

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Apr 19, 2024

GetFEM
Automated FE Modeling of Multiphysics Problems Based on a Generic Weak Form Language

Renard, Yves; Poulios, Konstantinos

Published in:
ACM Transactions on Mathematical Software

Link to article, DOI:
10.1145/3412849

Publication date:
2020

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Renard, Y., & Poulios, K. (2020). GetFEM: Automated FE Modeling of Multiphysics Problems Based on a
Generic Weak Form Language. ACM Transactions on Mathematical Software, 47(1), Article 4.
https://doi.org/10.1145/3412849

https://doi.org/10.1145/3412849
https://orbit.dtu.dk/en/publications/b0f31a6c-1f81-4e08-93e8-36097e435712
https://doi.org/10.1145/3412849

4

GetFEM: Automated FE modeling of multiphysics problems
based on a generic weak form language

YVES RENARD, Université de Lyon, CNRS, INSA-Lyon, ICJ UMR5208, LaMCoS UMR5259, F-69621, France
KONSTANTINOS POULIOS, Technical University of Denmark, Department of Mechanical Engineering,
Denmark

This paper presents the major mathematical and implementation features of a weak form language (GWFL) for
an automated finite element (FE) solution of partial differential equation systems. The language is implemented
in the GetFEM framework and strategic modeling and software architecture choices both for the language and
the framework are presented in detail. Moreover, conceptual similarities and differences to existing high level
FE frameworks are discussed. Special attention is given to the concept of a generic transformation mechanism
that contributes to the high expressive power of GWFL, allowing to interconnect multiple computational
domains or parts of the same domain. Finally, the capabilities of the language for expressing strongly coupled
multiphysics problems in a compact and readable form are shown by means of modeling examples.

CCS Concepts: • Applied computing→ Physical sciences and engineering.

Additional Key Words and Phrases: Automated FEM, coupled PDEs, symbolic differentiation, weak form
language

1 INTRODUCTION AND AIM
Modern numerical modeling tasks often require the solution of multiple coupled nonlinear partial
differential equations (PDEs) possibly also subjected to additional algebraic equality or inequality
constraints. The FE method typically employed for the discretization of such PDE systems relies on
well founded mathematical principles [Ciarlet 2002], but the increasing complexity of the problems
to solve leads to major programming challenges.
The repetitive nature of programming new FE formulations has been realized by many FE

software developers and several parallel efforts have occurred for automating this process. The
possible gains in terms of development and debugging time are evident, especially in the context
of rigorous implicit solution schemes that require the derivation of a consistent Jacobian matrix.
However, creating a high level FE modeling framework which is user friendly while at the same
time as computationally efficient and versatile as lower level implementations, is a challenging
assignment and many different approaches have been proposed so far.

Historically, the idea of automated FE development is rather old, with the FE system FINGER by
Wang [1986] being one of the first implementations, along with the interactive system by Zimmer-
mann and Eyheramendy [1996]. The latter authors have in fact also highlighted the importance of
using weak forms as a neutral mathematical description appropriate for automated FE modeling
purposes. A thorough review of the first efforts in automation of FE development was given by
Korelc [1997], who also introduced the symbolic mechanics system (SMS), developed based on

Authors’ addresses: Yves Renard, Université de Lyon, CNRS, INSA-Lyon, ICJ UMR5208, LaMCoS UMR5259, F-69621,
20, rue Albert Einstein, Villeurbanne, Lyon, 69621, France, yves.renard@insa-lyon.fr; Konstantinos Poulios, Technical
University of Denmark, Department of Mechanical Engineering, Nils Koppels Allé, Building 404, Kgs. Lyngby, 2800, Denmark,
kopo@mek.dtu.dk.

4:2 Yves Renard and Konstantinos Poulios

the computer algebra system MATHEMATICA® [Korelc 2009]. A similar solution based on the
computer algebra system MAPLE® was made available by Amberg et al. [1999].

A common characteristic of these solutions is the generation of intermediate code that is compiled
and incorporated into FE software with an otherwise rather classical element centered architecture.
The current trend in FE is towards a more flexible use of finite element spaces, appearing in the late
90s and early 2000s in software such as FreeFEM [Hecht 2002, 2012], GetFEM (http://getfem.org/),
deal.II [Bangerth et al. 2007], FEniCS [Logg et al. 2012; Logg and Wells 2010], Firedrake [Rathgeber
et al. 2016] and oomph-lib [Heil and Hazel 2006], among several others. Both FreeFEM and FEniCS
have early emphasized on modeling automation based on weak forms as user input, following
very different implementation approaches though. FEniCS uses symbolic differentiation for the
linearization of the global system of equations and similar to the solutions reviewed previously
it relies on an external compiler to compile the generated code. FreeFEM implements its own
interpreted language instead, which evaluates provided weak form expressions at runtime, but it
lacks automatic linearization capabilities. A third approach is to extend the syntax of an existing
low level language such as C++ to allow expressing weak forms corresponding to PDEs directly in
the source code, as proposed e.g. by Prud’homme [2006], Rupp [2010] and Long et al. [2012, 2010].

Addressing an important part of modeling automation, the weak form language GWFL is imple-
mented in the GetFEM runtime library, which executes provided expressions without intermediate
code generation and compilation. Technically, GWFL expressions are passed as text string ar-
guments to functions of the available GetFEM APIs in C++, Python, Scilab and Matlab®. The
underlying C++ library parses the provided expressions, allocates the necessary data structure
and defines an optimized sequence of precompiled C++ function calls operating on the built data
structure. Repetitive execution of this sequence of functions evaluates the provided expression
efficiently and assembles it into a global residual vector or Jacobian matrix. Compared to the
very modular architecture of FEniCS and Firedrake, GetFEM has GWFL as its only major level of
abstraction. The less modular and pure runtime architecture is more convenient for implementing
and exposing complex features to GWFL, such as inter-domain coupling.
The underlying mathematical formalism and terminology is presented in section 2, along with

some basic syntax of the introduced weak form language. Section 3 describes the overall archi-
tecture of GetFEM that enables the implementation of the language and section 4 describes the
core implementation of the weak form language. The numerical examples presented in section 5
demonstrate the expressive capabilities of the language for a rapid development of strongly coupled
multiphysics models and the last section summarizes and concludes the work.

2 THE GENERIC WEAK FORM LANGUAGE
Let 𝛺 ⊂ R𝑑 denote the reference domain of the problem to solve, with the 𝑑 dimensions typically
representing spatial coordinates but without excluding other kinds of dimensions such as time
or frequency. A set of relevant physical, or also geometric, laws in 𝛺 may be expressed in terms
of a certain number of variables 𝑢1, . . . , 𝑢𝑛 lying in function spaces 𝑉1,𝑉2, . . . ,𝑉𝑛 . In general, each
variable 𝑢𝑖 can be defined on a subset of 𝛺 or its boundary 𝜕𝛺 or some internal interface contained
in 𝛺 and it can be a scalar, vector or tensor field with a total number of components equal to 𝑞𝑖 , e.g.
𝑞𝑖 = 1 for a scalar field. Each variable 𝑢𝑖 may be involved in physical laws valid in one or several
subdomains 𝑆𝐴, 𝑆𝐵, . . . , either in the interior or on external boundaries or internal interfaces, c.f.
Figure 1. Let the multi-index 𝐼 = {𝑖1, 𝑖2, . . . } denote for convenience some specific subset of {1 . . . 𝑛},
so that any quantity indexed with 𝐼 will be be constrained accordingly, i.e. 𝑢𝐼 ≡ {𝑢𝑖1 , 𝑢𝑖2 , . . . }.

http://getfem.org/

Automated FE modeling in GetFEM 4:3

Fig. 1. Possible subdomains in the interior, external boundary and internal interfaces of the problem domain Ω.

2.1 Zero-order terms, functionals
Many problems in science can be expressed as stationary points of a functional 𝐽 : 𝑉𝑖1×𝑉𝑖2×· · · → R,
mapping the unknown variables 𝑢𝐼 to a scalar, defined through an integral on a subdomain 𝑆 as

𝐹0 (𝑢𝐼) =
∫
𝑆

𝐺0 (𝑢𝐼 ,∇𝑢𝐼 ,H𝑢𝐼)𝑑𝑆. (1)

The sought stationary point can be for instance a minimum of a strain energy potential or a
saddle point of a Lagrangian function for a constrained problem. For some scalar variable 𝑢𝑖 , the
spatial gradient ∇𝑢𝑖 and Hessian H𝑢𝑖 correspond to a vector and a matrix respectively, but for a
tensor variable 𝑢𝑖 in general, they will just be tensors increased by one and two ranks, respectively.
Functionals in the form of 𝐹0 will be referred to as zero order terms, and a problem definition

may include several zero order terms on different subdomains 𝑆 and with different subsets 𝐼 of the
problem variables. Of course, it is assumed that all variables 𝑢𝐼 , represented in 𝐼 , are defined on 𝑆 .

2.2 First order terms, residuals
The first variation of a functional 𝐹0 with respect to the set of variables 𝑢𝐼 can be written as

𝛿𝐹0 (𝑢𝐼 ;𝛿𝑢𝐼) =
∑︁
𝑖∈𝐼

∫
𝑆

𝜕𝐺0

𝜕𝑢𝑖
[𝛿𝑢𝑖] +

𝜕𝐺0

𝜕∇𝑢𝑖
[∇𝛿𝑢𝑖] +

𝜕𝐺0

𝜕H𝑢𝑖
[H𝛿𝑢𝑖] 𝑑𝑆, (2)

where all involved directional derivatives of𝐺0 are by definition linear with respect to their direction
argument inside the square brackets. For nonlinear problems, these derivatives will also depend on
𝑢𝐼 , ∇𝑢𝐼 or H𝑢𝐼 nonlinearly. The linear form 𝛿𝐹0 with respect to the variations 𝛿𝑢𝐼 can be seen as a
special case of so called first order terms, which are linear forms generally defined as

𝐹1 (𝑢𝐼 ;𝛿𝑢𝐼) =
∫
𝑆

𝐺1 (𝑢𝐼 ,∇𝑢𝐼 ,H𝑢𝐼 ; 𝛿𝑢𝐼 ,∇𝛿𝑢𝐼 ,H𝛿𝑢𝐼) 𝑑𝑆. (3)

Here, 𝐺1 is a function which is linear only with respect to the arguments after the semicolon
separator, i.e. with respect to all listed variations. In a mathematical context, first order terms,
defined exclusively through the integrand 𝐺1, correspond to the weak form of some governing
equations. In the context of numerical methods, first order terms are employed directly in the
calculation of a residual vector, where variations 𝛿𝑢𝐼 are substituted with all relevant test functions.

2.3 Second order terms, Jacobians
One further variation of 𝐹1 with respect to 𝑢𝐼 leads to a second order term

𝐹2 (𝑢𝐼 ;𝛿𝑢𝐼 , 𝛥𝑢𝐼) =
∫
𝑆

𝐺2 (𝑢𝐼 ,∇𝑢𝐼 ,H𝑢𝐼 ; 𝛿𝑢𝐼 ,∇𝛿𝑢𝐼 ,H𝛿𝑢𝐼 , 𝛥𝑢𝐼 ,∇𝛥𝑢𝐼 ,H𝛥𝑢𝐼) 𝑑𝑆, (4)

4:4 Yves Renard and Konstantinos Poulios

where the function 𝐺2 is linear with respect to all arguments listed after the semicolon separator.
For each instance of the fields 𝑢𝐼 in the space 𝑉𝑖1 ×𝑉𝑖2 × · · · , the second order term 𝐹2 is a bilinear
form with respect to the variations 𝛿𝑢𝐼 and Δ𝑢𝐼 .
In many cases, a second order term 𝐹2 is obtained as the differential 𝛿𝐹1 of a first order term,

through Gateaux differentiation. If the first order term is itself obtained from a zero order term, then
𝛿𝐹1 is the second derivative of 𝐹0, in which case 𝐹2 = 𝛿𝐹1 = 𝛿2𝐹0. Every piecewise differentiable
zero order term can produce a corresponding first order term and every piecewise differentiable
first order term can be converted to the corresponding second order term. However, not every
bilinear form 𝐹2 has an underlying linear form 𝐹1, in the same manner as there is not a functional
𝐹0 for every linear form 𝐹1. In the context of numerical methods, second order terms are evaluated
repeatedly for different test functions substituted into 𝛿𝑢𝐼 and Δ𝑢𝐼 for assembling the corresponding
components in the overall Jacobian matrix.

2.4 Algebraic variables
In addition to field variables defined on a single or different subdomains, covered so far, modeling
of multiphysics problems often requires global scalar, vector, or tensor variables that are available
in any domain. For such algebraic variables the notion of spatial gradient or Hessian obviously
does not apply and the corresponding terms in Eqs. (1)-(4) have to be disregarded.

An algebraic variable 𝑢1 can for example be used to apply a constraint on the integral or average
over a volume 𝑆𝐴 of a quantity that depends e.g. on a field variable 𝑢2. If the desired constraint can
for instance be expressed as minimization of a zero order term, it can be defined in the form

𝐹0 (𝑢1, 𝑢2,∇𝑢2,H𝑢2) =
∫
𝑆𝐴

𝐺0 (𝑢1, 𝑢2,∇𝑢2,H𝑢2) 𝑑𝑆. (5)

Alternatively, instead of a zero order term, an appropriate first order weak form expression can
be used for defining the desired constraint as well. Applying the same kind of coupling between
the algebraic variable 𝑢1 and another field variable 𝑢3 defined on a subdomain 𝑆𝐵 as between 𝑢1
and 𝑢2 is an indirect way of coupling two field variables, possibly defined in different subdomains.

2.5 The generic weak form language
In the above presented framework, the mathematical definition of a model is complete once all
governing physics are expressed through zero or first order integrands, 𝐺0 or 𝐺1 respectively,
on given integration subdomains 𝑆 for each of the provided integrands. The use of second order
integrands𝐺2 in defining a model is more rare as it lacks the definition of a residual for the govern-
ing equations. Beyond the mathematical description, linearization and discretization are further
modeling steps which represent the most tedious but rather repetitive part of an implementation
and they are hence a major subject of automation. Leaving the discussion about such an automation
for later, the present subsection introduces GWFL as a simple language for defining integrands in
form of 𝐺0, 𝐺1 or 𝐺2, which should ideally be the only input required for creating a new model.

GWFL is mainly meant for transferring formulations from paper to an ASCII text string that can
be parsed and interpreted by the GetFEM software that implements the language. It is strictly limited
to the symbolic definition of integrands𝐺0,𝐺1 and𝐺2 and is not meant to resemble a programming
language or extend an existing programming language as the corresponding solutions in FEniCS,
FreeFEM or Sundance. Compared to these, GWFL is somewhat similar to UFL in FEniCS, but it is
even closer to the mathematical expressions, discretization agnostic and implemented as a runtime
module. Its runtime implementation facilitates the incorporation of interpolate transformations,
described in subsection 2.7, which in combination with a comprehensive set of linear and nonlinear
operators, lead to a very high expressive power and compactness.

Automated FE modeling in GetFEM 4:5

The proposed GWFL syntax supports user defined variables which can be scalars, vectors,
matrices or higher rank tensors. Any number and naming of such variables is possible, with the
only limitation of using ASCII characters and avoiding conflicts with predefined operator names.
For scalar variables, the four common math operators +, -, *, / as well as functions such as sqr,
sqrt, exp, log, sin, cos, tan, asin, acos, atan, pow and atan2(y,x) apply. For non-scalar variables,
operators +, -, .* and ./ are used for component-wise operations, operators . and : for single
and double contraction between vectors, matrices or tensors, operator * for matrix-vector and
matrix-tensor multiplications and operator @ for tensor products, usually denoted in math as ⊗. As
common in other scripting languages, the operator ’ expresses matrix transposition.
The non-smooth operators pos_part and neg_part correspond to the ramp functions ⟨𝑥⟩ and

⟨−𝑥⟩, respectively, and the min(x,y) and max(x,y) operators are also available in the language. Since
these operators can only be differentiated once, they only allow derivation and computation of
expressions of up to one order higher than the expression that they are contained in. The language
also includes the non-continuous Heaviside operator. Its use is rather limited though, because it
does not allow to derive any expression of higher order from the provided expression.

Spatial derivatives and variations appearing in the aforementioned integrands of the three kinds,
𝐺0,𝐺1 and𝐺2, are expressed through special operators and prefixes, listed in Table 1. The variation
prefixes apply to both field variables and algebraic variables while spatial derivative operators
obviously apply only to field variables. The gradient and Hessian operators result in a tensor which
will be respectively increased by one and two ranks compared to the original variable. Spatial
derivative operators and variation prefixes can be combined to express for instance quantities like
the gradient ∇𝛿𝑢 of the variation of a variable 𝑢 as Grad(Test_u).

Table 1. Spatial derivative operators and test function prefixes used in GWFL.

Grad(u), Hess(u) Spatial gradient and Hessian of a variable u

Div(u) Divergence of a vector variable u

Test_, Test2_ First and second variation of a variable (symbols 𝛿 and Δ respectively)

The language assumes that the dimension of all variables is provided at their definition, so that
the compatibility of dimensions for all performed operations can be checked for. Syntax checking
should also be able to identify the kind of integrand among the three possibilities 𝐺0, 𝐺1 and 𝐺2,
based on the presence of first variations (Test_) and second variations (Test2_) in the provided
expression. The GWFL implementation also checks that the provided expression is indeed linear
with respect to first variations 𝛿𝑢𝐼 for a first order term integrand𝐺1 , or bilinear with respect to
first and second variations 𝛿𝑢𝐼 and Δ𝑢𝐼 in the case of a 𝐺2 integrand.
Although not explicitly stated in Eqs. (1), (3) and (4), the integrands 𝐺0, 𝐺1 and 𝐺2 may also

depend directly on the current location 𝑋 within the integration domain 𝑆 ⊂ 𝛺 . Moreover, if 𝑆 is a
boundary or an internal interface of 𝛺 , it is also very common that an integrand may depend on
the normal direction with respect to 𝑆 at the current location. In GWFL, the special variable name
X is used for the current location 𝑋 and the special variable name Normal for the unit normal vector.
Both X and Normal are vectors of size 𝑑 , hence for syntax checking purposes the language requires
the dimension 𝑑 of the space Ω to be known. If the integration domain 𝑆 is in the interior of a
domain where a normal direction cannot be defined, use of the keyword Normal in an expression
results in an error message.
Square brackets can be used to define explicit tensors, including vectors and matrices, either

using a nested, comma separated format or using comma and semicolon separators as in a Matlab®.

4:6 Yves Renard and Konstantinos Poulios

Available tensors can also be sliced in a Matlab® like manner, using parentheses, the colon symbol
and one-based indexing. The special operator Id(n) is used for defining an n×n identity matrix. In
order to allow a compact writing of integrand expressions and an efficient implementation, GWFL
supports a comprehensive set of linear and nonlinear operators on vectors, matrices and tensors,
with the most important ones listed in Table 2. This includes efficient low level implementations of
the derivatives of all nonlinear operators, including the matrix exponential and logarithm.

Table 2. Commonly used vector and matrix operators.

Linear operators on a symmetric matrix s or general tensor t:
Trace(s), Deviator(s), Sym(s), Skew(s), Reshape(t,m,n,...)

Nonlinear operators on a general matrix or vector x or a symmetric matrix s:
Norm(x), Norm_sqr(x), Normalized(x), Det(s), Inv(s), Expm(s), Logm(s)

Regarding scalar functions, GWFL supports user defined one and two argument scalar functions.
Definition of a custom scalar function requires providing a name for the new function, and valid
GWFL expressions for the value and the first derivatives of the functionwith respect to its arguments.
Alternatively, instead of a GWFL expression, a pointer to a compiled C function can also be provided
for the value of the newly defined function.
The basic syntax of GWFL presented in this subsection is complemented by the important

Derivative_ prefix and Interpolate operator presented respectively in subsections 2.6 and 2.7.
Other, less frequently used, features and operators of the available language implementation in
GetFEM are omitted in the interest of space.

2.6 Modeling automation
Providing an appropriate set of zero and first order terms expressed in GWFL, can be seen as a
canonical form for defining a problem based on a minimum amount of information. Moreover,
having a complete mathematical definition of a problem prior to linearization and discretization is
a rigorous modeling approach, compared to enforcing physical laws on an already linearized or
discretized system.

Apart from the mathematical definition, a symbolic representation such as GWFL constitutes an
excellent format for describing both the input and output of an automated linearization procedure.
The present section demonstrates how GWFL expressions are employed in a a fully automated
computation of the residual vector and Jacobian matrix for a FE model. The presented example is a
relatively simple coupled heat transfer problem but the procedure is directly applicable to much
more complex modeling scenarios.

With 𝑢 and 𝑇 respectively representing displacements and temperature fields, heat transfer in a
solid undergoing large deformations can be expressed in the presented framework by means of a
first order integrand

𝐺1 (𝑢,𝑇 ; 𝛿𝑇) = 𝑘 |𝐼 + ∇𝑢 | ∇𝑥𝑇 · ∇𝑥𝛿𝑇 , (6)
where ∇𝑥 = (𝐼 +∇𝑢)−𝑇∇ is the Eulerian gradient operator and 𝑘 is the heat conductivity coefficient.

Assuming that corresponding field variables u and T as well as a constant k have been defined by
the user, the aforestated integrand 𝐺1 can easily be expressed in GWFL as
k*Det(Id(2)+Grad(u))
*(Inv(Id(2)+Grad(u))’*Grad(T)).(Inv(Id(2)+Grad(u))’*Grad(Test_T))

(E1)

Automated FE modeling in GetFEM 4:7

This parsable ASCII expression constitutes together with finite element spaces for u and T and a
numerical integration method the only necessary input for assembling a corresponding residual
vector for a discretized model. All necessary computations including evaluation of intermediate
quantities like e.g. ∇𝑢, ∇𝑇 and (𝐼 +∇𝑢)−𝑇 at each integration point can be fully automated, resulting
into an execution sequence of precompiled instructions. Such an execution sequence can then
be repetitively called for different basis functions substituted into 𝛿𝑇 depending on the current
position in the residual vector.
For the numerical solution of a problem, it is often essential to obtain a linearization of the

considered model residual. In case of Eq. (6), the integrand is already linear with respect to𝑇 so that
the corresponding second order term is obtained by substituting 𝑇 with the second variation 𝛥𝑇 .
The expression is however nonlinear with respect to 𝑢 requiring a proper differentiation including
the dependence of the Eulerian gradient operator ∇𝑥 on 𝑢. In total, the resulting second order term
integrand can be written as

𝐺2 (𝑢,𝑇 ; 𝛿𝑢, 𝛿𝑇 , 𝛥𝑢, 𝛥𝑇) = 𝑘 |𝐼 + ∇𝑢 | ∇𝑥𝛥𝑇 · ∇𝑥𝛿𝑇

+ 𝑘
(
𝜕 |𝐴|
𝜕𝐴

����
𝐴=𝐼+∇𝑢

: ∇𝛥𝑢
)
∇𝑥𝑇 · ∇𝑥𝛿𝑇

+ 𝑘 |𝐼 + ∇𝑢 |
((
𝜕𝐴−1

𝜕𝐴

����
𝐴=𝐼+∇𝑢

: ∇𝛥𝑢
)𝑇

∇𝑇
)
· ∇𝑥𝛿𝑇

+ 𝑘 |𝐼 + ∇𝑢 | ∇𝑥𝑇 ·
((
𝜕𝐴−1

𝜕𝐴

����
𝐴=𝐼+∇𝑢

: ∇𝛥𝑢
)𝑇

∇𝛿𝑇
)
,

(7)

The derivation of second order terms as the one above and their implementation in the assem-
bly of a global Jacobian matrix is often one of the major modeling tasks, requiring considerable
effort even in semi-automated FE frameworks. However, these steps can easily be automated if
low level implementations for the derivatives of all involved nonlinear operators and functions
are available. In GWFL such derivatives are accessed through the Derivative_ prefix. For exam-
ple, Derivative_Det(A) and Derivative_Inv(A) can be used to respectively express the derivatives
𝜕 |𝐴|

/
𝜕𝐴 and 𝜕𝐴−1/𝜕𝐴 appearing in Eq. (7). For two argument functions the prefix Derivative_2_

represents derivatives with respect to the second argument. Based on this syntax, the last three
terms of Eq. (7) can be written in GWFL as
(Inv(Id(2)+Grad(u))’*Grad(Test_T))
.((k*(Derivative_Det(Id(2)+Grad(u)):Grad(Test2_u)))*(Inv(Id(2)+Grad(u))’*Grad(T))+

(k*Det(Id(2)+Grad(u)))*((Derivative_Inv(Id(2)+Grad(u)):Grad(Test2_u))’*Grad(T)))
+(k*Det(Id(2)+Grad(u))*(Inv(Id(2)+Grad(u))’*Grad(T)))
.((Derivative_Inv(Id(2)+Grad(u)):Grad(Test2_u))’*Grad(Test_T))

(E2)

This is actually, with minor aesthetic modifications, the expression automatically generated by
GetFEM based on the GWFL expression (E1). Such basic symbolic algebra processing of expressions
of zero or first order to respectively generate first and second order expressions relies essentially
on the application of the chain and product rules for differentiation. Further factorization of the
generated expression is of minor importance since the presence of repeated subexpressions has
anyway to be dealt with in the computational implementation.
In the same manner as an automated assembly of the residual vector for a discretized model

relies on first order GWFL expressions like (E1), the assembly of the global Jacobian matrix can
be fully automated based on second order GWFL expressions like (E2). The contribution of the
considered terms to the {𝑘, 𝑙} entry in the global Jacobian matrix is computed by evaluating (E2)

4:8 Yves Renard and Konstantinos Poulios

at each integration point with 𝛿𝑇 and 𝛥𝑢 respectively corresponding to the global 𝑘-th and 𝑙-th
degree of freedom basis functions. A more in-depth implementation description of an efficient
automated assembly of GWFL expressions is provided in section 4.
Even in the relatively simple example shown here, a GWFL based automated assembly results

in a considerable gain in terms of modeling effort compared to a lower level implementation.
More elaborate multiphysics problems with complex nonlinearities and couplings between several
unknown fields is however where the value of the proposed FE automation really becomes evident.
As already explained, the main use of the GWFL is in the definition of zero, first and second

order terms, typically representing PDEs in weak form. However, the same syntax can also be
used in the definition of interpolation expressions, which, similar to a zero order integrand 𝐺0,
are expressions without any variable variations. In contrast to the latter though, interpolation
expressions are not limited to scalars but can in general evaluate to scalar, vector, matrix or higher
rank tensor quantities. They are used in interpolation operations which often constitute a necessary
step within more complex numerical models or they are just used for preparing post-processing
output. As an example, in connection to the presented heat transfer example, the expression
-k*Det(Id(2)+Grad(u))*(Inv(Id(2)+Grad(u))’*Grad(T)) (E3)
can be used in order to evaluate and export the heat flux vector field.

2.7 Interpolate transformations
So far, it has been assumed that integrands in functional, residual or Jacobian terms involve field
quantities, defined at the current integration point 𝑋 , and algebraic variables, defined globally.
Nevertheless, in order to achieve certain couplings in numerical modeling, there are often terms
that involve field quantities defined at different points of the same or different subdomains. To cover
this need, interpolate transformations in GWFL provide a generic mechanism that allows to map
the current integration point 𝑋 to another point 𝑌 either in the same or in a different subdomain
and access the variables, spatial derivatives and test functions defined at 𝑌 .
Figure 2 illustrates the mapping between two points 𝑋 and 𝑌 both conceptually and in terms

of specific applications in numerical modeling. The wide range of numerical methods that can be
implemented based on interpolate transformations in GWFL is indicative of the expressive power
of this mechanism in a high level modeling language.

a) b) c)

d) e) f)

Fig. 2. Transformation between different subdomains (a), used e.g. for implementing contact conditions (b)
and interpolation between different dicretizations (c), or within a single domain (d), used e.g. for imposing
periodic boundary conditions (e), and implementing discontinuous Galerkin methods (f).

Automated FE modeling in GetFEM 4:9

In most cases, the mapping of point 𝑋 to a point 𝑌 can be defined as

𝑌 = Y(𝑋). (8)

involving only the coordinates of the two points in the reference configuration. In order to support
a wider range of applications though, a more generic form is adopted according to the expression

𝑌 = Y(𝑋,𝑢1, 𝑢2, . . .). (9)

with 𝑢1, 𝑢2, . . . being problem variables. The dependence of the transformation Y on problem
variables allows for instance the implementation of contact conditions between deformable bodies
undergoing large deformations. Another use case is the implementation of advective terms where
the point𝑌 can be defined at a small distance from point𝑋 in the upstream or downstream direction
with respect to an a priori unknown velocity field.

Allowing to use variables and test functions at the mapped point 𝑌 = Y(𝑋, . . .) when evaluating
an integrand at point 𝑋 , is a powerful coupling mechanism, even more so for a point 𝑌 lying in a
different subdomain. GWFL provides this mechanism through the syntax of Table 3, with the user
defined names u and transname respectively representing a variable 𝑢 and some transformation Y.
This syntax allows to transfer a variable 𝑢, a variation 𝛿𝑢, or their spatial gradients, from point 𝑌
to 𝑋 . Additionally, the syntax allows to retrieve the coordinates of the transformed point 𝑌 , or the
surface unit normal at 𝑌 , if 𝑌 lies on a boundary.

It should be noted that the syntax simply denotes evaluation of a quantity at the mapped point 𝑌 ,
typically by interpolation in the discretized setting. However, a variation or a spatial derivative of an
interpolated variable at𝑌 are not just equivalent to evaluating its variation or spatial derivative at the
mapped point 𝑌 . These quantities also involve the derivatives of the transformation 𝑌 = Y(𝑋, . . .)
with respect to its arguments. For example, the variation of 𝑢 |Y is

𝛿𝑢
��
Y
+ ∇𝑢

��
Y
· 𝜕Y
𝜕𝑢𝑖

· 𝛿𝑢𝑖 , (10)

and the spatial gradient of 𝑢 |Y is

∇𝑢
��
Y
·
(
𝜕Y
𝜕𝑋

+ 𝜕Y
𝜕𝑢𝑖

· ∇𝑢𝑖
)
, (11)

where 𝑖 implies summation over all model variables that the transformation Y actually depends on.
Eq. (10) is part of the GWFL implementation, as it is necessary for the automatic differentiation of
zero and first order terms containing interpolate transformation syntax from Table 3. Eq. (11) is also
implemented as part of the Grad() operator, when it acts on a symbolically defined transformationY.

Table 3. Interpolate transformation syntax in GWFL.

Interpolate(X,transname) Y(𝑋, . . .)
Interpolate(Normal,transname) Surface unit normal at Y(𝑋, . . .)
Interpolate(u,transname) 𝑢 |Y(𝑋,...)
Interpolate(Grad(u),transname) ∇𝑢

��
Y(𝑋,...)

Interpolate(Hess(u),transname) H𝑢
��
Y(𝑋,...)

Interpolate(Test_u,transname) 𝛿𝑢
��
Y(𝑋,...)

Interpolate(Grad(Test_u),transname) ∇𝛿𝑢
��
Y(𝑋,...)

Interpolate(Hess(Test_u),transname) H𝛿𝑢
��
Y(𝑋,...)

4:10 Yves Renard and Konstantinos Poulios

A symbolic definition of an interpolate transformation in the form of Eq. (9) is possible by using
the GWFL syntax itself through the GetFEMmodel method add_interpolate_transformation_from
_expression, which expects a name for the new transformation, a source and a target mesh, which
can possibly be the same, and a symbolic GWFL expression defining Y(𝑋, . . .). For example, the
identity transformation Y(𝑋) = 𝑋 , useful for implementing the case of Figure 2c, can easily be
defined by providing X as the transformation expression and two distinct source and target meshes.
Slightly more complex than the case of Figure 2e, imposing a rotational periodicity condition e.g.
at 60° is another example that the transformation defined in GWFL syntax as
[cos(pi/3),-sin(pi/3);sin(pi/3),cos(pi/3)]*X (E4)
can be useful for. As a last example, given a displacement field u, a transformation defined as X+u
can be used for implementing data transfer between the Eulerian and Lagrangian settings. An
advantage of such a symbolic definition of an interpolate transformation is that all necessary
derivatives appearing in Eq. (10) can be generated automatically, using the same mechanism as
explained in section 2.6. In the simple case of expression X+u for instance, the derivative of the
interpolate transformation with respect to u, i.e. 𝜕Y/𝜕𝑢, will be the identity matrix.

There are, nevertheless, useful interpolate transformations that cannot be defined symbolically.
Such an example is a raytracing transformation as in Figure 2b but based on the deformed bodies
according to corresponding displacement fields. This rather complex transformation is programmed
as part of GWFL in GetFEM and it allows to implement the algorithm for large deformations con-
tact according to Poulios and Renard [2015] purely with GWFL syntax. In a model with several
deformable solids it might be advantageous to define raytracing transformations between different
sets of bodies, hence there is no fixed name for an overall raytracing transformation, but the user
can define and name multiple raytracing transformations with different source and target meshes
and displacement fields. If, for instance, ray12 is a user defined raytracing transformation between
mesh 1 and mesh 2 with displacement fields u1 and u2, respectively , the distance between master
and slave points is obtained in GWFL by
Norm(Interpolate(X,ray12)+Interpolate(u2,ray12)-(X+u1)) (E5)
where the transformation ray12 depends on both u1 and u2 through its definition. To account for
this dependence in Eqs. (10) and (11), the derivatives 𝜕Y/𝜕𝑢1 and 𝜕Y/𝜕𝑢2 are needed. As there is
no symbolic definition of Y in this case, these derivatives are pre-implemented numerically in
the language and can be accessed in GWFL using a special syntax, which for example for 𝜕Y/𝜕𝑢1, is
Interpolate_derivative(ray12,u1) (E6)
Another important interpolate transformation, which is part of the standard GWFL and is based on
a numerical rather than symbolic definition, is the neighbor_element transformation. Mathemati-
cally, it corresponds to the identity transformation Y(𝑋) = 𝑋 . Numerically, however, for 𝑋 being a
point on a common face between two elements, the transformation returns the element and face
number of the neighbor element compared to the element that 𝑋 is defined on. Internally, it also
returns the coordinates of the transformed point Y(𝑋) in the reference element corresponding
to that neighbor element. The neighbor_element transformation is essential for implementing
discontinuous Galerkin methods. If, for example, u is a user defined variable approximated on a
mesh with discontinuous finite elements, the expressions (E7) and (E8) respectively provide the
variable jump and average on the common face between two elements.
u - Interpolate(u, neighbor_element) (E7)

(u + Interpolate(u, neighbor_element))/2 (E8)

Automated FE modeling in GetFEM 4:11

3 SOFTWARE ARCHITECTURE
The GWFL syntax, introduced in the previous section, offers a flexible, easy and rather universal
way of defining problems and corresponding systems of PDEs, involving an arbitrary number of
field variables. It mainly concerns the continuous setting, with only few features being specific to a
discretization with finite elements. However, automating the assembly of functional, residuals and
Jacobians, addresses only part of the time-consuming and error-prone tasks in numerical modeling.
The definition, for instance, of appropriate finite element spaces and numerical integration methods
are other areas that a high level modeling framework is expected to minimize implementation effort
for. In this context, the present section describes the overall architecture of the GetFEM framework
that GWFL has been implemented in.

GetFEM is an object oriented framework implemented in C++, exploiting polymorphism in order
to support extendibility at the C++ level. Most of the framework’s standard functionality is also
available through a common interface to the scripting languages Python, Scilab and Matlab®. The
following subsections highlight good software design choices and describe the major C++ objects
that implement the GWFL functionality.

3.1 Meshes and integration methods
One central idea behind the design of the GetFEM framework is the separation between mesh,
finite element spaces and integration methods. This idea is reflected in the diagram of Figure 3
which shows the overall software architecture.

Fig. 3. GetFEM software architecture diagram.

In the formalism introduced in the previous section, the whole model definition is expressed in
terms of integrals over different subdomains. The geometric definition of integration domains is
hence essential for any respective numerical implementation. In GetFEM, integration domains are

4:12 Yves Renard and Konstantinos Poulios

represented in an approximate sense through computational meshes, which can either be generated
directly in GetFEM or, for more complex geometries, be imported from mesh files generated with
GMSH [Geuzaine and Remacle 2009], ANSYS® or GiD®.
In standard cases, the overall problem domain Ω ⊂ R𝑑 is approximated by several, possibly

overlapping, computational subdomains Ω𝑖 that typically correspond to computational meshes T ℎ
𝑖 .

The computational subdomains Ω𝑖 do not necessary all need to be of the same dimension, but they
can, for instance in 3D, be a combination of volumes, surfaces and curves. Another possibility for
defining a computational subdomain Ω𝑖 is by using a nonconformal mesh in combination with a
level-set description of the boundary of Ω𝑖 . In these cases, integration methods adapted to a given
level-set are essential.
The discretization of the problem domain into simple elements serves two purposes. It mainly

enables the numerical evaluation of integrals as those discussed in subsections 2.1-2.3 and secondly
it provides a means for defining solution and test function spaces piecewise. This latter role of
computational meshes is an inseparable ingredient of the classical finite element method but not as
essential for the construction of basis functions in other Galerkin-type methods such as meshless
methods and XFEM. In GetFEM terminology, the finite element method is understood in a broad
sense that encompasses Galerkin methods in general.

In that sense, the main role of elements is to allow a simple numerical integration by furnishing
a parametrization of their domain through a mapping from a fixed reference element. The mesh
module included in Figure 3 supports the definition of geometric transformations 𝜏

𝑇
, which map

some reference element 𝑇 to each real element 𝑇 through the usual mapping

𝑋 = 𝜏
𝑇
(𝑋) = 𝐺 N(𝑋), (12)

with points 𝑋 and 𝑋 lying in the reference and real elements, respectively. For an element with
𝑛𝑔 nodes, 𝐺 is a 𝑑 × 𝑛𝑔 matrix, containing all nodal coordinates in the real element, and N(𝑋)
is a vector of 𝑛𝑔 shape functions. To maintain generality, the reference element 𝑇 is defined in a
possibly different space R𝑝 than the real element space R𝑑 , with 𝑝 ≤ 𝑑 . One consequence of this
choice is that the derivative 𝜕𝑋/𝜕𝑋 of the geometric transformation and its pseudo-inverse are in
general non-square 𝑑 × 𝑝 matrices, defined as

𝐾 (𝑋) = 𝐺 ∇�̂�N(𝑋) and 𝐵(𝑋) = 𝐾 (𝑋)
(
𝐾 (𝑋)𝑇𝐾 (𝑋)

)−1
, (13)

where the shape function derivatives matrix ∇�̂�N(𝑋) has dimensions 𝑛𝑔 × 𝑝 . Of course in the
usual case of 𝑝 = 𝑑 , matrix 𝐾 is a square one and its pseudo-inverse 𝐵 reduces to the regular
inverse. For nonlinear geometric transformations, the interpolation function gradients ∇�̂�N(𝑋)
and consequently also matrices 𝐾 and 𝐵 vary spatially. In this case, mapping a given point from
the real element space to the reference element space requires an iterative solution. Such a solver
is employed whenever for example interpolation or contact between two arbitrary meshes needs
to be evaluated, c.f. Figure 2.
Geometric transformations are defined in terms of the reference element’s 𝑛𝑔 nodes and their

connectivity as well as the corresponding shape functionsN(𝑋). An appropriate naming system in
GetFEM, partially documented in the appendix Table 6, provides access to a set of pre-implemented
and tabulated geometric transformations. In most of these, the components of N(𝑋) are typically
polynomials with respect to the 𝑝 coordinates of 𝑋 , but more complex functions are also used such
as rational functions for the implementation of pyramid elements, [Bergot et al. 2010; Graglia and
Gheorma 1999]. In general, it is rather simple to add new element types in GetFEM by specifying
the corresponding geometric transformations. Apart from the nodes of the reference element it
is only necessary to specify the shape functions N(𝑋) analytically. The provided expressions are

Automated FE modeling in GetFEM 4:13

parsed by a basic symbolic system for polynomials and rational functions, available in GetFEM. All
necessary derivatives ∇�̂�N(𝑋) are also obtained and evaluated by this system. Moreover, GetFEM
supports so called composite elements where shape functions N(𝑋) are piecewise defined within
a single element, facilitating e.g. the implementation of geometric multigrid algorithms.
Apart from the definition of geometric transformations, the mesh module includes objects and

methods for defining the topology of a mesh through node connectivities in elements as well as so
called mesh regions, which are sets of elements or element faces, used for specifying the integration
domain 𝑆 for an added weak form term. In contrast to first generation finite element codes, where
users had to directly refer to element or node numbers, in high-level frameworks like GetFEM this
is rarely the case.
One major role of an element based discretization of the problem domain is the application of

numerical integration methods for calculating the weak form integrals discussed in Section 2. The
implementation of GWFL is very much linked to numerical integration methods as the language
itself basically describes integrands that have to be repeatedly evaluated at every relevant integration
point. Integration points and the correspondingweights are defined as usual in the reference element
and area scaling between the reference and the real element are accounted for through the geometric
transformation matrices from Eq. (10). As the integration domain 𝑆 of an added weak form term
can refer to the interior of a problem subdomain Ω𝑖 or to its surface 𝜕Ω𝑖 , numerical integration
methods need to define integration points and weights not only in the interior of elements but also
on their faces.

The MeshIm module in Figure 3 deals with numerical integration, with its main object decorating
a mesh object with selected integration methods per element. An appropriate naming system,
partially covered in the appendix Table 7, provides access to a set of tabulated integration methods
and new methods are easy to define by providing integration points and weights on the reference
element. Adaptive integration for fictitious domain methods is also well supported but not covered
here.

3.2 Finite element description
The numerical solution of PDEs by Galerkin methods relies on finite dimensional function spaces
for both solution and test functions. In the proposed weak form language in particular, test functions
are assumed to match the defined solution spaces by prepending the corresponding variable with
the Test_ prefix to express a virtual variation. GetFEM provides several tools for the construction
of function spaces on a given computational mesh. The main object of the MeshFem module in
Figure 3 decorates each element of a mesh with a finite element object, defining a set of degrees of
freedom that can either be associated to specific nodes or not. From a software architectural point
of view, it is very useful to exploit polymorphism in order to abstract two different mechanisms of
either defining the shape functions on an element or as global functions.
The standard finite element method combines simple elementwise solution spaces, typically

defined on the reference element, to obtain solution spaces for each problem subdomain Ω𝑖 . As-
suming that solution spaces are mapped from the reference to the real element 𝑇 , a finite element
is defined by Ciarlet [2002] as a triplet (𝑇,𝑉𝑇 ,L𝑇), where

• 𝑇 is the geometric element,
• 𝑉𝑇 is a 𝑁 -dimensional vector space of functions over 𝑇 ,
• L𝑇 = {ℓ1, ℓ2, . . . , ℓ𝑁 } is a set of 𝑁 linear forms over 𝑉𝑇 (the degrees of freedom),

such that L𝑇 is unisolvent with respect to 𝑉𝑇 , i.e. each function of 𝑉𝑇 is determined by a unique
set of degrees of freedom in L𝑇 . Then, the space 𝑉𝑇 can be written as 𝑉𝑇 = Span{𝜑1, 𝜑2, . . . , 𝜑𝑁 }
where 𝜑𝑖 are the so called shape functions satisfying the condition ℓ𝑖 (𝜑 𝑗) = 𝛿𝑖 𝑗 .

4:14 Yves Renard and Konstantinos Poulios

The simplest and most common way of constructing the function space 𝑉𝑇 is by direct mapping
from a corresponding space 𝑉𝑇 = Span{𝜑1, 𝜑2, . . . , 𝜑𝑁 } on the reference element, obtained by

𝜑𝑖 (𝜏𝑇 (𝑋)) = 𝜑𝑖 (𝑋), (14)

where 𝜏
𝑇
is the geometric transformation from the reference to the real element, which can be

affine or not. In GetFEM terminology, finite element types that can be constructed by Eq. (14), like
e.g. all Lagrange elements, are denoted as 𝜏-equivalent elements.
More complex elements, such as intrinsically vector elements and Hermite elements, are not

𝜏-equivalent because a transformation of shape functions from the reference element involves
a more complex dependence on the geometric transformation 𝜏

𝑇
like for example including its

derivatives. Extending Eq. (14) with a linear transformation matrix𝑀𝑇 , which may actually depend
on the geometric transformation 𝜏

𝑇
and hence on the real element, leads to the more general

mapping

𝜑𝑖 (𝜏𝑇 (𝑋)) =
𝑁∑︁
𝑗=1

(𝑀𝑇)𝑖 𝑗𝜑 𝑗 (𝑋), (15)

that can facilitate the construction of a wider class of finite elements, still based on a reference
element. This mechanism has been the standard way of defining elements like Hermite, Argyris or
Raviart-Thomas in GetFEM and has independently been proposed by other authors [Domínguez
and Sayas 2008; Kirby 2018]. The use of Eq. (15) in defining complex elements consists basically in
determining the necessary matrix𝑀𝑇 and implementing it efficiently, since it has to be evaluated
on each real element. An example of an advanced element type implemented in this manner in
GetFEM is the Argyris triangular element that is made compatible with both affine and non-affine
geometric transformations, also mapped onto a surface element in 3D.
A large set of pre-implemented finite element types are accessible through a corresponding

naming system in GetFEM, with some common of them listed in the appendix Table 8. These also
include intrinsically vector elements such as Raviart-Thomas and Nedelec elements, widely used in
electromagnetism and mixed formulations, [Boffi et al. 2013]. Otherwise, vector-valued or even
tensor-valued fields can also be defined component-wise based on a finite element with scalar
shape functions. Apart from the definition of basis functions per element it is also possible to
define globally indexed basis functions 𝜑𝐼 (𝑋) and assign them to all elements within their support
𝜑𝐼 (𝑋) ≠ 0. This is a useful feature for the implementation of a broad class of numerical methods
like XFEM, but beyond the scope of the present work.

3.3 The model and workspace objects
The purpose of the infrastructure presented in the previous subsections is to construct rather
arbitrary solution spaces and numerical integration schemes serving the computation of weak form
terms, discussed in section 2. The respectively constructed mesh_fem and mesh_im objects represent-
ing different variables and integration methods in one or multiple domains can nevertheless only
be useful as building blocks for an overall model. In the general case of several arbitrarily coupled
variables, setting up such a model can become time consuming and error-prone, when programmed
manually.
Other high level finite element frameworks such as FEniCS [Logg et al. 2012] and FreeFEM

[Hecht 2002, 2012] define problem variables directly as objects in their programming environment.
A different paradigm is followed here with the whole model definition encapsulated in the GetFEM
object model. This object has a very extended functionality including e.g. pre-implemented PDE
terms, a Newton solver, methods facilitating the implementation of time integrators, etc. Alterna-
tively, there is also the ga_workspace object which is lighter and strictly limited to the assemblage

Automated FE modeling in GetFEM 4:15

of zero, first and second order terms. Both objects allow the definition of variables and data, which
can either be scalar or defined on a finite element space or defined on integration points. The GWFL
is implemented as part of these objects, so that any valid GWFL expression can be added to an
instance of these classes, provided that the involved variables and data names are previously defined.
The superposition of all added expressions to a model or ga_workspace object is then evaluated
upon each request for the residual vector or the Jacobian matrix.
This setup is suitable for a monolithic solution where all unknowns are addressed at once in

a single Newton loop, which is a very efficient approach for moderate size problems that can
be solved with an efficient direct solver [Amestoy et al. 2001]. For problems where a monolithic
application of Newton’s method is not sufficient, the model class facilitates the implementation of
staggered solution schemes by allowing to temporarily disable some of the variables and treat them
as data until they are re-enabled. In addition, problems with instabilities and bifurcated solutions
can be treated with numerical continuation algorithms [Dhooge et al. 2003; Ligurský and Renard
2014, 2015], where the commonly used continuation parameter is simply defined as scalar data
in GWFL. In summary, both model and ga_workspace objects can represent complex multiphysics
problems easily, dealing with multiple unknowns on appropriately constructed solution spaces and
multiple weak form terms, describing the different physics and couplings of variables.

4 IMPLEMENTATION ASPECTS
The previous sections have focused on problem formulation and software design choices that aim
at a high level of freedom, flexibility and universality in the intended numerical modeling. For
solving real engineering problems though, performance is also essential because of the often three
dimensional and complex geometries involved, inevitably leading to a large number of degrees of
freedom. This section will hence mainly focus on implementation aspects that are important for
achieving a high computational efficiency.

4.1 Elementary computations and assembly
As the degree of nonlinearities and coupling in a multi-field system of PDEs increases, a computa-
tionally efficient residual vector and Jacobian matrix assembly also becomes increasingly important.
These assembly operations involve repeated evaluations of first and second order terms respectively
according to Eqs. (3) and (4), for a large number of variations 𝛿𝑢𝐼 and 𝛥𝑢𝐼 . Here, the computation
of the Jacobian matrix based on a second order term will be described as the most general case,
with the simplification to first order or even zero order terms being rather obvious.

Let 𝐹2 (𝑢𝐼 ;𝛿𝑢𝐼 , 𝛥𝑢𝐼) be a second order term defined on a geometric entity 𝑆 according to Eq. (4).
One can define the restriction of 𝐹2 to only first variations of variable 𝑢𝛼 and second variations of
variable 𝑢𝛽 , as

𝐹2 |𝛼,𝛽 (𝑢𝐼 ;𝛿𝑢𝛼 , 𝛥𝑢𝛽) = 𝐹2 (𝑢𝐼 ; {0, . . . , 0, 𝛿𝑢𝛼 , 0, . . . , 0}, {0, . . . , 0, 𝛥𝑢𝛽 , 0, . . . , 0}), (16)

with zeros denoting zero functions for the variations of the remaining variables. This restriction of
𝐹2 describes only the coupling between variables 𝑢𝛼 and 𝑢𝛽 ,
Let now 𝑗𝛼 be the index of one degree of freedom for the discretized variable 𝑢𝛼 in the global

system and 𝑗𝛽 be another global index for a degree of freedom corresponding to variable 𝑢𝛽 . Then,
let 𝜑 𝑗𝛼 and 𝜑 𝑗𝛽 denote the corresponding basis functions from the finite element spaces 𝑉ℎ

𝛼 and
𝑉ℎ
𝛽
used for the approximation of variables 𝑢𝛼 and 𝑢𝛽 , respectively. Under these definitions, the

contribution of the second order term to the (𝑗𝛼 , 𝑗𝛽) entry of the global Jacobian matrix 𝐾𝐺 is
obtained by substituting 𝛿𝑢𝛼 and 𝛥𝑢𝛽 in 𝐹2 |𝛼,𝛽 with 𝜑 𝑗𝛼 and 𝜑 𝑗𝛽 , i.e.

𝐹2 |𝛼,𝛽 (𝑢𝐼 ;𝜑 𝑗𝛼 , 𝜑 𝑗𝛽) → 𝐾𝐺 (𝑗𝛼 , 𝑗𝛽).

4:16 Yves Renard and Konstantinos Poulios

From the definition of 𝐹2 in Eq. (4) and its restriction in Eq. (16), the above contribution to𝐾𝐺 (𝑗𝛼 , 𝑗𝛽)
can be evaluated as

𝐹2 |𝛼,𝛽 (𝑢𝐼 ;𝜑 𝑗𝛼 , 𝜑 𝑗𝛽) =∑︁
𝑇 ∈T ℎ

∫
𝑇∩𝑆

𝐺2 |𝛼,𝛽 (𝑢𝐼 ,∇𝑢𝐼 ,H𝑢𝐼 ; 𝜑 𝑗𝛼 ,∇𝜑 𝑗𝛼 ,H𝜑 𝑗𝛼 , 𝜑 𝑗𝛽 ,∇𝜑 𝑗𝛽 ,H𝜑 𝑗𝛽) 𝑑𝑆,
(17)

with 𝐺2 |𝛼,𝛽 denoting the restriction of the weak form integrand 𝐺2 to variations of variables 𝑢𝛼
and 𝑢𝛽 exclusively, equivalent to Eq. (16). The intersection 𝑇 ∩ 𝑆 is included for generality to cover
cases such as fictitious domain methods where 𝑇 may lie only partially in 𝑆 .

A single element 𝑇 will contribute to the coupling term between the two variables 𝑢𝛼 and 𝑢𝛽 in
𝐾𝐺 for several degrees of freedom 𝑗𝛼 and 𝑗𝛽 . If the corresponding sets of active degrees of freedom
in element 𝑇 are defined as

𝐽𝛼 |𝑇 = { 𝑗𝛼 : supp(𝜑 𝑗𝛼) ∩𝑇 ≠ ∅} and 𝐽𝛽 |𝑇 = { 𝑗𝛽 : supp(𝜑 𝑗𝛽) ∩𝑇 ≠ ∅},

then the contribution of element 𝑇 to the Jacobian matrix portion related to first variations of
variable 𝑢𝛼 and second variations of variable 𝑢𝛽 can be summarized to an elementary matrix

𝐾𝛼,𝛽 |𝑇 = 𝐾𝐺 (𝐽𝛼 |𝑇 , 𝐽𝛽 |𝑇)

=

∫
𝑇∩𝑆

[
𝐺2 |𝛼,𝛽 (𝑢𝐼 ,∇𝑢𝐼 ,H𝑢𝐼 ; 𝜑 𝑗𝛼 ,∇𝜑 𝑗𝛼 ,H𝜑 𝑗𝛼 , 𝜑 𝑗𝛽 ,∇𝜑 𝑗𝛽 ,H𝜑 𝑗𝛽)

]
𝑗𝛼 ∈𝐽𝛼 |𝑇
𝑗𝛽 ∈𝐽𝛽 |𝑇

𝑑𝑆

≈
∑︁
𝑝

𝑤𝑝

[
𝐺2 |𝛼,𝛽 (𝑢𝐼 ,∇𝑢𝐼 ,H𝑢𝐼 ; 𝜑 𝑗𝛼 ,∇𝜑 𝑗𝛼 ,H𝜑 𝑗𝛼 , 𝜑 𝑗𝛽 ,∇𝜑 𝑗𝛽 ,H𝜑 𝑗𝛽)

��
𝑋=𝑋𝑝

]
𝑗𝛼 ∈𝐽𝛼 |𝑇
𝑗𝛽 ∈𝐽𝛽 |𝑇

(18)

The last approximate evaluation in Eq. (18) represents the actual numerical integration method, with
𝑋𝑝 denoting an integration point and𝑤𝑝 the corresponding weight. For computational efficiency,
it is common to calculate the integrand𝐺2 |𝛼,𝛽 in a vectorized manner, i.e. for all active degrees of
freedom (𝐽𝛼 |𝑇 , 𝐽𝛽 |𝑇) in the current element 𝑇 instead of an individual pair (𝑗𝛼 , 𝑗𝛽) at a time. With a
slight change in notation, Eq. (18) can be rewritten as

𝐾𝛼,𝛽 |𝑇 ≈
∑︁
𝑝

𝑤𝑝𝐾
<𝑝>

𝛼,𝛽 |𝑇 (𝑢𝐼 ,∇𝑢𝐼 ,H𝑢𝐼 ; 𝜑𝑢𝛼 |𝑇 ,∇𝜑𝑢𝛼 |𝑇 ,H𝜑𝑢𝛼 |𝑇 , 𝜑𝑢𝛽 |𝑇 ,∇𝜑𝑢𝛽 |𝑇 ,H𝜑𝑢𝛽 |𝑇) (19)

with 𝐾<𝑝>

𝛼,𝛽 |𝑇 denoting the contribution of the integration point 𝑋𝑝 to the element tangent matrix.
The vectorization has been moved here to the arguments 𝜑𝑢𝛼 |𝑇 and 𝜑𝑢𝛽 |𝑇 , respectively representing
all basis functions of the finite element spaces for 𝑢𝛼 and 𝑢𝛽 that are nonzero on 𝑇 . For the
computation of values, gradients and Hessians of these shape functions use is made of any available
precomputations either on the real or the reference element, depending on the finite element type.
In total, the global assembly procedure is a quite standard one corresponding to Algorithm 1.

Algorithm 1: Assembly procedure
for each sub-domain 𝑆 do

for each element 𝑇 of 𝑆 do
for each integration point with index 𝑝 in 𝑇 do

Compute matrices 𝐾<𝑝>

𝛼,𝛽 |𝑇 for all available combinations of 𝛼 and 𝛽
and accumulate the result to 𝐾𝛼,𝛽 |𝑇

Apply optional element level transformations on assembled element matrices 𝐾𝛼,𝛽 |𝑇
Accumulate all element matrices 𝐾𝛼,𝛽 |𝑇 to the respective indices 𝐽𝛼 |𝑇 and 𝐽𝛽 |𝑇 in 𝐾𝐺

Automated FE modeling in GetFEM 4:17

One central point regarding the otherwise conventional algorithm 1 is that the innermost
computation involves all weak form expressions and problem variables. This is in contrast to the
alternative approach of composing stiffness matrices by superposition of pre-implemented PDE
terms, which are computed separately. The approach followed here allows for optimizations across
all PDE terms added to a model. Moreover, the optional element level transformation before the
addition to the global matrix, allows for the implementation of advanced element types, involving
local projections depending on the real element, such as locking-free MITC plate elements and
hybrid high-order elements [Bathe and Brezzi 1987; Di Pietro and Ern 2015].

4.2 Compilation of GWFL expressions and optimization
At this point, it is essential to achieve an efficient calculation at each integration point of the elemen-
tary matrices 𝐾<𝑝>

𝛼,𝛽 |𝑇 , or corresponding vectors in the assembly of first order terms. Performing any
kind of text string interpretation of GWFL expressions at each integration point would of course
be very inefficient. The text based description of a weak forms is therefore initially compiled into a
sequence of optimized basic instructions that are later repeatedly executed for each integration
point. Such a compilation step is implemented in different software projects based on different
strategies, as reported e.g. in [Hecht 2002, 2012] and [Logg et al. 2012; Rathgeber et al. 2016]. The
compilation procedure implemented in GetFEM can be defined in terms of four steps, comprising

• parsing of expressions and transformations into an operation tree,
• semantic analysis and simplifications,
• symbolic differentiation of the term when necessary, and
• compilation into a sequence of basic instructions.

A simple single variable example will be considered in order to illustrate this procedure. Letting
𝑢 : Ω → R3 denote the displacement field of an elastic solid Ω, the simplest constitutive law for
large deformation elasticity is the Saint Venant-Kirchhoff one, defining the second Piola-Kirchhoff
stress tensor 𝑆 as a linear function of the deformation tensor E, in the form

𝑆 (∇𝑢) = _Tr(E)𝐼 + 2`E with E = (∇𝑢 + ∇𝑢𝑇 + ∇𝑢𝑇∇𝑢)/2,

where _ and ` are the Lamé coefficients. The computation of the residual vector for the discretized
problem is based on the first order term

𝐹1 (𝑢;𝛿𝑢) =
∫
Ω
((𝐼 + ∇𝑢)𝑆 (∇𝑢)) : ∇𝛿𝑢 𝑑Ω

where, the integrand can be expressed in GWFL as
((Id(meshdim)+Grad(u))*
(0.5*lambda*Trace(Grad(u)+Grad(u)’+Grad(u)’*Grad(u))*Id(meshdim)

+mu*(Grad(u)+Grad(u)’+Grad(u)’*Grad(u)))):Grad(Test_u)
(E9)

with the special GWFL keyword meshdim denoting the problem space dimension 𝑑 .
The parsing step on this expression will then simply result in the operation tree shown in

Figure 4. The subsequent semantic analysis step will enrich the tree with information needed
for checking the validity of the operations and for carrying out simplifications. The first obvious
simplification concerns the precomputation of subexpressions that only involve constants. In the
present example, assuming a homogeneous material, the Lamé coefficients do not depend on
the current integration point and a repeated evaluation of the product 0.5*lambda is therefore
superfluous. In the simplification phase after the semantic analysis, all subtrees depending on
constant data will be evaluated and substituted with the corresponding numerical result in the
optimized tree.

4:18 Yves Renard and Konstantinos Poulios

Grad(Test_u)

Grad(u)Id(meshdim)

Id(meshdim)

Grad(u)

mu

Grad(u) Grad(u)

Grad(u)

Grad(u)

Grad(u) Grad(u)

Grad(u)

lambda0.5

Trace

:

**

*

*

*

*

*

□'

+

+

+

+

++

□'

□'□'

Fig. 4. Operation tree for the elastostatic problem with the Saint Venant-Kirchhoff constitutive law.

Additionally, a hash value is assigned to each node of the tree, which depends on the node itself
and its child nodes. This allows an inexpensive detection of identical parts of the tree based on a
simple sorting of their hash values, [Logg et al. 2012]. For instance, in the tree of Figure 4, there
are multiple occurrences of Grad(u) and two computations of Grad(u)+Grad(u)’+Grad(u)’*Grad(u).
After eliminating all detected redundancies, the processed tree will be converted to a (single sourced)
directed acyclic graph (DAG), [Kozen 1992], shown in Figure 5 for the considered example. One
optimization not visible in this figure but present in the actual implementation is the use of the
basis functions gradients stored in tensor 𝑡16

𝑖 𝑗𝑘
by instruction M also in the calculation of the spatial

gradient of 𝑢, computed and stored in 𝑡2𝑖 𝑗 by instruction A.
Some further optimizations would be possible by rearranging terms based on the commutative

and distributive properties of some operations such as additions and multiplications. In the consid-
ered example one could for instance replace the subexpression
0.5*lambda*Trace(Grad(u)+Grad(u)’+Grad(u)’*Grad(u))*Id(meshdim) (E10)

with
Trace(Grad(u)+Grad(u)’+Grad(u)’*Grad(u))*0.5*lambda*Id(meshdim) (E11)

so that the diagonal matrix 0.5*lambda*Id(meshdim) could be precomputed as a constant. Such
rearranging optimizations are not implemented in GetFEM yet, hence the user is expected to
provide all relevant expressions in an adequately factorized form, with constants grouped together,
in order to avoid computational losses.
After the construction of the optimized DAG for a given expression, a symbolic differentiation

step may be necessary if the order of the provided expression is lower than the order of the
assembled term. For example, if a Jacobian matrix has to be assembled but the provided expression
is only first order, this will be automatically differentiated to the corresponding second order term.
In general, if necessary, the symbolic differentiation rules will be applied once or even twice to
the already optimized DAG, representing the provided expression. Most of the GWFL operators

Automated FE modeling in GetFEM 4:19

:

*

*

*

*

*

+

+

++

Trace

Grad(Test_u)

Id(meshdim) Grad(u)

mu

□'

0.5*lambda

Fig. 5. DAG obtained after the elimination of all duplicated subexpressions. The result of each node is a
tensor with implicit summation on repeated indices assumed for brevity.

include in their definitions either the corresponding symbolic differentiation rule or an equivalent
lower level numerical implementation of it. For instance, the implementation of the multiplication
operator * includes the symbolic differentiation rule 𝜕(𝑓 𝑔) = 𝜕𝑓 𝑔 + 𝑓 𝜕𝑔 but the derivative of the
matrix inverse operator Inv(A) is implemented as a C++ function instead of being written out
according to the corresponding symbolic rule 𝜕(𝐴−1) = −𝐴−1 (𝜕𝐴)𝐴−1. Whenever an expression
has to be differentiated, the resulting DAG will be again analyzed semantically and optimized, in
order to mitigate the fairly high complexity that may arise from the application of the chain rule.
Once the optimized DAG of the term to be assembled has been generated, with or without any

intermediate differentiation, the last step consists in compiling a sequence of basic instructions
corresponding to each node of the DAG. A tensor of appropriate dimensions is also associated
to each of these instructions for storing the expected result. For the earlier discussed example
for instance, the generated instruction sequence is illustrated in Figure 5. It should be noted that
the described assembly procedure includes the vectorization with respect to the active degrees of
freedom in the current element, discussed in the previous subsection. The tensor 𝑡16

𝑖 𝑗𝑘
in Figure 5,

for example, is a rank three tensor just because of this vectorization, with the first tensor index
𝑖 actually denoting the position in the set of active basis functions 𝜑𝑢 |𝑇 in the current element 𝑇 .
This extra tensor dimension propagates to the result tensor 𝑡17𝑖 , the elementary vector, which holds
residual values to be transferred to all degrees of freedom in the global residual vector that are
active in the current element. An extra instruction O performs the weighted summation over
all integration points in the current element, and a final instruction P, executed only at the last
integration point per element, performs the actual assembly, adding the computed elementary
vector to the correct indices in the global residual vector.

4:20 Yves Renard and Konstantinos Poulios

All tensors involved in the compiled instruction list are in principle of constant size, independent
of the current element and integration point. This allows to allocate all tensors involved in the
assembly procedure only once and avoid any memory reallocation during the actual assembly. This
is in general true for uniform finite element meshes with a constant number of degrees of freedom
per element. If different finite element types are mixed in the same mesh, an additional instruction
is added for resizing any tensors that depend on the number of degrees of freedom in the current
element. In that sense, for meshes with multiple finite element types it is computationally favorable
to number the elements clustered in groups of similar element types in order to minimize the need
for reallocations.

It is important here to briefly describe the actual C++ implementation of the final compilation of
the processed expression into a sequence of basic instructions. The compilation algorithm produces
a list of function calls which correspond to each node crossed when transversing the DAG from the
leafs (sinks) to the root (source). To achieve a computationally efficient implementation, the function
calls are without passing of arguments of any kind. Instead, the necessary memory allocation and
wiring of input and output quantities of these function calls occurs in an appropriate structure
generated by the expression compilation algorithm. The building block for this structure is the
instruction class conceptually shown in Figure 6, which implements the function call in its exec()
method and occupies memory only for the output tensor and possibly some internal data. It will
typically also include C++ references to output tensors of other instructions in the DAG for giving
access to all required input. The compilation procedure consists in constructing a list with instances
of pre-implemented instruction classes corresponding to each node in the DAG and initialize these
instances appropriately. Once the list is produced, the exec() method of all instruction instances in
the list will be successively called at each integration point. The DAG structure ensures that when
the exec() method of an instruction is called, all necessary input is already available from the prior
execution of its dependencies.

...

Fig. 6. Structure of a typical instruction class implementing a node in the GWFL DAG and example of
compiled list of instruction class instances.

Based on the previous description, the term compilation in this context is to be understood in the
sense of producing a sequence of function calls to actually precompiled basic instructions acting
on an appropriately initialized data structure. This is in contrast to generation and compilation of
C or C++ code involving a call to an external compiler, as in FEniCS [Logg et al. 2012]. Being able
to do the compilation of an expression at runtime offers great flexibility and allows to easily and
efficiently update the expression between load steps to account for example for possibly evolving

Automated FE modeling in GetFEM 4:21

terms. The use of C++ references for achieving the necessary flow of data between instructions
avoids any redundant memory allocations or copying of values from one instruction to another.
A single call per instruction to its exec() method is actually the only well defined computational
penalty of this approach, compared to the low level compilation approach. The cost of calling a
C++ virtual method without arguments is comparable to a simple memory access operation and it
is hence negligible compared to the time spent inside the function. This is is especially the case for
the assembly of second order terms, where the computations performed inside each instruction
are comparably heavier. A GWFL-based reimplementation of a large collection of PDE terms in
GetFEM, has led to significant performance gains against most of the manual implementations.
Minor losses were only observed for a combination of very simple PDE terms and linear elements.
The example DAG of Figure 5 represents a very simple situation with a single variable and

a single assembly term. For coupled problems and more advanced constitutive laws, DAGs can
become much more complicated. In order to approach the absolutely minimum number of necessary
computations, operation trees of different terms to be evaluated on the same elements and with the
same integration method are combined together and the search for repeated subexpressions and
corresponding simplifications are made on the combined set of operation trees. The resulting single
DAG can be very complex, but this treatment ensures that no subexpression repeated in different
terms, will be evaluated more than once. Obviously, the more complex the considered problem, the
largest the gain from this optimization procedure compared to a traditional implementation where
contributions of different PDE terms are assembled independently.
As a final comment, we need to underline the importance of the simplicity of the proposed

generic weak form language. Although the language includes a very comprehensive set of opera-
tors, its syntax is extremely simple, much closer to a mathematic language than a programming
language. The lack for instance of if-conditions, loops or local variables as part of the language is
a conscious choice, very essential not only for maintaining a certain simplicity in the language
and its implementation but also for achieving high efficiency based on conceptually rather simple
optimizations.

4.3 Performance
High level and very universal modeling environments are normally associated with inferior perfor-
mance both in terms of memory usage and computational efficiency. However, the above described
optimizations show a potential for computational gains through a high level automated modeling
approach, which are hard to match through a manual low level implementation. Of course, such
gains from avoiding repeated calculations of intermediate quantities will only become decisive
for the overall computational performance if 1) the cost of parsing and high-level compilation of
GWFL expressions is small and scalable with increasing expression size, and 2) the remaining parts
of the implementation have similar performance to more specific low level implementations.

Parsing of GWFL strings is implemented in GetFEM based on standard C++ strings and a usual
recursive algorithm of approximately linear complexity. Recorded timings of the expression parsing,
generation of the computation DAG, c.f. Figure 5, and eventual derivation of higher order weak
forms, have demonstrated that the computational cost of the GWFL operations, performed once
per assembly, is far from becoming a bottleneck.

Regarding the non-GWFL part of GetFEM, the underlying semi-automated finite element infras-
tructure relies heavily on lazy, i.e. on demand, computations and caching of intermediate results, to
achieve similar performance with purely manual implementations. To mention geometric trans-
formations as an example, GetFEM uses a memory pool to store and retrieve values, gradients or
Hessians of relevant shape functions, evaluated only once at all involved integration points. As a
general comment, caching of intermediate results favors computational efficiency at the cost of

4:22 Yves Renard and Konstantinos Poulios

memory usage. On the other side, reusing objects by means of a memory pool is a mechanism
which both favors memory and computational efficiency and it can actually lead to computational
gains also compared to manual implementations, in which case reusing of results between very
remote parts of the code is harder to achieve.
For strongly nonlinear and highly coupled problems that the presented solution is meant for,

residual vector and Jacobian matrix assemblage can comprise a quite significant computational
load, compared to the solution of linear systems. Fortunately, assemblage is trivially parallelizable.
GetFEM includes both OpenMP and MPI parallelizations of the assembly of GWFL expressions,
based on partitioning of the computational mesh with METIS [Karypis and Kumar 1998] and storage
of these partitions in mesh regions, c.f. subsection 3.1.

4.4 Interpolate transformations
Interpolate transformations were presented in subsection 2.7 as a major feature that endows the
GWFL with considerably extended expressive capabilities. Apart from the possibility of defining
interpolate transformations symbolically using GWFL expressions, explained in subsection 2.7, the
GWFL implementation in GetFEM allows to define custom interpolate transformations program-
matically by overloading a C++ abstract base class described in Figure 7.

Fig. 7. Interpolate transformation class archetype (virtual_interpolate_transformation base class).

In the most general case, the implementation of the transform method of this class will for a
given point 𝑋 return information about the transformed point Y(𝑋), but it will also upon request
return numerical results for all derivatives of the transformation required in Eq. (10). Derivatives
𝜕Y/𝜕𝑢𝑖 with respect to any variable 𝑢𝑖 can be requested by including the name of the variable 𝑢𝑖 in
the derivatives input/output argument of the transform method. Upon execution of the method,
appropriate tensors will be evaluated and stored in the same argument for each requested derivative.
Moreover, if a variable 𝑢𝑖 is used in the considered interpolate transformation through another
interpolate transformation, the application of the chain rule for nested transformations can be
requested by a corresponding entry in the passed derivatives argument with a non-empty name
for the nested transformation.

The programming of the computation of derivatives for a transformation is usually the most work-
intensive task in implementing a custom interpolate transformation. The GWFL expression based
transformations, raytracing and neighbor element transformations, discussed in subsection 2.7, are
all derived from the archetype shown in Figure 7.

Automated FE modeling in GetFEM 4:23

5 EXAMPLES
This section presents two representative numerical models implemented with the help of GWFL,
that demonstrate modeling techniques with relevance for multiphysics problems. First, a relatively
simple continuum mechanics problem is solved, mainly for showing the expressive power and
compactness of the proposed language. Subsequently, a more advanced multiphysics example
with several coupled variables demonstrates the versatility of GWFL in accounting for complex
couplings between different physics. Code excerpts are provided for the two models implemented
in Python in a total of approximately 110 and 160 lines, respectively.

5.1 Hyperelastic membrane and follower loads
For the first example, a circular membrane is considered, fixed at its circumference and subjected to
an incremented pressure on one side. The heavily stretched membrane at increased pressure, will
also become thinner, leading to significant thickness variations. Beyond some point, deformations
will localize to the most thinned region causing the membrane to burst. The maximum pressure
before this instability occurs defines the pressure capacity of the membrane.
This is a rather simple problem for moderate loads, but significant challenges occur when the

onset of localization is approached. In such high load situations, a very accurate membrane element
is required, linked to a robust underlying material model suitable for very large strains. Moreover,
a numerical continuation scheme is required for tracking the process of localization.
In its reference configuration, the membrane of this example is considered planar and perpen-

dicular to the 𝑧-axis. A displacements field 𝑢 is considered to describe the overall shape of the
deformed membrane with respect to its reference configuration. Moreover, if the initial normal unit
vector on the membrane is mapped to a vector 𝑛 in the deformed configuration, it is easy to show
that the deformation state of each point of the membrane can be represented by a deformation
gradient matrix in the form

𝐹 =

1 + 𝑢𝑥,𝑥 𝑢𝑥,𝑦 𝑛𝑥
𝑢𝑦,𝑥 1 + 𝑢𝑦,𝑦 𝑛𝑦
𝑢𝑧,𝑥 𝑢𝑧,𝑦 𝑛𝑧

The vector field 𝑛 is considered here as an additional field with 3 components to solve for, apart
from the displacements field 𝑢. Its magnitude essentially expresses the actual thickness of the
membrane relative to its initial thickness

Given the aforementioned expression for the deformation gradient 𝐹 as a function of ∇𝑢 and 𝑛,
any hyperelastic material law can be defined in terms of 𝐹 . In the present example, a neo-Hookean
material is considered, according to the strain energy density

𝑊 (∇𝑢, 𝑛) = ^

2
(ln|𝐹 |)2 + `

2

(
|𝐹 |−2/3 ∥𝐹 ∥2 − 3

)
,

with ^ and ` respectively denoting the initial bulk and shear moduli. By using𝑊 as the integrand𝐺0
of a zero order term 𝐹0 according to Eq. (1), involving the two field variables 𝑢 and 𝑛, the kinematics
and constitutive behavior of the considered membrane are fully defined. The deformed state of
the membrane in equilibrium can then be easily found by solving the strain energy minimization
problem on the functional 𝐹0.
It only remains to provide a weak form term for the applied load on the membrane. The work

conjugate tractions to the displacements field 𝑢 for different kinds of follower loads are summarized
in Table 4. In the present case, the applied pressure on one side of the membrane acts normal to the
deformed membrane and it is defined per area of the deformed membrane, so that the expression
in the upper right corner of the table will be used. For a membrane initially lying in the 𝑥𝑦-plane

4:24 Yves Renard and Konstantinos Poulios

Table 4. Follower load 𝑞 on a surface as a function of the deformation gradient 𝐹 , and the normal and tangent
vectors 𝑁 and 𝑇 in the reference configuration.

𝑞 per undeformed area 𝑞 per deformed area

𝑞 acting normal to the surface 𝑞
𝐹−𝑇𝑁𝐹−𝑇𝑁 𝑞 |𝐹 |𝐹−𝑇𝑁

𝑞 acting tangent to the surface 𝑞
𝐹𝑇

∥𝐹𝑇 ∥ 𝑞 |𝐹 |
𝐹−𝑇𝑁 𝐹𝑇

∥𝐹𝑇 ∥

with the overpressure on its bottom side, one can use

𝑁 = (0, 0,−1)𝑇 and 𝑞 = _ 𝑝max,

where _ is a scalar load multiplier for performing numerical continuation and 𝑝max a user defined
maximum pressure. A first order term according to Eq. (3) can then be used for representing the
applied load, with the integrand

𝐺1 (∇𝑢, 𝑛 ; 𝛿𝑢) =
(
_𝑝max |𝐹 |𝐹−𝑇𝑁

)
· 𝛿𝑢

Figure 8 presents simulation results at different load steps, showing the actual thickness dis-
tribution over the deformed membrane. The numerical continuation algorithm has tracked the
maximum applied load of the membrane corresponding to _ = 0.6912 at load step 50 and could
further simulate the localization phase of the deformation up to the final bursting of the membrane.
For the implementation of this model in GetFEM, the mesh shown in Figure 8 was used with

9-node quadratic quadrilateral elements for both unknown fields 𝑢 and 𝑛. The model was imple-
mented in Python and the most essential parts of the implementation are provided in the code
listings below. The mesh generation, the definition of a finite element space and the definition of
an appropriate integration method are done with

mesh = gf.Mesh("import", "structured_ball",
"GT='GT_QK(2,2)';ORG=[0,0];SIZES=[50];NSUBDIV=[10,3];SYMMETRIES=0")

mesh.transform([[1,0],[0,1],[0,0]]) # convert the 2D mesh to 3D
mesh.set_region(DIR_BOUNDARY, mesh.outer_faces(2))
mf = gf.MeshFem(mesh, 3) # vector FEM with 3 components per node
mf.set_classical_fem(2) # second order Lagrangian FEM
mim = gf.MeshIm(mesh, 5) # degree 5 integration method, i.e. 3x3 points

step 0, _ = 0 step 100, _ = 0.615 step 200, _ = 0.585 step 250, _ = 0.643

Fig. 8. Deformation of a circular membrane under pressure, with diameter of 100 mm, initial thickness of
2 mm and, Young’s modulus 50 MPa, Poisson ratio 0.4, and 𝑝max = 1 MPa.

Automated FE modeling in GetFEM 4:25

Then a model object is created, all relevant variables and problem constants are defined and
the two weak form terms representing the aforestated hyperelastic strain energy function and the
follower load, are added to the model. Last, a homogeneous Dirichlet condition is imposed on the
displacements at the external circumference of the membrane.

md = gf.Model("real")
md.add_fem_variable("u", mf) # displacements variable
md.add_fem_variable("n", mf) # deformed normal vector variable
md.set_variable("n", md.interpolation("[0,0,1]", mf, -1))
md.add_initialized_data("gamma", 0.) # numerical continuation load multiplier
md.add_initialized_data("pmax", pmax) # maximum pressure
md.add_initialized_data('kappa', kappa) # initial bulk modulus
md.add_initialized_data('mu', mu) # initial shear modulus
md.add_initialized_data('H', H) # membrane thickness

md.add_macro("F", "[1,0,0;0,1,0;0,0,0]+Grad(u)+n@[0,0,1]") # deformation gradient
md.add_nonlinear_term(mim, "H*0.5*kappa*sqr(log(Det(F)))+"

"H*0.5*mu*(pow(Det(F),-2/3)*Norm_sqr(F)-3)")
md.add_nonlinear_term(mim, "gamma*pmax*Det(F)*((Inv(F)'*[0,0,-1]).Test_u)")
md.add_Dirichlet_condition_with_multipliers(mim, "u", mf, DIR_BOUNDARY)

The subsequent call to the numerical continuation solver within a corresponding loop is omitted
here in the interest of space, but these remaining steps are also implemented in a comparably
compact manner. Just to give an impression about the use of GWFL for preparing post-processing
output, Von Mises stresses are calculated and exported with

VM = md.local_projection(mim, "sqrt(1.5)*Norm(mu*pow(Det(F),-5./3.)"
"*Deviator(Left_Cauchy_Green(F)))", mfout)

mfout.export_to_vtk("membrane_VM.vtk", mfout, VM, "Von Mises Stress")

where mfout is a discontinuous Langrangian finite element space, used only for post-processing.

5.2 Phase field model of hydrogen assisted crack propagation
Hydrogen assisted crack propagation is a typical multiphysics problem, involving elasticity with
fracture damage and diffusion of hydrogen. There is a strong bidirectional coupling between the
two subproblems with the elastic stresses affecting the diffusion of hydrogen and at the same
time the hydrogen concentration having an impact on the damage behavior. Here, we present a
reimplementation and extension of a model from the literature, with the help of GWFL.

Considering a solid with bulk modulus ^ and shear modulus `, subjected to small strains due to
a displacements field 𝑢, its elastic energy density function is

𝜓0 (∇𝑢) =
^

2
(∇ · 𝑢)2 + ` ∥Dev (∇s𝑢)∥2 .

The fracture phase field model proposed by Miehe et al. [2010], introduces a damage field variable 𝑑 ,
which leads to a degradation in stiffness as it increases from zero to one. The evolution of the
damage variable is governed by the critical energy release rate parameter G𝑐 and the length scale
parameter 𝑙 . The model proposed by Martínez-Pañeda et al. [2018] additionally introduces the
hydrogen concentration 𝐶 as an unknown field, and accounts for a dependence of the fracture
parameter G𝑐 on𝐶 . The diffusion of hydrogen in the material is coupled to the mechanical stresses,
as hydrogen is attracted to regions of lower hydrostatic pressure 𝑝 .
In order to avoid the occurrence of second order spatial derivatives with respect to the dis-

placement field 𝑢 in the hydrogen diffusion equation, which are difficult to treat numerically, the
hydrostatic pressure 𝑝 is considered as an additional unknown field. This results in a model with
the four unknown fields 𝑢, 𝑑 , 𝑝 and 𝐶 , in contrast to the three fields used in [Martínez-Pañeda et al.
2018]. Moreover, we add an inertia term based on the material density constant 𝜌 .

4:26 Yves Renard and Konstantinos Poulios

Following the time discretization proposed in [Miehe et al. 2010], the governing equations for
the time step 𝑑𝑡𝑛 = 𝑡𝑛 − 𝑡𝑛−1 can be cast into a weak form consisting of four first order terms∫

Ω
𝐺1𝑎 (𝑑,∇𝑢 ; ∇𝛿𝑢) + 𝐺1𝑏 (𝑑,∇𝑢,∇𝑑 ; 𝛿𝑑,∇𝛿𝑑)

+ 𝐺1𝑐 (𝑝,𝑑,∇𝑢 ; 𝛿𝑝) + 𝐺1𝑑 (𝐶,∇𝑝,∇𝐶 ; 𝛿𝐶,∇𝛿𝐶) 𝑑Ω = 0 ∀ 𝛿𝑢, 𝛿𝑝, 𝛿𝑑, 𝛿𝐶.
The three integrands 𝐺1𝑎 , 𝐺1𝑏 and 𝐺1𝑑 , are adopted from [Martínez-Pañeda et al. 2018], with only
small modifications. By including inertia forces, with acceleration approximated recursively in a
backward Euler sense, the first integrand becomes

𝐺1𝑎 = 𝜌
(
(𝑢 − 𝑢𝑛−1)/𝑑𝑡𝑛 − ¤𝑢𝑛−1

)
/𝑑𝑡𝑛 · 𝛿𝑢 + 𝑔(𝑑)

(
^ (∇ · 𝑢) 𝐼 + ` Dev(∇s𝑢)

)
: ∇𝛿𝑢, (20)

where 𝑢𝑛−1 and ¤𝑢𝑛−1 = (𝑢𝑛−1 − 𝑢𝑛−2)/𝑑𝑡𝑛−1, are displacements and velocities at the previous time
instant 𝑡𝑛−1, and 𝑔(𝑑) = (1 − 𝑑)2 + 𝑘1 is degradation function with a small positive constant 𝑘1.

Following the model from the literature, the second integrand is

𝐺1𝑏 = −2(1 − 𝑑)H𝑛 (∇𝑢) 𝛿𝑑 + G𝑐 (𝐶)
𝑙

(
𝑑 𝛿𝑑 + 𝑙2 ∇𝑑 · ∇ 𝛿𝑑

)
, (21)

with
H𝑛 = max

(
𝜓0 (∇𝑢),H𝑛−1

)
and G𝑐 =

(
1 − 𝜒 𝐶

𝐶 + 𝑐1

)
G𝑐0,

where G𝑐0 is the critical energy release rate in the hydrogen free material and 𝜒 and 𝑐1 are additional
material parameters.

The pressure variable 𝑝 can be defined as equal to −𝑔(𝑑) ^ ∇ ·𝑢 through the weak form integrand

𝐺1𝑐 = (𝑝 + 𝑔(𝑑) ^ ∇ · 𝑢) 𝛿𝑝, (22)

and finally, the steady state form of the hydrogen diffusion equation is expressed through

𝐺1𝑑 = (∇𝐶 + 𝑐2𝐶 ∇𝑝) · ∇𝛿𝐶, (23)

where 𝑐2 is a material parameter describing the attraction of hydrogen due to pressure gradients.
The following code excerpts assume a 2D mesh defined in GetFEM, along with appropriate finite

element spaces mfu, mfd, mfp and mfC corresponding to the four unknown fields. Quadratic, 9-node
quadrilateral elements are used for mfu and mfd, while linear 4-node elements are used for mfp and
mfC. Moreover, mim4 and mim9 represent integration methods with 4 and 9 integration points per
element, respectively, while mimd4 and mimd9 are so called mesh_im_data objects for storing scalar
data on the integration points of the two aforementioned integration methods. In this context, all
problem unknowns, data and state variables can be added to a GetFEM model md with

md.add_fem_variable("u", mfu) # displacements field
md.add_fem_variable("d", mfd) # fracture phase field
md.add_fem_variable("p", mfp) # hydrostatic pressure field
md.add_fem_variable("C", mfC) # hydrogen concentration field
md.set_variable("C", C0*np.ones(mfC.nbdof()))
md.add_fem_data("u_prev", mfu)
md.add_fem_data("v_prev", mfu)
md.add_im_data("psi0_max", mimd9)
Definition of constants (Dt, kappa, mu, rho, Gc0, l, C0, chi, c1, c2)
md.add_initialized_data(...name, ...value)

The state variables u_prev and v_prev, corresponding to 𝑢𝑛−1 and ¤𝑢𝑛−1, are stored in the same
finite element space as𝑢, while the state variable psi0_max, corresponding to themaximum reference
energyH𝑛−1, is stored on all relevant integration points. The constant C0 is simply used as an initial
and boundary condition value for the hydrogen concentration variable𝐶 . The presented governing
equations can then be implemented in GWFL as compact as listed in the following code excerpt.

Automated FE modeling in GetFEM 4:27

md.add_linear_term(mim9, "rho/Dt*((u-u_prev)/Dt-v_prev).Test_u")
md.add_macro("degradation", "sqr(1-d)+1e-7")
md.add_macro("deveps", "Sym(Grad(u))-Div(u)/3*Id(2)")
md.add_macro("psi0", "(0.5*kappa*sqr(Div(u))+mu*Norm_sqr(deveps))")
md.add_macro("Gc", "(1-chi*C/(C+c1))*Gc0")
md.add_nonlinear_term(mim9, "degradation*(kappa*Div(u)*Id(2)+2*mu*deveps):Grad(Test_u)")
md.add_nonlinear_term(mim9, "(-2*(1-d)*max(psi0_max,psi0)*Test_d"

"+Gc*(d/l*Test_d+l*Grad(d).Grad(Test_d)))")
md.add_nonlinear_term(mim4, "(p+degradation*kappa*Div(u))*Test_p")
md.add_nonlinear_term(mim4, "(Grad(C)+c2*C*Grad(p)).Grad(Test_C)"

"+1e3*pos_part(2*d-1)*(C-C0)*Test_C")

The deviatoric strain definition in the macro deveps, assumes a 2D problem domain and plane
strain conditions. It should also be noted that the provided implementation extends the diffusion
Eq. (23) from the literature, by imposing a reference hydrogen concentration value𝐶0 in all damaged
regions of the domain, characterized by 𝑑 > 0.5, through the extra penalization term

𝑘2 ⟨2𝑑 − 1⟩ (𝐶 −𝐶0) 𝛿𝐶,
with 𝑘2 being a moderately large positive penalization factor.

The definition of Dirichlet boundary conditions on𝑢 and𝐶 is skipped here, as it is rather trivial as
shown in the first example. To complete the presentation of all essential parts of the implementation,
the code for updating the three state variables for the next time step is listed below.

md.set_variable("u_prev", md.variable("u"))
md.set_variable("v_prev", md.interpolation("(u-u_prev)/Dt", mfu))
md.set_variable("psi0_max", md.interpolation("max(psi0_max,psi0)", mimd9))

To close this example, Figure 9 shows representative results for the fields𝑑 ,𝐶 and 𝑝 in a single edge
notched specimen under mode I loading. Instead of defining the initial crack as a discontinuity in
the computational mesh, it is represented by initializing the state variable psi0_max, corresponding
to H−1, to some large value in all elements in a given region. Representative timings for single
residual vector and Jacobian matrix assemblies as well as for a single non-symmetric linear system
solution with MUMPS [Amestoy et al. 2001] are given in Table 5.

Fig. 9. Obtained fracture phase field (left), hydrogen concentration [ppmw] (center) and hydrostatic pres-
sure [MPa] (right), at an imposed average vertical strain of 0.00266. Reference hydrogen concentration of
0.5 [ppmw], strain rate of 2 · 10−4 [1/s], density 𝜌 = 8 · 10−9 [t/mm3], and remaining model parameters as in
[Martínez-Pañeda et al. 2018].

4:28 Yves Renard and Konstantinos Poulios

Table 5. Assembly and linear solution timings for example 2 on Intel ® Xeon ® CPU E5-2660 v3 (2.60GHz).

Mesh Degrees of freedom Assembly Linear
size Displacement Total Residual Jacobian solution

80 × 60 38962 69249 80 ms 350 ms 1700 ms
160 × 120 154722 272889 320 ms 1400 ms 8500 ms

6 CONCLUDING REMARKS
Numerical modeling for scientific applications follows a general trend in software towards a less
error-prone development through less code duplication and a higher level of automation. In this
context, this paper has provided software design and implementation details for a highly automated
finite element modeling framework. As the main ingredient for this automation, a proposed generic
weak form language has been presented both from a theoretical and an implementation perspective,
focusing on its potential for combining a high level of automation with computational efficiency.

The value of the introduced ASCII text based language as a suitable universal format for formu-
lating arbitrarily coupled systems of partial differential and algebraic equations has been discussed.
More specifically, the interpolate transformation mechanism, incorporated in the language, has
received special attention due to its significant contribution to the achieved expressive power of
the proposed language. A wide range of numerical methods such as mortar and unilateral contact
as well as discontinuous Galerkin methods can be implemented with the help of this mechanism.
At a more technical level, the runtime compilation of the generic weak form language expres-

sions has been explained and conceptually compared to alternative solutions such as just-in-time
compilation, highlighting the possible computational efficiency gains. Other relevant innovations
and software architecture decisions regarding the overall GetFEM framework that implements the
proposed language have also been presented and justified.
The included examples have indicated the potential of the proposed automation for gains in

coding and debugging time. Certainly, different types of models and modeling needs exist beyond
the presented examples and language functionalities. However, there is also a set of more advanced
features already integrated in GetFEM/GWFL but not covered here. These features, including
levelset and XFEM capabilities as well as static condensation of internal variables based on local
equations described in GWFL, will in the future demonstrate the extendibility of GWFL to even
more complex modeling scenarios.

APPENDIX

Table 6. Naming of common geometric transformations and corresponding reference elements in GetFEM.

GT_PK(p,k) Simplicial element in R𝑝 of degree 𝑘 . E.g. GT_PK(3,1) is a linear tetrahedral element.
GT_QK(p,k) Hypercube element in R𝑝 of degree 𝑘 . E.g. GT_QK(3,2) is a 27-node hexahedral

element.
GT_PRISM(p,k) Prismatic element in R𝑝 of degree 𝑘 . E.g. GT_PRISM(3,1) is a 6-node wedge element.
GT_PYRAMID(k) Quadrilateral base pyramids in 3D, either linear or quadratic (𝑘 = 1, 2).

GT_Q2_INCOMPLETE(p) Quadratic serendipity parallelepiped elements in 2D (p=2) and 3D (p=3), respectively
corresponding to 8-node quadrilateral and 20-node hexahedral elements.

GT_PRODUCT(a,b) Tensor product of transformations. E.g. the product of a linear triangular element and
a line element GT_PRODUCT(GT_PK(2,1),GT_PK(1,1)) is equivalent to GT_PRISM(3,1).

Automated FE modeling in GetFEM 4:29

Table 7. Naming of common numerical integration methods in GetFEM.

IM_GAUSS1D(k) Gauss-Legendre quadrature rule on a 1D element with 𝑘/2 + 1 points,
integrating polynomials of degree 𝑘 exactly.

IM_TRIANGLE(k) Integration method of order 𝑘 (up to 13) on a triangle.
IM_QUAD(k) Integration method of order 𝑘 (up to 17) on a quadrilateral.

IM_TETRAHEDRON(k) Integration method of order 𝑘 (up to 8) on a tetrahedron.
IM_PYRAMID(IM) Transforms a hexahedron into a pyramid integration method.

IM_STRUCTURED_COMPOSITE(IM,s) Refines the integration method IM using s subdivisions.

Table 8. Naming of common finite element types in GetFEM.

Name 𝜏-equiv. Vector Element description
FEM_PK(n,k) Yes No Lagrange of degree 𝑘 on a 𝑛-dimensional simplex (segment, triangle,

tetrahedron, ...).
FEM_QK(n,k) Yes No Lagrange of degree 𝑘 on a segment, quadrilateral, hexahedron, ...

FEM_HERMITE(n) No No Hermite on a 𝑛-dimensional simplex.
FEM_ARGYRIS No No Argyris on a triangle. Conformal 𝐶1-element, polynomial of degree 5.

FEM_PYRAMID_QK(k) Yes No Lagrange of degree 𝑘 = 1 or 2 on a pyramid with rational shape
functions on the reference element.

FEM_RT0(n) No Yes Raviart-Thomas vector element of lowest order on a 𝑛-dimensional
simplex.

FEM_NEDELEC(n) No Yes Nedelec vector element of order 1 on a 𝑛-dimensional simplex.
FEM_HTC_TRIANGLE No No Hsieh-Clough-Tocher on a triangle. Composite element, piecewise

polynomial of degree 3.
FEM_PRODUCT
(FEM1,FEM2)

Yes - Tensor product of two (𝜏-equivalent) elements. E.g. FEM_QK(2,1) can
be written as FEM_PRODUCT(FEM_PK(1,1),FEM_PK(1,1)).

REFERENCES
G. Amberg, R. Tönhardt, and C. Winkler. 1999. Finite element simulations using symbolic computing. Math. Comput.

Simulat. 49, 4 (1999), 257 – 274. https://doi.org/10.1016/S0378-4754(99)00054-3
P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent. 2001. A fully asynchronous multifrontal solver using distributed

dynamic scheduling. SIAM J. Matrix Anal. A. 23, 1 (2001), 15–41.
W. Bangerth, R. Hartmann, and G. Kanschat. 2007. deal.II – A general purpose object oriented finite element library. ACM T.

Math. Software 33, 4 (2007), 24/1–27.
K.-J. Bathe and F. Brezzi. 1987. A Simplified Analysis of Two Plate Bending Elements — the MITC4 and MITC9 Elements. In

Numerical Techniques for Engineering Analysis and Design, G. N. Pande and J. Middleton (Eds.). Springer Netherlands,
Dordrecht, 407–417.

M. Bergot, G. Cohen, and M. Duruflé. 2010. Higher-order finite elements for hybrid meshes using new nodal pyramidal
elements. J. Sci. Comput. 42, 3 (2010), 345–381. https://doi.org/10.1007/s10915-009-9334-9

D. Boffi, F. Brezzi, and M. Fortin. 2013. Mixed finite element methods and applications. Springer.
P. G. Ciarlet. 2002. The finite element method for elliptic problems. Classics in Applied Mathematics 40 (2002), 1–511.
A. Dhooge, W. Govaerts, and Y. A. Kuznetsov. 2003. MATCONT: A MATLAB package for numerical bifurcation analysis of

ODEs. ACM T. Math. Software 31 (2003), 141 – 164.
D. Di Pietro and A. Ern. 2015. A hybrid high-order locking-free method for linear elasticity on general meshes. Computer

Methods in Applied Mechanics and Engineering 283 (2015), 1 – 21. https://doi.org/10.1016/j.cma.2014.09.009
V. Domínguez and F.-J. Sayas. 2008. Algorithm 884: A simple Matlab implementation of the Argyris element. ACM T. Math.

Software 35, 2 (2008), 16/1–11. https://doi.org/10.1145/1377612.1377620

https://doi.org/10.1016/S0378-4754(99)00054-3
https://doi.org/10.1007/s10915-009-9334-9
https://doi.org/10.1016/j.cma.2014.09.009
https://doi.org/10.1145/1377612.1377620

4:30 Yves Renard and Konstantinos Poulios

C. Geuzaine and J.-F. Remacle. 2009. Gmsh: A 3-D finite element mesh generator with built-in pre- and post-
processing facilities. Int. J. Numer. Meth. Eng. 79, 11 (2009), 1309–1331. https://doi.org/10.1002/nme.2579
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.2579

R. D. Graglia and I.-L. Gheorma. 1999. Higher order interpolatory vector bases on pyramidal elements. IEEE T. Antenn.
Propag. 47 (1999), 775–782. https://doi.org/10.1109/8.774130

F. Hecht. 2002. C++ tools to construct our user-level language. ESAIM-Math. Model. Num. 36, 5 (2002), 809–836. https:
//doi.org/10.1051/m2an:2002034

F. Hecht. 2012. New development in freefem++. J. Numer. Math. 20, 3-4 (2012), 251–265. https://doi.org/10.1515/jnum-
2012-0013

M. Heil and A. L. Hazel. 2006. oomph-lib – An object-oriented multi-physics finite-element library. In Fluid-Structure
Interaction, Hans-Joachim Bungartz and Michael Schäfer (Eds.). Springer Berlin Heidelberg, 19–49.

G. Karypis and V. Kumar. 1998. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci.
Comput. 20, 1 (1998), 359–392. https://doi.org/10.1137/S1064827595287997

R. Kirby. 2018. A general approach to transforming finite elements. SMAI Journal of Computational Mathematics 4 (2018),
197–224. https://doi.org/10.5802/smai-jcm.33

J. Korelc. 1997. Automatic generation of finite-element code by simultaneous optimization of expressions. Theor. Comput.
Sci. 187, 1 (1997), 231 – 248. https://doi.org/10.1016/S0304-3975(97)00067-4

J. Korelc. 2009. Automation of primal and sensitivity analysis of transient coupled problems. Comput. Mech. 44, 5 (2009),
631–649. https://doi.org/10.1007/s00466-009-0395-2

D. C. Kozen. 1992. The design and analysis of algorithms. Springer. 10+320 s. pages.
T. Ligurský and Y. Renard. 2014. A continuation problem for computing solutions of discretised evolution problems with

application to plane quasi-static contact problems with friction. Comput. Method. Appl. M. 280 (2014), 222 – 262.
T. Ligurský and Y. Renard. 2015. Bifurcations in piecewise-smooth steady-state problems: abstract study and application to

plane contact problems with friction. Comput. Mech. 56, 1 (2015), 39 – 62.
A. Logg, K. A. Mardal, and G. N. Wells. 2012. Automated solution of differential equations by the finite element method.

Lect. Notes Comp. Sci. 84 (2012), 1–736. https://doi.org/10.1007/978-3-642-23099-8_1
A. Logg and G. N. Wells. 2010. DOLFIN: Automated Finite Element Computing. ACM T. Math. Software 37, 2 (2010), 20/1–28.

https://doi.org/10.1145/1731022.1731030
K. Long, P. T. Boggs, and B. G. van BloemenWaanders. 2012. Sundance: High-level software for PDE-constrained optimization.

Sci. Programming-Neth. 20, 3 (2012), 293–310. https://doi.org/10.1155/2012/380908
K. Long, R. Kirby, and B. G. van Bloemen Waanders. 2010. Unified embedded parallel finite element computations via

software-based frechet differentiation. SIAM J. Sci. Comput. 32, 6 (2010), 3323–3351. https://doi.org/10.1137/09076920X
E. Martínez-Pañeda, A. Golahmar, and C. F. Niordson. 2018. A phase field formulation for hydrogen assisted cracking.

Comput. Method. Appl. M. 342 (2018), 742 – 761. https://doi.org/10.1016/j.cma.2018.07.021
C. Miehe, M. Hofacker, and F. Welschinger. 2010. A phase field model for rate-independent crack propagation: Robust

algorithmic implementation based on operator splits. Comput. Method. Appl. M. 199, 45-48 (2010), 2765–2778. https:
//doi.org/10.1016/j.cma.2010.04.011

K. Poulios and Y. Renard. 2015. An unconstrained integral approximation of large sliding frictional contact between
deformable solids. Computers & Structures 153 (2015), 75–90. https://doi.org/10.1016/j.compstruc.2015.02.027

C. Prud’homme. 2006. A domain specific embedded language in C++ for automatic differentiation, projection, integration
and variational formulations. Sci. Programming-Neth. 14, 2 (2006), 81–110. https://doi.org/10.1155/2006/150736

F. Rathgeber, D. A. Ham, L. Mitchell, M. Lange, F. Luporini, A. T.T. McRae, G. T. Bercea, G. R. Markall, and P. H.J. Kelly.
2016. Firedrake: Automating the finite element method by composing abstractions. Acm Transactions on Mathematical
Software 43, 3 (2016), 2998441. https://doi.org/10.1145/2998441

K. Rupp. 2010. Symbolic integration at compile time in finite element methods. Proceedings of the International Symposium
on Symbolic and Algebraic Computation ISSAC (2010), 347–354.

P. S. Wang. 1986. FINGER - A symbolic system for automatic-generation of numerical programs in finite-element analysis.
J. Symb. Comput. 2, 3 (1986), 305–316. https://doi.org/10.1016/S0747-7171(86)80029-3

T. Zimmermann and D. Eyheramendy. 1996. Object-oriented finite elements I. Principles of symbolic derivations and
automatic programming. Comput. Method. Appl. M. 132, 3-4 (1996), 259–276. https://doi.org/10.1016/0045-7825(96)01040-7

https://doi.org/10.1002/nme.2579
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.2579
https://doi.org/10.1109/8.774130
https://doi.org/10.1051/m2an:2002034
https://doi.org/10.1051/m2an:2002034
https://doi.org/10.1515/jnum-2012-0013
https://doi.org/10.1515/jnum-2012-0013
https://doi.org/10.1137/S1064827595287997
https://doi.org/10.5802/smai-jcm.33
https://doi.org/10.1016/S0304-3975(97)00067-4
https://doi.org/10.1007/s00466-009-0395-2
https://doi.org/10.1007/978-3-642-23099-8_1
https://doi.org/10.1145/1731022.1731030
https://doi.org/10.1155/2012/380908
https://doi.org/10.1137/09076920X
https://doi.org/10.1016/j.cma.2018.07.021
https://doi.org/10.1016/j.cma.2010.04.011
https://doi.org/10.1016/j.cma.2010.04.011
https://doi.org/10.1016/j.compstruc.2015.02.027
https://doi.org/10.1155/2006/150736
https://doi.org/10.1145/2998441
https://doi.org/10.1016/S0747-7171(86)80029-3
https://doi.org/10.1016/0045-7825(96)01040-7

	Abstract
	1 Introduction and aim
	2 The generic weak form language
	2.1 Zero-order terms, functionals
	2.2 First order terms, residuals
	2.3 Second order terms, Jacobians
	2.4 Algebraic variables
	2.5 The generic weak form language
	2.6 Modeling automation
	2.7 Interpolate transformations

	3 Software architecture
	3.1 Meshes and integration methods
	3.2 Finite element description
	3.3 The model and workspace objects

	4 Implementation aspects
	4.1 Elementary computations and assembly
	4.2 Compilation of GWFL expressions and optimization
	4.3 Performance
	4.4 Interpolate transformations

	5 Examples
	5.1 Hyperelastic membrane and follower loads
	5.2 Phase field model of hydrogen assisted crack propagation

	6 Concluding remarks
	References

