoyl
Amino Acid Moieties
A set of four para-substituted, namely chloro-, bromo-,
amino- and nitro-, phenylalanines were used to investigate
the uptake of non-natural phenylalanines in asperphenamate
biosynthesis. The targeted MS analysis was performed by search
of masses corresponding to a single or double AA exchange
in both asperphenamate and asperphenidine backbones
(Supplementary Table S1). This revealed, that incorporation
of single para-substituted AA was successful in all four
supplement cases, however, a double para-substituted AA
exchange was also observed in the halogenated phenylalanine
supplement experiments (Figure 8). Moreover, small amounts
of asperphenidine derivatives for single amino- and nitro-
prenylalanine incorporation analogs were also detected.
Subsequent MS/MS analysis revealed, that halogenated para-
substituted phenylalanine can be incorporated at either or both
reduced or non-reduced parts of the molecule, resulting in
three analogs each for chloro- (17–19) and bromo- (20–22)
asperphenamates (Figure 9 and Supplementary Figure S8). In
case of amino- and nitro- phenylalanine exchange, the single
AA incorporation was clearly preferred at the non-reduced part
of the molecule, with only trace amounts of substituted AA
incorporation at the reduced part of the molecule detected (23–
25). As a result, asperphenidine analogs were detected only with
AA exchange at the non-reduced part of the molecule, resulting
in two analogs each for amino- (23ab) and nitro – (25ab)
asperphenidines (Figure 9 and Supplementary Figure S9).
Additionally, non-reduced and reduced pathway intermediates,
containing para-substituted phenylalanines, were also detected
in each of the supplement study cases.

FIGURE 9 | Structural overview of HRMS/MS characterized asperphenamate analogs from P. astrolabium upon para-substituted phenylalanine supplement study.
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TABLE 2 | Cytotoxic activities of 1, 1a, 4, 12, and 13.

Compound EC50 (µg/mL)

A549 MCF7 A2058 HepG2 MiaPaca

1 >46 >46 1.1 28.5 >46

4 >46 23 24.8 21.6 >46

12 >46 >46 16.6 >46 >46

13 >46 >46 >46 >46 >46

1a >46 >46 13.3 >46 13.3

A549, lung adenocarcinoma; MCF7, breast carcinoma; A2058, skin melanoma;
HepG2, hepatocellular carcinoma; MiaPaca, pancreas carcinoma.

Asperphenamate Amino Acid Exchange
Is Also Observed in Other Section
Brevicompacta strains
To compare the production of asperphenamate analogs among
section Brevicompacta, the chemical profile of P. astrolabium
was compared to three other section species, namely P. olsonii,
P. bialowiezense, and P. brevicompactum (Houbraken et al.,
2020). Targeted MS search based on 5 readily observed
asperphenamates in P. astrolabium (asperphenamates F, Y, W,
L, and asperphenidine F1) revealed, that all the other strains
were also able to exchange phenylalanine in the non-reduced
AA moiety (Supplementary Figure S10). Additionally, all three
strains were producing isoleucine analog in similar or higher
amount in comparison to asperphenamate L and were able to
produce compound 5, which was not detected in P. astrolabium.
Moreover, P. brevicompactum revealed two peaks corresponding
to the value of Asperphenamate W protonated adduct (m/z
546.2385), both with the same fragmentation patterns, suggesting
them being structural isomers.

Amino Acid Exchange Affects the
Asperphenamate Analog Cytotoxicity
Asperphenamates F, Y, W, and L (1, 4, 12 and 13) as
well as aspephenidine F1 (1a) were tested for their cytotoxic
activities against five cancer cell lines, i.e., lung carcinoma
A549, breast adenocarcinoma MCF7, skin melanoma A2058,
hepatocyte carcinoma HepG2 and pancreas carcinoma MiaPaca
(Table 2). Asperphenamate Y and Asperphenidine F1 were the
only compounds exhibiting moderate cytotoxic activities against
MCF7 and MiaPaca cell lines, respectively. Asperphenamates
F and Y exhibited moderate activity against HepG2 cell lines,
whereas all but asperphenamate L showed activity toward A2058
cell line, with asperphenamate F exhibiting the strongest activity.
Asperphenamate L did not show activity against any of the
cell lines at the tested concentrations. None of the compounds
exhibited activity against A549 cell line at tested concentrations.

DISCUSSION

Only a handful of asperphenamate analogs from fungal sources,
including endophytic and parasitic fungi, have been isolated to
date (Jia et al., 2009; Frisvad et al., 2013; Houbraken et al.,

2020). In this study we have demonstrated yet another powerful
application of a HRMS/MS guided discovery approach, for
detection and structural characterization of novel peptide natural
products via HRMS/MS fragmentation pattern analysis, which
is in line with current HRMS/MS based peptide detections and
characterization approaches (Mohimani et al., 2017; Jarmusch
et al., 2020; Ricart et al., 2020). Moreover, we report that the
choice of complex growth medium and/or a simple growth media
supplement with selected building blocks, such as proteogenic
and non-proteogenic AAs, P. astrolabium and related species can
produce a series of novel asperphenamate analogs, which can be
readily characterized by HRMS/MS.

Incubation of P. astrolabium IBT 28865 on complex
media revealed the strain being readily capable of exchanging
phenylalanine for tyrosine, leucine or tryptophan in
N-benzoylphenylalanine moiety, suggesting that the preferred
AA substrate should be either aromatic or aliphatic. A subsequent
proteogenic AA supplement study supported the hypothesis, with
all but one AA incorporated being either aromatic or aliphatic.
It can be speculated, that the incorporation of AA is dependent
on the side chain size and conformational similarity to that of
phenylalanine, since tyrosine, leucine and methionine have the
highest production rate in the AA supplement studies, whereas
the smaller alanine and isoleucine analogs are produced at the
lower rate. Lastly, histidine was the only non-hydrophobic AA to
be incorporated into the asperphenamate backbone, something
that can be attributed to its similarity to the other aromatic AAs,
thereby likely interacting via similar π–π interactions.

Although the relative production upon tyrosine supplement
decreased in comparison to the control, it might be attributed
to tyrosine being preferentially taken up by other pathways,
such as di- or tetra-peptide biosynthesis. Nevertheless, upon
growth on non-supplemented media, it was observed that
tyrosine incorporation in general was preferred over any other
AA incorporation. Subsequent supplement study with other
synthetic para-substituted phenylalanines confirmed previous
observation, with all four selected substrates being incorporated
into the asperphenamate backbone irrespective of the size of the
para-moiety. In comparison to proteogenic AAs being mainly
incorporated into the non-reduced part of asperphenamate
backbone, para-substituted AAs were readily incorporated into
either or both the reduced and the non-reduced part of
the molecule. Additionally, no other pathway intermediates
rather than N-benzoylphenylalanine, N-benzoylphenylalaninol
and respective para-substituted phenylalanine analogs were
observed. This suggests, that only intermediates with the highest
similarity to phenylalanine intermediates can be recognized and
released from the asperphenamate biosynthetic machinery.

The production of nicotinic acid containing analogs,
asperphenidines, was strongly correlated with production
of the corresponding asperphenamates upon growth on
complex media. However, upon proteogenic AA supplement
study, asperphenidines F1–F2 and Y1–Y2 were produced
in higher amounts when tryptophan was supplemented,
and in case of asperphinidines F1–F2 also in anthranilic
acid supplemented media. This suggest, that biosynthesis
of asperphenamate directly intercepts primary metabolism,
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since both anthranilic and nicotinic acids are intermediates of
tryptophan catabolism in nicotinamide adenine dinucleotide
(NAD) biosynthesis (Foster and Moat, 1980). This hypothesis
can be further substantiated by the fact that no other organic
and inorganic nitrogen source resulted in similar nicotinic
acid production and incorporation response. However, no
incorporation of directly supplemented benzoic acid derivatives,
namely 4-hydroxybenzoic and anthranilic acids, was observed.
This indicated, that incorporation of nicotinic acid is most
likely driven by the availability of the substrate, rather than
promiscuity of either of NRPS domains, since there are only a
minute structural difference among benzoic and nicotinic acids,
as well as no clear discrepancies among preference of nicotinic
acid over benzoic acid by either of the NRPS domains.

In general natural product biosynthesis of small peptides
involves a very strict uptake of AAs controlled by the NRPS
adenylation domains leading to a conserved sequence of AAs
present in the final product (Fischbach and Walsh, 2006).
However, certain cyanobacteria have been reported to possess
adenylation domains capable of activation of two or more
chemically distant AA (Kaljunen et al., 2015; Meyer et al., 2016).
In contrast, our study revealed an unusually high flexibility,
rather than specificity of fungal adenylation domain toward the
uptake of structurally related natural AAs, as well as synthetic
para-substituted phenylalanine analogs. Such unusual NRPS
flexibility is rather uncommon, with only one recent similar case
observed in filamentous fungi (Hai et al., 2020) . Recently, the
Tang lab demonstrated that the hybrid NRPS-NRPKS involved in
biosynthesis of α-pyrones in Aspergillus niger is also promiscuous
toward the uptake of tyrosine, leucine and a number of para-
substituted phenylalanines with small substitution groups (Hai
et al., 2020). However, with the higher variety of natural AA being
tolerated in asperphenamate biosynthesis, our results altogether
suggest an even more relaxed substrate specificity in comparison
to that of α-pyrone biosynthesis.

Interestingly, three other related species from
section Brevicompacta, P. olsonii, P. bialowiezense, and
P. brevicompactum, were also found to be producers of the
same analogs as observed in P. astrolabium when grown
on complex media. In addition, detection of several other
asperphenamates, such as a 4-hydroxybenzoic acid containing
analog (5), indicates an even more relaxed substrate specificity
in comparison to that of P. astrolabium. Nonetheless, it might
be speculated that the aforementioned analogs are not observed
in P. astrolabium due to a lower growth rate in comparison
to the other three strains (Serra and Peterson, 2007; Perrone
et al., 2015). Moreover, the presence of two Asperphenamate
W stereoisomers in P. brevicompactum suggest the presence
of a biosynthetically unrelated enzymatic activity responsible
for epimerization of tryptophan. Similar enzymatic activity was
previously characterized in a single-module NRPS responsible
for specific stereoconversion of L-tryptophan to D-tryptophan in
A. niger (Hai et al., 2019).

Asperphenamates F, Y, L, and W, as well as asperphenidine
F1 were tested against five cancer cell lines. Although
asperphenamate L did not exhibit activity against any of the
cell lines, the four other compounds revealed moderate activities

against breast, skin, liver or pancreas cell lines. In particular,
asperphenamate Y was the only active compound against the
breast cell line, suggesting that the presence of tyrosine at the
non-reduced AA moiety might be essential for the observed
activity. Therefore, further investigations of asperphenamates
harboring a para-substituted phenylalanine could be of interest
for future cytotoxicity studies. Moreover, asperphenidine F1, was
the only active candidate against the pancreas cell line, suggesting
the nicotinic acid analogs being more active than the benzoic acid
analogs. Although our cytotoxicity results for asperphenamates F
and Y, as well as asperphenidine F1 are comparable to previously
published data, the natural analogs, none of them show improved
bioactivity compared to synthetic asperphenamate derivatives (Li
et al., 2012; Yuan et al., 2012, 2018, 2019, 2020; Liu et al., 2016,
2018).

In conclusion, HRMS/MS based analysis and the use
of a targeted media supplement approach demonstrated
an extraordinary relaxed substrate specificity in the double
NRPS system responsible for asperphenamate production.
The proteogenic and non-proteogenic para-substituted
L-phenylalanine analog supplements led to biosynthesis of
22 new analogs, all of which could readily be characterized by
HRMS/MS. Here we proposed a standardized naming system for
asperphenamate and asperphenidine analogs denoting specific
amino acid incorporation. This strategy illustrates the potential
for future combinatorial biosynthesis of asperphenamate and
similar small NRPS products.
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